Functionalized HgTe nanoparticles promote laser-induced solid phase ionization/dissociation for comprehensive glycan sequencing
Glycoconjugates are ubiquitously present and play a critical role in various biological processes. Due to their low stability and incredibly high degree of structural diversity, the structural characterization of glycan generally requires chemical derivatization and sophisticated instrumentation. He...
Saved in:
Published in | Analyst (London) Vol. 141; no. 21; pp. 6093 - 6103 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Glycoconjugates are ubiquitously present and play a critical role in various biological processes. Due to their low stability and incredibly high degree of structural diversity, the structural characterization of glycan generally requires chemical derivatization and sophisticated instrumentation. Herein, we report a method for complicated glycan characterization in a single assay by employing 2,5-dihydroxybenzoic acid functionalized mercury telluride nanoparticles (HgTe@DHB NPs) as a dual ionization–dissociation element in matrix-assisted laser desorption/ionization mass spectrometry. Using a linear glycan, HgTe@DHB NPs promote laser-induced extensive and intense dissociation of the glycan, superior to HgTe microparticles and other inorganic nanoparticles (TiO
2
, ZnO, and Mn
2
O
3
NPs). Abundant generation of diagnostic glycosidic (Y-, and B-type ions) and cross-ring cleavage (A-type ions) ions permits unambiguous determination of the composition, sequence, branching, and linkage of labile sialylated glycans. The general utility of this approach was demonstrated by the characterization of labile sialylated glycans and two sets of complicated isomeric glycans. This phenomenon was delineated further by investigating the NP's physico-chemical characteristics, revealing that their nanoscale-dependent thermodynamic properties, including UV absorption, photoelectron release dynamics and thermal energy, were the key to levitate temperature synergistically, thus inducing spontaneous glycan decomposition during the nanoparticle-assisted laser desorption–ionization process. Our results show that this “pseudo-MS/MS” obtained by HgTe@DHB can be beneficial for the analysis of biologically relevant and more complicated carbohydrates, without the need for chemical pre-derivatization and conventional tandem mass spectrometry. |
---|---|
AbstractList | Glycoconjugates are ubiquitously present and play a critical role in various biological processes. Due to their low stability and incredibly high degree of structural diversity, the structural characterization of glycan generally requires chemical derivatization and sophisticated instrumentation. Herein, we report a method for complicated glycan characterization in a single assay by employing 2,5-dihydroxybenzoic acid functionalized mercury telluride nanoparticles (HgTe@DHB NPs) as a dual ionization-dissociation element in matrix-assisted laser desorption/ionization mass spectrometry. Using a linear glycan, HgTe@DHB NPs promote laser-induced extensive and intense dissociation of the glycan, superior to HgTe microparticles and other inorganic nanoparticles (TiO
, ZnO, and Mn
O
NPs). Abundant generation of diagnostic glycosidic (Y-, and B-type ions) and cross-ring cleavage (A-type ions) ions permits unambiguous determination of the composition, sequence, branching, and linkage of labile sialylated glycans. The general utility of this approach was demonstrated by the characterization of labile sialylated glycans and two sets of complicated isomeric glycans. This phenomenon was delineated further by investigating the NP's physico-chemical characteristics, revealing that their nanoscale-dependent thermodynamic properties, including UV absorption, photoelectron release dynamics and thermal energy, were the key to levitate temperature synergistically, thus inducing spontaneous glycan decomposition during the nanoparticle-assisted laser desorption-ionization process. Our results show that this "pseudo-MS/MS" obtained by HgTe@DHB can be beneficial for the analysis of biologically relevant and more complicated carbohydrates, without the need for chemical pre-derivatization and conventional tandem mass spectrometry. Glycoconjugates are ubiquitously present and play a critical role in various biological processes. Due to their low stability and incredibly high degree of structural diversity, the structural characterization of glycan generally requires chemical derivatization and sophisticated instrumentation. Herein, we report a method for complicated glycan characterization in a single assay by employing 2,5-dihydroxybenzoic acid functionalized mercury telluride nanoparticles (HgTe@DHB NPs) as a dual ionization–dissociation element in matrix-assisted laser desorption/ionization mass spectrometry. Using a linear glycan, HgTe@DHB NPs promote laser-induced extensive and intense dissociation of the glycan, superior to HgTe microparticles and other inorganic nanoparticles (TiO 2 , ZnO, and Mn 2 O 3 NPs). Abundant generation of diagnostic glycosidic (Y-, and B-type ions) and cross-ring cleavage (A-type ions) ions permits unambiguous determination of the composition, sequence, branching, and linkage of labile sialylated glycans. The general utility of this approach was demonstrated by the characterization of labile sialylated glycans and two sets of complicated isomeric glycans. This phenomenon was delineated further by investigating the NP's physico-chemical characteristics, revealing that their nanoscale-dependent thermodynamic properties, including UV absorption, photoelectron release dynamics and thermal energy, were the key to levitate temperature synergistically, thus inducing spontaneous glycan decomposition during the nanoparticle-assisted laser desorption–ionization process. Our results show that this “pseudo-MS/MS” obtained by HgTe@DHB can be beneficial for the analysis of biologically relevant and more complicated carbohydrates, without the need for chemical pre-derivatization and conventional tandem mass spectrometry. Glycoconjugates are ubiquitously present and play a critical role in various biological processes. Due to their low stability and incredibly high degree of structural diversity, the structural characterization of glycan generally requires chemical derivatization and sophisticated instrumentation. Herein, we report a method for complicated glycan characterization in a single assay by employing 2,5-dihydroxybenzoic acid functionalized mercury telluride nanoparticles (HgTe sub(H)B NPs) as a dual ionization-dissociation element in matrix-assisted laser desorption/ionization mass spectrometry. Using a linear glycan, HgTe sub(H)B NPs promote laser-induced extensive and intense dissociation of the glycan, superior to HgTe microparticles and other inorganic nanoparticles (TiO2, ZnO, and Mn2O3 NPs). Abundant generation of diagnostic glycosidic (Y-, and B-type ions) and cross-ring cleavage (A-type ions) ions permits unambiguous determination of the composition, sequence, branching, and linkage of labile sialylated glycans. The general utility of this approach was demonstrated by the characterization of labile sialylated glycans and two sets of complicated isomeric glycans. This phenomenon was delineated further by investigating the NP's physico-chemical characteristics, revealing that their nanoscale-dependent thermodynamic properties, including UV absorption, photoelectron release dynamics and thermal energy, were the key to levitate temperature synergistically, thus inducing spontaneous glycan decomposition during the nanoparticle-assisted laser desorption-ionization process. Our results show that this "pseudo-MS/MS" obtained by HgTe sub(H)B can be beneficial for the analysis of biologically relevant and more complicated carbohydrates, without the need for chemical pre-derivatization and conventional tandem mass spectrometry. Glycoconjugates are ubiquitously present and play a critical role in various biological processes. Due to their low stability and incredibly high degree of structural diversity, the structural characterization of glycan generally requires chemical derivatization and sophisticated instrumentation. Herein, we report a method for complicated glycan characterization in a single assay by employing 2,5-dihydroxybenzoic acid functionalized mercury telluride nanoparticles (HgTe@DHB NPs) as a dual ionization-dissociation element in matrix-assisted laser desorption/ionization mass spectrometry. Using a linear glycan, HgTe@DHB NPs promote laser-induced extensive and intense dissociation of the glycan, superior to HgTe microparticles and other inorganic nanoparticles (TiO2, ZnO, and Mn2O3 NPs). Abundant generation of diagnostic glycosidic (Y-, and B-type ions) and cross-ring cleavage (A-type ions) ions permits unambiguous determination of the composition, sequence, branching, and linkage of labile sialylated glycans. The general utility of this approach was demonstrated by the characterization of labile sialylated glycans and two sets of complicated isomeric glycans. This phenomenon was delineated further by investigating the NP's physico-chemical characteristics, revealing that their nanoscale-dependent thermodynamic properties, including UV absorption, photoelectron release dynamics and thermal energy, were the key to levitate temperature synergistically, thus inducing spontaneous glycan decomposition during the nanoparticle-assisted laser desorption-ionization process. Our results show that this "pseudo-MS/MS" obtained by HgTe@DHB can be beneficial for the analysis of biologically relevant and more complicated carbohydrates, without the need for chemical pre-derivatization and conventional tandem mass spectrometry.Glycoconjugates are ubiquitously present and play a critical role in various biological processes. Due to their low stability and incredibly high degree of structural diversity, the structural characterization of glycan generally requires chemical derivatization and sophisticated instrumentation. Herein, we report a method for complicated glycan characterization in a single assay by employing 2,5-dihydroxybenzoic acid functionalized mercury telluride nanoparticles (HgTe@DHB NPs) as a dual ionization-dissociation element in matrix-assisted laser desorption/ionization mass spectrometry. Using a linear glycan, HgTe@DHB NPs promote laser-induced extensive and intense dissociation of the glycan, superior to HgTe microparticles and other inorganic nanoparticles (TiO2, ZnO, and Mn2O3 NPs). Abundant generation of diagnostic glycosidic (Y-, and B-type ions) and cross-ring cleavage (A-type ions) ions permits unambiguous determination of the composition, sequence, branching, and linkage of labile sialylated glycans. The general utility of this approach was demonstrated by the characterization of labile sialylated glycans and two sets of complicated isomeric glycans. This phenomenon was delineated further by investigating the NP's physico-chemical characteristics, revealing that their nanoscale-dependent thermodynamic properties, including UV absorption, photoelectron release dynamics and thermal energy, were the key to levitate temperature synergistically, thus inducing spontaneous glycan decomposition during the nanoparticle-assisted laser desorption-ionization process. Our results show that this "pseudo-MS/MS" obtained by HgTe@DHB can be beneficial for the analysis of biologically relevant and more complicated carbohydrates, without the need for chemical pre-derivatization and conventional tandem mass spectrometry. |
Author | Lin, Chun-Cheng Chen, Yu-Ju Capangpangan, Rey Y. Tseng, Mei-Chun Lai, Yin-Hung Wu, Chung-Yi Wang, Yi-Sheng Chang, Huan-Tsung Primadona, Indah Chien, Wei-Ting Huang, Ming-Feng Li, Shiou-Ting Obena, Rofeamor P. |
Author_xml | – sequence: 1 givenname: Indah surname: Primadona fullname: Primadona, Indah organization: Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, Molecular Science and Technology Program – sequence: 2 givenname: Yin-Hung surname: Lai fullname: Lai, Yin-Hung organization: Genomics Research Center, Academia Sinica, Taipei, Taiwan – sequence: 3 givenname: Rey Y. surname: Capangpangan fullname: Capangpangan, Rey Y. organization: Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Division of Chemistry – sequence: 4 givenname: Rofeamor P. orcidid: 0000-0003-3080-8222 surname: Obena fullname: Obena, Rofeamor P. organization: Institute of Chemistry, Academia Sinica, Taipei, Taiwan – sequence: 5 givenname: Mei-Chun surname: Tseng fullname: Tseng, Mei-Chun organization: Institute of Chemistry, Academia Sinica, Taipei, Taiwan – sequence: 6 givenname: Ming-Feng surname: Huang fullname: Huang, Ming-Feng organization: Department of Chemistry, National Taiwan University, Taipei, Taiwan – sequence: 7 givenname: Huan-Tsung surname: Chang fullname: Chang, Huan-Tsung organization: Department of Chemistry, National Taiwan University, Taipei, Taiwan – sequence: 8 givenname: Shiou-Ting surname: Li fullname: Li, Shiou-Ting organization: Genomics Research Center, Academia Sinica, Taipei, Taiwan – sequence: 9 givenname: Chung-Yi surname: Wu fullname: Wu, Chung-Yi organization: Genomics Research Center, Academia Sinica, Taipei, Taiwan – sequence: 10 givenname: Wei-Ting surname: Chien fullname: Chien, Wei-Ting organization: Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan – sequence: 11 givenname: Chun-Cheng surname: Lin fullname: Lin, Chun-Cheng organization: Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan – sequence: 12 givenname: Yi-Sheng surname: Wang fullname: Wang, Yi-Sheng organization: Genomics Research Center, Academia Sinica, Taipei, Taiwan – sequence: 13 givenname: Yu-Ju surname: Chen fullname: Chen, Yu-Ju organization: Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Department of Chemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27722232$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1L7TAQhoMoevzY-AMkS7nQa5o0bbo8HPQqiG50XdLp9BhJk5q0gm7868YvBHFxV8MMz_sO78wu2XTeISGHOfubM1GfrMrlFWM1F8sNsshFWWRScrVJFowxkfFSFjtkN8b71OZMsm2yw6uKcy74gryczQ4m45225hk7er6-Qeq086MOkwGLkY7BD35CanXEkBnXzZDA6K3p6HiXhjTJzbN-cznpTIwezHtDex8o-GEMeIcumkeka_sE2tGIDzM6MG69T7Z6bSMefNY9cnt2erM6zy6v_12slpcZCFVOmazaXnJdQJG3rRYpo-pkCQolS1kLVqIAkFpWiGXXtqqtFGMKes0liBa42CPHH74pTdodp2YwEdBa7dDPscmVlKJUQuT_gQop6roq6oQefaJzO2DXjMEMOjw1X_dNAPsAIPgYA_YNmOn9OFPQxjY5a95e2Hy_MEn-_JB8uf4CvwJKx533 |
CitedBy_id | crossref_primary_10_1021_acs_analchem_9b01241 crossref_primary_10_1002_jms_4667 crossref_primary_10_1021_acs_jproteome_8b00433 crossref_primary_10_1002_mas_21555 crossref_primary_10_3390_nano7040087 crossref_primary_10_5702_massspectrometry_S0072 crossref_primary_10_1016_j_aca_2023_341307 crossref_primary_10_1002_mas_21651 crossref_primary_10_1021_acsanm_9b00988 |
Cites_doi | 10.1002/pmic.201000517 10.1021/ac1003129 10.1021/ac2017184 10.1021/ac9001113 10.1021/ac0621423 10.1021/ac502422a 10.1007/s13361-011-0117-9 10.1007/s13361-011-0243-4 10.1002/anie.201200596 10.1021/ac00068a015 10.2174/1573411052948460 10.1039/b502142c 10.1038/nrd1751 10.1039/c2sc01066f 10.1021/jp104178m 10.1039/C5SC00546A 10.1016/bs.acr.2014.11.007 10.1021/ac048399n 10.1002/pmic.200401248 10.1016/j.jasms.2010.08.001 10.1038/nprot.2007.227 10.1016/S1387-3806(99)00014-7 10.1002/oms.1210270419 10.1039/c2an35418g 10.4052/tigg.9.47 10.1021/ac980634c 10.1007/BF01049915 10.1002/rcm.2445 10.1038/nrc3982 10.1002/rcm.1273 10.1021/jp304709q 10.1007/s10719-012-9381-6 10.1021/ac026009w 10.1002/mas.10073 10.1002/adma.200500403 10.1016/j.ab.2008.01.025 10.1016/j.jasms.2007.10.022 10.1002/(SICI)1098-2787(1999)18:6<349::AID-MAS1>3.0.CO;2-H |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1039/C6AN00923A |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE CrossRef Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-5528 |
EndPage | 6103 |
ExternalDocumentID | 27722232 10_1039_C6AN00923A |
Genre | Journal Article |
GroupedDBID | --- -~X .GJ .HR 0-7 0R~ 0UZ 186 1TJ 23M 2WC 3EH 3O- 4.4 53G 5RE 705 70~ 71~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABOCM ABPDG ABRYZ ABXOH ACGFS ACHDF ACIWK ACLDK ACRPL ADMRA ADNMO ADSRN ADXHL AEFDR AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRZK AFVBQ AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AIDUJ AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ANBJS ANLMG ANUXI APEMP AQHUZ ASKNT ASPBG AUDPV AVWKF AZFZN BBWZM BLAPV BSQNT C1A C6K CAG CITATION COF CS3 EBS ECGLT EE0 EEHRC EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDY IDZ J3G J3H J3I L-8 LPU M4U MVM N9A NDZJH O9- P2P R56 R7B R7E RAOCF RCLXC RCNCU RIG RNS ROL RPMJG RRA RRC RRXOS RSCEA SC5 SKM SKR SKZ SLC SLF SLH TN5 UPT VH6 WH7 XOL XXG ZCG ZKB ZXP ~02 CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c386t-57bf52a4c41bba33648d56c8e50552406e3cc5a57ee6dbb8b78008cfa25c3bc23 |
ISSN | 0003-2654 1364-5528 |
IngestDate | Fri Jul 11 12:07:58 EDT 2025 Fri Jul 11 04:50:33 EDT 2025 Tue Apr 08 05:56:58 EDT 2025 Tue Jul 01 02:26:44 EDT 2025 Thu Apr 24 22:50:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c386t-57bf52a4c41bba33648d56c8e50552406e3cc5a57ee6dbb8b78008cfa25c3bc23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3080-8222 |
PMID | 27722232 |
PQID | 1835399749 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1855368331 proquest_miscellaneous_1835399749 pubmed_primary_27722232 crossref_citationtrail_10_1039_C6AN00923A crossref_primary_10_1039_C6AN00923A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Analyst (London) |
PublicationTitleAlternate | Analyst |
PublicationYear | 2016 |
References | Adamson (C6AN00923A-(cit6)/*[position()=1]) 2007; 79 Gholipour (C6AN00923A-(cit17)/*[position()=1]) 2010; 82 Morelle (C6AN00923A-(cit4)/*[position()=1]) 2005; 1 Fentabil (C6AN00923A-(cit8)/*[position()=1]) 2011; 22 Morelle (C6AN00923A-(cit28)/*[position()=1]) 2007; 2 Liu (C6AN00923A-(cit30)/*[position()=1]) 2010; 114 Einarsdottir (C6AN00923A-(cit36)/*[position()=1]) 2013; 30 Obena (C6AN00923A-(cit21)/*[position()=1]) 2015; 6 Obena (C6AN00923A-(cit19)/*[position()=1]) 2011; 83 Roduner (C6AN00923A-(cit25)/*[position()=1]) 2006; 35 Pabst (C6AN00923A-(cit3)/*[position()=1]) 2011; 11 Harvey (C6AN00923A-(cit37)/*[position()=1]) 1999; 18 Yang (C6AN00923A-(cit32)/*[position()=1]) 2012; 137 Harvey (C6AN00923A-(cit38)/*[position()=1]) 2008; 376 Schurenberg (C6AN00923A-(cit24)/*[position()=1]) 1999; 71 Ehring (C6AN00923A-(cit29)/*[position()=1]) 1992; 27 Domon (C6AN00923A-(cit12)/*[position()=1]) 1988; 5 Zaia (C6AN00923A-(cit14)/*[position()=1]) 2004; 23 Mechref (C6AN00923A-(cit34)/*[position()=1]) 2006; 20 Pinho (C6AN00923A-(cit35)/*[position()=1]) 2015; 15 Huang (C6AN00923A-(cit15)/*[position()=1]) 2012; 3 Huberty (C6AN00923A-(cit31)/*[position()=1]) 1993; 65 Lorkiewicz (C6AN00923A-(cit26)/*[position()=1]) 2009; 81 Harvey (C6AN00923A-(cit33)/*[position()=1]) 1999; 188 Han (C6AN00923A-(cit7)/*[position()=1]) 2011; 22 Tseng (C6AN00923A-(cit16)/*[position()=1]) 2010; 21 Liang (C6AN00923A-(cit20)/*[position()=1]) 2014; 86 Yang (C6AN00923A-(cit22)/*[position()=1]) 2005; 17 Dube (C6AN00923A-(cit27)/*[position()=1]) 2005; 4 Froesch (C6AN00923A-(cit10)/*[position()=1]) 2003; 17 Harvey (C6AN00923A-(cit13)/*[position()=1]) 2005; 5 Cho (C6AN00923A-(cit40)/*[position()=1]) 1997; 9 Lai (C6AN00923A-(cit23)/*[position()=1]) 2012; 116 Nycholat (C6AN00923A-(cit41)/*[position()=1]) 2012; 51 Zhao (C6AN00923A-(cit5)/*[position()=1]) 2008; 19 Xie (C6AN00923A-(cit9)/*[position()=1]) 2003; 75 Tian (C6AN00923A-(cit1)/*[position()=1]) 2010; 4 Varki (C6AN00923A-(cit2)/*[position()=1]) 2009 Yang (C6AN00923A-(cit18)/*[position()=1]) 2010; 31 Alaoui (C6AN00923A-(cit39)/*[position()=1]) 2015; 126 Lewandrowski (C6AN00923A-(cit11)/*[position()=1]) 2005; 77 |
References_xml | – volume: 11 start-page: 631 year: 2011 ident: C6AN00923A-(cit3)/*[position()=1] publication-title: Proteomics doi: 10.1002/pmic.201000517 – volume: 82 start-page: 5518 year: 2010 ident: C6AN00923A-(cit17)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac1003129 – volume: 83 start-page: 9337 year: 2011 ident: C6AN00923A-(cit19)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac2017184 – volume: 81 start-page: 6596 year: 2009 ident: C6AN00923A-(cit26)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac9001113 – volume: 4 start-page: 124 year: 2010 ident: C6AN00923A-(cit1)/*[position()=1] publication-title: Proteomics: Clin. Appl. – volume: 79 start-page: 2901 year: 2007 ident: C6AN00923A-(cit6)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac0621423 – volume: 86 start-page: 8496 year: 2014 ident: C6AN00923A-(cit20)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac502422a – volume: 22 start-page: 997 year: 2011 ident: C6AN00923A-(cit7)/*[position()=1] publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1007/s13361-011-0117-9 – volume: 22 start-page: 2171 year: 2011 ident: C6AN00923A-(cit8)/*[position()=1] publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1007/s13361-011-0243-4 – volume: 51 start-page: 4860 year: 2012 ident: C6AN00923A-(cit41)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201200596 – volume: 65 start-page: 2791 year: 1993 ident: C6AN00923A-(cit31)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac00068a015 – volume: 1 start-page: 29 year: 2005 ident: C6AN00923A-(cit4)/*[position()=1] publication-title: Curr. Anal. Chem. doi: 10.2174/1573411052948460 – volume: 35 start-page: 583 year: 2006 ident: C6AN00923A-(cit25)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b502142c – volume: 4 start-page: 477 year: 2005 ident: C6AN00923A-(cit27)/*[position()=1] publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd1751 – volume: 3 start-page: 2147 year: 2012 ident: C6AN00923A-(cit15)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/c2sc01066f – volume: 114 start-page: 10853 year: 2010 ident: C6AN00923A-(cit30)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp104178m – volume: 6 start-page: 4790 year: 2015 ident: C6AN00923A-(cit21)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C5SC00546A – volume: 126 start-page: 305 year: 2015 ident: C6AN00923A-(cit39)/*[position()=1] publication-title: Adv. Cancer Res. doi: 10.1016/bs.acr.2014.11.007 – volume: 77 start-page: 3274 year: 2005 ident: C6AN00923A-(cit11)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac048399n – volume: 5 start-page: 1774 year: 2005 ident: C6AN00923A-(cit13)/*[position()=1] publication-title: Proteomics doi: 10.1002/pmic.200401248 – volume: 21 start-page: 1930 year: 2010 ident: C6AN00923A-(cit16)/*[position()=1] publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1016/j.jasms.2010.08.001 – volume: 2 start-page: 1585 year: 2007 ident: C6AN00923A-(cit28)/*[position()=1] publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.227 – volume: 188 start-page: 131 year: 1999 ident: C6AN00923A-(cit33)/*[position()=1] publication-title: Int. J. Mass Spectrom. doi: 10.1016/S1387-3806(99)00014-7 – volume: 27 start-page: 472 year: 1992 ident: C6AN00923A-(cit29)/*[position()=1] publication-title: Org. Mass Spectrom. doi: 10.1002/oms.1210270419 – volume: 137 start-page: 3624 year: 2012 ident: C6AN00923A-(cit32)/*[position()=1] publication-title: Analyst doi: 10.1039/c2an35418g – volume: 9 start-page: 47 year: 1997 ident: C6AN00923A-(cit40)/*[position()=1] publication-title: Trends Glycosci. Glycotechnol. doi: 10.4052/tigg.9.47 – volume: 71 start-page: 221 year: 1999 ident: C6AN00923A-(cit24)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac980634c – volume-title: Essentials of Glycobiology year: 2009 ident: C6AN00923A-(cit2)/*[position()=1] – volume: 5 start-page: 397 year: 1988 ident: C6AN00923A-(cit12)/*[position()=1] publication-title: Glycoconjugate J. doi: 10.1007/BF01049915 – volume: 20 start-page: 1381 year: 2006 ident: C6AN00923A-(cit34)/*[position()=1] publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.2445 – volume: 15 start-page: 540 year: 2015 ident: C6AN00923A-(cit35)/*[position()=1] publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3982 – volume: 17 start-page: 2822 year: 2003 ident: C6AN00923A-(cit10)/*[position()=1] publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.1273 – volume: 116 start-page: 9635 year: 2012 ident: C6AN00923A-(cit23)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp304709q – volume: 30 start-page: 147 year: 2013 ident: C6AN00923A-(cit36)/*[position()=1] publication-title: Glycoconjugate J. doi: 10.1007/s10719-012-9381-6 – volume: 75 start-page: 1590 year: 2003 ident: C6AN00923A-(cit9)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac026009w – volume: 23 start-page: 161 year: 2004 ident: C6AN00923A-(cit14)/*[position()=1] publication-title: Mass Spectrom. Rev. doi: 10.1002/mas.10073 – volume: 17 start-page: 2354 year: 2005 ident: C6AN00923A-(cit22)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200500403 – volume: 376 start-page: 44 year: 2008 ident: C6AN00923A-(cit38)/*[position()=1] publication-title: Anal. Biochem. doi: 10.1016/j.ab.2008.01.025 – volume: 19 start-page: 138 year: 2008 ident: C6AN00923A-(cit5)/*[position()=1] publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1016/j.jasms.2007.10.022 – volume: 31 start-page: 1 year: 2010 ident: C6AN00923A-(cit18)/*[position()=1] publication-title: Bull. Korean Chem. Soc. – volume: 18 start-page: 349 year: 1999 ident: C6AN00923A-(cit37)/*[position()=1] publication-title: Mass Spectrom. Rev. doi: 10.1002/(SICI)1098-2787(1999)18:6<349::AID-MAS1>3.0.CO;2-H |
SSID | ssj0001050 |
Score | 2.2111614 |
Snippet | Glycoconjugates are ubiquitously present and play a critical role in various biological processes. Due to their low stability and incredibly high degree of... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 6093 |
SubjectTerms | Biological effects Glycan Ionization Lasers Mass spectrometry Mercury Compounds Metal Nanoparticles Nanoparticles Nanostructure Polysaccharides - analysis Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization Tellurium Titanium dioxide |
Title | Functionalized HgTe nanoparticles promote laser-induced solid phase ionization/dissociation for comprehensive glycan sequencing |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27722232 https://www.proquest.com/docview/1835399749 https://www.proquest.com/docview/1855368331 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9gAXxLvhpUVwQZFTx_uwfYyiVgGVqkKp1J6i3fUmjVScKjiH9tLfxD9kxrt-BAIqHGJFq_V64_ky750h5EOqFZ-FGHZnhgc8ik2QCiMDa8UszngGEMCDwl-O5fiUfz4TZ53Oj1bW0rrQfXOz9VzJ_1AVxoCueEr2HyhbLwoD8B3oC1egMFzvRONDEErOl7e4AcVxPJ_YXq5ysIN9uhumXwEtbA90ZLsKwP5eY7wfdrXIelcXMNhDf6w7ign7wOh8Ra0yAREzzlf2wme5zy-vkWn69OtK6NWlmLG8SdHuEVI7GU6wpgUMKceSssYJfeTaYZ8v8mC89guWIRHgUnP8-DgVsK7zfu0R1tYt9XU5s-ob7POk33ZfDNrui4olsyCSrpJ03zouzCQPhPCnxis2zQctPLpj1Z7rytB1WfQSHDRCtlU6hAyLq47k8BhLTbG6vmpTgvsX0VgnLJahepZOm3vvkd0ILBNgrbvDg8mno1r8g8IaVm0a8XdVNXFZut_cvakF_cG0KVWcySPy0NsmdOjA85h0bP6E3B9VLQGfkttNwFEEHN0AHPWAoxuAoyXgaAk42gBuvw03CnCjG3CjDm60gdszcnp4MBmNA9_BIzAskUUgYj0TkeKGD7RWDMiaZEKaxILeLVCXtMwYoURsrcy0TnQM9ktiZioShmkTsedkJ1_mdo9QI8BQz3QUZkbxMLaKW5nGFmR5LEWaJl3ysXqjU-PL22OXlcvp77Trkvf13CtX1GXrrHcVYabwnjGQpnK7XH-fghjEgs4xT_82RwgmE8YGXfLCUbV-FgIH1PLo5Z328Yo8aP44r8lOsVrbN6AJF_qtx95PniO3vg |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functionalized+HgTe+nanoparticles+promote+laser-induced+solid+phase+ionization%2Fdissociation+for+comprehensive+glycan+sequencing&rft.jtitle=Analyst+%28London%29&rft.au=Primadona%2C+Indah&rft.au=Lai%2C+Yin-Hung&rft.au=Capangpangan%2C+Rey+Y.&rft.au=Obena%2C+Rofeamor+P.&rft.date=2016-01-01&rft.issn=0003-2654&rft.eissn=1364-5528&rft.volume=141&rft.issue=21&rft.spage=6093&rft.epage=6103&rft_id=info:doi/10.1039%2FC6AN00923A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C6AN00923A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2654&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2654&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2654&client=summon |