Stochastic surface walking method for crystal structure and phase transition pathway prediction
The determination of crystal structures and the solid-to-solid phase transition mechanisms are two important and related subjects in material science. Here we develop an unbiased general-purpose potential energy surface (PES) searching method, namely, SSW-crystal method, for prediction of both the c...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 16; no. 33; pp. 17845 - 17856 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
07.09.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The determination of crystal structures and the solid-to-solid phase transition mechanisms are two important and related subjects in material science. Here we develop an unbiased general-purpose potential energy surface (PES) searching method, namely, SSW-crystal method, for prediction of both the crystal structure and the crystal phase transition pathway. The SSW-crystal method features with stochastic surface walking (SSW)
via
repeated small structural perturbation by taking into account the second derivative information on both the lattice and the atom degrees of freedom. The SSW-crystal method is capable of overcoming the high barrier of phase transition and identifying the desirable phase transition reaction coordinates. By applying the SSW-crystal method to a set of examples, including SiO
2
crystal up to 162 atoms per cell, Lennard-Jones model crystals up to 256 atoms, ternary SrTiO
3
crystal of 50 atoms and the rutile-to-anatase TiO
2
phase transition, we show that the SSW-crystal method can efficiently locate the global minimum (GM) from random initial structures without
a priori
knowledge of the system, and also allows for exhaustive sampling of the phase transition pathways, from which the lowest energy pathway can be obtained. |
---|---|
AbstractList | The determination of crystal structures and the solid-to-solid phase transition mechanisms are two important and related subjects in material science. Here we develop an unbiased general-purpose potential energy surface (PES) searching method, namely, SSW-crystal method, for prediction of both the crystal structure and the crystal phase transition pathway. The SSW-crystal method features with stochastic surface walking (SSW) via repeated small structural perturbation by taking into account the second derivative information on both the lattice and the atom degrees of freedom. The SSW-crystal method is capable of overcoming the high barrier of phase transition and identifying the desirable phase transition reaction coordinates. By applying the SSW-crystal method to a set of examples, including SiO2 crystal up to 162 atoms per cell, Lennard-Jones model crystals up to 256 atoms, ternary SrTiO3 crystal of 50 atoms and the rutile-to-anatase TiO2 phase transition, we show that the SSW-crystal method can efficiently locate the global minimum (GM) from random initial structures without a priori knowledge of the system, and also allows for exhaustive sampling of the phase transition pathways, from which the lowest energy pathway can be obtained. The determination of crystal structures and the solid-to-solid phase transition mechanisms are two important and related subjects in material science. Here we develop an unbiased general-purpose potential energy surface (PES) searching method, namely, SSW-crystal method, for prediction of both the crystal structure and the crystal phase transition pathway. The SSW-crystal method features with stochastic surface walking (SSW) viarepeated small structural perturbation by taking into account the second derivative information on both the lattice and the atom degrees of freedom. The SSW-crystal method is capable of overcoming the high barrier of phase transition and identifying the desirable phase transition reaction coordinates. By applying the SSW-crystal method to a set of examples, including SiO sub(2) crystal up to 162 atoms per cell, Lennard-Jones model crystals up to 256 atoms, ternary SrTiO sub(3) crystal of 50 atoms and the rutile-to-anatase TiO sub(2) phase transition, we show that the SSW-crystal method can efficiently locate the global minimum (GM) from random initial structures without a prioriknowledge of the system, and also allows for exhaustive sampling of the phase transition pathways, from which the lowest energy pathway can be obtained. The determination of crystal structures and the solid-to-solid phase transition mechanisms are two important and related subjects in material science. Here we develop an unbiased general-purpose potential energy surface (PES) searching method, namely, SSW-crystal method, for prediction of both the crystal structure and the crystal phase transition pathway. The SSW-crystal method features with stochastic surface walking (SSW) via repeated small structural perturbation by taking into account the second derivative information on both the lattice and the atom degrees of freedom. The SSW-crystal method is capable of overcoming the high barrier of phase transition and identifying the desirable phase transition reaction coordinates. By applying the SSW-crystal method to a set of examples, including SiO2 crystal up to 162 atoms per cell, Lennard-Jones model crystals up to 256 atoms, ternary SrTiO3 crystal of 50 atoms and the rutile-to-anatase TiO2 phase transition, we show that the SSW-crystal method can efficiently locate the global minimum (GM) from random initial structures without a priori knowledge of the system, and also allows for exhaustive sampling of the phase transition pathways, from which the lowest energy pathway can be obtained.The determination of crystal structures and the solid-to-solid phase transition mechanisms are two important and related subjects in material science. Here we develop an unbiased general-purpose potential energy surface (PES) searching method, namely, SSW-crystal method, for prediction of both the crystal structure and the crystal phase transition pathway. The SSW-crystal method features with stochastic surface walking (SSW) via repeated small structural perturbation by taking into account the second derivative information on both the lattice and the atom degrees of freedom. The SSW-crystal method is capable of overcoming the high barrier of phase transition and identifying the desirable phase transition reaction coordinates. By applying the SSW-crystal method to a set of examples, including SiO2 crystal up to 162 atoms per cell, Lennard-Jones model crystals up to 256 atoms, ternary SrTiO3 crystal of 50 atoms and the rutile-to-anatase TiO2 phase transition, we show that the SSW-crystal method can efficiently locate the global minimum (GM) from random initial structures without a priori knowledge of the system, and also allows for exhaustive sampling of the phase transition pathways, from which the lowest energy pathway can be obtained. The determination of crystal structures and the solid-to-solid phase transition mechanisms are two important and related subjects in material science. Here we develop an unbiased general-purpose potential energy surface (PES) searching method, namely, SSW-crystal method, for prediction of both the crystal structure and the crystal phase transition pathway. The SSW-crystal method features with stochastic surface walking (SSW) via repeated small structural perturbation by taking into account the second derivative information on both the lattice and the atom degrees of freedom. The SSW-crystal method is capable of overcoming the high barrier of phase transition and identifying the desirable phase transition reaction coordinates. By applying the SSW-crystal method to a set of examples, including SiO 2 crystal up to 162 atoms per cell, Lennard-Jones model crystals up to 256 atoms, ternary SrTiO 3 crystal of 50 atoms and the rutile-to-anatase TiO 2 phase transition, we show that the SSW-crystal method can efficiently locate the global minimum (GM) from random initial structures without a priori knowledge of the system, and also allows for exhaustive sampling of the phase transition pathways, from which the lowest energy pathway can be obtained. |
Author | Shang, Cheng Liu, Zhi-Pan Zhang, Xiao-Jie |
Author_xml | – sequence: 1 givenname: Cheng surname: Shang fullname: Shang, Cheng organization: Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science (Ministry of Education), Department of Chemistry, Fudan University, Shanghai 200433, China – sequence: 2 givenname: Xiao-Jie surname: Zhang fullname: Zhang, Xiao-Jie organization: Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science (Ministry of Education), Department of Chemistry, Fudan University, Shanghai 200433, China – sequence: 3 givenname: Zhi-Pan surname: Liu fullname: Liu, Zhi-Pan organization: Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science (Ministry of Education), Department of Chemistry, Fudan University, Shanghai 200433, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25045763$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkd1LwzAUxYNM3Ie--AdIHkWo3jRN2zzKmB8wUFCfw12aumjX1iRl7L-3Y1NBfPDpXi6_c-CeMyaDuqkNIacMLhlweTVNpo_AklzMDsiIJSmPJOTJ4HvP0iEZe_8GAEwwfkSGsYBEZCkfEfUUGr1EH6ymvnMlakPXWL3b-pWuTFg2BS0bR7Xb-IAV9cF1OnTOUKwL2vZCQ4PD2ttgm5q2GJZr3NDWmcLq7emYHJZYeXOynxPycjN7nt5F84fb--n1PNI8T0PEZZmXBZec52yBQmLMMcYslVxgfyiNSbg0UgDkUIAGMGWMKYsx1jGg1nxCzne-rWs-OuODWlmvTVVhbZrOKybSDETGZPoPVDCIE57kPXq2R7vFyhSqdXaFbqO-8usB2AHaNd47UyptA24f71OxlWKgthWpn4p6ycUvyZfrH_AnZJWRSw |
CitedBy_id | crossref_primary_10_3390_ma15031267 crossref_primary_10_1021_acs_jctc_5c00051 crossref_primary_10_1002_ange_202401311 crossref_primary_10_1038_ncomms6355 crossref_primary_10_1021_jacs_6b01768 crossref_primary_10_1021_jacs_1c04624 crossref_primary_10_1021_acscatal_0c02158 crossref_primary_10_1016_j_eng_2023_04_013 crossref_primary_10_1039_D0SC03918G crossref_primary_10_1002_cssc_201802525 crossref_primary_10_1021_acs_jpclett_7b00913 crossref_primary_10_1039_C5CP07299A crossref_primary_10_1021_acs_jpcc_3c01589 crossref_primary_10_1039_D2TA09633A crossref_primary_10_1103_PhysRevLett_128_226102 crossref_primary_10_1016_j_jcat_2024_115587 crossref_primary_10_1002_wcms_1415 crossref_primary_10_1021_jacs_4c10052 crossref_primary_10_1021_acs_jpcc_1c09178 crossref_primary_10_1021_acscatal_0c03472 crossref_primary_10_1039_C4CP04456H crossref_primary_10_1039_C6CP06895B crossref_primary_10_1039_C8TA10606A crossref_primary_10_1021_acs_jpcc_0c04331 crossref_primary_10_1021_acs_jpcc_2c07626 crossref_primary_10_1021_acsphyschemau_2c00017 crossref_primary_10_1039_C5SC00621J crossref_primary_10_1021_jacs_7b06528 crossref_primary_10_1021_acscatal_4c00959 crossref_primary_10_1021_jacs_9b11535 crossref_primary_10_3390_molecules29174105 crossref_primary_10_1021_acscatal_3c06293 crossref_primary_10_1021_acs_jpclett_2c00549 crossref_primary_10_1021_acs_jpcc_8b08896 crossref_primary_10_1021_jacs_5b04528 crossref_primary_10_1021_acsmaterialslett_4c00852 crossref_primary_10_1016_j_chempr_2023_04_019 crossref_primary_10_1002_cjoc_202100299 crossref_primary_10_1039_D1CP03415D crossref_primary_10_1002_wene_389 crossref_primary_10_1016_j_comptc_2017_03_040 crossref_primary_10_1016_j_mcat_2022_112500 crossref_primary_10_1063_5_0049453 crossref_primary_10_1039_D4SC02327G crossref_primary_10_1021_acs_jpcc_6b08942 crossref_primary_10_1039_C6CP03673B crossref_primary_10_1002_aisy_202300716 crossref_primary_10_1039_D0RA03359F crossref_primary_10_1021_acs_jpca_8b10007 crossref_primary_10_1021_jacsau_3c00245 crossref_primary_10_1016_j_actamat_2022_117844 crossref_primary_10_1002_aenm_202202892 crossref_primary_10_1007_s12274_017_1553_z crossref_primary_10_1016_j_isci_2020_102013 crossref_primary_10_1021_jacs_7b11393 crossref_primary_10_1038_s41929_021_00703_0 crossref_primary_10_1103_PhysRevMaterials_8_103804 crossref_primary_10_1088_0256_307X_37_9_096802 crossref_primary_10_1021_acs_jctc_5b00641 crossref_primary_10_1021_acsaem_7b00021 crossref_primary_10_1007_s11244_015_0410_0 crossref_primary_10_1016_j_comptc_2016_12_019 crossref_primary_10_1021_jacs_5c02046 crossref_primary_10_6023_A22110446 crossref_primary_10_1002_adfm_202308246 crossref_primary_10_1021_acs_accounts_0c00472 crossref_primary_10_1021_acs_langmuir_2c00176 crossref_primary_10_1103_PhysRevB_95_214111 crossref_primary_10_1088_1402_4896_acb4c5 crossref_primary_10_1002_jcc_25649 crossref_primary_10_1021_acs_jpcc_2c04467 crossref_primary_10_1021_jacs_5b07734 crossref_primary_10_1039_C8FD00055G crossref_primary_10_1021_acs_jpcc_3c08073 crossref_primary_10_1038_s41524_022_00959_5 crossref_primary_10_1021_acscatal_2c05358 crossref_primary_10_1039_D1CP05803G crossref_primary_10_1021_acscatal_9b01645 crossref_primary_10_1039_C7RA11910K crossref_primary_10_1021_jacs_1c02471 crossref_primary_10_1016_S1872_2067_21_64036_6 crossref_primary_10_1021_jacs_6b11193 crossref_primary_10_1039_D4CP01858C crossref_primary_10_1016_j_chempr_2022_07_026 crossref_primary_10_1021_acs_jpcc_4c08577 crossref_primary_10_1039_C7CP07060H crossref_primary_10_1002_anie_202401311 crossref_primary_10_1002_wcms_1730 crossref_primary_10_1039_D0SC06502A crossref_primary_10_1088_1674_1056_ac834b crossref_primary_10_1021_acs_jpcc_2c03301 crossref_primary_10_1039_C7SC01459G crossref_primary_10_1021_acscatal_2c04379 crossref_primary_10_1039_D2CP05345D crossref_primary_10_1021_acs_jpclett_1c03170 crossref_primary_10_1021_acs_jpclett_9b01715 crossref_primary_10_1016_j_cplett_2022_139813 crossref_primary_10_1021_jacs_4c01285 crossref_primary_10_1021_acs_jpcc_9b10511 crossref_primary_10_1039_D1CP04386B crossref_primary_10_1021_acs_jpcc_3c00404 crossref_primary_10_1016_j_electacta_2019_04_101 crossref_primary_10_1088_0256_307X_39_8_087101 crossref_primary_10_1039_D1CP01349A crossref_primary_10_1021_acs_jpcc_3c04177 crossref_primary_10_1021_jacsau_3c00038 crossref_primary_10_1021_acs_jpcc_0c04921 crossref_primary_10_1021_acs_jpcc_1c04858 crossref_primary_10_1039_D4SC08616C crossref_primary_10_1039_C8SC03427C crossref_primary_10_1021_prechem_4c00060 crossref_primary_10_1063_1674_0068_cjcp2108145 crossref_primary_10_1021_jacs_4c14404 crossref_primary_10_1021_acs_jpcc_2c02424 crossref_primary_10_1021_acs_jctc_4c01081 crossref_primary_10_1039_C8SC02015A crossref_primary_10_1002_wcms_1236 crossref_primary_10_1039_D3SC02054A crossref_primary_10_1021_jz5016247 crossref_primary_10_1039_D3EY00234A crossref_primary_10_1016_j_matt_2020_05_013 crossref_primary_10_1063_1674_0068_cjcp2404057 |
Cites_doi | 10.1002/jcc.23307 10.2138/am-1998-9-1016 10.1063/1.3609924 10.1002/anie.200704788 10.1016/j.cpc.2012.05.008 10.1016/j.cplett.2006.05.062 10.1103/PhysRevLett.87.275501 10.1103/PhysRevLett.78.3908 10.1016/S0012-821X(01)00480-0 10.1021/jp970984n 10.1107/S0108767398010186 10.1524/zkri.216.7.361.20362 10.1021/jp0356620 10.1021/ct400238j 10.1021/cr00035a013 10.1080/00268979200100061 10.1007/BF00124016 10.1021/ja206153v 10.1039/a901227c 10.1126/science.220.4598.671 10.1038/346343a0 10.1103/PhysRevB.82.094116 10.1524/zkri.216.6.307.20339 10.1103/PhysRevLett.80.1357 10.1002/anie.199612861 10.1103/PhysRevB.64.235111 10.1103/PhysRevB.59.3969 10.1038/nmat2321 10.1073/pnas.202427399 10.1126/science.281.5379.969 10.1063/1.3512900 10.1080/00268970210162691 10.1063/1.1448491 10.1021/ja801648h 10.1209/0295-5075/22/7/001 10.1002/9783527632831 10.1002/bbpc.19940981207 10.1063/1.480097 10.1021/ar00046a004 10.1063/1.1931587 10.1038/335201a0 10.1103/PhysRevLett.107.015701 10.1021/ar1001318 10.1002/bbpc.199500047 10.1103/PhysRevB.66.205101 10.1039/jm9930300531 10.1103/PhysRevLett.64.1955 10.1103/PhysRevB.78.064110 10.1021/ct4008475 10.1063/1.3692803 10.1016/0022-4596(91)90255-G 10.1021/jp312325h 10.1021/ct300250h 10.1021/ct9005147 10.1038/nmat1696 10.1063/1.3684549 10.1021/ja105340b 10.1039/c2ce06642d 10.1016/j.cpc.2012.12.009 10.1021/jp3022375 10.1021/ct301010b 10.1016/j.cpc.2010.07.048 10.1002/anie.200462760 10.1107/S0108767301016658 10.1063/1.1724816 10.1088/0951-7715/24/6/008 10.1103/PhysRevB.64.184201 10.1016/j.calphad.2007.10.001 10.1063/1.2210932 10.1006/jcat.2001.3316 10.1080/08927029108022432 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7U5 8FD L7M |
DOI | 10.1039/C4CP01485E |
DatabaseName | CrossRef PubMed MEDLINE - Academic Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | PubMed Technology Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 17856 |
ExternalDocumentID | 25045763 10_1039_C4CP01485E |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 0-7 0R~ 0UZ 123 1TJ 29O 2WC 4.4 53G 6TJ 705 70~ 71~ 7~J 87K 9M8 AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACHDF ACIWK ACLDK ACNCT ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BBWZM BLAPV BSQNT C6K CAG CITATION COF CS3 D0L DU5 EBS ECGLT EE0 EEHRC EF- EJD F5P FEDTE GGIMP GNO H13 HVGLF HZ~ H~9 H~N IDY IDZ J3G J3H J3I L-8 M4U MVM N9A NDZJH NHB O9- P2P R56 R7B R7C RAOCF RCLXC RCNCU RIG RNS ROL RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UHB VH6 WH7 XJT XOL YNT ZCG NPM 7X8 7U5 8FD L7M |
ID | FETCH-LOGICAL-c386t-39f8fd393381ba59a23a2a76935a1bafee439e950080d0c00ef2a612a2c20acc3 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 05:04:36 EDT 2025 Fri Jul 11 04:41:18 EDT 2025 Thu Apr 03 07:10:52 EDT 2025 Thu Apr 24 23:11:58 EDT 2025 Tue Jul 01 02:45:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c386t-39f8fd393381ba59a23a2a76935a1bafee439e950080d0c00ef2a612a2c20acc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 25045763 |
PQID | 1551024348 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1567057196 proquest_miscellaneous_1551024348 pubmed_primary_25045763 crossref_citationtrail_10_1039_C4CP01485E crossref_primary_10_1039_C4CP01485E |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-07 |
PublicationDateYYYYMMDD | 2014-09-07 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2014 |
References | van Beest (C4CP01485E-(cit48)/*[position()=1]) 1990; 64 Penn (C4CP01485E-(cit67)/*[position()=1]) 1998; 281 Kirkpatrick (C4CP01485E-(cit7)/*[position()=1]) 1983; 220 Lyakhov (C4CP01485E-(cit54)/*[position()=1]) 2013; 184 Zhu (C4CP01485E-(cit49)/*[position()=1]) 2012; 14 Woodley (C4CP01485E-(cit11)/*[position()=1]) 1999; 1 Carr (C4CP01485E-(cit23)/*[position()=1]) 2005; 122 Shang (C4CP01485E-(cit41)/*[position()=1]) 2012; 8 Ohno (C4CP01485E-(cit62)/*[position()=1]) 2001; 203 Laio (C4CP01485E-(cit32)/*[position()=1]) 2002; 99 Oganov (C4CP01485E-(cit19)/*[position()=1]) 2008; 20 Samanta (C4CP01485E-(cit46)/*[position()=1]) 2012; 136 Zhang (C4CP01485E-(cit51)/*[position()=1]) 2013; 9 Oganov (C4CP01485E-(cit24)/*[position()=1]) 2011; 44 Li (C4CP01485E-(cit65)/*[position()=1]) 2011; 133 Zhang (C4CP01485E-(cit40)/*[position()=1]) 2013; 9 Ricci (C4CP01485E-(cit68)/*[position()=1]) 2013; 117 Dubrovinskaia (C4CP01485E-(cit71)/*[position()=1]) 2001; 87 Lonie (C4CP01485E-(cit53)/*[position()=1]) 2011; 182 Wang (C4CP01485E-(cit21)/*[position()=1]) 2012; 183 Penn (C4CP01485E-(cit66)/*[position()=1]) 1998; 83 Doye (C4CP01485E-(cit76)/*[position()=1]) 1998; 80 Rosso (C4CP01485E-(cit27)/*[position()=1]) 2002; 116 Siepmann (C4CP01485E-(cit29)/*[position()=1]) 1992; 75 Goedecker (C4CP01485E-(cit16)/*[position()=1]) 2004; 120 Soler (C4CP01485E-(cit72)/*[position()=1]) 2002; 14 Wang (C4CP01485E-(cit20)/*[position()=1]) 2010; 82 Anglada (C4CP01485E-(cit74)/*[position()=1]) 2002; 66 Woodley (C4CP01485E-(cit12)/*[position()=1]) 2008; 7 E (C4CP01485E-(cit45)/*[position()=1]) 2011; 24 Grosse-Kunstleve (C4CP01485E-(cit56)/*[position()=1]) 1999; 55 Linsebigler (C4CP01485E-(cit60)/*[position()=1]) 1995; 95 El Goresy (C4CP01485E-(cit75)/*[position()=1]) 2001; 192 Li (C4CP01485E-(cit64)/*[position()=1]) 2010; 132 Vu (C4CP01485E-(cit69)/*[position()=1]) 2012; 24 Putz (C4CP01485E-(cit52)/*[position()=1]) 1995; 99 Schön (C4CP01485E-(cit8)/*[position()=1]) 1996; 35 Huber (C4CP01485E-(cit34)/*[position()=1]) 1994; 8 Benedek (C4CP01485E-(cit55)/*[position()=1]) 2008; 78 Shang (C4CP01485E-(cit39)/*[position()=1]) 2013; 9 Pannetier (C4CP01485E-(cit5)/*[position()=1]) 1990; 346 Schon (C4CP01485E-(cit9)/*[position()=1]) 2001; 216 Schön (C4CP01485E-(cit36)/*[position()=1]) 1994; 98 Schon (C4CP01485E-(cit10)/*[position()=1]) 2001; 216 Wales (C4CP01485E-(cit14)/*[position()=1]) 1997; 101 Zhang (C4CP01485E-(cit63)/*[position()=1]) 2008; 47 Machado-Charry (C4CP01485E-(cit25)/*[position()=1]) 2011; 135 Gavezzotti (C4CP01485E-(cit3)/*[position()=1]) 1994; 27 Wales (C4CP01485E-(cit22)/*[position()=1]) 2002; 100 Wales (C4CP01485E-(cit50)/*[position()=1]) 2003 Amsler (C4CP01485E-(cit17)/*[position()=1]) 2010; 133 Voter (C4CP01485E-(cit30)/*[position()=1]) 1997; 78 Shang (C4CP01485E-(cit42)/*[position()=1]) 2010; 6 Yu (C4CP01485E-(cit35)/*[position()=1]) 2011; 107 Sibani (C4CP01485E-(cit38)/*[position()=1]) 1993; 22 Martonak (C4CP01485E-(cit13)/*[position()=1]) 2006; 5 Oganov (C4CP01485E-(cit18)/*[position()=1]) 2006; 124 Woods (C4CP01485E-(cit31)/*[position()=1]) 2003; 107 Henkelman (C4CP01485E-(cit43)/*[position()=1]) 1999; 111 Bickley (C4CP01485E-(cit61)/*[position()=1]) 1991; 92 Grosse-Kunstleve (C4CP01485E-(cit57)/*[position()=1]) 2002; 58 Maddox (C4CP01485E-(cit1)/*[position()=1]) 1988; 335 Spencer (C4CP01485E-(cit4)/*[position()=1]) 2008; 32 Grebner (C4CP01485E-(cit59)/*[position()=1]) 2013; 34 Freeman (C4CP01485E-(cit6)/*[position()=1]) 1993; 3 Maragliano (C4CP01485E-(cit28)/*[position()=1]) 2006; 426 Schön (C4CP01485E-(cit37)/*[position()=1]) 1996; 8 Zagorac (C4CP01485E-(cit58)/*[position()=1]) 2012; 116 Raiteri (C4CP01485E-(cit33)/*[position()=1]) 2005; 44 Matsui (C4CP01485E-(cit70)/*[position()=1]) 1991; 6 Munro (C4CP01485E-(cit44)/*[position()=1]) 1999; 59 Wang (C4CP01485E-(cit47)/*[position()=1]) 2008; 130 Oganov (C4CP01485E-(cit2)/*[position()=1]) 2010 Junquera (C4CP01485E-(cit73)/*[position()=1]) 2001; 64 Middleton (C4CP01485E-(cit15)/*[position()=1]) 2001; 64 Sheppard (C4CP01485E-(cit26)/*[position()=1]) 2012; 136 |
References_xml | – volume: 8 start-page: 143 year: 1996 ident: C4CP01485E-(cit37)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 34 start-page: 1810 year: 2013 ident: C4CP01485E-(cit59)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.23307 – volume: 83 start-page: 1077 year: 1998 ident: C4CP01485E-(cit66)/*[position()=1] publication-title: Am. Mineral. doi: 10.2138/am-1998-9-1016 – volume: 135 start-page: 034102 year: 2011 ident: C4CP01485E-(cit25)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3609924 – volume: 47 start-page: 1766 year: 2008 ident: C4CP01485E-(cit63)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200704788 – volume: 183 start-page: 2063 year: 2012 ident: C4CP01485E-(cit21)/*[position()=1] publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.05.008 – volume: 426 start-page: 168 year: 2006 ident: C4CP01485E-(cit28)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2006.05.062 – volume-title: Energy Landscapes: Applications to Clusters, Biomolecules and Glasses year: 2003 ident: C4CP01485E-(cit50)/*[position()=1] – volume: 87 start-page: 275501 year: 2001 ident: C4CP01485E-(cit71)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.275501 – volume: 78 start-page: 3908 year: 1997 ident: C4CP01485E-(cit30)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.3908 – volume: 192 start-page: 485 year: 2001 ident: C4CP01485E-(cit75)/*[position()=1] publication-title: Earth Planet. Sci. Lett. doi: 10.1016/S0012-821X(01)00480-0 – volume: 101 start-page: 5111 year: 1997 ident: C4CP01485E-(cit14)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp970984n – volume: 55 start-page: 383 year: 1999 ident: C4CP01485E-(cit56)/*[position()=1] publication-title: Acta Crystallogr., Sect. A: Found. Crystallogr. doi: 10.1107/S0108767398010186 – volume: 216 start-page: 361 year: 2001 ident: C4CP01485E-(cit10)/*[position()=1] publication-title: Z. Kristallogr. doi: 10.1524/zkri.216.7.361.20362 – volume: 107 start-page: 13703 year: 2003 ident: C4CP01485E-(cit31)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp0356620 – volume: 9 start-page: 3252 year: 2013 ident: C4CP01485E-(cit40)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400238j – volume: 95 start-page: 735 year: 1995 ident: C4CP01485E-(cit60)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr00035a013 – volume: 75 start-page: 59 year: 1992 ident: C4CP01485E-(cit29)/*[position()=1] publication-title: Mol. Phys. doi: 10.1080/00268979200100061 – volume: 8 start-page: 695 year: 1994 ident: C4CP01485E-(cit34)/*[position()=1] publication-title: J. Comput.-Aided Mol. Des. doi: 10.1007/BF00124016 – volume: 133 start-page: 15743 year: 2011 ident: C4CP01485E-(cit65)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206153v – volume: 1 start-page: 2535 year: 1999 ident: C4CP01485E-(cit11)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/a901227c – volume: 220 start-page: 671 year: 1983 ident: C4CP01485E-(cit7)/*[position()=1] publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 346 start-page: 343 year: 1990 ident: C4CP01485E-(cit5)/*[position()=1] publication-title: Nature doi: 10.1038/346343a0 – volume: 82 start-page: 094116 year: 2010 ident: C4CP01485E-(cit20)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.82.094116 – volume: 216 start-page: 307 year: 2001 ident: C4CP01485E-(cit9)/*[position()=1] publication-title: Z. Kristallogr. doi: 10.1524/zkri.216.6.307.20339 – volume: 80 start-page: 1357 year: 1998 ident: C4CP01485E-(cit76)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.1357 – volume: 35 start-page: 1286 year: 1996 ident: C4CP01485E-(cit8)/*[position()=1] publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199612861 – volume: 24 start-page: 405501 year: 2012 ident: C4CP01485E-(cit69)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 64 start-page: 235111 year: 2001 ident: C4CP01485E-(cit73)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.64.235111 – volume: 59 start-page: 3969 year: 1999 ident: C4CP01485E-(cit44)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.59.3969 – volume: 14 start-page: 2745 year: 2002 ident: C4CP01485E-(cit72)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 7 start-page: 937 year: 2008 ident: C4CP01485E-(cit12)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2321 – volume: 99 start-page: 12562 year: 2002 ident: C4CP01485E-(cit32)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.202427399 – volume: 281 start-page: 969 year: 1998 ident: C4CP01485E-(cit67)/*[position()=1] publication-title: Science doi: 10.1126/science.281.5379.969 – volume: 133 start-page: 224104 year: 2010 ident: C4CP01485E-(cit17)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3512900 – volume: 100 start-page: 3285 year: 2002 ident: C4CP01485E-(cit22)/*[position()=1] publication-title: Mol. Phys. doi: 10.1080/00268970210162691 – volume: 116 start-page: 4389 year: 2002 ident: C4CP01485E-(cit27)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1448491 – volume: 130 start-page: 10996 year: 2008 ident: C4CP01485E-(cit47)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja801648h – volume: 22 start-page: 479 year: 1993 ident: C4CP01485E-(cit38)/*[position()=1] publication-title: Europhys. Lett. doi: 10.1209/0295-5075/22/7/001 – volume-title: Modern Methods of Crystal Structure Prediction year: 2010 ident: C4CP01485E-(cit2)/*[position()=1] doi: 10.1002/9783527632831 – volume: 98 start-page: 1541 year: 1994 ident: C4CP01485E-(cit36)/*[position()=1] publication-title: Ber. Bunsen-Ges. doi: 10.1002/bbpc.19940981207 – volume: 111 start-page: 7010 year: 1999 ident: C4CP01485E-(cit43)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.480097 – volume: 27 start-page: 309 year: 1994 ident: C4CP01485E-(cit3)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar00046a004 – volume: 122 start-page: 234903 year: 2005 ident: C4CP01485E-(cit23)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1931587 – volume: 20 start-page: 064210 year: 2008 ident: C4CP01485E-(cit19)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 335 start-page: 201 year: 1988 ident: C4CP01485E-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/335201a0 – volume: 107 start-page: 015701 year: 2011 ident: C4CP01485E-(cit35)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.015701 – volume: 44 start-page: 227 year: 2011 ident: C4CP01485E-(cit24)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar1001318 – volume: 99 start-page: 1148 year: 1995 ident: C4CP01485E-(cit52)/*[position()=1] publication-title: Ber. Bunsen-Ges. doi: 10.1002/bbpc.199500047 – volume: 66 start-page: 205101 year: 2002 ident: C4CP01485E-(cit74)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.66.205101 – volume: 3 start-page: 531 year: 1993 ident: C4CP01485E-(cit6)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/jm9930300531 – volume: 64 start-page: 1955 year: 1990 ident: C4CP01485E-(cit48)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.64.1955 – volume: 78 start-page: 064110 year: 2008 ident: C4CP01485E-(cit55)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.78.064110 – volume: 9 start-page: 5745 year: 2013 ident: C4CP01485E-(cit51)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct4008475 – volume: 136 start-page: 124104 year: 2012 ident: C4CP01485E-(cit46)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3692803 – volume: 92 start-page: 178 year: 1991 ident: C4CP01485E-(cit61)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(91)90255-G – volume: 117 start-page: 7850 year: 2013 ident: C4CP01485E-(cit68)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp312325h – volume: 8 start-page: 2215 year: 2012 ident: C4CP01485E-(cit41)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct300250h – volume: 6 start-page: 1136 year: 2010 ident: C4CP01485E-(cit42)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct9005147 – volume: 5 start-page: 623 year: 2006 ident: C4CP01485E-(cit13)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1696 – volume: 136 start-page: 074103 year: 2012 ident: C4CP01485E-(cit26)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3684549 – volume: 132 start-page: 13008 year: 2010 ident: C4CP01485E-(cit64)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja105340b – volume: 14 start-page: 3596 year: 2012 ident: C4CP01485E-(cit49)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/c2ce06642d – volume: 184 start-page: 1172 year: 2013 ident: C4CP01485E-(cit54)/*[position()=1] publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.12.009 – volume: 116 start-page: 16726 year: 2012 ident: C4CP01485E-(cit58)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp3022375 – volume: 9 start-page: 1838 year: 2013 ident: C4CP01485E-(cit39)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct301010b – volume: 182 start-page: 372 year: 2011 ident: C4CP01485E-(cit53)/*[position()=1] publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2010.07.048 – volume: 44 start-page: 3769 year: 2005 ident: C4CP01485E-(cit33)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200462760 – volume: 58 start-page: 60 year: 2002 ident: C4CP01485E-(cit57)/*[position()=1] publication-title: Acta Crystallogr., Sect. A: Found. Crystallogr. doi: 10.1107/S0108767301016658 – volume: 120 start-page: 9911 year: 2004 ident: C4CP01485E-(cit16)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1724816 – volume: 24 start-page: 1831 year: 2011 ident: C4CP01485E-(cit45)/*[position()=1] publication-title: Nonlinearity doi: 10.1088/0951-7715/24/6/008 – volume: 64 start-page: 184201 year: 2001 ident: C4CP01485E-(cit15)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.64.184201 – volume: 32 start-page: 1 year: 2008 ident: C4CP01485E-(cit4)/*[position()=1] publication-title: CLAPHAD doi: 10.1016/j.calphad.2007.10.001 – volume: 124 start-page: 244704 year: 2006 ident: C4CP01485E-(cit18)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2210932 – volume: 203 start-page: 82 year: 2001 ident: C4CP01485E-(cit62)/*[position()=1] publication-title: J. Catal. doi: 10.1006/jcat.2001.3316 – volume: 6 start-page: 239 year: 1991 ident: C4CP01485E-(cit70)/*[position()=1] publication-title: Mol. Simul. doi: 10.1080/08927029108022432 |
SSID | ssj0001513 |
Score | 2.5023108 |
Snippet | The determination of crystal structures and the solid-to-solid phase transition mechanisms are two important and related subjects in material science. Here we... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 17845 |
SubjectTerms | Atomic structure Crystal structure Nuclear power generation Pathways Phase transformations Stochasticity Titanium dioxide Walking |
Title | Stochastic surface walking method for crystal structure and phase transition pathway prediction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25045763 https://www.proquest.com/docview/1551024348 https://www.proquest.com/docview/1567057196 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZb-rC9jN2X3dDYXsbwpkryRY_FpHQl6wJ1IG9GlmViKE5oHEr363d08WWsG91ejHOQnaDvi3TOkfQdhD4UCeciFgUgQMuAF-DDFVHCAlISHksWxsSumH47i06W_HQVroZtY_Z0SVt8Vj9uPFfyP6iCDXA1p2T_Adn-pWCAe8AXroAwXG-F8Xm7UWtplJY_7faXlYT_6JW8MMlvXxnabiJUl9e71h0L2Q8LBlt4UJsKEY3btWUUVtdX8tqoBpS16vHyjuuiw1N1FeLcnTG57MjOZhcWadqfGDvvktHpWvsJcpyiXtVyE5zWPbPm9d4ulazrYOE569MRh9zut4pHIyiPWAARt9e3HttcLbh-2I1G9GJsNIgexomTmPQzMnx24uO_DfeEGbVUxdXWJEZDPUxq3UL-2ff8eDmf59lsld1FBxSCCTpBB0ez7Ou8n7HB62HuFJr76Z2MLRNfhnf_6rj8IRqxXkn2ED3w4QQ-ctx4hO7o5jG6l3YYPUH5wBHsOYI9R7DjCAaOYM8R3HMEA0ew5QgeOII9R_DAkadoeTzL0pPAF9UIFEuiNmCiSqqSCQauWiFDISmTVJqKmKEEQ6U1uKhahCaUKIkiRFdUghssqaJEKsWeoUmzafQLhIuQaaHiKmKk4uA7S4iOdVIp6K2IgnWKPnY9liuvOG8Kn1zkducDE3nK04Xt3dkUve_bbp3Oyo2t3nUdn0M_mrUt2ejNfpcbz9-Ia_Lkb22iGMITmHOm6LlDrf8uo-QHoTd7eYunX6H7A_Nfowkgo9-Aa9oWbz2zfgKAYJI7 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+surface+walking+method+for+crystal+structure+and+phase+transition+pathway+prediction&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Shang%2C+Cheng&rft.au=Zhang%2C+Xiao-Jie&rft.au=Liu%2C+Zhi-Pan&rft.date=2014-09-07&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=16&rft.issue=33&rft.spage=17845&rft.epage=17856&rft_id=info:doi/10.1039%2Fc4cp01485e&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |