Stochastic surface walking method for crystal structure and phase transition pathway prediction

The determination of crystal structures and the solid-to-solid phase transition mechanisms are two important and related subjects in material science. Here we develop an unbiased general-purpose potential energy surface (PES) searching method, namely, SSW-crystal method, for prediction of both the c...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 16; no. 33; pp. 17845 - 17856
Main Authors Shang, Cheng, Zhang, Xiao-Jie, Liu, Zhi-Pan
Format Journal Article
LanguageEnglish
Published England 07.09.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The determination of crystal structures and the solid-to-solid phase transition mechanisms are two important and related subjects in material science. Here we develop an unbiased general-purpose potential energy surface (PES) searching method, namely, SSW-crystal method, for prediction of both the crystal structure and the crystal phase transition pathway. The SSW-crystal method features with stochastic surface walking (SSW) via repeated small structural perturbation by taking into account the second derivative information on both the lattice and the atom degrees of freedom. The SSW-crystal method is capable of overcoming the high barrier of phase transition and identifying the desirable phase transition reaction coordinates. By applying the SSW-crystal method to a set of examples, including SiO 2 crystal up to 162 atoms per cell, Lennard-Jones model crystals up to 256 atoms, ternary SrTiO 3 crystal of 50 atoms and the rutile-to-anatase TiO 2 phase transition, we show that the SSW-crystal method can efficiently locate the global minimum (GM) from random initial structures without a priori knowledge of the system, and also allows for exhaustive sampling of the phase transition pathways, from which the lowest energy pathway can be obtained.
AbstractList The determination of crystal structures and the solid-to-solid phase transition mechanisms are two important and related subjects in material science. Here we develop an unbiased general-purpose potential energy surface (PES) searching method, namely, SSW-crystal method, for prediction of both the crystal structure and the crystal phase transition pathway. The SSW-crystal method features with stochastic surface walking (SSW) via repeated small structural perturbation by taking into account the second derivative information on both the lattice and the atom degrees of freedom. The SSW-crystal method is capable of overcoming the high barrier of phase transition and identifying the desirable phase transition reaction coordinates. By applying the SSW-crystal method to a set of examples, including SiO2 crystal up to 162 atoms per cell, Lennard-Jones model crystals up to 256 atoms, ternary SrTiO3 crystal of 50 atoms and the rutile-to-anatase TiO2 phase transition, we show that the SSW-crystal method can efficiently locate the global minimum (GM) from random initial structures without a priori knowledge of the system, and also allows for exhaustive sampling of the phase transition pathways, from which the lowest energy pathway can be obtained.
The determination of crystal structures and the solid-to-solid phase transition mechanisms are two important and related subjects in material science. Here we develop an unbiased general-purpose potential energy surface (PES) searching method, namely, SSW-crystal method, for prediction of both the crystal structure and the crystal phase transition pathway. The SSW-crystal method features with stochastic surface walking (SSW) viarepeated small structural perturbation by taking into account the second derivative information on both the lattice and the atom degrees of freedom. The SSW-crystal method is capable of overcoming the high barrier of phase transition and identifying the desirable phase transition reaction coordinates. By applying the SSW-crystal method to a set of examples, including SiO sub(2) crystal up to 162 atoms per cell, Lennard-Jones model crystals up to 256 atoms, ternary SrTiO sub(3) crystal of 50 atoms and the rutile-to-anatase TiO sub(2) phase transition, we show that the SSW-crystal method can efficiently locate the global minimum (GM) from random initial structures without a prioriknowledge of the system, and also allows for exhaustive sampling of the phase transition pathways, from which the lowest energy pathway can be obtained.
The determination of crystal structures and the solid-to-solid phase transition mechanisms are two important and related subjects in material science. Here we develop an unbiased general-purpose potential energy surface (PES) searching method, namely, SSW-crystal method, for prediction of both the crystal structure and the crystal phase transition pathway. The SSW-crystal method features with stochastic surface walking (SSW) via repeated small structural perturbation by taking into account the second derivative information on both the lattice and the atom degrees of freedom. The SSW-crystal method is capable of overcoming the high barrier of phase transition and identifying the desirable phase transition reaction coordinates. By applying the SSW-crystal method to a set of examples, including SiO2 crystal up to 162 atoms per cell, Lennard-Jones model crystals up to 256 atoms, ternary SrTiO3 crystal of 50 atoms and the rutile-to-anatase TiO2 phase transition, we show that the SSW-crystal method can efficiently locate the global minimum (GM) from random initial structures without a priori knowledge of the system, and also allows for exhaustive sampling of the phase transition pathways, from which the lowest energy pathway can be obtained.The determination of crystal structures and the solid-to-solid phase transition mechanisms are two important and related subjects in material science. Here we develop an unbiased general-purpose potential energy surface (PES) searching method, namely, SSW-crystal method, for prediction of both the crystal structure and the crystal phase transition pathway. The SSW-crystal method features with stochastic surface walking (SSW) via repeated small structural perturbation by taking into account the second derivative information on both the lattice and the atom degrees of freedom. The SSW-crystal method is capable of overcoming the high barrier of phase transition and identifying the desirable phase transition reaction coordinates. By applying the SSW-crystal method to a set of examples, including SiO2 crystal up to 162 atoms per cell, Lennard-Jones model crystals up to 256 atoms, ternary SrTiO3 crystal of 50 atoms and the rutile-to-anatase TiO2 phase transition, we show that the SSW-crystal method can efficiently locate the global minimum (GM) from random initial structures without a priori knowledge of the system, and also allows for exhaustive sampling of the phase transition pathways, from which the lowest energy pathway can be obtained.
The determination of crystal structures and the solid-to-solid phase transition mechanisms are two important and related subjects in material science. Here we develop an unbiased general-purpose potential energy surface (PES) searching method, namely, SSW-crystal method, for prediction of both the crystal structure and the crystal phase transition pathway. The SSW-crystal method features with stochastic surface walking (SSW) via repeated small structural perturbation by taking into account the second derivative information on both the lattice and the atom degrees of freedom. The SSW-crystal method is capable of overcoming the high barrier of phase transition and identifying the desirable phase transition reaction coordinates. By applying the SSW-crystal method to a set of examples, including SiO 2 crystal up to 162 atoms per cell, Lennard-Jones model crystals up to 256 atoms, ternary SrTiO 3 crystal of 50 atoms and the rutile-to-anatase TiO 2 phase transition, we show that the SSW-crystal method can efficiently locate the global minimum (GM) from random initial structures without a priori knowledge of the system, and also allows for exhaustive sampling of the phase transition pathways, from which the lowest energy pathway can be obtained.
Author Shang, Cheng
Liu, Zhi-Pan
Zhang, Xiao-Jie
Author_xml – sequence: 1
  givenname: Cheng
  surname: Shang
  fullname: Shang, Cheng
  organization: Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science (Ministry of Education), Department of Chemistry, Fudan University, Shanghai 200433, China
– sequence: 2
  givenname: Xiao-Jie
  surname: Zhang
  fullname: Zhang, Xiao-Jie
  organization: Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science (Ministry of Education), Department of Chemistry, Fudan University, Shanghai 200433, China
– sequence: 3
  givenname: Zhi-Pan
  surname: Liu
  fullname: Liu, Zhi-Pan
  organization: Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science (Ministry of Education), Department of Chemistry, Fudan University, Shanghai 200433, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25045763$$D View this record in MEDLINE/PubMed
BookMark eNqNkd1LwzAUxYNM3Ie--AdIHkWo3jRN2zzKmB8wUFCfw12aumjX1iRl7L-3Y1NBfPDpXi6_c-CeMyaDuqkNIacMLhlweTVNpo_AklzMDsiIJSmPJOTJ4HvP0iEZe_8GAEwwfkSGsYBEZCkfEfUUGr1EH6ymvnMlakPXWL3b-pWuTFg2BS0bR7Xb-IAV9cF1OnTOUKwL2vZCQ4PD2ttgm5q2GJZr3NDWmcLq7emYHJZYeXOynxPycjN7nt5F84fb--n1PNI8T0PEZZmXBZec52yBQmLMMcYslVxgfyiNSbg0UgDkUIAGMGWMKYsx1jGg1nxCzne-rWs-OuODWlmvTVVhbZrOKybSDETGZPoPVDCIE57kPXq2R7vFyhSqdXaFbqO-8usB2AHaNd47UyptA24f71OxlWKgthWpn4p6ycUvyZfrH_AnZJWRSw
CitedBy_id crossref_primary_10_3390_ma15031267
crossref_primary_10_1021_acs_jctc_5c00051
crossref_primary_10_1002_ange_202401311
crossref_primary_10_1038_ncomms6355
crossref_primary_10_1021_jacs_6b01768
crossref_primary_10_1021_jacs_1c04624
crossref_primary_10_1021_acscatal_0c02158
crossref_primary_10_1016_j_eng_2023_04_013
crossref_primary_10_1039_D0SC03918G
crossref_primary_10_1002_cssc_201802525
crossref_primary_10_1021_acs_jpclett_7b00913
crossref_primary_10_1039_C5CP07299A
crossref_primary_10_1021_acs_jpcc_3c01589
crossref_primary_10_1039_D2TA09633A
crossref_primary_10_1103_PhysRevLett_128_226102
crossref_primary_10_1016_j_jcat_2024_115587
crossref_primary_10_1002_wcms_1415
crossref_primary_10_1021_jacs_4c10052
crossref_primary_10_1021_acs_jpcc_1c09178
crossref_primary_10_1021_acscatal_0c03472
crossref_primary_10_1039_C4CP04456H
crossref_primary_10_1039_C6CP06895B
crossref_primary_10_1039_C8TA10606A
crossref_primary_10_1021_acs_jpcc_0c04331
crossref_primary_10_1021_acs_jpcc_2c07626
crossref_primary_10_1021_acsphyschemau_2c00017
crossref_primary_10_1039_C5SC00621J
crossref_primary_10_1021_jacs_7b06528
crossref_primary_10_1021_acscatal_4c00959
crossref_primary_10_1021_jacs_9b11535
crossref_primary_10_3390_molecules29174105
crossref_primary_10_1021_acscatal_3c06293
crossref_primary_10_1021_acs_jpclett_2c00549
crossref_primary_10_1021_acs_jpcc_8b08896
crossref_primary_10_1021_jacs_5b04528
crossref_primary_10_1021_acsmaterialslett_4c00852
crossref_primary_10_1016_j_chempr_2023_04_019
crossref_primary_10_1002_cjoc_202100299
crossref_primary_10_1039_D1CP03415D
crossref_primary_10_1002_wene_389
crossref_primary_10_1016_j_comptc_2017_03_040
crossref_primary_10_1016_j_mcat_2022_112500
crossref_primary_10_1063_5_0049453
crossref_primary_10_1039_D4SC02327G
crossref_primary_10_1021_acs_jpcc_6b08942
crossref_primary_10_1039_C6CP03673B
crossref_primary_10_1002_aisy_202300716
crossref_primary_10_1039_D0RA03359F
crossref_primary_10_1021_acs_jpca_8b10007
crossref_primary_10_1021_jacsau_3c00245
crossref_primary_10_1016_j_actamat_2022_117844
crossref_primary_10_1002_aenm_202202892
crossref_primary_10_1007_s12274_017_1553_z
crossref_primary_10_1016_j_isci_2020_102013
crossref_primary_10_1021_jacs_7b11393
crossref_primary_10_1038_s41929_021_00703_0
crossref_primary_10_1103_PhysRevMaterials_8_103804
crossref_primary_10_1088_0256_307X_37_9_096802
crossref_primary_10_1021_acs_jctc_5b00641
crossref_primary_10_1021_acsaem_7b00021
crossref_primary_10_1007_s11244_015_0410_0
crossref_primary_10_1016_j_comptc_2016_12_019
crossref_primary_10_1021_jacs_5c02046
crossref_primary_10_6023_A22110446
crossref_primary_10_1002_adfm_202308246
crossref_primary_10_1021_acs_accounts_0c00472
crossref_primary_10_1021_acs_langmuir_2c00176
crossref_primary_10_1103_PhysRevB_95_214111
crossref_primary_10_1088_1402_4896_acb4c5
crossref_primary_10_1002_jcc_25649
crossref_primary_10_1021_acs_jpcc_2c04467
crossref_primary_10_1021_jacs_5b07734
crossref_primary_10_1039_C8FD00055G
crossref_primary_10_1021_acs_jpcc_3c08073
crossref_primary_10_1038_s41524_022_00959_5
crossref_primary_10_1021_acscatal_2c05358
crossref_primary_10_1039_D1CP05803G
crossref_primary_10_1021_acscatal_9b01645
crossref_primary_10_1039_C7RA11910K
crossref_primary_10_1021_jacs_1c02471
crossref_primary_10_1016_S1872_2067_21_64036_6
crossref_primary_10_1021_jacs_6b11193
crossref_primary_10_1039_D4CP01858C
crossref_primary_10_1016_j_chempr_2022_07_026
crossref_primary_10_1021_acs_jpcc_4c08577
crossref_primary_10_1039_C7CP07060H
crossref_primary_10_1002_anie_202401311
crossref_primary_10_1002_wcms_1730
crossref_primary_10_1039_D0SC06502A
crossref_primary_10_1088_1674_1056_ac834b
crossref_primary_10_1021_acs_jpcc_2c03301
crossref_primary_10_1039_C7SC01459G
crossref_primary_10_1021_acscatal_2c04379
crossref_primary_10_1039_D2CP05345D
crossref_primary_10_1021_acs_jpclett_1c03170
crossref_primary_10_1021_acs_jpclett_9b01715
crossref_primary_10_1016_j_cplett_2022_139813
crossref_primary_10_1021_jacs_4c01285
crossref_primary_10_1021_acs_jpcc_9b10511
crossref_primary_10_1039_D1CP04386B
crossref_primary_10_1021_acs_jpcc_3c00404
crossref_primary_10_1016_j_electacta_2019_04_101
crossref_primary_10_1088_0256_307X_39_8_087101
crossref_primary_10_1039_D1CP01349A
crossref_primary_10_1021_acs_jpcc_3c04177
crossref_primary_10_1021_jacsau_3c00038
crossref_primary_10_1021_acs_jpcc_0c04921
crossref_primary_10_1021_acs_jpcc_1c04858
crossref_primary_10_1039_D4SC08616C
crossref_primary_10_1039_C8SC03427C
crossref_primary_10_1021_prechem_4c00060
crossref_primary_10_1063_1674_0068_cjcp2108145
crossref_primary_10_1021_jacs_4c14404
crossref_primary_10_1021_acs_jpcc_2c02424
crossref_primary_10_1021_acs_jctc_4c01081
crossref_primary_10_1039_C8SC02015A
crossref_primary_10_1002_wcms_1236
crossref_primary_10_1039_D3SC02054A
crossref_primary_10_1021_jz5016247
crossref_primary_10_1039_D3EY00234A
crossref_primary_10_1016_j_matt_2020_05_013
crossref_primary_10_1063_1674_0068_cjcp2404057
Cites_doi 10.1002/jcc.23307
10.2138/am-1998-9-1016
10.1063/1.3609924
10.1002/anie.200704788
10.1016/j.cpc.2012.05.008
10.1016/j.cplett.2006.05.062
10.1103/PhysRevLett.87.275501
10.1103/PhysRevLett.78.3908
10.1016/S0012-821X(01)00480-0
10.1021/jp970984n
10.1107/S0108767398010186
10.1524/zkri.216.7.361.20362
10.1021/jp0356620
10.1021/ct400238j
10.1021/cr00035a013
10.1080/00268979200100061
10.1007/BF00124016
10.1021/ja206153v
10.1039/a901227c
10.1126/science.220.4598.671
10.1038/346343a0
10.1103/PhysRevB.82.094116
10.1524/zkri.216.6.307.20339
10.1103/PhysRevLett.80.1357
10.1002/anie.199612861
10.1103/PhysRevB.64.235111
10.1103/PhysRevB.59.3969
10.1038/nmat2321
10.1073/pnas.202427399
10.1126/science.281.5379.969
10.1063/1.3512900
10.1080/00268970210162691
10.1063/1.1448491
10.1021/ja801648h
10.1209/0295-5075/22/7/001
10.1002/9783527632831
10.1002/bbpc.19940981207
10.1063/1.480097
10.1021/ar00046a004
10.1063/1.1931587
10.1038/335201a0
10.1103/PhysRevLett.107.015701
10.1021/ar1001318
10.1002/bbpc.199500047
10.1103/PhysRevB.66.205101
10.1039/jm9930300531
10.1103/PhysRevLett.64.1955
10.1103/PhysRevB.78.064110
10.1021/ct4008475
10.1063/1.3692803
10.1016/0022-4596(91)90255-G
10.1021/jp312325h
10.1021/ct300250h
10.1021/ct9005147
10.1038/nmat1696
10.1063/1.3684549
10.1021/ja105340b
10.1039/c2ce06642d
10.1016/j.cpc.2012.12.009
10.1021/jp3022375
10.1021/ct301010b
10.1016/j.cpc.2010.07.048
10.1002/anie.200462760
10.1107/S0108767301016658
10.1063/1.1724816
10.1088/0951-7715/24/6/008
10.1103/PhysRevB.64.184201
10.1016/j.calphad.2007.10.001
10.1063/1.2210932
10.1006/jcat.2001.3316
10.1080/08927029108022432
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7U5
8FD
L7M
DOI 10.1039/C4CP01485E
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList PubMed
Technology Research Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 17856
ExternalDocumentID 25045763
10_1039_C4CP01485E
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
0UZ
123
1TJ
29O
2WC
4.4
53G
6TJ
705
70~
71~
7~J
87K
9M8
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACLDK
ACNCT
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C6K
CAG
CITATION
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~9
H~N
IDY
IDZ
J3G
J3H
J3I
L-8
M4U
MVM
N9A
NDZJH
NHB
O9-
P2P
R56
R7B
R7C
RAOCF
RCLXC
RCNCU
RIG
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UHB
VH6
WH7
XJT
XOL
YNT
ZCG
NPM
7X8
7U5
8FD
L7M
ID FETCH-LOGICAL-c386t-39f8fd393381ba59a23a2a76935a1bafee439e950080d0c00ef2a612a2c20acc3
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 05:04:36 EDT 2025
Fri Jul 11 04:41:18 EDT 2025
Thu Apr 03 07:10:52 EDT 2025
Thu Apr 24 23:11:58 EDT 2025
Tue Jul 01 02:45:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c386t-39f8fd393381ba59a23a2a76935a1bafee439e950080d0c00ef2a612a2c20acc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 25045763
PQID 1551024348
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1567057196
proquest_miscellaneous_1551024348
pubmed_primary_25045763
crossref_citationtrail_10_1039_C4CP01485E
crossref_primary_10_1039_C4CP01485E
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-07
PublicationDateYYYYMMDD 2014-09-07
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-07
  day: 07
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2014
References van Beest (C4CP01485E-(cit48)/*[position()=1]) 1990; 64
Penn (C4CP01485E-(cit67)/*[position()=1]) 1998; 281
Kirkpatrick (C4CP01485E-(cit7)/*[position()=1]) 1983; 220
Lyakhov (C4CP01485E-(cit54)/*[position()=1]) 2013; 184
Zhu (C4CP01485E-(cit49)/*[position()=1]) 2012; 14
Woodley (C4CP01485E-(cit11)/*[position()=1]) 1999; 1
Carr (C4CP01485E-(cit23)/*[position()=1]) 2005; 122
Shang (C4CP01485E-(cit41)/*[position()=1]) 2012; 8
Ohno (C4CP01485E-(cit62)/*[position()=1]) 2001; 203
Laio (C4CP01485E-(cit32)/*[position()=1]) 2002; 99
Oganov (C4CP01485E-(cit19)/*[position()=1]) 2008; 20
Samanta (C4CP01485E-(cit46)/*[position()=1]) 2012; 136
Zhang (C4CP01485E-(cit51)/*[position()=1]) 2013; 9
Oganov (C4CP01485E-(cit24)/*[position()=1]) 2011; 44
Li (C4CP01485E-(cit65)/*[position()=1]) 2011; 133
Zhang (C4CP01485E-(cit40)/*[position()=1]) 2013; 9
Ricci (C4CP01485E-(cit68)/*[position()=1]) 2013; 117
Dubrovinskaia (C4CP01485E-(cit71)/*[position()=1]) 2001; 87
Lonie (C4CP01485E-(cit53)/*[position()=1]) 2011; 182
Wang (C4CP01485E-(cit21)/*[position()=1]) 2012; 183
Penn (C4CP01485E-(cit66)/*[position()=1]) 1998; 83
Doye (C4CP01485E-(cit76)/*[position()=1]) 1998; 80
Rosso (C4CP01485E-(cit27)/*[position()=1]) 2002; 116
Siepmann (C4CP01485E-(cit29)/*[position()=1]) 1992; 75
Goedecker (C4CP01485E-(cit16)/*[position()=1]) 2004; 120
Soler (C4CP01485E-(cit72)/*[position()=1]) 2002; 14
Wang (C4CP01485E-(cit20)/*[position()=1]) 2010; 82
Anglada (C4CP01485E-(cit74)/*[position()=1]) 2002; 66
Woodley (C4CP01485E-(cit12)/*[position()=1]) 2008; 7
E (C4CP01485E-(cit45)/*[position()=1]) 2011; 24
Grosse-Kunstleve (C4CP01485E-(cit56)/*[position()=1]) 1999; 55
Linsebigler (C4CP01485E-(cit60)/*[position()=1]) 1995; 95
El Goresy (C4CP01485E-(cit75)/*[position()=1]) 2001; 192
Li (C4CP01485E-(cit64)/*[position()=1]) 2010; 132
Vu (C4CP01485E-(cit69)/*[position()=1]) 2012; 24
Putz (C4CP01485E-(cit52)/*[position()=1]) 1995; 99
Schön (C4CP01485E-(cit8)/*[position()=1]) 1996; 35
Huber (C4CP01485E-(cit34)/*[position()=1]) 1994; 8
Benedek (C4CP01485E-(cit55)/*[position()=1]) 2008; 78
Shang (C4CP01485E-(cit39)/*[position()=1]) 2013; 9
Pannetier (C4CP01485E-(cit5)/*[position()=1]) 1990; 346
Schon (C4CP01485E-(cit9)/*[position()=1]) 2001; 216
Schön (C4CP01485E-(cit36)/*[position()=1]) 1994; 98
Schon (C4CP01485E-(cit10)/*[position()=1]) 2001; 216
Wales (C4CP01485E-(cit14)/*[position()=1]) 1997; 101
Zhang (C4CP01485E-(cit63)/*[position()=1]) 2008; 47
Machado-Charry (C4CP01485E-(cit25)/*[position()=1]) 2011; 135
Gavezzotti (C4CP01485E-(cit3)/*[position()=1]) 1994; 27
Wales (C4CP01485E-(cit22)/*[position()=1]) 2002; 100
Wales (C4CP01485E-(cit50)/*[position()=1]) 2003
Amsler (C4CP01485E-(cit17)/*[position()=1]) 2010; 133
Voter (C4CP01485E-(cit30)/*[position()=1]) 1997; 78
Shang (C4CP01485E-(cit42)/*[position()=1]) 2010; 6
Yu (C4CP01485E-(cit35)/*[position()=1]) 2011; 107
Sibani (C4CP01485E-(cit38)/*[position()=1]) 1993; 22
Martonak (C4CP01485E-(cit13)/*[position()=1]) 2006; 5
Oganov (C4CP01485E-(cit18)/*[position()=1]) 2006; 124
Woods (C4CP01485E-(cit31)/*[position()=1]) 2003; 107
Henkelman (C4CP01485E-(cit43)/*[position()=1]) 1999; 111
Bickley (C4CP01485E-(cit61)/*[position()=1]) 1991; 92
Grosse-Kunstleve (C4CP01485E-(cit57)/*[position()=1]) 2002; 58
Maddox (C4CP01485E-(cit1)/*[position()=1]) 1988; 335
Spencer (C4CP01485E-(cit4)/*[position()=1]) 2008; 32
Grebner (C4CP01485E-(cit59)/*[position()=1]) 2013; 34
Freeman (C4CP01485E-(cit6)/*[position()=1]) 1993; 3
Maragliano (C4CP01485E-(cit28)/*[position()=1]) 2006; 426
Schön (C4CP01485E-(cit37)/*[position()=1]) 1996; 8
Zagorac (C4CP01485E-(cit58)/*[position()=1]) 2012; 116
Raiteri (C4CP01485E-(cit33)/*[position()=1]) 2005; 44
Matsui (C4CP01485E-(cit70)/*[position()=1]) 1991; 6
Munro (C4CP01485E-(cit44)/*[position()=1]) 1999; 59
Wang (C4CP01485E-(cit47)/*[position()=1]) 2008; 130
Oganov (C4CP01485E-(cit2)/*[position()=1]) 2010
Junquera (C4CP01485E-(cit73)/*[position()=1]) 2001; 64
Middleton (C4CP01485E-(cit15)/*[position()=1]) 2001; 64
Sheppard (C4CP01485E-(cit26)/*[position()=1]) 2012; 136
References_xml – volume: 8
  start-page: 143
  year: 1996
  ident: C4CP01485E-(cit37)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 34
  start-page: 1810
  year: 2013
  ident: C4CP01485E-(cit59)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23307
– volume: 83
  start-page: 1077
  year: 1998
  ident: C4CP01485E-(cit66)/*[position()=1]
  publication-title: Am. Mineral.
  doi: 10.2138/am-1998-9-1016
– volume: 135
  start-page: 034102
  year: 2011
  ident: C4CP01485E-(cit25)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3609924
– volume: 47
  start-page: 1766
  year: 2008
  ident: C4CP01485E-(cit63)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200704788
– volume: 183
  start-page: 2063
  year: 2012
  ident: C4CP01485E-(cit21)/*[position()=1]
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.05.008
– volume: 426
  start-page: 168
  year: 2006
  ident: C4CP01485E-(cit28)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2006.05.062
– volume-title: Energy Landscapes: Applications to Clusters, Biomolecules and Glasses
  year: 2003
  ident: C4CP01485E-(cit50)/*[position()=1]
– volume: 87
  start-page: 275501
  year: 2001
  ident: C4CP01485E-(cit71)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.275501
– volume: 78
  start-page: 3908
  year: 1997
  ident: C4CP01485E-(cit30)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.3908
– volume: 192
  start-page: 485
  year: 2001
  ident: C4CP01485E-(cit75)/*[position()=1]
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/S0012-821X(01)00480-0
– volume: 101
  start-page: 5111
  year: 1997
  ident: C4CP01485E-(cit14)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp970984n
– volume: 55
  start-page: 383
  year: 1999
  ident: C4CP01485E-(cit56)/*[position()=1]
  publication-title: Acta Crystallogr., Sect. A: Found. Crystallogr.
  doi: 10.1107/S0108767398010186
– volume: 216
  start-page: 361
  year: 2001
  ident: C4CP01485E-(cit10)/*[position()=1]
  publication-title: Z. Kristallogr.
  doi: 10.1524/zkri.216.7.361.20362
– volume: 107
  start-page: 13703
  year: 2003
  ident: C4CP01485E-(cit31)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0356620
– volume: 9
  start-page: 3252
  year: 2013
  ident: C4CP01485E-(cit40)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400238j
– volume: 95
  start-page: 735
  year: 1995
  ident: C4CP01485E-(cit60)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr00035a013
– volume: 75
  start-page: 59
  year: 1992
  ident: C4CP01485E-(cit29)/*[position()=1]
  publication-title: Mol. Phys.
  doi: 10.1080/00268979200100061
– volume: 8
  start-page: 695
  year: 1994
  ident: C4CP01485E-(cit34)/*[position()=1]
  publication-title: J. Comput.-Aided Mol. Des.
  doi: 10.1007/BF00124016
– volume: 133
  start-page: 15743
  year: 2011
  ident: C4CP01485E-(cit65)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206153v
– volume: 1
  start-page: 2535
  year: 1999
  ident: C4CP01485E-(cit11)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/a901227c
– volume: 220
  start-page: 671
  year: 1983
  ident: C4CP01485E-(cit7)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 346
  start-page: 343
  year: 1990
  ident: C4CP01485E-(cit5)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/346343a0
– volume: 82
  start-page: 094116
  year: 2010
  ident: C4CP01485E-(cit20)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.82.094116
– volume: 216
  start-page: 307
  year: 2001
  ident: C4CP01485E-(cit9)/*[position()=1]
  publication-title: Z. Kristallogr.
  doi: 10.1524/zkri.216.6.307.20339
– volume: 80
  start-page: 1357
  year: 1998
  ident: C4CP01485E-(cit76)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.1357
– volume: 35
  start-page: 1286
  year: 1996
  ident: C4CP01485E-(cit8)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.199612861
– volume: 24
  start-page: 405501
  year: 2012
  ident: C4CP01485E-(cit69)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 64
  start-page: 235111
  year: 2001
  ident: C4CP01485E-(cit73)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.64.235111
– volume: 59
  start-page: 3969
  year: 1999
  ident: C4CP01485E-(cit44)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.59.3969
– volume: 14
  start-page: 2745
  year: 2002
  ident: C4CP01485E-(cit72)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 7
  start-page: 937
  year: 2008
  ident: C4CP01485E-(cit12)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2321
– volume: 99
  start-page: 12562
  year: 2002
  ident: C4CP01485E-(cit32)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.202427399
– volume: 281
  start-page: 969
  year: 1998
  ident: C4CP01485E-(cit67)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.281.5379.969
– volume: 133
  start-page: 224104
  year: 2010
  ident: C4CP01485E-(cit17)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3512900
– volume: 100
  start-page: 3285
  year: 2002
  ident: C4CP01485E-(cit22)/*[position()=1]
  publication-title: Mol. Phys.
  doi: 10.1080/00268970210162691
– volume: 116
  start-page: 4389
  year: 2002
  ident: C4CP01485E-(cit27)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1448491
– volume: 130
  start-page: 10996
  year: 2008
  ident: C4CP01485E-(cit47)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja801648h
– volume: 22
  start-page: 479
  year: 1993
  ident: C4CP01485E-(cit38)/*[position()=1]
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/22/7/001
– volume-title: Modern Methods of Crystal Structure Prediction
  year: 2010
  ident: C4CP01485E-(cit2)/*[position()=1]
  doi: 10.1002/9783527632831
– volume: 98
  start-page: 1541
  year: 1994
  ident: C4CP01485E-(cit36)/*[position()=1]
  publication-title: Ber. Bunsen-Ges.
  doi: 10.1002/bbpc.19940981207
– volume: 111
  start-page: 7010
  year: 1999
  ident: C4CP01485E-(cit43)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.480097
– volume: 27
  start-page: 309
  year: 1994
  ident: C4CP01485E-(cit3)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00046a004
– volume: 122
  start-page: 234903
  year: 2005
  ident: C4CP01485E-(cit23)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1931587
– volume: 20
  start-page: 064210
  year: 2008
  ident: C4CP01485E-(cit19)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 335
  start-page: 201
  year: 1988
  ident: C4CP01485E-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/335201a0
– volume: 107
  start-page: 015701
  year: 2011
  ident: C4CP01485E-(cit35)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.015701
– volume: 44
  start-page: 227
  year: 2011
  ident: C4CP01485E-(cit24)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar1001318
– volume: 99
  start-page: 1148
  year: 1995
  ident: C4CP01485E-(cit52)/*[position()=1]
  publication-title: Ber. Bunsen-Ges.
  doi: 10.1002/bbpc.199500047
– volume: 66
  start-page: 205101
  year: 2002
  ident: C4CP01485E-(cit74)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.66.205101
– volume: 3
  start-page: 531
  year: 1993
  ident: C4CP01485E-(cit6)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/jm9930300531
– volume: 64
  start-page: 1955
  year: 1990
  ident: C4CP01485E-(cit48)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.64.1955
– volume: 78
  start-page: 064110
  year: 2008
  ident: C4CP01485E-(cit55)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.78.064110
– volume: 9
  start-page: 5745
  year: 2013
  ident: C4CP01485E-(cit51)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct4008475
– volume: 136
  start-page: 124104
  year: 2012
  ident: C4CP01485E-(cit46)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3692803
– volume: 92
  start-page: 178
  year: 1991
  ident: C4CP01485E-(cit61)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1016/0022-4596(91)90255-G
– volume: 117
  start-page: 7850
  year: 2013
  ident: C4CP01485E-(cit68)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp312325h
– volume: 8
  start-page: 2215
  year: 2012
  ident: C4CP01485E-(cit41)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300250h
– volume: 6
  start-page: 1136
  year: 2010
  ident: C4CP01485E-(cit42)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct9005147
– volume: 5
  start-page: 623
  year: 2006
  ident: C4CP01485E-(cit13)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1696
– volume: 136
  start-page: 074103
  year: 2012
  ident: C4CP01485E-(cit26)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3684549
– volume: 132
  start-page: 13008
  year: 2010
  ident: C4CP01485E-(cit64)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja105340b
– volume: 14
  start-page: 3596
  year: 2012
  ident: C4CP01485E-(cit49)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/c2ce06642d
– volume: 184
  start-page: 1172
  year: 2013
  ident: C4CP01485E-(cit54)/*[position()=1]
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.12.009
– volume: 116
  start-page: 16726
  year: 2012
  ident: C4CP01485E-(cit58)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp3022375
– volume: 9
  start-page: 1838
  year: 2013
  ident: C4CP01485E-(cit39)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct301010b
– volume: 182
  start-page: 372
  year: 2011
  ident: C4CP01485E-(cit53)/*[position()=1]
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2010.07.048
– volume: 44
  start-page: 3769
  year: 2005
  ident: C4CP01485E-(cit33)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200462760
– volume: 58
  start-page: 60
  year: 2002
  ident: C4CP01485E-(cit57)/*[position()=1]
  publication-title: Acta Crystallogr., Sect. A: Found. Crystallogr.
  doi: 10.1107/S0108767301016658
– volume: 120
  start-page: 9911
  year: 2004
  ident: C4CP01485E-(cit16)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1724816
– volume: 24
  start-page: 1831
  year: 2011
  ident: C4CP01485E-(cit45)/*[position()=1]
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/24/6/008
– volume: 64
  start-page: 184201
  year: 2001
  ident: C4CP01485E-(cit15)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.64.184201
– volume: 32
  start-page: 1
  year: 2008
  ident: C4CP01485E-(cit4)/*[position()=1]
  publication-title: CLAPHAD
  doi: 10.1016/j.calphad.2007.10.001
– volume: 124
  start-page: 244704
  year: 2006
  ident: C4CP01485E-(cit18)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2210932
– volume: 203
  start-page: 82
  year: 2001
  ident: C4CP01485E-(cit62)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1006/jcat.2001.3316
– volume: 6
  start-page: 239
  year: 1991
  ident: C4CP01485E-(cit70)/*[position()=1]
  publication-title: Mol. Simul.
  doi: 10.1080/08927029108022432
SSID ssj0001513
Score 2.5023108
Snippet The determination of crystal structures and the solid-to-solid phase transition mechanisms are two important and related subjects in material science. Here we...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 17845
SubjectTerms Atomic structure
Crystal structure
Nuclear power generation
Pathways
Phase transformations
Stochasticity
Titanium dioxide
Walking
Title Stochastic surface walking method for crystal structure and phase transition pathway prediction
URI https://www.ncbi.nlm.nih.gov/pubmed/25045763
https://www.proquest.com/docview/1551024348
https://www.proquest.com/docview/1567057196
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZb-rC9jN2X3dDYXsbwpkryRY_FpHQl6wJ1IG9GlmViKE5oHEr363d08WWsG91ejHOQnaDvi3TOkfQdhD4UCeciFgUgQMuAF-DDFVHCAlISHksWxsSumH47i06W_HQVroZtY_Z0SVt8Vj9uPFfyP6iCDXA1p2T_Adn-pWCAe8AXroAwXG-F8Xm7UWtplJY_7faXlYT_6JW8MMlvXxnabiJUl9e71h0L2Q8LBlt4UJsKEY3btWUUVtdX8tqoBpS16vHyjuuiw1N1FeLcnTG57MjOZhcWadqfGDvvktHpWvsJcpyiXtVyE5zWPbPm9d4ulazrYOE569MRh9zut4pHIyiPWAARt9e3HttcLbh-2I1G9GJsNIgexomTmPQzMnx24uO_DfeEGbVUxdXWJEZDPUxq3UL-2ff8eDmf59lsld1FBxSCCTpBB0ez7Ou8n7HB62HuFJr76Z2MLRNfhnf_6rj8IRqxXkn2ED3w4QQ-ctx4hO7o5jG6l3YYPUH5wBHsOYI9R7DjCAaOYM8R3HMEA0ew5QgeOII9R_DAkadoeTzL0pPAF9UIFEuiNmCiSqqSCQauWiFDISmTVJqKmKEEQ6U1uKhahCaUKIkiRFdUghssqaJEKsWeoUmzafQLhIuQaaHiKmKk4uA7S4iOdVIp6K2IgnWKPnY9liuvOG8Kn1zkducDE3nK04Xt3dkUve_bbp3Oyo2t3nUdn0M_mrUt2ejNfpcbz9-Ia_Lkb22iGMITmHOm6LlDrf8uo-QHoTd7eYunX6H7A_Nfowkgo9-Aa9oWbz2zfgKAYJI7
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+surface+walking+method+for+crystal+structure+and+phase+transition+pathway+prediction&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Shang%2C+Cheng&rft.au=Zhang%2C+Xiao-Jie&rft.au=Liu%2C+Zhi-Pan&rft.date=2014-09-07&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=16&rft.issue=33&rft.spage=17845&rft.epage=17856&rft_id=info:doi/10.1039%2Fc4cp01485e&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon