MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm

Deep learning is an important branch of artificial intelligence that has been successfully applied into medicine and two-dimensional ligand design. The three-dimensional (3D) ligand generation in the 3D pocket of protein target is an interesting and challenging issue for drug design by deep learning...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 22; no. 3
Main Authors Bai, Qifeng, Tan, Shuoyan, Xu, Tingyang, Liu, Huanxiang, Huang, Junzhou, Yao, Xiaojun
Format Journal Article
LanguageEnglish
Published Oxford University Press 20.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep learning is an important branch of artificial intelligence that has been successfully applied into medicine and two-dimensional ligand design. The three-dimensional (3D) ligand generation in the 3D pocket of protein target is an interesting and challenging issue for drug design by deep learning. Here, the MolAICal software is introduced to supply a way for generating 3D drugs in the 3D pocket of protein targets by combining with merits of deep learning model and classical algorithm. The MolAICal software mainly contains two modules for 3D drug design. In the first module of MolAICal, it employs the genetic algorithm, deep learning model trained by FDA-approved drug fragments and Vinardo score fitting on the basis of PDBbind database for drug design. In the second module, it uses deep learning generative model trained by drug-like molecules of ZINC database and molecular docking invoked by Autodock Vina automatically. Besides, the Lipinski’s rule of five, Pan-assay interference compounds (PAINS), synthetic accessibility (SA) and other user-defined rules are introduced for filtering out unwanted ligands in MolAICal. To show the drug design modules of MolAICal, the membrane protein glucagon receptor and non-membrane protein SARS-CoV-2 main protease are chosen as the investigative drug targets. The results show MolAICal can generate the various and novel ligands with good binding scores and appropriate XLOGP values. We believe that MolAICal can use the advantages of deep learning model and classical programming for designing 3D drugs in protein pocket. MolAICal is freely for any nonprofit purpose and accessible at https://molaical.github.io.
AbstractList Deep learning is an important branch of artificial intelligence that has been successfully applied into medicine and two-dimensional ligand design. The three-dimensional (3D) ligand generation in the 3D pocket of protein target is an interesting and challenging issue for drug design by deep learning. Here, the MolAICal software is introduced to supply a way for generating 3D drugs in the 3D pocket of protein targets by combining with merits of deep learning model and classical algorithm. The MolAICal software mainly contains two modules for 3D drug design. In the first module of MolAICal, it employs the genetic algorithm, deep learning model trained by FDA-approved drug fragments and Vinardo score fitting on the basis of PDBbind database for drug design. In the second module, it uses deep learning generative model trained by drug-like molecules of ZINC database and molecular docking invoked by Autodock Vina automatically. Besides, the Lipinski’s rule of five, Pan-assay interference compounds (PAINS), synthetic accessibility (SA) and other user-defined rules are introduced for filtering out unwanted ligands in MolAICal. To show the drug design modules of MolAICal, the membrane protein glucagon receptor and non-membrane protein SARS-CoV-2 main protease are chosen as the investigative drug targets. The results show MolAICal can generate the various and novel ligands with good binding scores and appropriate XLOGP values. We believe that MolAICal can use the advantages of deep learning model and classical programming for designing 3D drugs in protein pocket. MolAICal is freely for any nonprofit purpose and accessible at https://molaical.github.io .
Deep learning is an important branch of artificial intelligence that has been successfully applied into medicine and two-dimensional ligand design. The three-dimensional (3D) ligand generation in the 3D pocket of protein target is an interesting and challenging issue for drug design by deep learning. Here, the MolAICal software is introduced to supply a way for generating 3D drugs in the 3D pocket of protein targets by combining with merits of deep learning model and classical algorithm. The MolAICal software mainly contains two modules for 3D drug design. In the first module of MolAICal, it employs the genetic algorithm, deep learning model trained by FDA-approved drug fragments and Vinardo score fitting on the basis of PDBbind database for drug design. In the second module, it uses deep learning generative model trained by drug-like molecules of ZINC database and molecular docking invoked by Autodock Vina automatically. Besides, the Lipinski’s rule of five, Pan-assay interference compounds (PAINS), synthetic accessibility (SA) and other user-defined rules are introduced for filtering out unwanted ligands in MolAICal. To show the drug design modules of MolAICal, the membrane protein glucagon receptor and non-membrane protein SARS-CoV-2 main protease are chosen as the investigative drug targets. The results show MolAICal can generate the various and novel ligands with good binding scores and appropriate XLOGP values. We believe that MolAICal can use the advantages of deep learning model and classical programming for designing 3D drugs in protein pocket. MolAICal is freely for any nonprofit purpose and accessible at https://molaical.github.io.
Deep learning is an important branch of artificial intelligence that has been successfully applied into medicine and two-dimensional ligand design. The three-dimensional (3D) ligand generation in the 3D pocket of protein target is an interesting and challenging issue for drug design by deep learning. Here, the MolAICal software is introduced to supply a way for generating 3D drugs in the 3D pocket of protein targets by combining with merits of deep learning model and classical algorithm. The MolAICal software mainly contains two modules for 3D drug design. In the first module of MolAICal, it employs the genetic algorithm, deep learning model trained by FDA-approved drug fragments and Vinardo score fitting on the basis of PDBbind database for drug design. In the second module, it uses deep learning generative model trained by drug-like molecules of ZINC database and molecular docking invoked by Autodock Vina automatically. Besides, the Lipinski's rule of five, Pan-assay interference compounds (PAINS), synthetic accessibility (SA) and other user-defined rules are introduced for filtering out unwanted ligands in MolAICal. To show the drug design modules of MolAICal, the membrane protein glucagon receptor and non-membrane protein SARS-CoV-2 main protease are chosen as the investigative drug targets. The results show MolAICal can generate the various and novel ligands with good binding scores and appropriate XLOGP values. We believe that MolAICal can use the advantages of deep learning model and classical programming for designing 3D drugs in protein pocket. MolAICal is freely for any nonprofit purpose and accessible at https://molaical.github.io.Deep learning is an important branch of artificial intelligence that has been successfully applied into medicine and two-dimensional ligand design. The three-dimensional (3D) ligand generation in the 3D pocket of protein target is an interesting and challenging issue for drug design by deep learning. Here, the MolAICal software is introduced to supply a way for generating 3D drugs in the 3D pocket of protein targets by combining with merits of deep learning model and classical algorithm. The MolAICal software mainly contains two modules for 3D drug design. In the first module of MolAICal, it employs the genetic algorithm, deep learning model trained by FDA-approved drug fragments and Vinardo score fitting on the basis of PDBbind database for drug design. In the second module, it uses deep learning generative model trained by drug-like molecules of ZINC database and molecular docking invoked by Autodock Vina automatically. Besides, the Lipinski's rule of five, Pan-assay interference compounds (PAINS), synthetic accessibility (SA) and other user-defined rules are introduced for filtering out unwanted ligands in MolAICal. To show the drug design modules of MolAICal, the membrane protein glucagon receptor and non-membrane protein SARS-CoV-2 main protease are chosen as the investigative drug targets. The results show MolAICal can generate the various and novel ligands with good binding scores and appropriate XLOGP values. We believe that MolAICal can use the advantages of deep learning model and classical programming for designing 3D drugs in protein pocket. MolAICal is freely for any nonprofit purpose and accessible at https://molaical.github.io.
Author Bai, Qifeng
Huang, Junzhou
Tan, Shuoyan
Liu, Huanxiang
Xu, Tingyang
Yao, Xiaojun
AuthorAffiliation 2 University of Connecticut
3 Rutgers University
1 Lanzhou University
AuthorAffiliation_xml – name: 2 University of Connecticut
– name: 3 Rutgers University
– name: 1 Lanzhou University
Author_xml – sequence: 1
  givenname: Qifeng
  orcidid: 0000-0001-7296-6187
  surname: Bai
  fullname: Bai, Qifeng
  organization: Lanzhou University
– sequence: 2
  givenname: Shuoyan
  surname: Tan
  fullname: Tan, Shuoyan
  organization: Lanzhou University
– sequence: 3
  givenname: Tingyang
  surname: Xu
  fullname: Xu, Tingyang
  organization: University of Connecticut
– sequence: 4
  givenname: Huanxiang
  surname: Liu
  fullname: Liu, Huanxiang
  organization: Lanzhou University
– sequence: 5
  givenname: Junzhou
  surname: Huang
  fullname: Huang, Junzhou
  organization: Rutgers University
– sequence: 6
  givenname: Xiaojun
  surname: Yao
  fullname: Yao, Xiaojun
  organization: Lanzhou University
BookMark eNptkctqHDEQRUWwiV9Z5Qe0NISOpdazswiYsZMYbLKJ16JaUrdlNNJY0hj89-7B40VCVlVQ596q4p6gg5STR-gzJV8pGdjFGMaLcQSgkn5Ax5Qr1XEi-MGul6oTXLIjdFLrIyE9UZp-REesV0rrgR6jdJfj5c0K4jcMuOap4ZZzxFMumF1hV7Yzdr6GOeE84U3JzYeEG5TZt4rHFwylhSnYABGH1HyMYfbJegzJYRuh1mCXEcQ5l9Ae1mfocIJY_ad9PUX3P67_rH51t79_3qwubzvLtGwdcz3jXDgOykoYwQ-69wqAce0Ed1qPoAjRTjHPeu6EkwNbYOKl7LUQAztF3998N9tx7Z31qRWIZlPCGsqLyRDM35MUHsycn43igvdKLAbne4OSn7a-NrMO1S7_QfJ5W03P2bJJMqIXlL6htuRai5-MDQ1ayDvnEA0lZpeTWXIy-5wWzZd_NO-n_Y9-BSORmAk
CitedBy_id crossref_primary_10_1021_acs_jmedchem_2c00732
crossref_primary_10_3389_fchem_2022_991369
crossref_primary_10_1002_cbdv_202301771
crossref_primary_10_22159_ajpcr_2023_v16i11_48193
crossref_primary_10_1080_07391102_2023_2183043
crossref_primary_10_33084_bjop_v6i3_4915
crossref_primary_10_1016_j_jafr_2023_100783
crossref_primary_10_1021_acs_jpcb_4c03845
crossref_primary_10_1109_TCBB_2024_3492708
crossref_primary_10_1080_07391102_2023_2167116
crossref_primary_10_1111_jcmm_70014
crossref_primary_10_1186_s13321_025_00976_8
crossref_primary_10_1021_acs_jmedchem_4c01044
crossref_primary_10_1177_11779322231167970
crossref_primary_10_1021_acs_jmedchem_1c00927
crossref_primary_10_1111_cbdd_14639
crossref_primary_10_3389_fphar_2022_843043
crossref_primary_10_1007_s42250_023_00684_6
crossref_primary_10_1111_jfbc_14338
crossref_primary_10_1080_07391102_2022_2163702
crossref_primary_10_1016_j_ijbiomac_2024_130730
crossref_primary_10_1093_bib_bbab484
crossref_primary_10_1021_acs_jcim_3c01456
crossref_primary_10_1080_07391102_2022_2148128
crossref_primary_10_1007_s44371_024_00025_7
crossref_primary_10_3233_JAD_240413
crossref_primary_10_1098_rsos_220369
crossref_primary_10_1177_11769351221118556
crossref_primary_10_1016_j_biopha_2024_116459
crossref_primary_10_1080_17460441_2023_2174522
crossref_primary_10_1002_minf_202200188
crossref_primary_10_1039_D2NJ03253H
crossref_primary_10_1007_s40203_024_00300_6
crossref_primary_10_1007_s11030_021_10217_3
crossref_primary_10_1038_s42256_022_00494_4
crossref_primary_10_1007_s11030_022_10489_3
crossref_primary_10_1093_bib_bbaa422
crossref_primary_10_3390_biomedinformatics4010030
crossref_primary_10_3390_molecules27072281
crossref_primary_10_1002_adma_202211485
crossref_primary_10_3390_microorganisms13020237
crossref_primary_10_3390_vaccines10101734
crossref_primary_10_1007_s00894_023_05492_w
crossref_primary_10_33084_bjop_v6i1_3876
crossref_primary_10_3390_ijms23095054
crossref_primary_10_1002_slct_202403533
crossref_primary_10_3390_sym14010016
crossref_primary_10_1016_j_apmt_2024_102068
crossref_primary_10_1016_j_biopha_2022_113350
crossref_primary_10_1093_bib_bbac520
crossref_primary_10_1007_s11030_023_10659_x
crossref_primary_10_1021_acs_jcim_3c01964
crossref_primary_10_3390_ijms24129849
crossref_primary_10_3390_math11061279
crossref_primary_10_1111_cbdd_14302
crossref_primary_10_1007_s00894_022_05434_y
crossref_primary_10_1093_bib_bbac518
crossref_primary_10_1111_cns_14260
crossref_primary_10_1002_wcms_1568
crossref_primary_10_1016_j_csbj_2022_05_057
crossref_primary_10_1093_bib_bbab544
crossref_primary_10_1007_s11030_024_10968_9
crossref_primary_10_1038_s41598_023_45185_1
crossref_primary_10_1080_07391102_2022_2070282
crossref_primary_10_3390_foods11244046
crossref_primary_10_1177_11769351221127862
crossref_primary_10_1186_s13321_021_00563_7
crossref_primary_10_3390_nu15153489
crossref_primary_10_1002_cbdv_202301400
crossref_primary_10_1080_07391102_2024_2329302
crossref_primary_10_3390_ph14121277
crossref_primary_10_1080_07391102_2022_2133010
crossref_primary_10_1007_s40203_022_00136_y
crossref_primary_10_35118_apjmbb_2024_032_4_03
crossref_primary_10_1016_j_drudis_2024_104024
crossref_primary_10_1021_acs_jcim_0c01079
crossref_primary_10_3389_frai_2024_1372161
crossref_primary_10_3390_molecules26227061
crossref_primary_10_1039_D2CP01453J
crossref_primary_10_1093_bib_bbac592
crossref_primary_10_1080_07391102_2022_2112619
crossref_primary_10_1093_bib_bbac628
crossref_primary_10_3389_fphar_2022_955648
crossref_primary_10_3389_fmicb_2021_739684
crossref_primary_10_1186_s13321_022_00598_4
crossref_primary_10_1007_s12668_024_01710_8
crossref_primary_10_1021_acs_jmedchem_3c00627
crossref_primary_10_1142_S0219519422500725
crossref_primary_10_2174_1871526523666230816151614
crossref_primary_10_1080_07391102_2023_2237594
crossref_primary_10_3390_ijms22041676
crossref_primary_10_1007_s42514_021_00086_5
crossref_primary_10_3389_fphar_2024_1331062
crossref_primary_10_1002_arch_22025
crossref_primary_10_1002_slct_202203932
crossref_primary_10_1016_j_sbi_2021_10_001
crossref_primary_10_3390_jpm11090926
crossref_primary_10_1007_s40203_023_00142_8
crossref_primary_10_3390_molecules26040837
crossref_primary_10_1016_j_sbi_2021_102326
crossref_primary_10_3390_ph17070880
crossref_primary_10_1007_s13205_023_03695_9
crossref_primary_10_1002_cbdv_202300804
crossref_primary_10_1016_j_aichem_2023_100038
crossref_primary_10_1002_wcms_1581
crossref_primary_10_3390_ijms23094738
crossref_primary_10_1007_s43440_021_00282_8
crossref_primary_10_3390_magnetochemistry9070171
crossref_primary_10_4155_fmc_2021_0243
crossref_primary_10_1016_j_abb_2024_109998
crossref_primary_10_1016_j_foodchem_2021_131807
crossref_primary_10_1016_j_bbrc_2025_151638
crossref_primary_10_35118_apjmbb_2024_032_4_22
crossref_primary_10_3390_molecules26030737
crossref_primary_10_1186_s12859_024_05904_5
crossref_primary_10_1016_j_csbj_2022_09_002
crossref_primary_10_2174_1574893618666230227105703
crossref_primary_10_1360_SSC_2022_0135
crossref_primary_10_1016_j_ejmech_2024_116227
crossref_primary_10_1177_14604582241307839
crossref_primary_10_1080_07391102_2022_2141883
crossref_primary_10_1021_acs_jcim_4c01451
crossref_primary_10_1007_s43994_024_00132_2
crossref_primary_10_1016_j_iswa_2025_200508
crossref_primary_10_1093_nar_gkad414
crossref_primary_10_1021_acs_jcim_4c00247
crossref_primary_10_1080_07391102_2024_2329293
crossref_primary_10_1080_07391102_2023_2232041
crossref_primary_10_1021_acs_jcim_3c00713
crossref_primary_10_1093_bib_bbaa260
crossref_primary_10_1002_wcms_1641
crossref_primary_10_1093_bib_bbaa416
crossref_primary_10_33435_tcandtc_1196019
crossref_primary_10_3389_fchem_2020_597495
crossref_primary_10_1017_qrd_2022_12
crossref_primary_10_1093_bib_bbac559
crossref_primary_10_3390_ijms23063261
crossref_primary_10_1016_j_bioorg_2023_106894
crossref_primary_10_1360_SSC_2024_0150
crossref_primary_10_1016_j_chom_2024_02_011
crossref_primary_10_1080_13880209_2022_2063341
crossref_primary_10_3390_ph16070971
crossref_primary_10_1021_acsomega_3c05863
crossref_primary_10_1016_j_compbiomed_2024_108376
crossref_primary_10_3389_fgene_2024_1450529
crossref_primary_10_1039_D4CP03521F
crossref_primary_10_1007_s11164_023_05035_1
crossref_primary_10_1186_s13321_022_00665_w
crossref_primary_10_1080_07391102_2023_2213777
crossref_primary_10_1016_j_ipha_2024_02_008
crossref_primary_10_3934_mbe_2023012
crossref_primary_10_1016_j_arabjc_2024_105656
crossref_primary_10_1016_j_scitotenv_2023_165059
crossref_primary_10_1038_s42003_025_07840_3
crossref_primary_10_1016_j_ipha_2023_11_008
crossref_primary_10_1007_s11356_021_16223_0
crossref_primary_10_1007_s42250_024_00976_5
crossref_primary_10_3934_mbe_2023419
crossref_primary_10_1016_j_csbj_2021_06_017
crossref_primary_10_2147_DDDT_S330947
crossref_primary_10_1186_s13321_023_00702_2
crossref_primary_10_3389_frhem_2024_1305741
crossref_primary_10_1039_D2DD00115B
crossref_primary_10_1007_s12033_023_00831_x
Cites_doi 10.1021/ci100275a
10.4155/fmc-2018-0358
10.1039/C6CP01555G
10.1038/scientificamerican0992-144
10.1021/ci100350u
10.1021/acs.jcim.9b00445
10.1021/jm030580l
10.1038/s41586-020-2223-y
10.1016/S0169-409X(00)00129-0
10.1093/bib/bbz156
10.1021/acs.jmedchem.8b00686
10.1021/jm0303195
10.2174/15680266113139990114
10.1038/s41592-019-0403-1
10.1109/5254.708428
10.1002/prot.25892
10.1023/A:1007465528199
10.1007/s0089400060498
10.1093/bioinformatics/btaa645
10.1093/bib/bbz087
10.1371/journal.pone.0155183
10.3389/fmolb.2017.00087
10.1145/175247.175256
10.1021/ci990010n
10.1002/jcc.20289
10.3389/fenvs.2015.00080
10.1038/srep42717
10.1002/jcc.20681
10.1038/srep24817
10.1021/acscentsci.7b00572
10.3389/fchem.2019.00851
10.1021/acscentsci.7b00512
10.1021/ct300418h
10.18632/oncotarget.14073
10.1021/acs.chemrev.8b00728
10.1021/acs.jmedchem.5b00886
10.1002/minf.201600118
10.1038/s41598-019-44773-4
10.1111/cbdd.12095
10.1016/j.drudis.2018.01.039
10.1038/nature17414
10.1021/ci3001277
10.1021/acs.jcim.7b00049
10.1021/acsmedchemlett.7b00462
10.1038/sdata.2014.22
10.1016/j.compbiolchem.2017.05.007
10.1002/jcc.21256
10.1002/jcc.21334
10.1016/j.cell.2018.02.010
10.1021/ci030340e
10.1016/j.ces.2016.02.037
10.1038/nature25978
10.1038/srep40053
10.1186/1758-2946-3-33
10.1126/science.abb3405
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020
DBID AAYXX
CITATION
7X8
5PM
DOI 10.1093/bib/bbaa161
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID PMC7454275
10_1093_bib_bbaa161
GrantInformation_xml – fundername: ;
  grantid: 21605066; 21775060
– fundername: ;
  grantid: JR202004
GroupedDBID ---
-E4
.2P
.I3
0R~
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAVAP
AAVLN
AAYXX
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHGBF
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
7X8
5PM
AAUQX
ID FETCH-LOGICAL-c386t-3d23445d4a7c6abae982e7aa348d54d88ba7008d73e324d5d693d4a0e66285593
ISSN 1467-5463
1477-4054
IngestDate Thu Aug 21 14:32:08 EDT 2025
Fri Jul 11 01:58:34 EDT 2025
Thu Apr 24 22:53:35 EDT 2025
Tue Jul 01 03:39:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://creativecommons.org/licenses/by-nc/4.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c386t-3d23445d4a7c6abae982e7aa348d54d88ba7008d73e324d5d693d4a0e66285593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7296-6187
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7454275
PMID 32778891
PQID 2432856308
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7454275
proquest_miscellaneous_2432856308
crossref_citationtrail_10_1093_bib_bbaa161
crossref_primary_10_1093_bib_bbaa161
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210520
PublicationDateYYYYMMDD 2021-05-20
PublicationDate_xml – month: 05
  year: 2021
  text: 20210520
  day: 20
PublicationDecade 2020
PublicationTitle Briefings in bioinformatics
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Dahl (2021052110393062300_ref19) 2014
Yang (2021052110393062300_ref36) 2019; 119
Ho (2021052110393062300_ref8) 1995
Fang (2021052110393062300_ref13) 2017; 69
O'Boyle (2021052110393062300_ref46) 2011; 3
Miller (2021052110393062300_ref60) 2012; 8
Sun (2021052110393062300_ref38) 2016; 6
Cheron (2021052110393062300_ref41) 2016; 59
Hinton (2021052110393062300_ref11) 1992; 267
Hearst (2021052110393062300_ref7) 1998; 13
Goodfellow (2021052110393062300_ref29) 2014
Rumelhart (2021052110393062300_ref10) 1994; 37
Phillips (2021052110393062300_ref57) 2005; 26
Arjovsky (2021052110393062300_ref35) 2017
Shen (2021052110393062300_ref26) 2020; 10
Jin (2021052110393062300_ref63) 2020; 582
Makhzani (2021052110393062300_ref32) 2015
Wang (2021052110393062300_ref59) 2017; 4
Miao (2021052110393062300_ref4) 2019; 9
Leong (2021052110393062300_ref23) 2017; 7
Ramakrishnan (2021052110393062300_ref51) 2014; 1
Murcia-Soler (2021052110393062300_ref17) 2004; 44
Friedman (2021052110393062300_ref9) 1997; 29
Kadurin (2021052110393062300_ref33) 2017; 8
Shen (2021052110393062300_ref53) 2020; 21
Winkler (2021052110393062300_ref21) 2017; 36
Douguet (2021052110393062300_ref49) 2018; 9
Zhang (2021052110393062300_ref64) 2020; 368
Zhang (2021052110393062300_ref27) 2019
Shi (2021052110393062300_ref5) 2019
Ballester (2021052110393062300_ref65) 2007; 28
Morris (2021052110393062300_ref66) 2009; 30
Yuan (2021052110393062300_ref39) 2011; 51
Wang (2021052110393062300_ref44) 2004; 47
Chen (2021052110393062300_ref22) 2018; 23
Xia (2021052110393062300_ref16) 2004; 47
Mayr (2021052110393062300_ref20) 2016; 3
Xu (2021052110393062300_ref25) 2019; 11
Shultz (2021052110393062300_ref56) 2019; 62
Wang (2021052110393062300_ref40) 2000; 6
Li (2021052110393062300_ref14) 2017; 57
Quiroga (2021052110393062300_ref52) 2016; 11
Tenorio-Borroto (2021052110393062300_ref18) 2013; 13
Trott (2021052110393062300_ref42) 2010; 31
Hou (2021052110393062300_ref58) 2011; 51
Xue (2021052110393062300_ref30) 2019; 9
Kong (2021052110393062300_ref45) 2020
Renault (2021052110393062300_ref15) 2013; 81
Gomez-Bombarelli (2021052110393062300_ref31) 2018; 4
Hou (2021052110393062300_ref6) 1999; 39
Kermany (2021052110393062300_ref1) 2018; 172
Wang (2021052110393062300_ref43) 2016; 18
Chen (2021052110393062300_ref12) 2017; 159
Kong (2021052110393062300_ref48) 2020
Jazayeri (2021052110393062300_ref61) 2016; 533
Segler (2021052110393062300_ref24) 2018; 4
Kong (2021052110393062300_ref47) 2019; 59
Moen (2021052110393062300_ref2) 2019; 16
Guimaraes (2021052110393062300_ref34) 2017
De Cao (2021052110393062300_ref37) 2018
Bai (2021052110393062300_ref62) 2019; 7
Kingma (2021052110393062300_ref28) 2013
Lipinski (2021052110393062300_ref54) 2001; 46
Segler (2021052110393062300_ref3) 2018; 555
Irwin (2021052110393062300_ref50) 2012; 52
Daina (2021052110393062300_ref55) 2017; 7
References_xml – volume: 51
  start-page: 69
  year: 2011
  ident: 2021052110393062300_ref58
  article-title: Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations
  publication-title: J Chem Inf Model
  doi: 10.1021/ci100275a
– volume: 11
  start-page: 567
  year: 2019
  ident: 2021052110393062300_ref25
  article-title: Deep learning for molecular generation
  publication-title: Future Med Chem
  doi: 10.4155/fmc-2018-0358
– volume: 18
  start-page: 12964
  year: 2016
  ident: 2021052110393062300_ref43
  article-title: Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C6CP01555G
– volume: 267
  start-page: 144
  year: 1992
  ident: 2021052110393062300_ref11
  article-title: How neural networks learn from experience
  publication-title: Sci Am
  doi: 10.1038/scientificamerican0992-144
– volume: 51
  start-page: 1083
  year: 2011
  ident: 2021052110393062300_ref39
  article-title: LigBuilder 2: a practical de novo drug design approach
  publication-title: J Chem Inf Model
  doi: 10.1021/ci100350u
– volume: 59
  start-page: 3556
  year: 2019
  ident: 2021052110393062300_ref47
  article-title: CoDockPP: a multistage approach for global and site-specific protein-protein docking
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.9b00445
– volume: 47
  start-page: 2977
  year: 2004
  ident: 2021052110393062300_ref44
  article-title: The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures
  publication-title: J Med Chem
  doi: 10.1021/jm030580l
– volume: 582
  start-page: 289
  year: 2020
  ident: 2021052110393062300_ref63
  article-title: Structure of Mpro from COVID-19 virus and discovery of its inhibitors
  publication-title: Nature
  doi: 10.1038/s41586-020-2223-y
– volume: 46
  start-page: 3
  year: 2001
  ident: 2021052110393062300_ref54
  article-title: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/S0169-409X(00)00129-0
– year: 2019
  ident: 2021052110393062300_ref5
  article-title: Deep learning for mining protein data
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz156
– volume: 62
  start-page: 1701
  year: 2019
  ident: 2021052110393062300_ref56
  article-title: Two decades under the influence of the rule of five and the changing properties of approved oral drugs
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.8b00686
– volume-title: arXiv preprint
  year: 2013
  ident: 2021052110393062300_ref28
  article-title: Auto-encoding variational Bayes
– volume: 47
  start-page: 4463
  year: 2004
  ident: 2021052110393062300_ref16
  article-title: Classification of kinase inhibitors using a Bayesian model
  publication-title: J Med Chem
  doi: 10.1021/jm0303195
– volume: 9
  start-page: e1395
  year: 2019
  ident: 2021052110393062300_ref30
  article-title: Advances and challenges in deep generative models for de novo molecule generation
  publication-title: Wiley Interdisciplinary Reviews: Computational Molecular Science
– volume: 13
  start-page: 1636
  year: 2013
  ident: 2021052110393062300_ref18
  article-title: Entropy model for multiplex drug-target interaction endpoints of drug immunotoxicity
  publication-title: Curr Top Med Chem
  doi: 10.2174/15680266113139990114
– volume: 16
  start-page: 1233
  year: 2019
  ident: 2021052110393062300_ref2
  article-title: Deep learning for cellular image analysis
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0403-1
– volume: 13
  start-page: 18
  year: 1998
  ident: 2021052110393062300_ref7
  article-title: Support vector machines
  publication-title: IEEE Intelligent Systems and their applications
  doi: 10.1109/5254.708428
– volume-title: arXiv preprint
  year: 2017
  ident: 2021052110393062300_ref34
  article-title: Objective-reinforced generative adversarial networks (ORGAN) for sequence generation models
– year: 2020
  ident: 2021052110393062300_ref48
  article-title: Template-based modeling and ab-initio docking using CoDock in CAPRI
  publication-title: Proteins
  doi: 10.1002/prot.25892
– volume: 29
  start-page: 131
  year: 1997
  ident: 2021052110393062300_ref9
  article-title: Bayesian network classifiers
  publication-title: Machine learning
  doi: 10.1023/A:1007465528199
– volume: 6
  start-page: 498
  year: 2000
  ident: 2021052110393062300_ref40
  article-title: LigBuilder: a multi-purpose program for structure-based drug design
  publication-title: Molecular modeling annual
  doi: 10.1007/s0089400060498
– volume-title: arXiv preprint
  year: 2020
  ident: 2021052110393062300_ref45
  article-title: COVID-19 docking server: an interactive server for docking small molecules, peptides and antibodies against potential targets of COVID-19
  doi: 10.1093/bioinformatics/btaa645
– year: 2019
  ident: 2021052110393062300_ref27
  article-title: Deep learning for drug-drug interaction extraction from the literature: a review
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz087
– volume: 11
  start-page: e0155183
  year: 2016
  ident: 2021052110393062300_ref52
  article-title: Vinardo: a scoring function based on Autodock Vina improves scoring, docking, and virtual screening
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0155183
– volume: 21
  start-page: 282
  year: 2020
  ident: 2021052110393062300_ref53
  article-title: Comprehensive assessment of nine docking programs on type II kinase inhibitors: prediction accuracy of sampling power, scoring power and screening power
  publication-title: Brief Bioinform
– volume: 4
  start-page: 87
  year: 2017
  ident: 2021052110393062300_ref59
  article-title: Recent developments and applications of the MMPBSA method
  publication-title: Front Mol Biosci
  doi: 10.3389/fmolb.2017.00087
– volume: 37
  start-page: 87
  year: 1994
  ident: 2021052110393062300_ref10
  article-title: The basic ideas in neural networks
  publication-title: Communications of the ACM
  doi: 10.1145/175247.175256
– volume: 39
  start-page: 775
  year: 1999
  ident: 2021052110393062300_ref6
  article-title: Applications of genetic algorithms on the structure− activity relationship analysis of some cinnamamides
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci990010n
– volume: 26
  start-page: 1781
  year: 2005
  ident: 2021052110393062300_ref57
  article-title: Scalable molecular dynamics with NAMD
  publication-title: J Comput Chem
  doi: 10.1002/jcc.20289
– volume: 3
  start-page: 80
  year: 2016
  ident: 2021052110393062300_ref20
  article-title: DeepTox: toxicity prediction using deep learning
  publication-title: Front Environ Sci
  doi: 10.3389/fenvs.2015.00080
– volume: 10
  start-page: e1429
  year: 2020
  ident: 2021052110393062300_ref26
  article-title: From machine learning to deep learning: advances in scoring functions for protein–ligand docking
  publication-title: Wiley Interdisciplinary Reviews: Computational Molecular Science
– volume: 7
  start-page: 42717
  year: 2017
  ident: 2021052110393062300_ref55
  article-title: SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules
  publication-title: Sci Rep
  doi: 10.1038/srep42717
– volume: 28
  start-page: 1711
  year: 2007
  ident: 2021052110393062300_ref65
  article-title: Ultrafast shape recognition to search compound databases for similar molecular shapes
  publication-title: J Comput Chem
  doi: 10.1002/jcc.20681
– volume: 6
  start-page: 24817
  year: 2016
  ident: 2021052110393062300_ref38
  article-title: Constructing and validating high-performance MIEC-SVM models in virtual screening for kinases: a better way for actives discovery
  publication-title: Sci Rep
  doi: 10.1038/srep24817
– volume: 4
  start-page: 268
  year: 2018
  ident: 2021052110393062300_ref31
  article-title: Automatic chemical design using a data-driven continuous representation of molecules
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.7b00572
– volume-title: arXiv preprint
  year: 2017
  ident: 2021052110393062300_ref35
  article-title: Wasserstein Gan
– volume: 7
  start-page: 851
  year: 2019
  ident: 2021052110393062300_ref62
  article-title: Conformation transition of intracellular part of glucagon receptor in complex with agonist glucagon by conventional and accelerated molecular dynamics simulations
  publication-title: Front Chem
  doi: 10.3389/fchem.2019.00851
– volume: 4
  start-page: 120
  year: 2018
  ident: 2021052110393062300_ref24
  article-title: Generating focused molecule libraries for drug discovery with recurrent neural networks
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.7b00512
– volume: 8
  start-page: 3314
  year: 2012
  ident: 2021052110393062300_ref60
  article-title: MMPBSA.Py: an efficient program for end-state free energy calculations
  publication-title: Journal of Chemical Theory and Computation
  doi: 10.1021/ct300418h
– start-page: 2672
  volume-title: Advances in Neural Information Processing Systems
  year: 2014
  ident: 2021052110393062300_ref29
  article-title: Generative adversarial nets
– year: 2018
  ident: 2021052110393062300_ref37
  article-title: An implicit generative model for small molecular graphs
  publication-title: arXiv preprint
– volume: 8
  start-page: 10883
  year: 2017
  ident: 2021052110393062300_ref33
  article-title: The cornucopia of meaningful leads: applying deep adversarial autoencoders for new molecule development in oncology
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.14073
– volume: 119
  start-page: 10520
  year: 2019
  ident: 2021052110393062300_ref36
  article-title: Concepts of artificial intelligence for computer-assisted drug discovery
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.8b00728
– volume: 59
  start-page: 4171
  year: 2016
  ident: 2021052110393062300_ref41
  article-title: OpenGrowth: an automated and rational algorithm for finding new protein ligands
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.5b00886
– volume: 36
  start-page: 1600118
  year: 2017
  ident: 2021052110393062300_ref21
  article-title: Performance of deep and shallow neural networks, the universal approximation theorem, activity cliffs, and QSAR
  publication-title: Molecular Informatics
  doi: 10.1002/minf.201600118
– volume: 9
  start-page: 8802
  year: 2019
  ident: 2021052110393062300_ref4
  article-title: Improved classification of blood-brain-barrier drugs using deep learning
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-44773-4
– volume: 81
  start-page: 442
  year: 2013
  ident: 2021052110393062300_ref15
  article-title: Virtual screening of CB(2) receptor agonists from bayesian network and high-throughput docking: structural insights into agonist-modulated GPCR features
  publication-title: Chem Biol Drug Des
  doi: 10.1111/cbdd.12095
– volume: 23
  start-page: 1241
  year: 2018
  ident: 2021052110393062300_ref22
  article-title: The rise of deep learning in drug discovery
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2018.01.039
– volume: 533
  start-page: 274
  year: 2016
  ident: 2021052110393062300_ref61
  article-title: Extra-helical binding site of a glucagon receptor antagonist
  publication-title: Nature
  doi: 10.1038/nature17414
– volume: 52
  start-page: 1757
  year: 2012
  ident: 2021052110393062300_ref50
  article-title: ZINC: a free tool to discover chemistry for biology
  publication-title: J Chem Inf Model
  doi: 10.1021/ci3001277
– start-page: 278
  volume-title: Proceedings of 3rd International Conference on Document Analysis and Recognition
  year: 1995
  ident: 2021052110393062300_ref8
– volume: 57
  start-page: 1007
  year: 2017
  ident: 2021052110393062300_ref14
  article-title: Structural and sequence similarity makes a significant impact on machine-learning-based scoring functions for protein-ligand interactions
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.7b00049
– volume: 9
  start-page: 204
  year: 2018
  ident: 2021052110393062300_ref49
  article-title: Data sets representative of the structures and experimental properties of FDA-approved drugs
  publication-title: ACS Med Chem Lett
  doi: 10.1021/acsmedchemlett.7b00462
– volume: 1
  start-page: 140022
  year: 2014
  ident: 2021052110393062300_ref51
  article-title: Quantum chemistry structures and properties of 134 kilo molecules
  publication-title: Sci Data
  doi: 10.1038/sdata.2014.22
– volume: 69
  start-page: 110
  year: 2017
  ident: 2021052110393062300_ref13
  article-title: Improving virtual screening predictive accuracy of human kallikrein 5 inhibitors using machine learning models
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2017.05.007
– volume: 30
  start-page: 2785
  year: 2009
  ident: 2021052110393062300_ref66
  article-title: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21256
– volume: 31
  start-page: 455
  year: 2010
  ident: 2021052110393062300_ref42
  article-title: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21334
– volume: 172
  start-page: 1122
  year: 2018
  ident: 2021052110393062300_ref1
  article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.010
– volume: 44
  start-page: 1031
  year: 2004
  ident: 2021052110393062300_ref17
  article-title: Artificial neural networks and linear discriminant analysis: a valuable combination in the selection of new antibacterial compounds
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci030340e
– volume-title: arXiv preprint
  year: 2014
  ident: 2021052110393062300_ref19
  article-title: Multi-task neural networks for QSAR predictions
– volume: 159
  start-page: 31
  year: 2017
  ident: 2021052110393062300_ref12
  article-title: Developing an in silico pipeline for faster drug candidate discovery: virtual high throughput screening with the signature molecular descriptor using support vector machine models
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2016.02.037
– volume: 555
  start-page: 604
  year: 2018
  ident: 2021052110393062300_ref3
  article-title: Planning chemical syntheses with deep neural networks and symbolic AI
  publication-title: Nature
  doi: 10.1038/nature25978
– volume-title: arXiv preprint
  year: 2015
  ident: 2021052110393062300_ref32
  article-title: Adversarial autoencoders
– volume: 7
  start-page: 40053
  year: 2017
  ident: 2021052110393062300_ref23
  article-title: Prediction of N-methyl-D-aspartate receptor GluN1-ligand binding affinity by a novel SVM-pose/SVM-score combinatorial ensemble docking scheme
  publication-title: Sci Rep
  doi: 10.1038/srep40053
– volume: 3
  start-page: 33
  year: 2011
  ident: 2021052110393062300_ref46
  article-title: Open babel: an open chemical toolbox
  publication-title: J Chem
  doi: 10.1186/1758-2946-3-33
– volume: 368
  start-page: 409
  year: 2020
  ident: 2021052110393062300_ref64
  article-title: Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors
  publication-title: Science
  doi: 10.1126/science.abb3405
SSID ssj0020781
Score 2.6514754
Snippet Deep learning is an important branch of artificial intelligence that has been successfully applied into medicine and two-dimensional ligand design. The...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
SubjectTerms Problem Solving Protocol
Title MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm
URI https://www.proquest.com/docview/2432856308
https://pubmed.ncbi.nlm.nih.gov/PMC7454275
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbtlkIvpU-avlBhTw3e3UjyQ71t90FasrsUEsjNSLaUGFK7JDY0_fUdPeLYkMO2FxEmYhCaL5MZaeYTQsehjrKR1DyIM50FTI_gJyW1CGQuhRahENyeQ97cRuMZ-z4P5_sWAttdUsuT7M_BvpL_sSrIwK6mS_YfLNsqBQF8BvvCCBaG8V42vqlW598uxMp1LG_Ao0IoWdmOxCG9HObrZjHMbYmGLWw2lAymrNEWf29M4Gl0egqJosvNaZvdTFztuARWi2pd1MufvRtgyLG1ffMTVMqi8gysdad6_qt76vpHoZX_f7RHBO7EddlU2z0y540DTrkAYTt3UljxuBHl72In90cUZGRu18lZx6uyOIZE1bFFn6gDMu-KCelAjh708I79ShbSjFKIkeNy7zNp396l17PJJJ1ezacP0SMCKYTxgdO7eZuMG5Ij23nml-F7N0H9KSg_9ar70co-BekX0HYikukz9NSnEvjc4eI5eqDKF-ixe1x0-xKVO3R8wQIbbGCDDQxWwvQSG2xghw1caeyxgT02sNziPTZwFxsYsIFbbOAWG6_Q7PpqejEO_OsaQUaTqA5oTihjYc5EnEVCCsUTomIhKEvykOVJIkUMAWIeUwVBdx7mEacw-UxFpus25PQ1OiqrUr1BGHJmesalUjrijOdKaqUZJ4JA-k0U5wP0ebeLaeap580LKKvUlUDQFLY89Vs-QMft5F-OceXwtE87c6TgEc01lyhV1WxSwigsEFaUDFDcs1Orz3Cq978pi6XlVo9ZyEgcvr2H9nfoyR7s79FRvW7UB4hQa_nRQu0vhnCa_w
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MolAICal%3A+a+soft+tool+for+3D+drug+design+of+protein+targets+by+artificial+intelligence+and+classical+algorithm&rft.jtitle=Briefings+in+bioinformatics&rft.au=Bai%2C+Qifeng&rft.au=Tan%2C+Shuoyan&rft.au=Xu%2C+Tingyang&rft.au=Liu%2C+Huanxiang&rft.date=2021-05-20&rft.issn=1477-4054&rft.eissn=1477-4054&rft.volume=22&rft.issue=3&rft_id=info:doi/10.1093%2Fbib%2Fbbaa161&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon