Mitochondrial respiratory capacity and coupling control decline with age in human skeletal muscle

Mitochondrial health is critical to physiological function, particularly in tissues with high ATP turnover, such as striated muscle. It has been postulated that derangements in skeletal muscle mitochondrial function contribute to impaired physical function in older adults. Here, we determined mitoch...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology: endocrinology and metabolism Vol. 309; no. 3; pp. E224 - E232
Main Authors Porter, Craig, Hurren, Nicholas M., Cotter, Matthew V., Bhattarai, Nisha, Reidy, Paul T., Dillon, Edgar L., Durham, William J., Tuvdendorj, Demidmaa, Sheffield-Moore, Melinda, Volpi, Elena, Sidossis, Labros S., Rasmussen, Blake B., Børsheim, Elisabet
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.08.2015
SeriesEndocrine and Metabolic Dysfunction during Aging and Senescence
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mitochondrial health is critical to physiological function, particularly in tissues with high ATP turnover, such as striated muscle. It has been postulated that derangements in skeletal muscle mitochondrial function contribute to impaired physical function in older adults. Here, we determined mitochondrial respiratory capacity and coupling control in skeletal muscle biopsies obtained from young and older adults. Twenty-four young (28 ± 7 yr) and thirty-one older (62 ± 8 yr) adults were studied. Mitochondrial respiration was determined in permeabilized myofibers from the vastus lateralis after the addition of substrates oligomycin and CCCP. Thereafter, mitochondrial coupling control was calculated. Maximal coupled respiration (respiration linked to ATP production) was lower in muscle from older vs. young subjects ( P < 0.01), as was maximal uncoupled respiration ( P = 0.06). Coupling control in response to the ATP synthase inhibitor oligomycin was lower in older adults ( P < 0.05), as was the mitochondria flux control ratio, coupled respiration normalized to maximal uncoupled respiration ( P < 0.05). Calculation of respiratory function revealed lower respiration linked to ATP production ( P < 0.001) and greater reserve respiration ( P < 0.01); i.e., respiratory capacity not used for phosphorylation in muscle from older adults. We conclude that skeletal muscle mitochondrial respiratory capacity and coupling control decline with age. Lower respiratory capacity and coupling efficiency result in a reduced capacity for ATP production in skeletal muscle of older adults.
AbstractList Mitochondrial health is critical to physiological function, particularly in tissues with high ATP turnover, such as striated muscle. It has been postulated that derangements in skeletal muscle mitochondrial function contribute to impaired physical function in older adults. Here, we determined mitochondrial respiratory capacity and coupling control in skeletal muscle biopsies obtained from young and older adults. Twenty-four young (28 ± 7 yr) and thirty-one older (62 ± 8 yr) adults were studied. Mitochondrial respiration was determined in permeabilized myofibers from the vastus lateralis after the addition of substrates oligomycin and CCCP. Thereafter, mitochondrial coupling control was calculated. Maximal coupled respiration (respiration linked to ATP production) was lower in muscle from older vs. young subjects ( P < 0.01), as was maximal uncoupled respiration ( P = 0.06). Coupling control in response to the ATP synthase inhibitor oligomycin was lower in older adults ( P < 0.05), as was the mitochondria flux control ratio, coupled respiration normalized to maximal uncoupled respiration ( P < 0.05). Calculation of respiratory function revealed lower respiration linked to ATP production ( P < 0.001) and greater reserve respiration ( P < 0.01); i.e., respiratory capacity not used for phosphorylation in muscle from older adults. We conclude that skeletal muscle mitochondrial respiratory capacity and coupling control decline with age. Lower respiratory capacity and coupling efficiency result in a reduced capacity for ATP production in skeletal muscle of older adults.
Mitochondrial health is critical to physiological function, particularly in tissues with high ATP turnover, such as striated muscle. It has been postulated that derangements in skeletal muscle mitochondrial function contribute to impaired physical function in older adults. Here, we determined mitochondrial respiratory capacity and coupling control in skeletal muscle biopsies obtained from young and older adults. Twenty-four young (28 ± 7 yr) and thirty-one older (62 ± 8 yr) adults were studied. Mitochondrial respiration was determined in permeabilized myofibers from the vastus lateralis after the addition of substrates oligomycin and CCCP. Thereafter, mitochondrial coupling control was calculated. Maximal coupled respiration (respiration linked to ATP production) was lower in muscle from older vs. young subjects (P < 0.01), as was maximal uncoupled respiration (P = 0.06). Coupling control in response to the ATP synthase inhibitor oligomycin was lower in older adults (P < 0.05), as was the mitochondria flux control ratio, coupled respiration normalized to maximal uncoupled respiration (P < 0.05). Calculation of respiratory function revealed lower respiration linked to ATP production (P < 0.001) and greater reserve respiration (P < 0.01); i.e., respiratory capacity not used for phosphorylation in muscle from older adults. We conclude that skeletal muscle mitochondrial respiratory capacity and coupling control decline with age. Lower respiratory capacity and coupling efficiency result in a reduced capacity for ATP production in skeletal muscle of older adults.
Mitochondrial health is critical to physiological function, particularly in tissues with high ATP turnover, such as striated muscle. It has been postulated that derangements in skeletal muscle mitochondrial function contribute to impaired physical function in older adults. Here, we determined mitochondrial respiratory capacity and coupling control in skeletal muscle biopsies obtained from young and older adults. Twenty-four young (28 ± 7 yr) and thirty-one older (62 ± 8 yr) adults were studied. Mitochondrial respiration was determined in permeabilized myofibers from the vastus lateralis after the addition of substrates oligomycin and CCCP. Thereafter, mitochondrial coupling control was calculated. Maximal coupled respiration (respiration linked to ATP production) was lower in muscle from older vs. young subjects (P < 0.01), as was maximal uncoupled respiration (P = 0.06). Coupling control in response to the ATP synthase inhibitor oligomycin was lower in older adults (P < 0.05), as was the mitochondria flux control ratio, coupled respiration normalized to maximal uncoupled respiration (P < 0.05). Calculation of respiratory function revealed lower respiration linked to ATP production (P < 0.001) and greater reserve respiration (P < 0.01); i.e., respiratory capacity not used for phosphorylation in muscle from older adults. We conclude that skeletal muscle mitochondrial respiratory capacity and coupling control decline with age. Lower respiratory capacity and coupling efficiency result in a reduced capacity for ATP production in skeletal muscle of older adults.Mitochondrial health is critical to physiological function, particularly in tissues with high ATP turnover, such as striated muscle. It has been postulated that derangements in skeletal muscle mitochondrial function contribute to impaired physical function in older adults. Here, we determined mitochondrial respiratory capacity and coupling control in skeletal muscle biopsies obtained from young and older adults. Twenty-four young (28 ± 7 yr) and thirty-one older (62 ± 8 yr) adults were studied. Mitochondrial respiration was determined in permeabilized myofibers from the vastus lateralis after the addition of substrates oligomycin and CCCP. Thereafter, mitochondrial coupling control was calculated. Maximal coupled respiration (respiration linked to ATP production) was lower in muscle from older vs. young subjects (P < 0.01), as was maximal uncoupled respiration (P = 0.06). Coupling control in response to the ATP synthase inhibitor oligomycin was lower in older adults (P < 0.05), as was the mitochondria flux control ratio, coupled respiration normalized to maximal uncoupled respiration (P < 0.05). Calculation of respiratory function revealed lower respiration linked to ATP production (P < 0.001) and greater reserve respiration (P < 0.01); i.e., respiratory capacity not used for phosphorylation in muscle from older adults. We conclude that skeletal muscle mitochondrial respiratory capacity and coupling control decline with age. Lower respiratory capacity and coupling efficiency result in a reduced capacity for ATP production in skeletal muscle of older adults.
Author Durham, William J.
Børsheim, Elisabet
Sheffield-Moore, Melinda
Cotter, Matthew V.
Sidossis, Labros S.
Hurren, Nicholas M.
Tuvdendorj, Demidmaa
Reidy, Paul T.
Volpi, Elena
Bhattarai, Nisha
Rasmussen, Blake B.
Dillon, Edgar L.
Porter, Craig
Author_xml – sequence: 1
  givenname: Craig
  surname: Porter
  fullname: Porter, Craig
  organization: Department of Surgery, University of Texas Medical Branch, Galveston, Texas;, Shriners Hospitals for Children, Galveston, Texas
– sequence: 2
  givenname: Nicholas M.
  surname: Hurren
  fullname: Hurren, Nicholas M.
  organization: Department of Surgery, University of Texas Medical Branch, Galveston, Texas;, Shriners Hospitals for Children, Galveston, Texas;, Departments of Pediatrics and Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas;, Arkansas Children's Hospital Research Institute, and Arkansas Children's Nutrition Center, Little Rock, Arkansas
– sequence: 3
  givenname: Matthew V.
  surname: Cotter
  fullname: Cotter, Matthew V.
  organization: Department of Surgery, University of Texas Medical Branch, Galveston, Texas;, Departments of Pediatrics and Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas;, Arkansas Children's Hospital Research Institute, and Arkansas Children's Nutrition Center, Little Rock, Arkansas
– sequence: 4
  givenname: Nisha
  surname: Bhattarai
  fullname: Bhattarai, Nisha
  organization: Department of Surgery, University of Texas Medical Branch, Galveston, Texas;, Shriners Hospitals for Children, Galveston, Texas
– sequence: 5
  givenname: Paul T.
  surname: Reidy
  fullname: Reidy, Paul T.
  organization: Department of Rehabilitation Sciences, University of Texas Medical Branch, Galveston, Texas; and
– sequence: 6
  givenname: Edgar L.
  surname: Dillon
  fullname: Dillon, Edgar L.
  organization: Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
– sequence: 7
  givenname: William J.
  surname: Durham
  fullname: Durham, William J.
  organization: Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
– sequence: 8
  givenname: Demidmaa
  surname: Tuvdendorj
  fullname: Tuvdendorj, Demidmaa
  organization: Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
– sequence: 9
  givenname: Melinda
  surname: Sheffield-Moore
  fullname: Sheffield-Moore, Melinda
  organization: Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
– sequence: 10
  givenname: Elena
  surname: Volpi
  fullname: Volpi, Elena
  organization: Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
– sequence: 11
  givenname: Labros S.
  surname: Sidossis
  fullname: Sidossis, Labros S.
  organization: Shriners Hospitals for Children, Galveston, Texas;, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
– sequence: 12
  givenname: Blake B.
  surname: Rasmussen
  fullname: Rasmussen, Blake B.
  organization: Department of Rehabilitation Sciences, University of Texas Medical Branch, Galveston, Texas; and
– sequence: 13
  givenname: Elisabet
  surname: Børsheim
  fullname: Børsheim, Elisabet
  organization: Department of Surgery, University of Texas Medical Branch, Galveston, Texas;, Shriners Hospitals for Children, Galveston, Texas;, Departments of Pediatrics and Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas;, Arkansas Children's Hospital Research Institute, and Arkansas Children's Nutrition Center, Little Rock, Arkansas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26037248$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1URLeFL8ABWeLCJYv_Js4FCVUUkIq49G557cmuF8cOdlK03x5vu1TQAyfPaH7z9MbvAp3FFAGh15SsKZXsvdlPEF1aE0KZXDNC5TO0qgPWUCnlGVoR2vOGKtGfo4tS9oSQTgr2Ap2zlvCOCbVC5pufk92l6LI3AWcok89mTvmArZmM9fMBm-iwTcsUfNzWIs45BezA1h7wLz_vsNkC9hHvltFEXH5AgLmKjUuxAV6i54MJBV6d3kt0e_3p9upLc_P989erjzeN5aqdG6l6KslgOmKdYqCcE3yoNeVDbVmniOuhY8T2RHXcdJJSYbncqHYjKG_5JfrwIDstmxGchWrTBD1lP5p80Ml4_e8k-p3epjstJKtatAq8Ownk9HOBMuvRFwshmAhpKZp2hHLRVriib5-g-7TkWK87UqyKSSYq9eZvR49W_nx-BdgDYHMqJcPwiFCijwnrU8L6PmF9TLguqSdLNSMz-2Msxof_rf4GDu2uSg
CODEN AJPMD9
CitedBy_id crossref_primary_10_1002_art_42953
crossref_primary_10_1002_jcsm_12139
crossref_primary_10_3390_antiox8060168
crossref_primary_10_1002_tsm2_70
crossref_primary_10_1093_jas_skaa044
crossref_primary_10_1007_s10741_016_9592_1
crossref_primary_10_1101_cshperspect_a029785
crossref_primary_10_1017_S2040174418000107
crossref_primary_10_1152_ajpcell_00109_2018
crossref_primary_10_1113_JP274148
crossref_primary_10_1007_s10658_024_02882_5
crossref_primary_10_1093_gerona_glaa071
crossref_primary_10_3390_ijms23147602
crossref_primary_10_3390_antiox8100432
crossref_primary_10_1016_j_celrep_2018_02_069
crossref_primary_10_1007_s40279_024_02072_7
crossref_primary_10_3390_muscles2020011
crossref_primary_10_1097_MD_0000000000033630
crossref_primary_10_1016_j_exger_2018_06_030
crossref_primary_10_1152_ajpregu_00028_2019
crossref_primary_10_18632_aging_101213
crossref_primary_10_1007_s00335_016_9651_x
crossref_primary_10_1152_japplphysiol_00186_2022
crossref_primary_10_1007_s10695_022_01088_y
crossref_primary_10_1097_SHK_0000000000001074
crossref_primary_10_1096_fj_202301644RR
crossref_primary_10_33549_physiolres_933538
crossref_primary_10_1016_j_jnutbio_2022_109150
crossref_primary_10_1096_fj_201900106RRR
crossref_primary_10_1007_s11357_019_00145_4
crossref_primary_10_1111_acel_12725
crossref_primary_10_3389_fendo_2024_1325317
crossref_primary_10_1038_s41418_021_00873_1
crossref_primary_10_1152_japplphysiol_00650_2021
crossref_primary_10_3390_ijms25126793
crossref_primary_10_3389_fnut_2021_719612
crossref_primary_10_1002_jcsm_12749
crossref_primary_10_1016_j_jacbts_2019_07_009
crossref_primary_10_1111_acel_14000
crossref_primary_10_1093_ajcn_nqaa229
crossref_primary_10_1097_SHK_0000000000000935
crossref_primary_10_1016_j_arr_2023_101955
crossref_primary_10_1111_apha_13772
crossref_primary_10_1080_10715762_2020_1753722
crossref_primary_10_18632_aging_101914
crossref_primary_10_1002_jcsm_12982
crossref_primary_10_1152_japplphysiol_00810_2020
crossref_primary_10_3390_diseases4010014
crossref_primary_10_1002_jcsm_13153
crossref_primary_10_1098_rspb_2019_1354
crossref_primary_10_3390_antiox12051117
crossref_primary_10_3389_fimmu_2023_1212745
crossref_primary_10_1073_pnas_2216141120
crossref_primary_10_1172_jci_insight_171772
crossref_primary_10_1515_teb_2024_0030
crossref_primary_10_1016_j_bbamcr_2022_119322
crossref_primary_10_1016_j_ab_2020_113935
crossref_primary_10_4093_dmj_2021_0132
crossref_primary_10_1074_jbc_RA118_005970
crossref_primary_10_3390_jfmk7040087
crossref_primary_10_1007_s00125_021_05540_1
crossref_primary_10_1016_j_jnha_2024_100401
crossref_primary_10_1152_japplphysiol_00583_2016
crossref_primary_10_14336_AD_2018_0430
crossref_primary_10_33549_physiolres_934812
crossref_primary_10_1249_JES_0000000000000101
crossref_primary_10_1152_japplphysiol_01029_2020
crossref_primary_10_1186_s40795_020_00338_7
crossref_primary_10_1007_s00421_023_05366_2
crossref_primary_10_1152_ajpheart_00324_2018
crossref_primary_10_1016_j_freeradbiomed_2024_07_039
crossref_primary_10_1002_jcsm_13251
crossref_primary_10_1016_j_mce_2016_09_001
crossref_primary_10_1016_j_ejmech_2018_05_036
crossref_primary_10_1002_jcsm_13532
crossref_primary_10_1016_j_exger_2020_110883
crossref_primary_10_3390_cells12172183
crossref_primary_10_1016_j_mce_2016_08_049
crossref_primary_10_1540_jsmr_54_51
crossref_primary_10_3389_fphys_2018_01883
crossref_primary_10_1093_icb_icy056
crossref_primary_10_1093_pnasnexus_pgad068
crossref_primary_10_1152_ajpendo_00194_2017
crossref_primary_10_1152_ajpregu_00268_2019
crossref_primary_10_1113_JP272988
crossref_primary_10_1002_jcsm_12272
crossref_primary_10_1002_2211_5463_13866
crossref_primary_10_1111_evo_13254
crossref_primary_10_1016_j_eurger_2015_12_016
crossref_primary_10_1002_jcsm_13123
crossref_primary_10_1007_s11357_020_00208_x
crossref_primary_10_1016_j_ebiom_2017_03_020
crossref_primary_10_33549__physiolres_934812
crossref_primary_10_1093_cvr_cvae169
crossref_primary_10_1152_ajpendo_00084_2019
crossref_primary_10_1042_BCJ20160009
crossref_primary_10_1016_j_lfs_2020_117630
crossref_primary_10_3390_sports7070170
crossref_primary_10_1177_09731296241243132
crossref_primary_10_1093_gerona_glw102
crossref_primary_10_1172_jci_insight_128248
Cites_doi 10.1007/s00424-003-1044-9
10.1111/j.1469-7793.2000.00211.x
10.1073/pnas.0501559102
10.2337/db08-0349
10.1096/fj.03-1104fje
10.1016/S0140-6736(89)92143-0
10.1042/CS20140101
10.1016/j.exger.2014.08.013
10.1113/jphysiol.2012.230185
10.1111/j.1474-9726.2012.00844.x
10.1007/978-1-61779-382-0_3
10.1016/0925-4439(94)90061-2
10.1152/jappl.2000.89.3.1072
10.1146/annurev.genet.39.110304.095751
10.1371/journal.pone.0018317
10.3109/00365517509095787
10.1371/journal.pone.0010778
10.1023/A:1006834912257
10.1111/j.1474-9726.2007.00282.x
10.1152/jappl.1993.75.2.813
10.1111/j.1474-9726.2010.00628.x
10.1113/jphysiol.2011.212712
10.2337/db12-1219
10.1016/S0531-5565(03)00092-5
10.1111/j.1748-1716.2012.02408.x
10.1016/S0021-9258(18)96046-1
10.1016/0076-6879(69)13005-0
10.1093/gerona/63.4.350
10.1016/j.jss.2013.05.054
10.1210/jc.2009-1822
10.1016/0006-291X(70)90017-3
10.1073/pnas.93.26.15364
10.3945/ajcn.2010.28608A
10.1152/physrev.1997.77.3.731
10.1073/pnas.0610131104
10.1016/j.biocel.2009.03.013
10.1007/s00424-003-1022-2
ContentType Journal Article
Copyright Copyright © 2015 the American Physiological Society.
Copyright American Physiological Society Aug 1, 2015
Copyright © 2015 the American Physiological Society 2015 American Physiological Society
Copyright_xml – notice: Copyright © 2015 the American Physiological Society.
– notice: Copyright American Physiological Society Aug 1, 2015
– notice: Copyright © 2015 the American Physiological Society 2015 American Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TS
7U7
C1K
7X8
5PM
DOI 10.1152/ajpendo.00125.2015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Physical Education Index
Toxicology Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Toxicology Abstracts
Calcium & Calcified Tissue Abstracts
Physical Education Index
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef
Toxicology Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1555
EndPage E232
ExternalDocumentID PMC4525111
3771098691
26037248
10_1152_ajpendo_00125_2015
Genre Research Support, U.S. Gov't, Non-P.H.S
Multicenter Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: 5R01 1CA127971
– fundername: NCATS NIH HHS
  grantid: UL1 TR-000071
– fundername: NIA NIH HHS
  grantid: R01 AG033761
– fundername: NIAMS NIH HHS
  grantid: R01 AR-049877
– fundername: NIDDK NIH HHS
  grantid: R01 DK107516
– fundername: NIA NIH HHS
  grantid: P30 AG-024832
– fundername: NIA NIH HHS
  grantid: R01 AG-033761
– fundername: NIA NIH HHS
  grantid: P30 AG-028718
– fundername: Shriners of America
  grantid: 84090
– fundername: NIH
  grantid: RO1 AG033761; RO1 AR049877; P30 AG024; P30 AG028718; 5RO1 1CA127971; P30 AG024; P30 AG028718
GroupedDBID ---
23M
2WC
39C
4.4
53G
5GY
5VS
6J9
AAYXX
ABJNI
ACPRK
ADBBV
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BKOMP
BTFSW
CITATION
E3Z
EBS
EJD
EMOBN
F5P
GX1
H13
ITBOX
KQ8
OK1
P2P
P6G
PQQKQ
RAP
RHI
RPL
RPRKH
TR2
W8F
WH7
WOQ
XSW
YSK
AAFWJ
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TS
7U7
C1K
7X8
5PM
ID FETCH-LOGICAL-c386t-589150fa70cd82e8dd43f0cd13f82e2780d9e720c90873a75114c35b86b41363
ISSN 0193-1849
1522-1555
IngestDate Thu Aug 21 18:10:47 EDT 2025
Fri Jul 11 01:00:42 EDT 2025
Mon Jun 30 08:33:18 EDT 2025
Thu Apr 03 07:02:35 EDT 2025
Tue Jul 01 03:18:22 EDT 2025
Thu Apr 24 22:57:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Copyright © 2015 the American Physiological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c386t-589150fa70cd82e8dd43f0cd13f82e2780d9e720c90873a75114c35b86b41363
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 26037248
PQID 1702113524
PQPubID 48583
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4525111
proquest_miscellaneous_1701346251
proquest_journals_1702113524
pubmed_primary_26037248
crossref_primary_10_1152_ajpendo_00125_2015
crossref_citationtrail_10_1152_ajpendo_00125_2015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-08-01
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
– name: Bethesda, MD
PublicationSeriesTitle Endocrine and Metabolic Dysfunction during Aging and Senescence
PublicationTitle American journal of physiology: endocrinology and metabolism
PublicationTitleAlternate Am J Physiol Endocrinol Metab
PublicationYear 2015
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B21
B22
B23
B24
B25
B26
Holloszy J (B11) 1967; 242
B27
B28
B29
Jacobs R (B14) 2013; 26
B30
B31
B10
B32
B33
B12
B34
B13
B35
B36
B15
B37
B16
B38
B17
B39
B18
B19
B1
B2
B3
B4
B5
B6
B7
B8
B9
26573273 - Am J Physiol Endocrinol Metab. 2015 Nov 15;309(10):E884
References_xml – ident: B9
– ident: B37
  doi: 10.1007/s00424-003-1044-9
– ident: B5
  doi: 10.1111/j.1469-7793.2000.00211.x
– ident: B33
  doi: 10.1073/pnas.0501559102
– ident: B17
  doi: 10.2337/db08-0349
– ident: B28
  doi: 10.1096/fj.03-1104fje
– ident: B38
  doi: 10.1016/S0140-6736(89)92143-0
– ident: B4
  doi: 10.1042/CS20140101
– ident: B10
  doi: 10.1016/j.exger.2014.08.013
– ident: B19
  doi: 10.1113/jphysiol.2012.230185
– ident: B15
  doi: 10.1111/j.1474-9726.2012.00844.x
– ident: B22
  doi: 10.1007/978-1-61779-382-0_3
– ident: B3
  doi: 10.1016/0925-4439(94)90061-2
– ident: B16
  doi: 10.1152/jappl.2000.89.3.1072
– ident: B39
  doi: 10.1146/annurev.genet.39.110304.095751
– ident: B25
  doi: 10.1371/journal.pone.0018317
– ident: B2
  doi: 10.3109/00365517509095787
– ident: B31
  doi: 10.1371/journal.pone.0010778
– ident: B32
  doi: 10.1023/A:1006834912257
– ident: B13
  doi: 10.1111/j.1474-9726.2007.00282.x
– ident: B20
  doi: 10.1152/jappl.1993.75.2.813
– ident: B23
  doi: 10.1111/j.1474-9726.2010.00628.x
– ident: B24
  doi: 10.1113/jphysiol.2011.212712
– ident: B21
  doi: 10.2337/db12-1219
– ident: B26
  doi: 10.1016/S0531-5565(03)00092-5
– ident: B18
  doi: 10.1111/j.1748-1716.2012.02408.x
– volume: 242
  start-page: 2278
  year: 1967
  ident: B11
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)96046-1
– ident: B34
  doi: 10.1016/0076-6879(69)13005-0
– ident: B7
  doi: 10.1093/gerona/63.4.350
– ident: B36
  doi: 10.1016/j.jss.2013.05.054
– ident: B35
  doi: 10.1210/jc.2009-1822
– ident: B12
  doi: 10.1016/0006-291X(70)90017-3
– volume: 26
  start-page: 5192
  year: 2013
  ident: B14
  publication-title: J Appl Physiol
– ident: B30
  doi: 10.1073/pnas.93.26.15364
– ident: B6
  doi: 10.3945/ajcn.2010.28608A
– ident: B29
  doi: 10.1152/physrev.1997.77.3.731
– ident: B1
  doi: 10.1073/pnas.0610131104
– ident: B8
  doi: 10.1016/j.biocel.2009.03.013
– ident: B27
  doi: 10.1007/s00424-003-1022-2
– reference: 26573273 - Am J Physiol Endocrinol Metab. 2015 Nov 15;309(10):E884
SSID ssj0007542
Score 2.4863203
Snippet Mitochondrial health is critical to physiological function, particularly in tissues with high ATP turnover, such as striated muscle. It has been postulated...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage E224
SubjectTerms Adenosine triphosphatase
Adult
Age differences
Aged
Aged, 80 and over
Aging
ATP
Biopsy
Call for Papers
Carbonyl Cyanide m-Chlorophenyl Hydrazone - pharmacology
Cohort Studies
Down-Regulation - drug effects
Electron Transport Complex I - antagonists & inhibitors
Electron Transport Complex I - metabolism
Electron Transport Complex II - antagonists & inhibitors
Electron Transport Complex II - metabolism
Female
Humans
Male
Middle Aged
Mitochondria
Mitochondria, Muscle - drug effects
Mitochondria, Muscle - enzymology
Mitochondria, Muscle - metabolism
Muscle, Skeletal - drug effects
Muscle, Skeletal - growth & development
Muscle, Skeletal - metabolism
Musculoskeletal system
Myofibrils - drug effects
Myofibrils - enzymology
Myofibrils - metabolism
Older people
Oligomycins - pharmacology
Oxidative Phosphorylation - drug effects
Phosphorylation
Physiology
Proton Ionophores - pharmacology
Quadriceps Muscle - drug effects
Quadriceps Muscle - growth & development
Quadriceps Muscle - metabolism
Respiration
Respiratory function
Uncoupling Agents - pharmacology
Young Adult
Title Mitochondrial respiratory capacity and coupling control decline with age in human skeletal muscle
URI https://www.ncbi.nlm.nih.gov/pubmed/26037248
https://www.proquest.com/docview/1702113524
https://www.proquest.com/docview/1701346251
https://pubmed.ncbi.nlm.nih.gov/PMC4525111
Volume 309
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqISFeEGx8FAYyEuIFBRI7iZPHMXWaYC1C6qS9RbHjbB1tMqXpw_hD-Xu4i52PUjQBL1Ea56u-X8539v3uCHkrce1KSNcRuRKOnyvmSMm0k6c8DLI0dHWG3OHpLDw99z9fBBej0c9B1NKmlh_Ujz_ySv5HqnAM5Ios2X-QbHdTOAD7IF_YgoRh-1cynsLnCOqryJrSG9Vg1VzBGKjQwDa0tc3N0pBrTVx6plVjXRpi22WTN8QU61t_h2EI-ZGrzbp9WJujtl3bGSSbaOZFDN8FK_wUWQlKqOjTOq3gXrJctmkKUQVjcK_hHlbp4rJHVVUZBQjQRHd73U_THpe1vcQWJ-8Dcz9dwZG0MiW1Z1hIejiL4QVdDF09IA6g2m_fu4GojVwdzn_G3AGn1GhZbXU2-NNgFgVDpc7deIBePlDRE2ZI27tjR4C5aNNrrD1c4goVCzD0L-hHyjY6YPY1OTk_O0vmk4v5dqsxDAQGuEYhJlW4x8B9Qf375VufxR6rDhsav_kzLZkrYB93H79tMO14Qb8H8w6so_kj8tC6NfTIYPQxGelinxwcFYDG1S19R7sOv90n96c2nuOApFsIpgME0xbBFHBEWwRTi2BqEUwRwRT6my4K2iCYtgimBsFPyPxkMj8-dWzRD0fxKKwdrHIZuHkqXJVFTEdZ5vMc9j2ew08mIjeLtWCuit1I8FSAw-ArHsgolGCPhfwp2SvKQj8nVGRcpTp0PV9L35UiFrEC5xkN0lhqLx8Tr-3YRNmE-FiXZZk0jnHAEiuMpBFGgsIYk_fdNTcmHcydZx-28krst7lOPAFmtQd-jz8mb7pmUOq4UpcWutw053jcD8H3GJNnRrzd41jocsH8aEzEluC7EzBh_HZLsbhqEsdjDAPYNi_ufq2X5EH_hR6Svbra6FdgedfydQPjX1KI4k0
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+respiratory+capacity+and+coupling+control+decline+with+age+in+human+skeletal+muscle&rft.jtitle=American+journal+of+physiology%3A+endocrinology+and+metabolism&rft.au=Porter%2C+Craig&rft.au=Hurren%2C+Nicholas+M&rft.au=Cotter%2C+Matthew+V&rft.au=Bhattarai%2C+Nisha&rft.date=2015-08-01&rft.pub=American+Physiological+Society&rft.issn=0193-1849&rft.eissn=1522-1555&rft.volume=309&rft.issue=3&rft.spage=E224&rft_id=info:doi/10.1152%2Fajpendo.00125.2015&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3771098691
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0193-1849&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0193-1849&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0193-1849&client=summon