Automated Epileptic Seizure Detection in Pediatric Subjects of CHB-MIT EEG Database—A Survey
Epilepsy is a neurological disorder of the brain that causes frequent occurrence of seizures. Electroencephalography (EEG) is a tool that assists neurologists in detecting epileptic seizures caused by an unexpected flow of electrical activities in the brain. Automated detection of an epileptic seizu...
Saved in:
Published in | Journal of personalized medicine Vol. 11; no. 10; p. 1028 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
15.10.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Epilepsy is a neurological disorder of the brain that causes frequent occurrence of seizures. Electroencephalography (EEG) is a tool that assists neurologists in detecting epileptic seizures caused by an unexpected flow of electrical activities in the brain. Automated detection of an epileptic seizure is a crucial task in diagnosing epilepsy which overcomes the drawback of a visual diagnosis. The dataset analyzed in this article, collected from Children’s Hospital Boston (CHB) and the Massachusetts Institute of Technology (MIT), contains long-term EEG records from 24 pediatric patients. This review paper focuses on various patient-dependent and patient-independent personalized medicine approaches involved in the computer-aided diagnosis of epileptic seizures in pediatric subjects by analyzing EEG signals, thus summarizing the existing body of knowledge and opening up an enormous research area for biomedical engineers. This review paper focuses on the features of four domains, such as time, frequency, time-frequency, and nonlinear features, extracted from the EEG records, which were fed into several classifiers to classify between seizure and non-seizure EEG signals. Performance metrics such as classification accuracy, sensitivity, and specificity were examined, and challenges in automatic seizure detection using the CHB-MIT database were addressed. |
---|---|
AbstractList | Epilepsy is a neurological disorder of the brain that causes frequent occurrence of seizures. Electroencephalography (EEG) is a tool that assists neurologists in detecting epileptic seizures caused by an unexpected flow of electrical activities in the brain. Automated detection of an epileptic seizure is a crucial task in diagnosing epilepsy which overcomes the drawback of a visual diagnosis. The dataset analyzed in this article, collected from Children’s Hospital Boston (CHB) and the Massachusetts Institute of Technology (MIT), contains long-term EEG records from 24 pediatric patients. This review paper focuses on various patient-dependent and patient-independent personalized medicine approaches involved in the computer-aided diagnosis of epileptic seizures in pediatric subjects by analyzing EEG signals, thus summarizing the existing body of knowledge and opening up an enormous research area for biomedical engineers. This review paper focuses on the features of four domains, such as time, frequency, time-frequency, and nonlinear features, extracted from the EEG records, which were fed into several classifiers to classify between seizure and non-seizure EEG signals. Performance metrics such as classification accuracy, sensitivity, and specificity were examined, and challenges in automatic seizure detection using the CHB-MIT database were addressed. Epilepsy is a neurological disorder of the brain that causes frequent occurrence of seizures. Electroencephalography (EEG) is a tool that assists neurologists in detecting epileptic seizures caused by an unexpected flow of electrical activities in the brain. Automated detection of an epileptic seizure is a crucial task in diagnosing epilepsy which overcomes the drawback of a visual diagnosis. The dataset analyzed in this article, collected from Children's Hospital Boston (CHB) and the Massachusetts Institute of Technology (MIT), contains long-term EEG records from 24 pediatric patients. This review paper focuses on various patient-dependent and patient-independent personalized medicine approaches involved in the computer-aided diagnosis of epileptic seizures in pediatric subjects by analyzing EEG signals, thus summarizing the existing body of knowledge and opening up an enormous research area for biomedical engineers. This review paper focuses on the features of four domains, such as time, frequency, time-frequency, and nonlinear features, extracted from the EEG records, which were fed into several classifiers to classify between seizure and non-seizure EEG signals. Performance metrics such as classification accuracy, sensitivity, and specificity were examined, and challenges in automatic seizure detection using the CHB-MIT database were addressed.Epilepsy is a neurological disorder of the brain that causes frequent occurrence of seizures. Electroencephalography (EEG) is a tool that assists neurologists in detecting epileptic seizures caused by an unexpected flow of electrical activities in the brain. Automated detection of an epileptic seizure is a crucial task in diagnosing epilepsy which overcomes the drawback of a visual diagnosis. The dataset analyzed in this article, collected from Children's Hospital Boston (CHB) and the Massachusetts Institute of Technology (MIT), contains long-term EEG records from 24 pediatric patients. This review paper focuses on various patient-dependent and patient-independent personalized medicine approaches involved in the computer-aided diagnosis of epileptic seizures in pediatric subjects by analyzing EEG signals, thus summarizing the existing body of knowledge and opening up an enormous research area for biomedical engineers. This review paper focuses on the features of four domains, such as time, frequency, time-frequency, and nonlinear features, extracted from the EEG records, which were fed into several classifiers to classify between seizure and non-seizure EEG signals. Performance metrics such as classification accuracy, sensitivity, and specificity were examined, and challenges in automatic seizure detection using the CHB-MIT database were addressed. |
Author | Prasanna, J. Damaševičius, Robertas Subathra, M. S. P. George, S. Thomas Mohammed, Mazin Abed Sairamya, Nanjappan Jothiraj |
AuthorAffiliation | 1 Department of Electronics and Instrumentation Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India; prasu1796@gmail.com (J.P.); sairamyanj@karunya.edu.in (N.J.S.) 4 Department of Applied Informatics, Vytautas Magnus University, 44404 Kaunas, Lithuania 3 Information Systems Department, College of Computer Science and Information Technology, University of Anbar, Ramadi 31000, Anbar, Iraq; mazinalshujeary@uoanbar.edu.iq 2 Department of Robotics Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India; subathra@karunya.edu 6 Department of Biomedical Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India 5 Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland |
AuthorAffiliation_xml | – name: 1 Department of Electronics and Instrumentation Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India; prasu1796@gmail.com (J.P.); sairamyanj@karunya.edu.in (N.J.S.) – name: 6 Department of Biomedical Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India – name: 3 Information Systems Department, College of Computer Science and Information Technology, University of Anbar, Ramadi 31000, Anbar, Iraq; mazinalshujeary@uoanbar.edu.iq – name: 5 Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland – name: 4 Department of Applied Informatics, Vytautas Magnus University, 44404 Kaunas, Lithuania – name: 2 Department of Robotics Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India; subathra@karunya.edu |
Author_xml | – sequence: 1 givenname: J. orcidid: 0000-0001-9264-7589 surname: Prasanna fullname: Prasanna, J. – sequence: 2 givenname: M. S. P. surname: Subathra fullname: Subathra, M. S. P. – sequence: 3 givenname: Mazin Abed orcidid: 0000-0001-9030-8102 surname: Mohammed fullname: Mohammed, Mazin Abed – sequence: 4 givenname: Robertas orcidid: 0000-0001-9990-1084 surname: Damaševičius fullname: Damaševičius, Robertas – sequence: 5 givenname: Nanjappan Jothiraj surname: Sairamya fullname: Sairamya, Nanjappan Jothiraj – sequence: 6 givenname: S. Thomas surname: George fullname: George, S. Thomas |
BookMark | eNptkd1qFTEQx4NUbK298gUC3giymq_dTW6E4-npB1QUrLeGbHaiOexu1iRbqFc-RJ_QJzHHVqjFuckw85v_8M88RXtTmACh55S85lyRN9t5pJQSSph8hA4YaetKCNbs3cv30VFKW1JC1ow15Ana56KRnDbqAH1ZLTmMJkOPN7MfYM7e4k_gfywR8DFksNmHCfsJf4Temxx37aXblnrCweH12bvq_fkl3mxO8bHJpjMJfv28WRUoXsH1M_TYmSHB0d17iD6fbC7XZ9XFh9Pz9eqislw2uapBKds2VNSuazrKBXMgLes6V1OhWA-1M61jnbO8lbLhrBghqhe8F7QnTPFD9PZWd166EXoLU45m0HP0o4nXOhiv_-1M_pv-Gq60rHlLa1oEXt4JxPB9gZT16JOFYTAThCVpVkvRSqHa3a4XD9BtWOJU7P2hBCFKtYWit5SNIaUITlufze4zy34_aEr07oD63gHLzKsHM38N_I_-DffCnCA |
CitedBy_id | crossref_primary_10_1109_LSP_2024_3400037 crossref_primary_10_1155_2022_1322826 crossref_primary_10_3390_app12041895 crossref_primary_10_3390_s23249871 crossref_primary_10_1080_21681163_2023_2290361 crossref_primary_10_1088_1742_6596_2562_1_012006 crossref_primary_10_1109_TBCAS_2024_3357509 crossref_primary_10_1109_TBME_2024_3441090 crossref_primary_10_1016_j_neunet_2024_106855 crossref_primary_10_3389_fneur_2022_1016224 crossref_primary_10_1109_TBCAS_2024_3456825 crossref_primary_10_1515_jbcpp_2024_0027 crossref_primary_10_1109_TNNLS_2022_3190448 crossref_primary_10_1016_j_eswa_2024_125621 crossref_primary_10_1016_j_medengphy_2024_104206 crossref_primary_10_3390_s21237972 crossref_primary_10_1016_j_bspc_2022_104084 crossref_primary_10_1038_s41598_024_51337_8 crossref_primary_10_3390_s23208375 crossref_primary_10_1007_s11517_025_03295_0 crossref_primary_10_1016_j_bspc_2024_107073 crossref_primary_10_1016_j_autcon_2024_105674 crossref_primary_10_1109_TIM_2025_3527489 crossref_primary_10_3390_sci5020023 crossref_primary_10_3390_bioengineering9020062 crossref_primary_10_1016_j_aej_2022_10_014 crossref_primary_10_1142_S0129065724500655 crossref_primary_10_1155_2022_3590973 crossref_primary_10_32604_cmc_2022_028644 crossref_primary_10_1016_j_seizure_2022_07_020 crossref_primary_10_1142_S0129065723500429 crossref_primary_10_1371_journal_pone_0266518 crossref_primary_10_37394_23208_2023_20_13 crossref_primary_10_1016_j_bspc_2024_107083 crossref_primary_10_1109_ACCESS_2024_3429195 crossref_primary_10_3390_diagnostics12020324 crossref_primary_10_1016_j_bbe_2023_04_003 crossref_primary_10_1142_S0219519424400566 crossref_primary_10_1016_j_compbiomed_2024_108807 crossref_primary_10_1109_JBHI_2024_3349583 crossref_primary_10_3389_fncom_2023_1172987 crossref_primary_10_1016_j_bspc_2024_107080 crossref_primary_10_1016_j_compbiomed_2022_105240 crossref_primary_10_1007_s40998_023_00644_3 crossref_primary_10_1098_rsos_230601 crossref_primary_10_1093_comnet_cnad018 crossref_primary_10_1016_j_neuri_2025_100186 crossref_primary_10_1142_S0129065723500612 crossref_primary_10_1155_2022_6585800 crossref_primary_10_1007_s13246_023_01340_6 crossref_primary_10_3390_bioengineering10070838 crossref_primary_10_1016_j_compbiomed_2024_109028 crossref_primary_10_1109_JIOT_2023_3323264 crossref_primary_10_1088_1361_6501_ad9043 crossref_primary_10_1109_ACCESS_2023_3317241 crossref_primary_10_3390_life12030374 |
Cites_doi | 10.7555/JBR.34.20190043 10.1109/BHI.2018.8333377 10.3390/e17020669 10.1016/j.clinph.2018.03.025 10.1016/j.bspc.2013.11.010 10.1080/21646821.2018.1428455 10.1016/j.clinph.2020.03.033 10.1186/s12911-016-0310-7 10.1109/TBME.2018.2850959 10.3390/s21206923 10.1109/CICC.2015.7338458 10.1109/ICSIPA.2015.7412252 10.1016/j.knosys.2016.11.023 10.1109/ACCESS.2020.2976866 10.1109/TBME.2012.2237399 10.1155/2015/986736 10.23919/ELINFOCOM.2018.8330671 10.1109/DATE.2012.6176511 10.1155/2014/450573 10.1109/ACCESS.2018.2810882 10.1109/JBHI.2017.2703873 10.1109/ACCESS.2017.2736014 10.1007/s10044-018-0691-6 10.1109/BHI.2018.8333388 10.1016/j.knosys.2015.08.004 10.1016/j.knosys.2013.02.014 10.1016/j.neucom.2018.10.108 10.1111/exsy.12211 10.1109/SAMI.2018.8323992 10.1007/978-3-319-13117-7_128 10.1016/j.bbe.2017.08.006 10.1109/TNSRE.2018.2850308 10.1109/TNSRE.2015.2505238 10.1109/78.157221 10.1016/j.eplepsyres.2017.11.015 10.1016/j.neunet.2018.04.018 10.1109/EMBC.2014.6944546 10.1016/j.eswa.2015.05.002 10.1007/s00034-017-0577-7 10.3390/s20174952 10.3390/pr9040682 10.1109/CEC.2017.7969588 10.1016/j.compbiomed.2016.02.016 10.1109/ICSEng.2017.56 10.1109/JBHI.2016.2553368 10.1109/ICICICT1.2017.8342653 10.1016/0013-4694(70)90143-4 10.1186/1687-6180-2014-183 10.1007/978-3-642-40728-4_26 10.1109/ISCAS.2018.8351687 10.1109/STA.2016.7952088 10.1109/TNSRE.2017.2697920 10.1016/j.bspc.2017.09.029 10.1109/5.241506 10.1016/j.seizure.2015.01.012 10.1007/s10994-015-5519-7 10.1109/MLSP.2016.7738825 10.1109/EMBC.2016.7590831 10.1016/j.clinph.2018.01.019 10.1109/ICACCCT.2014.7019312 10.1109/TNSRE.2016.2618937 10.1049/cp.2013.2060 10.1006/acha.1995.1019 10.1109/SPIS.2015.7422314 10.1016/j.bspc.2017.07.022 10.1109/ISCAS.2018.8351728 10.1016/j.jneumeth.2015.01.015 10.1016/j.eswa.2015.04.068 10.1109/MSPCT.2011.6150470 10.1016/j.cmpb.2017.03.002 10.1016/j.aci.2015.01.001 10.1007/s11517-017-1613-2 10.1007/s00034-015-0178-2 10.1109/ISPCC.2012.6224361 10.1016/j.compbiomed.2018.05.019 10.1007/978-981-10-6496-8_51 10.1007/978-3-030-66633-0 10.1109/ISOCC.2016.7799862 10.1016/j.neures.2013.06.002 10.1109/ICSPIS.2017.8311582 10.1016/j.cmpb.2016.04.014 10.1007/s13246-016-0520-4 10.1016/j.cmpb.2011.10.002 10.1016/j.jbi.2014.02.005 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/jpm11101028 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2075-4426 |
ExternalDocumentID | PMC8537151 10_3390_jpm11101028 |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CITATION DIK EMOBN GX1 HCIFZ HYE IAO IHR ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c386t-5e99c76145fb6b1342fe8c2bbf51492de5fa7f2bfc378863252209d43d41d0293 |
IEDL.DBID | M48 |
ISSN | 2075-4426 |
IngestDate | Thu Aug 21 14:06:09 EDT 2025 Thu Jul 10 18:48:00 EDT 2025 Fri Jul 25 12:15:23 EDT 2025 Tue Jul 01 03:05:43 EDT 2025 Thu Apr 24 22:58:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c386t-5e99c76145fb6b1342fe8c2bbf51492de5fa7f2bfc378863252209d43d41d0293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9030-8102 0000-0001-9264-7589 0000-0001-9990-1084 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/jpm11101028 |
PMID | 34683169 |
PQID | 2584400997 |
PQPubID | 2032376 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8537151 proquest_miscellaneous_2584784979 proquest_journals_2584400997 crossref_citationtrail_10_3390_jpm11101028 crossref_primary_10_3390_jpm11101028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211015 |
PublicationDateYYYYMMDD | 2021-10-15 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211015 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Journal of personalized medicine |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_94 ref_91 Kutlu (ref_89) 2011; 105 Pukenas (ref_51) 2018; 37 ref_13 Subathra (ref_95) 2020; 20 ref_10 ref_98 ref_97 Liang (ref_82) 2020; 396 ref_19 ref_18 ref_17 ref_16 ref_15 Scheffer (ref_5) 2018; 139 ref_25 ref_21 ref_20 Samiee (ref_55) 2017; 118 Ke (ref_72) 2018; 6 Ibrahim (ref_79) 2018; 38 ref_26 Ramakrishnan (ref_64) 2018; 22 Tsiouris (ref_70) 2018; 40 Acharya (ref_2) 2013; 45 ref_71 Cho (ref_52) 2017; 25 Harpale (ref_66) 2018; 33 ref_77 Learned (ref_88) 1993; 2 Bhattacharyya (ref_54) 2017; 64 ref_74 Xiang (ref_27) 2015; 243 ref_73 Ilakiyaselvan (ref_99) 2020; 34 Raghu (ref_83) 2020; 131 Vidyaratne (ref_57) 2017; 25 Zandi (ref_4) 2013; 60 Deng (ref_76) 2018; 26 ref_80 Fan (ref_75) 2018; 66 ref_86 Samiee (ref_29) 2015; 42 Janjarasjitt (ref_58) 2017; 40 Truong (ref_65) 2018; 105 Alickovic (ref_68) 2018; 39 Damasevicius (ref_100) 2014; 20 Martisius (ref_12) 2012; 119 Janjarasjitt (ref_48) 2017; 55 Wornell (ref_85) 1993; 81 Sharma (ref_93) 2015; 17 Menshawy (ref_28) 2015; 42 ref_56 Ke (ref_78) 2018; 459 Selvakumari (ref_67) 2018; 30 Khan (ref_62) 2017; 2 Trenite (ref_1) 2018; 129 Hjorth (ref_96) 1970; 29 Zabihi (ref_34) 2016; 24 Zhang (ref_43) 2016; 20 ref_59 Alotaiby (ref_90) 2014; 2014 Ahammad (ref_24) 2014; 2014 Chu (ref_50) 2017; 143 ref_61 ref_60 Tsiouris (ref_69) 2018; 99 Shoeb (ref_14) 2011; 22 Fisher (ref_7) 2018; 58 Ahmad (ref_53) 2017; 5 Sarmast (ref_6) 2020; 12 Artameeyanant (ref_3) 2017; 34 Smith (ref_30) 2016; 102 Usman (ref_81) 2020; 8 Faust (ref_87) 2015; 26 Behnam (ref_42) 2016; 132 Fergus (ref_40) 2016; 12 ref_36 ref_35 Khanmohammadi (ref_63) 2018; 22 ref_33 Murali (ref_31) 2016; 35 Acharya (ref_92) 2015; 88 Kiranyaz (ref_22) 2014; 49 ref_39 Orosco (ref_41) 2016; 71 ref_38 ref_37 Backhouse (ref_9) 2018; 129 Birvinskas (ref_11) 2012; 2012 ref_47 ref_46 ref_45 ref_44 Vetterli (ref_84) 1992; 40 Chen (ref_23) 2014; 10 ref_49 Fergus (ref_32) 2015; 2015 Noda (ref_8) 2013; 77 |
References_xml | – volume: 20 start-page: 55 year: 2014 ident: ref_100 article-title: Fractional delay time embedding of EEG signals into high dimensional phase space publication-title: Electron. Electr. Eng. – ident: ref_80 – volume: 34 start-page: 240 year: 2020 ident: ref_99 article-title: Deep learning approach to detect seizure using reconstructed phase space images publication-title: J. Biomed. Res. doi: 10.7555/JBR.34.20190043 – ident: ref_73 doi: 10.1109/BHI.2018.8333377 – volume: 17 start-page: 669 year: 2015 ident: ref_93 article-title: Application of Entropy Measures on Intrinsic Mode Functions for the Automated Identification of Focal Electroencephalogram Signals publication-title: Entropy doi: 10.3390/e17020669 – volume: 129 start-page: 1770 year: 2018 ident: ref_9 article-title: Characteristics of ictal EEG in magnetic seizure therapy at various stimulation frequencies publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2018.03.025 – ident: ref_16 – volume: 10 start-page: 1 year: 2014 ident: ref_23 article-title: A framework on wavelet-based non-linear features and extreme learning machine for epileptic seizure detection publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2013.11.010 – volume: 58 start-page: 1 year: 2018 ident: ref_7 article-title: The revised definition and classification of epilepsy for neurodiagnostic technologists publication-title: Neurodiagn. J. doi: 10.1080/21646821.2018.1428455 – volume: 131 start-page: 1567 year: 2020 ident: ref_83 article-title: Cross-database evaluation of EEG based epileptic seizures detection driven by adaptive median feature baseline correction publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2020.03.033 – ident: ref_39 doi: 10.1186/s12911-016-0310-7 – volume: 66 start-page: 601 year: 2018 ident: ref_75 article-title: Detecting Abnormal Pattern of Epileptic Seizures via Temporal Synchronization of EEG Signals publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2850959 – ident: ref_10 doi: 10.3390/s21206923 – ident: ref_37 doi: 10.1109/CICC.2015.7338458 – volume: 22 start-page: 1443 year: 2011 ident: ref_14 article-title: An algorithm for detecting seizure termination in scalp EEG publication-title: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS – ident: ref_35 doi: 10.1109/ICSIPA.2015.7412252 – volume: 118 start-page: 228 year: 2017 ident: ref_55 article-title: Epileptic seizure detection in long-term EEG records using sparse rational decomposition and local Gabor binary patterns feature extraction publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.11.023 – volume: 8 start-page: 39998 year: 2020 ident: ref_81 article-title: Epileptic seizures prediction using deep learning techniques publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2976866 – volume: 60 start-page: 1401 year: 2013 ident: ref_4 article-title: Predicting Epileptic Seizures in Scalp EEG Based on a Variational Bayesian Gaussian Mixture Model of Zero-Crossing Intervals publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2237399 – volume: 2015 start-page: 1 year: 2015 ident: ref_32 article-title: Automatic Epileptic Seizure Detection Using Scalp EEG and Advanced Artificial Intelligence Techniques publication-title: Biomed. Res. Int. doi: 10.1155/2015/986736 – ident: ref_71 doi: 10.23919/ELINFOCOM.2018.8330671 – ident: ref_18 doi: 10.1109/DATE.2012.6176511 – volume: 2014 start-page: 450573 year: 2014 ident: ref_24 article-title: Detection of Epileptic Seizure Event and Onset Using EEG, Detection of Epileptic Seizure Event and Onset Using EEG publication-title: Biomed. Res. Int. doi: 10.1155/2014/450573 – volume: 6 start-page: 14722 year: 2018 ident: ref_72 article-title: Towards Brain Big Data Classification: Epileptic EEG Identification with a Lightweight VGGNet on Global MIC publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2810882 – volume: 22 start-page: 154 year: 2018 ident: ref_63 article-title: Adaptive Seizure Onset Detection Framework Using a Hybrid PCA—CSP Approach publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2703873 – volume: 5 start-page: 16919 year: 2017 ident: ref_53 article-title: Mallat’s Scattering Transform Based Anomaly Sensing for Detection of Seizures in Scalp EEG publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2736014 – volume: 22 start-page: 1161 year: 2018 ident: ref_64 article-title: Epileptic seizure detection using fuzzy-rules-based sub-band specific features and layered multi-class SVM publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-018-0691-6 – ident: ref_91 doi: 10.1109/BHI.2018.8333388 – ident: ref_86 – volume: 88 start-page: 85 year: 2015 ident: ref_92 article-title: Knowledge-Based Systems Application of entropies for automated diagnosis of epilepsy using EEG signals: A review publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.08.004 – ident: ref_44 – volume: 45 start-page: 147 year: 2013 ident: ref_2 article-title: Knowledge-Based Systems Automated EEG analysis of epilepsy: A review publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2013.02.014 – volume: 396 start-page: 569 year: 2020 ident: ref_82 article-title: Scalp EEG epileptogenic zone recognition and localization based on a long-term recurrent convolutional network publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.10.108 – volume: 34 start-page: 1 year: 2017 ident: ref_3 article-title: Electroencephalography-based feature extraction using the complex network for automated epileptic seizure detection publication-title: Expert. Syst. doi: 10.1111/exsy.12211 – ident: ref_97 doi: 10.1109/SAMI.2018.8323992 – volume: 2 start-page: 7 year: 2017 ident: ref_62 article-title: A Low Complexity Patient-Specific threshold-based Accelerator for the Grand-Mal Seizure Disorder publication-title: Biomed. Circuits Syst. (BioCAS) – ident: ref_38 doi: 10.1007/978-3-319-13117-7_128 – volume: 38 start-page: 16 year: 2018 ident: ref_79 article-title: Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2017.08.006 – volume: 26 start-page: 1481 year: 2018 ident: ref_76 article-title: Transductive Joint-Knowledge-Transfer TSK FS for Recognition of Epileptic EEG Signals publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2850308 – volume: 33 start-page: 1 year: 2018 ident: ref_66 article-title: An adaptive method for feature selection and extraction for the classification of epileptic EEG signal insignificant states publication-title: J. King Saud Univ.—Comput. Inf. Sci. – ident: ref_36 – volume: 24 start-page: 386 year: 2016 ident: ref_34 article-title: Analysis of High-Dimensional Phase Space via Poincaré Section for Patient-Specific Seizure Detection publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2505238 – volume: 40 start-page: 2207 year: 1992 ident: ref_84 article-title: Wavelets and Filter Banks: Theory and Design publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.157221 – volume: 139 start-page: 73 year: 2018 ident: ref_5 article-title: The new definition and classification of seizures and epilepsy publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2017.11.015 – volume: 105 start-page: 104 year: 2018 ident: ref_65 article-title: Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.04.018 – ident: ref_25 doi: 10.1109/EMBC.2014.6944546 – volume: 42 start-page: 7175 year: 2015 ident: ref_29 article-title: Long-term epileptic EEG classification via 2D mapping and textural features publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.05.002 – volume: 37 start-page: 873 year: 2018 ident: ref_51 article-title: Algorithm for the Detection of Changes in the Dynamics of a Multivariate Time Series via Sliced Cross-Bispectrum. Circuits publication-title: Syst. Signal Process. doi: 10.1007/s00034-017-0577-7 – volume: 20 start-page: 4952 year: 2020 ident: ref_95 article-title: Detection of focal and non-focal electroencephalogram signals using fast Walsh-Hadamard transform and artificial neural network publication-title: Sensors doi: 10.3390/s20174952 – ident: ref_98 doi: 10.3390/pr9040682 – ident: ref_56 doi: 10.1109/CEC.2017.7969588 – volume: 71 start-page: 128 year: 2016 ident: ref_41 article-title: Patient non-specific algorithm for seizures detection in scalp EEG publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.02.016 – volume: 2012 start-page: 199 year: 2012 ident: ref_11 article-title: EEG dataset reduction and feature extraction using discrete cosine transform. UKSim-AMSS 6th European Modelling Symposium publication-title: EMS – ident: ref_61 doi: 10.1109/ICSEng.2017.56 – volume: 20 start-page: 996 year: 2016 ident: ref_43 article-title: Design and Implementation of an On-Chip Patient-Specific Closed-Loop Seizure Onset and Termination Detection System publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2016.2553368 – ident: ref_60 doi: 10.1109/ICICICT1.2017.8342653 – volume: 29 start-page: 306 year: 1970 ident: ref_96 article-title: EEG analysis based on time domain properties publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(70)90143-4 – volume: 119 start-page: 99 year: 2012 ident: ref_12 article-title: Using higher-order nonlinear operators for SVM classification of EEG data publication-title: Electron. Electr. Eng. – volume: 2014 start-page: 183 year: 2014 ident: ref_90 article-title: EEG seizure detection and prediction algorithms: A survey publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/1687-6180-2014-183 – ident: ref_13 doi: 10.1007/978-3-642-40728-4_26 – ident: ref_74 doi: 10.1109/ISCAS.2018.8351687 – ident: ref_49 doi: 10.1109/STA.2016.7952088 – volume: 25 start-page: 2146 year: 2017 ident: ref_57 article-title: Real-Time Epileptic Seizure Detection Using EEG publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2697920 – volume: 40 start-page: 275 year: 2018 ident: ref_70 article-title: A robust unsupervised epileptic seizure detection methodology to accelerate large EEG database evaluation publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.09.029 – volume: 81 start-page: 1428 year: 1993 ident: ref_85 article-title: Wavelet-Based Representations for the l/f Family of Fractal Processes publication-title: Proc. IEEE doi: 10.1109/5.241506 – volume: 26 start-page: 56 year: 2015 ident: ref_87 article-title: Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis publication-title: Seizure Eur. J. Epilepsy doi: 10.1016/j.seizure.2015.01.012 – volume: 102 start-page: 309 year: 2016 ident: ref_30 article-title: Multi-task seizure detection: Addressing intra-patient variation in seizure morphologies publication-title: Mach. Learn. doi: 10.1007/s10994-015-5519-7 – ident: ref_45 doi: 10.1109/MLSP.2016.7738825 – volume: 64 start-page: 2003 year: 2017 ident: ref_54 article-title: A Multivariate Approach for Patient-Specific EEG Seizure Detection Using Empirical Wavelet Transform. IEEE Trans publication-title: Biomed. Eng. – ident: ref_46 doi: 10.1109/EMBC.2016.7590831 – ident: ref_17 – volume: 129 start-page: 1056 year: 2018 ident: ref_1 article-title: Clinical Utility of EEG in Diagnosing and Monitoring Epilepsy in Adults publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2018.01.019 – ident: ref_26 doi: 10.1109/ICACCCT.2014.7019312 – ident: ref_20 – volume: 25 start-page: 1309 year: 2017 ident: ref_52 article-title: EEG-Based Prediction of Epileptic Seizures Using Phase Synchronization Elicited from Noise-Assisted Multivariate Empirical Mode Decomposition publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2618937 – ident: ref_21 doi: 10.1049/cp.2013.2060 – volume: 2 start-page: 265 year: 1993 ident: ref_88 article-title: A Wavelet Packet Approach to Transient Signal Classification publication-title: Appl. Comput. Harmon. Anal. doi: 10.1006/acha.1995.1019 – ident: ref_33 doi: 10.1109/SPIS.2015.7422314 – volume: 39 start-page: 94 year: 2018 ident: ref_68 article-title: Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.07.022 – ident: ref_77 doi: 10.1109/ISCAS.2018.8351728 – volume: 243 start-page: 18 year: 2015 ident: ref_27 article-title: The detection of epileptic seizure signals based on fuzzy entropy publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.01.015 – volume: 42 start-page: 7157 year: 2015 ident: ref_28 article-title: An automatic mobile-health based approach for EEG epileptic seizures detection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.04.068 – ident: ref_15 doi: 10.1109/MSPCT.2011.6150470 – volume: 143 start-page: 75 year: 2017 ident: ref_50 article-title: Predicting epileptic seizures from scalp EEG based on attractor state analysis publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.03.002 – volume: 12 start-page: 70 year: 2016 ident: ref_40 article-title: A machine learning system for automated whole-brain seizure detection publication-title: Appl. Comput. Inform. doi: 10.1016/j.aci.2015.01.001 – volume: 55 start-page: 1743 year: 2017 ident: ref_48 article-title: Epileptic seizure classifications of single-channel scalp EEG data using wavelet-based features and SVM publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-017-1613-2 – volume: 35 start-page: 2914 year: 2016 ident: ref_31 article-title: An Efficient Adaptive Filter Architecture for Improving the Seizure Detection in EEG Signal. Circuits publication-title: Syst. Signal Process. doi: 10.1007/s00034-015-0178-2 – volume: 12 start-page: e10549 year: 2020 ident: ref_6 article-title: Current classification of seizures and epilepsies: Scope, limitations and recommendations for future action publication-title: Cureus – ident: ref_19 doi: 10.1109/ISPCC.2012.6224361 – volume: 99 start-page: 24 year: 2018 ident: ref_69 article-title: A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.05.019 – volume: 459 start-page: 553 year: 2018 ident: ref_78 article-title: A shallow-dense network approach to synchronization pattern classification of multivariate epileptic EEG publication-title: Lect. Notes Electr. Eng. doi: 10.1007/978-981-10-6496-8_51 – ident: ref_94 doi: 10.1007/978-3-030-66633-0 – ident: ref_47 doi: 10.1109/ISOCC.2016.7799862 – volume: 77 start-page: 70 year: 2013 ident: ref_8 article-title: Potentiation of quantitative electroencephalograms following prefrontal repetitive transcranial magnetic stimulation in patients with major depression publication-title: Neurosci. Res. doi: 10.1016/j.neures.2013.06.002 – ident: ref_59 doi: 10.1109/ICSPIS.2017.8311582 – volume: 132 start-page: 115 year: 2016 ident: ref_42 article-title: Real-time seizure prediction using RLS filtering and interpolated histogram feature based on hybrid optimization algorithm of Bayesian classifier and Hunting search publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2016.04.014 – volume: 40 start-page: 57 year: 2017 ident: ref_58 article-title: Performance of epileptic single-channel scalp EEG classifications using single wavelet-based features publication-title: Australas. Phys. Eng. Sci. Med. doi: 10.1007/s13246-016-0520-4 – volume: 105 start-page: 257 year: 2011 ident: ref_89 article-title: Feature extraction for ECG heartbeats using higher-order statistics of WPD coefficients publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2011.10.002 – volume: 30 start-page: 1 year: 2018 ident: ref_67 article-title: Epileptic seizure detection by analyzing high dimensional phase space via Poincaré section publication-title: Multidimens. Syst. Signal Process. – volume: 49 start-page: 16 year: 2014 ident: ref_22 article-title: Automated patient-specific classification of long-term Electroencephalography publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2014.02.005 |
SSID | ssj0000852260 |
Score | 2.4555964 |
SecondaryResourceType | review_article |
Snippet | Epilepsy is a neurological disorder of the brain that causes frequent occurrence of seizures. Electroencephalography (EEG) is a tool that assists neurologists... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1028 |
SubjectTerms | Accuracy Automation Classification Convulsions & seizures Diagnosis Discriminant analysis EEG Electroencephalography Epilepsy Feature selection Machine learning Patients Pediatrics Precision medicine Review Seizures Signal processing Support vector machines Wavelet transforms |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA4-QLyIT6xWieBJCO5ms93dk9R2tQiK-ABPLnliRXdruxX05I_wF_pLnLTpakE8ZyAwycz3zWQyg9C-T42dN8CIp_yAMCY44QBsRGhDVUg5BEX2g_P5RaNzy87uwjuXcBu4ssqJTxw5alVImyM_pICUzPKZ6Kj3QuzUKPu66kZozKJ5cMExBF_zx-nF5VWVZQFCAfzCG3_MCyC-P3zsPYN5205q8TQU_fDL6erIX3BzsoyWHE_EzfHBrqAZna-ihXP3Er6G7pvDsgC2qRVOe2DZYPkSX-vu-7CvcVuXowqrHHdzXA3jwOAkbNZlgAuDW51jAm4Lp-kpbvOSWzT7-vhsglD_Vb-to9uT9KbVIW5WApFB3ChJqJNERoC1oREN4QeMGh1LKoQBRpRQpUPDI0OFkbaBfCOgoBcvUSxQzFceYP4GmsuLXG8ibLgf-UowrqVisQH-ITjniS-8MKaS-zV0MFFbJl0jcTvP4imDgMLqOPul4xrar4R74_4Zf4vVJ_rPnBENsp8jr6G9ahmuv33T4LkuhmOZKGZJlNRQNHVu1Xa2gfb0St59GDXSBqoSAePZ-n_zbbRIbSGLLWMJ62iu7A_1DjCRUuy66_YNp3ng9g priority: 102 providerName: ProQuest |
Title | Automated Epileptic Seizure Detection in Pediatric Subjects of CHB-MIT EEG Database—A Survey |
URI | https://www.proquest.com/docview/2584400997 https://www.proquest.com/docview/2584784979 https://pubmed.ncbi.nlm.nih.gov/PMC8537151 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NaxsxEB3yASGXkDYtdZIaFXIKbLur1X4dSrCTTUzBoTQx-NRFWknUIV07zrrEOfVH5Bfml3TGu3btklPPGrHwpNG8WT3NABx53FK_AeG42vMdIZR0JAY2RxnLdcAlJkX0wLl7GXZ64ks_6K_BvBlnDeD9i6kd9ZPqjW8_PtxNT9DhP1PGiSn7p5vRT_RYKo4Wr8MmhqSIPLRb8_ybSoyFNMOt3uf9O2cbtnwRxr5Houfl4PSXca7qJZcC0Pku7NTMkbWqpX4Fa6Z4DVvd-m58D763JuUQ-afRLB2hr-NZkLMrM3icjA07M-VMc1WwQcEW7TkYHhv0H-aeDS077bQdPMhYml6wM1lKim_Pv59aaDT-ZaZvoHeeXp92nLp7gpP7cVg6gUmSPMLoG1gVKs8X3Jo450pZ5EgJ1yawMrJc2ZxKyoc-R4jcRAtfC0-7yALewkYxLMw7YFYipFoJaXItYouMREkpE0-5Qcxz6TXgeA5bltelxanDxW2GKQbBnS3B3YCjhfGoqqjxstnhHP9svisyjnRJEKmNGvBhMYwOQbccsjDDSWUTxSKJkgZEK-u2-ByV1F4dKQY_ZqW1kbxEyIH2_3vmAWxzUr2Q5iU4hI1yPDHvkbaUqgmb7fTy67cmrF_0veZsg_4Bm2jxmA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB5VqQRcEL8itIVFKhekVe31OrYPqEobl5Q2EYJW6gl3f0UQ2GnigMqJh-A5eCiehNn4p42EuPW8I600O_vNN7OzMwDbPrNu3gCnnvYDyrkUVKBjo9JYpkMmMChyH5xH497wlL89C8_W4HfzF8aVVTaYuARqXSiXI99h6Cm54zPR7vSCuqlR7nW1GaFRmcWRufyOIdv89eEAz_clYwfpyf6Q1lMFqAriXklDkyQKg3ceWtmTfsCZNbFiUlrkDgnTJrQiskxa5Vqt9wKGDMVLNA8097XHXPMlhPx1HmAo04H1vXT87n2b1UECg3zGqz4CBkHi7XyefkU4cZ3b4lXXd8VnV6sxr7m3g3twt-alpF8Z0n1YM_kDuDWqX94fwsf-oiyQ3RpN0ikiCSKNIh_M5MdiZsjAlMuKrpxMctIO_yAISi7LMyeFJfvDPYowSdL0DRmIUjjv-efnrz4Kzb6Zy0dweiNafAydvMjNEyBW-JGvJRdGaR5b5DtSCJH40gtjpoTfhVeN2jJVNy538zO-ZBjAOB1n13Tche1WeFr16_i32Gaj_6y-tPPsysS68KJdxuvm3lBEbopFJRPFPImSLkQr59Zu5xp2r67kk0_Lxt1IjSJkWE__v_lzuD08GR1nx4fjow24w1wRjSuhCTehU84WZgtZUCmf1aZH4Pymrf0vzv0dCA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB5VqVRxQeVPhJaySOWCtIq9Xsf2AaG0cUgpjSqgUk-Y_RVBYIfEKSonHoKn4XF4EmbjnzYS4tbzjrTS7Ow338zOzgDs-8y6eQOcetoPKOdSUIGOjUpjmQ6ZwKDIfXA-mfTHZ_z1eXi-Ab-bvzCurLLBxBVQ60K5HHmPoafkjs9EPVuXRZwORy9n36ibIOVeWptxGpWJHJvL7xi-LV4cDfGsnzE2St8fjmk9YYCqIO6XNDRJojCQ56GVfekHnFkTKyalRR6RMG1CKyLLpFWu7Xo_YMhWvETzQHNfe8w1YkL434wwKvI6sHmQTk7fthkeJDPIbbzqU2AQJF7v8-wrQovr4havu8ErbrtemXnN1Y224XbNUcmgMqo7sGHyu7B1Ur_C34MPg2VZINM1mqQzRBVEHUXememP5dyQoSlX1V05meakHQRCEKBcxmdBCksOxwcUIZOk6SsyFKVwnvTPz18DFJpfmMv7cHYjWnwAnbzIzUMgVviRryUXRmkeW-Q-UgiR-NILY6aE34XnjdoyVTcxd7M0vmQYzDgdZ9d03IX9VnhW9e74t9huo_-svsCL7MrcuvC0Xcar595TRG6KZSUTxTyJki5Ea-fWbuead6-v5NNPqybeSJMiZFuP_r_5E9hCK8_eHE2Od-AWc_U0rpom3IVOOV-ax0iISrlXWx6Bjzdt7H8Bvn8hPQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Epileptic+Seizure+Detection+in+Pediatric+Subjects+of+CHB-MIT+EEG+Database%E2%80%94A+Survey&rft.jtitle=Journal+of+personalized+medicine&rft.au=Prasanna%2C+J.&rft.au=Subathra%2C+M.+S.+P.&rft.au=Mohammed%2C+Mazin+Abed&rft.au=Dama%C5%A1evi%C4%8Dius%2C+Robertas&rft.date=2021-10-15&rft.pub=MDPI&rft.eissn=2075-4426&rft.volume=11&rft.issue=10&rft_id=info:doi/10.3390%2Fjpm11101028&rft_id=info%3Apmid%2F34683169&rft.externalDocID=PMC8537151 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4426&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4426&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4426&client=summon |