Molecular Regulation of Circadian Chromatin
Circadian rhythms are generated by transcriptional negative feedback loops and require histone modifications and chromatin remodeling to ensure appropriate timing and amplitude of clock gene expression. Circadian modifications to histones are important for transcriptional initiation and feedback inh...
Saved in:
Published in | Journal of molecular biology Vol. 432; no. 12; pp. 3466 - 3482 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
29.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Circadian rhythms are generated by transcriptional negative feedback loops and require histone modifications and chromatin remodeling to ensure appropriate timing and amplitude of clock gene expression. Circadian modifications to histones are important for transcriptional initiation and feedback inhibition serving as signaling platform for chromatin-remodeling enzymes. Current models indicate circadian-regulated facultative heterochromatin (CRFH) is a conserved mechanism at clock genes in Neurospora, Drosophila, and mice. CRFH consists of antiphasic rhythms in activating and repressive modifications generating chromatin states that cycle between transcriptionally permissive and nonpermissive. There are rhythms in histone H3 lysine 9 and 27 acetylation (H3K9ac and H3K27ac) and histone H3 lysine 4 methylation (H3K4me) during activation; while deacetylation, histone H3 lysine 9 methylation (H3K9me) and heterochromatin protein 1 (HP1) are hallmarks of repression. ATP-dependent chromatin-remodeling enzymes control accessibility, nucleosome positioning/occupancy, and nuclear organization. In Neurospora, the rhythm in facultative heterochromatin is mediated by the frequency (frq) natural antisense transcript (NAT) qrf. While in mammals, histone deacetylases (HDACs), histone H3 lysine 9 methyltransferase (KMT1/SUV39), and components of nucleosome remodeling and deacetylase (NuRD) are part of the nuclear PERIOD complex (PER complex). Genomics efforts have found relationships among rhythmic chromatin modifications at clock-controlled genes (ccg) revealing circadian control of genome-wide chromatin states. There are also circadian clock-regulated lncRNAs with an emerging function that includes assisting in chromatin dynamics. In this review, we explore the connections between circadian clock, chromatin remodeling, lncRNAs, and CRFH and how these impact rhythmicity, amplitude, period, and phase of circadian clock genes.
A subset of mechanisms involved in circadian clock regulation with a focus on chromatin-associate events. The schematic depicts generalized factors required for proper circadian clock function that are the subject of this review. (RNA, The red solid line; DNA, black solid line; nucleosomes, gray cylinders). [Display omitted]
•Chromatin modifications and chromatin remodeling are integral to circadian clock transcription.•Circadian chromatin involves cycles of activating and repression modifications.•Circadian regulated facultative heterochromatin involves deacetylation, histone H3 lysine 9 methylation, and HP1binding.•Changes to genome structure occur over the circadian cycle.•Age-related changes to circadian output likely occur because of changes to circadian chromatin. |
---|---|
AbstractList | Circadian rhythms are generated by transcriptional negative feedback loops and require histone modifications and chromatin remodeling to ensure appropriate timing and amplitude of clock gene expression. Circadian modifications to histones are important for transcriptional initiation and feedback inhibition serving as signaling platform for chromatin-remodeling enzymes. Current models indicate circadian-regulated facultative heterochromatin (CRFH) is a conserved mechanism at clock genes in Neurospora, Drosophila, and mice. CRFH consists of antiphasic rhythms in activating and repressive modifications generating chromatin states that cycle between transcriptionally permissive and nonpermissive. There are rhythms in histone H3 lysine 9 and 27 acetylation (H3K9ac and H3K27ac) and histone H3 lysine 4 methylation (H3K4me) during activation; while deacetylation, histone H3 lysine 9 methylation (H3K9me) and heterochromatin protein 1 (HP1) are hallmarks of repression. ATP-dependent chromatin-remodeling enzymes control accessibility, nucleosome positioning/occupancy, and nuclear organization. In Neurospora, the rhythm in facultative heterochromatin is mediated by the frequency (frq) natural antisense transcript (NAT) qrf. While in mammals, histone deacetylases (HDACs), histone H3 lysine 9 methyltransferase (KMT1/SUV39), and components of nucleosome remodeling and deacetylase (NuRD) are part of the nuclear PERIOD complex (PER complex). Genomics efforts have found relationships among rhythmic chromatin modifications at clock-controlled genes (ccg) revealing circadian control of genome-wide chromatin states. There are also circadian clock-regulated lncRNAs with an emerging function that includes assisting in chromatin dynamics. In this review, we explore the connections between circadian clock, chromatin remodeling, lncRNAs, and CRFH and how these impact rhythmicity, amplitude, period, and phase of circadian clock genes.
A subset of mechanisms involved in circadian clock regulation with a focus on chromatin-associate events. The schematic depicts generalized factors required for proper circadian clock function that are the subject of this review. (RNA, The red solid line; DNA, black solid line; nucleosomes, gray cylinders). [Display omitted]
•Chromatin modifications and chromatin remodeling are integral to circadian clock transcription.•Circadian chromatin involves cycles of activating and repression modifications.•Circadian regulated facultative heterochromatin involves deacetylation, histone H3 lysine 9 methylation, and HP1binding.•Changes to genome structure occur over the circadian cycle.•Age-related changes to circadian output likely occur because of changes to circadian chromatin. Circadian rhythms are generated by transcriptional negative feedback loops and require histone modifications and chromatin remodeling to ensure appropriate timing and amplitude of clock gene expression. Circadian modifications to histones are important for transcriptional initiation and feedback inhibition serving as signaling platform for chromatin-remodeling enzymes. Current models indicate circadian-regulated facultative heterochromatin (CRFH) is a conserved mechanism at clock genes in Neurospora, Drosophila, and mice. CRFH consists of antiphasic rhythms in activating and repressive modifications generating chromatin states that cycle between transcriptionally permissive and nonpermissive. There are rhythms in histone H3 lysine 9 and 27 acetylation (H3K9ac and H3K27ac) and histone H3 lysine 4 methylation (H3K4me) during activation; while deacetylation, histone H3 lysine 9 methylation (H3K9me) and heterochromatin protein 1 (HP1) are hallmarks of repression. ATP-dependent chromatin-remodeling enzymes control accessibility, nucleosome positioning/occupancy, and nuclear organization. In Neurospora, the rhythm in facultative heterochromatin is mediated by the frequency (frq) natural antisense transcript (NAT) qrf. While in mammals, histone deacetylases (HDACs), histone H3 lysine 9 methyltransferase (KMT1/SUV39), and components of nucleosome remodeling and deacetylase (NuRD) are part of the nuclear PERIOD complex (PER complex). Genomics efforts have found relationships among rhythmic chromatin modifications at clock-controlled genes (ccg) revealing circadian control of genome-wide chromatin states. There are also circadian clock-regulated lncRNAs with an emerging function that includes assisting in chromatin dynamics. In this review, we explore the connections between circadian clock, chromatin remodeling, lncRNAs, and CRFH and how these impact rhythmicity, amplitude, period, and phase of circadian clock genes. Circadian rhythms are generated by transcriptional negative feedback loops and require histone modifications and chromatin remodeling to ensure appropriate timing and amplitude of clock gene expression. Circadian modifications to histones are important for transcriptional initiation and feedback inhibition serving as signaling platform for chromatin-remodeling enzymes. Current models indicate circadian-regulated facultative heterochromatin (CRFH) is a conserved mechanism at clock genes in Neurospora, Drosophila, and mice. CRFH consists of antiphasic rhythms in activating and repressive modifications generating chromatin states that cycle between transcriptionally permissive and nonpermissive. There are rhythms in histone H3 lysine 9 and 27 acetylation (H3K9ac and H3K27ac) and histone H3 lysine 4 methylation (H3K4me) during activation; while deacetylation, histone H3 lysine 9 methylation (H3K9me) and heterochromatin protein 1 (HP1) are hallmarks of repression. ATP-dependent chromatin-remodeling enzymes control accessibility, nucleosome positioning/occupancy, and nuclear organization. In Neurospora, the rhythm in facultative heterochromatin is mediated by the frequency (frq) natural antisense transcript (NAT) qrf. While in mammals, histone deacetylases (HDACs), histone H3 lysine 9 methyltransferase (KMT1/SUV39), and components of nucleosome remodeling and deacetylase (NuRD) are part of the nuclear PERIOD complex (PER complex). Genomics efforts have found relationships among rhythmic chromatin modifications at clock-controlled genes (ccg) revealing circadian control of genome-wide chromatin states. There are also circadian clock-regulated lncRNAs with an emerging function that includes assisting in chromatin dynamics. In this review, we explore the connections between circadian clock, chromatin remodeling, lncRNAs, and CRFH and how these impact rhythmicity, amplitude, period, and phase of circadian clock genes.Circadian rhythms are generated by transcriptional negative feedback loops and require histone modifications and chromatin remodeling to ensure appropriate timing and amplitude of clock gene expression. Circadian modifications to histones are important for transcriptional initiation and feedback inhibition serving as signaling platform for chromatin-remodeling enzymes. Current models indicate circadian-regulated facultative heterochromatin (CRFH) is a conserved mechanism at clock genes in Neurospora, Drosophila, and mice. CRFH consists of antiphasic rhythms in activating and repressive modifications generating chromatin states that cycle between transcriptionally permissive and nonpermissive. There are rhythms in histone H3 lysine 9 and 27 acetylation (H3K9ac and H3K27ac) and histone H3 lysine 4 methylation (H3K4me) during activation; while deacetylation, histone H3 lysine 9 methylation (H3K9me) and heterochromatin protein 1 (HP1) are hallmarks of repression. ATP-dependent chromatin-remodeling enzymes control accessibility, nucleosome positioning/occupancy, and nuclear organization. In Neurospora, the rhythm in facultative heterochromatin is mediated by the frequency (frq) natural antisense transcript (NAT) qrf. While in mammals, histone deacetylases (HDACs), histone H3 lysine 9 methyltransferase (KMT1/SUV39), and components of nucleosome remodeling and deacetylase (NuRD) are part of the nuclear PERIOD complex (PER complex). Genomics efforts have found relationships among rhythmic chromatin modifications at clock-controlled genes (ccg) revealing circadian control of genome-wide chromatin states. There are also circadian clock-regulated lncRNAs with an emerging function that includes assisting in chromatin dynamics. In this review, we explore the connections between circadian clock, chromatin remodeling, lncRNAs, and CRFH and how these impact rhythmicity, amplitude, period, and phase of circadian clock genes. |
Author | Zhu, Qiaoqiao Belden, William J. |
Author_xml | – sequence: 1 givenname: Qiaoqiao surname: Zhu fullname: Zhu, Qiaoqiao – sequence: 2 givenname: William J. surname: Belden fullname: Belden, William J. email: beldenwj@sebs.rutgers.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31954735$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1L5TAUhsPgMF4_foAbuUtB2jnJadMEV3JxPkARZGYdkvRUc2kbTXoF_711rrqYha5eODzPWTx7bGeMIzF2xKHkwOX3dbkeXClAQAm8BNBf2IKD0oWSqHbYAkCIQiiUu2wv5zUA1Fipb2wXua6rBusFO72KPflNb9Pyhm7nnUIcl7FbrkLytg12XK7uUhzm-3jAvna2z3T4uvvs74-LP6tfxeX1z9-r88vCo5JTgZqcRpCuso2kTkukSjmnRW217jR1CpV1nZUCVYu25bwC4o1X0klHyuE-O9n-vU_xYUN5MkPInvrejhQ32YgKdYVc1s3nKFYCaylRzOjxK7pxA7XmPoXBpifz1mIG-BbwKeacqHtHOJiX3mZt5t7mpbcBbubes9P85_gw_Ws4JRv6D82zrUlzycdAyWQfaPTUhkR-Mm0MH9jPUdSXyw |
CitedBy_id | crossref_primary_10_1080_02713683_2024_2302545 crossref_primary_10_1016_j_tcb_2024_02_005 crossref_primary_10_1371_journal_pgen_1010649 crossref_primary_10_3390_ijms21228806 crossref_primary_10_1111_mec_17425 crossref_primary_10_1016_j_jare_2022_04_007 crossref_primary_10_1111_mec_17600 crossref_primary_10_3389_fncel_2024_1464595 crossref_primary_10_7554_eLife_85241 crossref_primary_10_1080_07420528_2022_2115922 crossref_primary_10_1093_nar_gkaf162 crossref_primary_10_1016_j_jmb_2020_05_004 crossref_primary_10_1042_BCJ20240139 crossref_primary_10_1039_c9mt00289h crossref_primary_10_1002_oby_23499 crossref_primary_10_1007_s00335_024_10050_7 crossref_primary_10_1007_s11154_022_09783_0 crossref_primary_10_1073_pnas_2203078119 crossref_primary_10_5334_jcr_219 |
Cites_doi | 10.1038/22118 10.1016/j.neuron.2004.07.018 10.1126/science.aao6891 10.1038/nature07756 10.1101/gad.1266805 10.1016/j.molcel.2014.01.028 10.1101/gad.285791.116 10.1038/351153a0 10.1074/jbc.M209294200 10.1091/mbc.e06-03-0232 10.1038/19323 10.1038/nrg2008 10.1038/sj.onc.1210611 10.1038/nsmb.1961 10.1016/j.tig.2017.04.004 10.1038/nature03354 10.1126/science.1163045 10.1093/emboj/20.18.5232 10.1073/pnas.95.10.5474 10.1042/BJ20060827 10.1371/journal.pgen.1002166 10.1371/journal.pgen.1005992 10.1128/MCB.01612-07 10.1016/S0092-8674(01)00504-9 10.1101/gad.1551707 10.1038/nature11233 10.1146/annurev.genet.36.042902.092433 10.1016/j.cell.2017.07.035 10.1126/science.1098014 10.1371/journal.pgen.1005105 10.1210/en.2011-1535 10.1038/nsmb.2746 10.1101/gad.13.18.2369 10.1016/S0092-8674(02)00825-5 10.1016/j.molcel.2007.09.011 10.1038/cr.2011.22 10.1126/science.1221592 10.1128/MCB.22.5.1298-1306.2002 10.1038/nature01314 10.1016/S0960-9822(03)00124-6 10.1126/science.8128246 10.1093/emboj/18.18.4961 10.1016/j.molcel.2005.11.021 10.1073/pnas.1418963111 10.1371/journal.pgen.1006732 10.1093/emboj/18.7.1923 10.1038/ng1738 10.1073/pnas.1406130112 10.1101/gad.1463506 10.1126/science.184.4139.868 10.1038/s41467-018-03916-3 10.1038/nsmb.1578 10.1016/j.molcel.2010.11.031 10.1371/journal.pgen.1003761 10.1146/annurev.neuro.23.1.713 10.1242/jcs.104.2.573 10.1038/nsmb.2474 10.1038/embor.2013.131 10.1016/S0092-8674(02)00722-5 10.1177/0748730415587407 10.1073/pnas.1408886111 10.1016/S0896-6273(00)80627-3 10.1038/nature01427 10.1101/gad.237081.113 10.1126/science.8171325 10.1074/jbc.M808220200 10.1016/S0092-8674(00)81440-3 10.1016/j.molcel.2015.07.019 10.1101/gad.1404406 10.1128/MCB.12.4.1621 10.1074/jbc.M603722200 10.1126/science.1181369 10.1016/j.cell.2008.07.002 10.1093/hmg/ddl046 10.1126/science.1196766 10.1038/nature01080 10.1038/38444 10.1073/pnas.95.26.15502 10.1016/j.molcel.2019.03.003 10.1016/j.cell.2014.06.050 10.1038/nrc2747 10.1038/nrg1882 10.1128/MCB.02339-06 10.1002/j.1460-2075.1988.tb02956.x 10.1126/science.1069473 10.1128/MCB.01777-08 10.1016/j.molcel.2011.04.020 10.1038/nature14443 10.1073/pnas.68.9.2112 10.18632/aging.100113 10.1016/0092-8674(85)90170-9 10.1126/science.280.5369.1599 10.1073/pnas.1421197112 10.1126/science.1147182 10.1534/g3.114.015446 10.1101/gad.507408 10.1101/gad.1883910 10.1016/j.cmet.2012.11.004 10.1038/nrg.2016.150 10.1038/380129a0 10.1038/566 10.1101/sqb.2011.76.011494 10.1016/S0092-8674(00)81063-6 10.1016/j.molcel.2007.01.010 10.1016/j.cell.2007.05.022 10.1186/s12864-019-5729-7 10.1371/journal.pgen.1005307 10.1038/nsmb.2480 10.1126/science.1107373 10.1074/jbc.M112.359935 10.1038/ng1745 10.1128/MCB.24.14.6278-6287.2004 10.1186/s12864-018-5170-3 10.1074/jbc.M311973200 10.1038/ng1278 10.1016/0092-8674(92)90519-I 10.1093/nar/gkx156 10.1038/nrc1072 10.1093/emboj/20.1.109 10.1126/science.1243417 10.1016/j.tig.2015.11.001 10.1016/S0092-8674(02)00654-2 10.1016/j.molcel.2009.06.025 10.1016/j.gde.2011.01.022 10.1007/s000180300001 10.1098/rstb.2003.1370 10.1126/science.270.5237.811 10.1038/nature11704 10.1371/journal.pgen.1000787 10.1074/jbc.M414010200 10.1038/nsmb.1595 10.1016/0092-8674(87)90576-9 10.1093/emboj/20.15.3967 10.1002/j.1460-2075.1994.tb06693.x 10.1016/j.cell.2014.03.008 10.1046/j.1365-2443.1999.00239.x 10.1101/gad.1432206 10.1038/35104508 10.1038/nsmb.2667 10.1038/nature13671 10.1016/j.molcel.2004.08.031 10.1016/j.cell.2017.07.042 10.1126/science.288.5468.1013 10.1371/journal.pgen.1000459 10.1016/j.molcel.2012.08.012 10.1002/(SICI)1521-1878(199808)20:8<615::AID-BIES4>3.0.CO;2-H 10.1126/science.1206022 10.1002/hep.24514 10.1038/326390a0 10.1126/science.286.5440.768 10.1016/j.cell.2005.10.023 10.1016/j.molcel.2010.04.005 10.1371/journal.pgen.1004599 10.1016/j.cell.2008.06.050 10.1038/srep13752 10.1016/S1097-2765(00)80299-3 10.1126/science.276.5313.763 10.1016/S0092-8674(01)00576-1 10.1126/science.1112009 10.1515/REVNEURO.2008.19.4-5.245 10.1371/journal.pbio.1000595 10.1083/jcb.201005160 10.1101/gad.312397.118 10.1093/oxfordjournals.jbchem.a021434 10.1016/S0092-8674(00)80245-7 10.1016/j.cell.2005.05.032 10.1101/gad.1099503 10.1016/j.cell.2015.03.025 10.1126/science.1074973 10.1126/science.1226339 10.1073/pnas.1315133110 10.1016/S0092-8674(00)81441-5 10.1128/MCB.25.8.3305-3316.2005 10.1016/0092-8674(92)90520-M 10.1073/pnas.1612917113 10.1101/gad.228536.113 10.1016/j.molcel.2017.05.029 10.1126/science.8128244 10.1038/nrg1656 10.1128/MCB.01864-08 10.1126/science.1237973 10.1371/journal.pbio.1001442 10.1016/S0955-0674(03)00013-9 10.1016/S0092-8674(00)80246-9 10.1371/journal.pcbi.0020016 10.1016/j.cell.2014.10.022 10.1016/j.tcb.2013.07.002 10.1126/science.1170803 10.1016/S0092-8674(00)80566-8 10.1016/j.cell.2006.03.033 10.1016/j.cell.2013.05.027 10.1371/journal.pone.0223803 10.1073/pnas.1800431115 10.1083/jcb.200703081 10.1016/j.cell.2004.12.012 10.1126/science.282.5393.1490 10.1016/j.molcel.2014.10.017 10.1016/j.bbrc.2014.07.138 10.1371/journal.pbio.0040031 10.1038/nn.3651 10.1146/annurev.genet.40.110405.090603 10.1016/j.cell.2005.06.034 |
ContentType | Journal Article |
Copyright | 2020 Copyright © 2020. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2020 – notice: Copyright © 2020. Published by Elsevier Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jmb.2020.01.009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1089-8638 |
EndPage | 3482 |
ExternalDocumentID | 31954735 10_1016_j_jmb_2020_01_009 S0022283620300395 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M -DZ -ET -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 85S 8P~ 9JM AAAJQ AABNK AACTN AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AAXUO ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABOCM ABPPZ ABUDA ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGEKW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CJTIS CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GX1 HLW HMG IH2 IHE J1W KOM LG5 LUGTX LX2 LZ5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPCBC SSI SSU SSZ T5K TWZ VQA WH7 XPP YQT ZMT ZU3 ~G- .55 .GJ 186 29L 3O- AAEDT AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRDE AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HVGLF HX~ HZ~ H~9 K-O MVM NEJ R2- RIG SBG SEW SIN SSH UQL VH1 WUQ X7M XJT XOL Y6R YYP ZGI ZKB ~KM CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c386t-39eb9306b4a76ef963e48bb925a99f9ef838abfa6238d3ad1140e17c86b6be8b3 |
IEDL.DBID | .~1 |
ISSN | 0022-2836 1089-8638 |
IngestDate | Tue Aug 05 10:21:02 EDT 2025 Fri Jul 11 10:39:01 EDT 2025 Wed Feb 19 02:29:02 EST 2025 Tue Jul 01 03:50:32 EDT 2025 Thu Apr 24 23:06:35 EDT 2025 Fri Feb 23 02:47:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | lncRNAs chromatin remodeling chromatin modifications aging circadian regulation |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2020. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c386t-39eb9306b4a76ef963e48bb925a99f9ef838abfa6238d3ad1140e17c86b6be8b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 31954735 |
PQID | 2342356632 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2439431657 proquest_miscellaneous_2342356632 pubmed_primary_31954735 crossref_primary_10_1016_j_jmb_2020_01_009 crossref_citationtrail_10_1016_j_jmb_2020_01_009 elsevier_sciencedirect_doi_10_1016_j_jmb_2020_01_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-29 |
PublicationDateYYYYMMDD | 2020-05-29 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of molecular biology |
PublicationTitleAlternate | J Mol Biol |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Pekovic-Vaughan, Gibbs, Yoshitane, Yang, Pathiranage, Guo (bib186) 2014; 28 Boque-Sastre, Soler, Oliveira-Mateos, Portela, Moutinho, Sayols (bib173) 2015; 112 Sancar, Ha, Yilmaz, Tesorero, Fisher, Brunner (bib109) 2015; 11 Park, Belden (bib86) 2018; 19 Shi, Lan, Matson, Mulligan, Whetstine, Cole (bib103) 2004; 119 Dunlap (bib6) 1999; 96 Etchegaray, Lee, Wade, Reppert (bib95) 2003; 421 Eckel-Mahan, Sassone-Corsi (bib182) 2009; 16 Li, Jackson, Simon, Fleharty, Gogol, Seidel (bib114) 2009; 284 Nam, Boo, Kim, Han, Choe, Kim (bib104) 2014; 53 Reischl, Kramer (bib107) 2015; 30 Azzalin, Reichenbach, Khoriauli, Giulotto, Lingner (bib198) 2007; 318 Belden, Lewis, Selker, Loros, Dunlap (bib75) 2011; 7 Belden, Larrondo, Froehlich, Shi, Chen, Loros (bib85) 2007; 21 Doi, Hirayama, Sassone-Corsi (bib124) 2006; 125 Menet, Pescatore, Rosbash (bib108) 2014; 28 Mattick (bib157) 2009; 5 Wijnen, Young (bib181) 2006; 40 Wang, Kettenbach, Gerber, Loros, Dunlap (bib31) 2014; 10 Cech, Steitz (bib153) 2014; 157 Sassone-Corsi (bib129) 2012; 153 Nakao, Sasaki (bib164) 1996; 120 Djebali, Davis, Merkel, Dobin, Lassmann, Mortazavi (bib155) 2012; 489 Zhao, Sifakis, Sumida, Millán-Ariño, Scholz, Svensson (bib148) 2015; 59 Cha, Zhou, Liu (bib142) 2013; 14 Zeng, Qian, Myers, Rosbash (bib39) 1996; 380 Nakahata, Sahar, Astarita, Kaluzova, Sassone-Corsi (bib128) 2009; 324 Zhu, Ramakrishnan, Park, Belden (bib101) 2019; 20 Sun, Feng, Everett, Bugge, Lazar (bib125) 2011; 76 Sato, Solanas, Peixoto, Bee, Symeonidi, Schmidt (bib204) 2017; 170 Katayama, Tomaru, Kasukawa, Waki, Nakanishi, Nakamura (bib154) 2005; 309 Mermet, Yeung, Hurni, Mauvoisin, Gustafson, Jouffe (bib151) 2018; 32 Wassenegger (bib89) 2005; 122 Baylies, Bargiello, Jackson, Young (bib21) 1987; 326 Rey, Cesbron, Rougemont, Reinke, Brunner, Naef (bib60) 2011; 9 Rodgers, Lerin, Haas, Gygi, Spiegelman, Puigserver (bib130) 2005; 434 Dubruille, Murad, Rosbash, Emery (bib144) 2009; 5 Yu, Zheng, Price, Hardin (bib41) 2009; 29 Vitaterna, King, Chang, Kornhauser, Lowrey, McDonald (bib11) 1994; 264 Saunders, Chue, Goebl, Craig, Clark, Powers (bib79) 1993; 104 Chen, Wen, Shie, Lo, Wo, Wang (bib196) 2014; 451 Sangoram, Saez, Antoch, Gekakis, Staknis, Whiteley (bib36) 1998; 21 Luger, Mäder, Richmond, Sargent, Richmond (bib61) 1997; 389 Liu, Dang, Matsu-ura, He, He, Hong (bib111) 2017; 67 He, Shu, Cheng, Chen, Wang, Liu (bib45) 2005; 280 Kwok, Li, Lei, Edery, Chiu (bib29) 2015; 11 Bannister, Kouzarides (bib65) 2011; 21 Blasco (bib195) 2005; 6 Rinn, Kertesz, Wang, Squazzo, Xu, Brugmann (bib167) 2007; 129 Ptitsyn, Zvonic, Conrad, Scott, Mynatt, Gimble (bib180) 2006; 2 Fan, Zhao, Joshi, Li, Zhang, Guo (bib176) 2017; 45 Greider, Blackburn (bib194) 1987; 51 Ivanova, Bonaduce, Ivanov, Klar (bib83) 1998; 19 Bartolomei, Zemel, Tilghman (bib165) 1991; 351 Park, Zhu, Mirek, Na, Raduwan, Anthony (bib197) 2019; 14 Tamaru, Hirayama, Isojima, Nagai, Norioka, Takamatsu (bib47) 2009; 16 Peek, Affinati, Ramsey, Kuo, Yu, Sena (bib134) 2013; 342 Crosthwaite, Dunlap, Loros (bib15) 1997; 276 Zhang, Lahens, Ballance, Hughes, Hogenesch (bib172) 2014; 111 Brownell, Zhou, Ranalli, Kobayashi, Edmondson, Roth (bib121) 1996; 84 Jacobs, Taverna, Zhang, Briggs, Li, Eissenberg (bib80) 2001; 20 Roenneberg, Merrow (bib4) 2003; 13 Sato, Yamada, Ukai, Baggs, Miraglia, Kobayashi (bib37) 2006; 38 Mercer, Mattick (bib156) 2013; 20 Belden, Loros, Dunlap (bib141) 2007; 25 Chang, Guarente (bib203) 2013; 153 Griffin, Staknis, Weitz (bib35) 1999; 286 Kornberg (bib62) 1974; 184 Grimaldi, Coiro, Filetici, Berge, Dobosy, Freitag (bib135) 2006; 17 Sehgal, Price, Man, Young (bib20) 1994; 263 Partch, Green, Takahashi (bib5) 2014; 24 Tschiersch, Hofmann, Krauss, Dorn, Korge, Reuter (bib78) 1994; 13 Gekakis, Saez, Delahaye-Brown, Myers, Sehgal, Young (bib38) 1995; 270 Yoshitane, Takao, Satomi, Du, Okano, Fukada (bib49) 2009; 29 Zhao, Sun, Erwin, Song, Lee (bib171) 2008; 322 Masri, Rigor, Cervantes, Ceglia, Sebastian, Xiao (bib133) 2014; 158 Dang, Cheng, Sun, Zhou, Liu (bib94) 2016; 30 Li, Moazed, Gygi (bib118) 2002; 277 Bordone, Motta, Picard, Robinson, Jhala, Apfeld (bib131) 2005; 4 Yu, Zheng, Houl, Dauwalder, Hardin (bib43) 2006; 20 Vaquero, Scher, Lee, Erdjument-Bromage, Tempst, Reinberg (bib202) 2004; 16 Dardente, Fortier, Martineau, Cermakian (bib50) 2007; 402 Kramer, Loros, Dunlap, Crosthwaite (bib57) 2003; 421 Hemann, Strong, Hao, Greider (bib193) 2001; 107 van der Horst, Muijtjens, Kobayashi, Takano, Kanno, Takao (bib19) 1999; 398 Konig, Zarnack, Rot, Curk, Kayikci, Zupan (bib166) 2011 Koike, Yoo, Huang, Kumar, Lee, Kim (bib58) 2012; 338 Dunlap, Loros, Liu, Crosthwaite (bib1) 1999; 4 Talora, Franchi, Linden, Ballario, Macino (bib54) 1999; 18 Xue, Wong, Moreno, Young, Côté, Wang (bib139) 1998; 2 Xu, Guo, Li, Zhang, Zhao, Fan (bib149) 2016; 12 Hurley, Dasgupta, Emerson, Zhou, Ringelberg, Knabe (bib110) 2014; 111 Brown, Hendrich, Rupert, Lafreniere, Xing, Lawrence (bib161) 1992; 71 Chan, Blackburn (bib190) 2004; 359 Mulligan, Yang, Di Stefano, Ji, Ouyang, Nishikawa (bib105) 2011; 42 Willis (bib178) 2008; 19 Kim, Ko, Yu, Hardin, Edery (bib42) 2007; 27 Aronson, Johnson, Loros, Dunlap (bib23) 1994; 263 Strahl, Grant, Briggs, Sun, Bone, Caldwell (bib113) 2002; 22 Narlikar, Fan, Kingston (bib69) 2002; 108 Li, Reinberg (bib67) 2011; 21 Konopka, Benzer (bib22) 1971; 68 Bass (bib3) 2012; 491 Yudkovsky, Logie, Hahn, Peterson (bib137) 1999; 13 Curtis, Seo, Westgate, Rudic, Smyth, Chakravarti (bib96) 2004; 279 Gai, Cao, Dong, Ding, Wei, Liu (bib143) 2017; 13 Preitner, Damiola, Lopez-Molina, Zakany, Duboule, Albrecht (bib25) 2002; 110 Grewal, Jia (bib123) 2007; 8 Ivana, Ohkawa, Imbalzano (bib70) 2006; 7 Deng, Norseen, Wiedmer, Riethman, Lieberman (bib199) 2009; 35 Azzi, Dallmann, Casserly, Rehrauer, Patrignani, Maier (bib140) 2014; 17 King, Takahashi (bib33) 2000; 23 Carrozza, Li, Florens, Suganuma, Swanson, Lee (bib115) 2005; 123 McHugh, Chen, Chow, Surka, Tran, McDonel (bib170) 2015; 521 Montgomery, Xu, Fire (bib87) 1998; 95 Schafmeier, Haase, Kaldi, Scholz, Fuchs, Brunner (bib46) 2005; 122 Montero, López-Silanes, Megías, Fraga, Castells-García Á, Blasco (bib200) 2018; 9 Chiou, Yang, Rashid, Ye, Selby, Sancar (bib52) 2016; 113 Allada, White, So, Hall, Rosbash (bib13) 1998; 93 Volpe, Kidner, Hall, Teng, Grewal, Martienssen (bib90) 2002; 297 Kondratov, Chernov, Kondratova, Gorbacheva, Gudkov, Antoch (bib48) 2003; 17 Santos-Rosa, Schneider, Bannister, Sherriff, Bernstein, Emre (bib98) 2002; 419 Antoch, Song, Chang, Vitaterna, Zhao, Wilsbacher (bib9) 1997; 89 Araki, Sasaki, Milbrandt (bib132) 2004; 305 Rutila, Suri, Le, So, Rosbash, Hall (bib14) 1998; 93 Moazed (bib152) 2009; 457 Palacios, Herranz, De Bonis, Velasco, Serrano, Blasco (bib201) 2010; 191 Fang, Everett, Jager, Briggs, Armour, Feng (bib175) 2014; 159 Kizer, Phatnani, Shibata, Hall, Greenleaf, Strahl (bib117) 2005; 25 Sahar, Sassone-Corsi (bib179) 2009; 9 Zhou, Liu, Hu, Zhang, Sun, Cha (bib112) 2013; 110 King, Zhao, Sangoram, Wilsbacher, Tanaka, Antoch (bib10) 1997; 89 Sijen, Fleenor, Simmer, Thijssen, Parrish, Timmons (bib88) 2001; 107 García-Cao, O'Sullivan, Peters, Jenuwein, Blasco (bib191) 2004; 36 Naruse, Oh-hashi, Iijima, Naruse, Yoshioka, Tanaka (bib119) 2004; 24 Plath, Mlynarczyk-Evans, Nusinow, Panning (bib163) 2002; 36 Durrin, Mann, Grunstein (bib63) 1992; 12 Simon (bib169) 2013; 21 Fischle, Wang, Allis (bib68) 2003; 15 Kondratov, Kondratova, Gorbacheva, Vykhovanets, Antoch (bib184) 2006; 20 Kim, Marhon, Zhang, Steger, Won, Lazar (bib150) 2018; 359 Fu, Lee (bib177) 2003; 3 Smith, Shilatifard (bib66) 2010; 40 Kuo, Allis (bib120) 1998; 20 Greider, Blackburn (bib189) 1985; 43 Joshi, Struhl (bib116) 2005; 20 Duong, Robles, Knutti, Weitz (bib27) 2011; 332 Darlington, Wager-Smith, Ceriani, Staknis, Gekakis, Steeves (bib7) 1998; 280 Ruesch, Ramakrishnan, Park, Li, Chong, Zaman (bib84) 2015; 5 Ripperger, Schibler (bib71) 2006; 38 Thresher, Vitaterna, Miyamoto, Kazantsev, Hsu, Petit (bib18) 1998; 282 Duong, Weitz (bib30) 2014; 21 Mattick, Makunin (bib158) 2006; 15 Jacobs, Khorasanizadeh (bib81) 2002; 295 Kim, Kwak, Weitz (bib32) 2014; 56 Vollmers, Schmitz, Nathanson, Yeo, Ecker, Panda (bib59) 2012; 16 Asher, Gatfield, Stratmann, Reinke, Dibner, Kreppel (bib127) 2008; 134 Raduwan, Isola, Belden (bib100) 2013; 288 Solanas, Peixoto, Perdiguero, Jardí, Ruiz-Bonilla, Datta (bib205) 2017; 170 Takahashi (bib2) 2017; 18 Denslow, Wade (bib138) 2007; 26 Brockdorff, Ashworth, Kay, McCabe, Norris, Cooper (bib160) 1992; 71 Workman, Kingston (bib64) 1998 Manzella, Bracci, Strafella, Staffolani, Ciarapica, Copertaro (bib183) 2015; 5 Menet, Abruzzi, Desrochers, Rodriguez, Rosbash (bib51) 2010; 24 Kondratov, Vykhovanets, Kondratova, Antoch (bib185) 2009; 1 Shearman, Sriram, Weaver, Maywood, Chaves, Zheng (bib8) 2000; 288 Padmanabhan, Robles, Westerling, Weitz (bib77) 2012; 337 Becker, Nicetto, Zaret (bib72) 2016; 32 Aagaard, Laible, Selenko, Schmid, Dorn, Schotta (bib82) 1999; 18 Wang, Kettenbach, Zhou, Loros, Dunlap (bib53) 2019; 74 Lee, Li, Gu, Xue, Crosthwaite, Pertsemlidis (bib92) 2010; 38 Panda, Antoch, Miller, Su, Schook, Straume (bib34) 2002; 109 Lieberman-Aiden, Van Berkum, Williams, Imakaev, Ragoczy, Telling (bib146) 2009; 326 Benetti, Gonzalo, Jaco, Schotta, Klatt, Jenuwein (bib192) 2007; 178 Hogenesch, Gu, Jain, Bradfield (bib12) 1998; 95 Etchegaray, Yang, DeBruyne, Peters, Weaver, Jenuwein (bib102) 2006; 281 Dang, Li, Guo, Xue, Liu (bib91) 2013; 9 Xue, Ye, Anson, Yang, Xiao, Kowbel (bib174) 2014; 514 He, Cha, He, Lee, Yang, Liu (bib44) 2006; 20 Deveson, Hardwick, Mercer, Mattick (bib159) 2017; 33 Zheng, Larkin, Albrecht, Sun, Sage, Eichele (bib16) 1999; 400 Cheng, He, Wang, Liu (bib26) 2005; 19 Trojer, Reinberg (bib73) 2007; 28 Chu, Zhang, Da Rocha, Flynn, Bharadwaj, Calabrese (bib168) 2015; 161 Sato, Panda, Miraglia, Reyes, Rudic, McNamara (bib24) 2004; 43 Cavalli, Misteli (bib145) 2013; 20 Early, Menon, Wyse, Cervantes-Silva, Zaslona, Carroll (bib187) 2018; 115 Li, Joska, Ruesch, Coster, Belden (bib93) 2015; 112 Tamaru, Selker (bib76) 2001; 414 Denault, Loros, Dunlap (bib40) 2001; 20 Tao, Chen, Shi, Guo, Xu, Liu (bib136) 2011; 54 Hebbes, Thorne, Crane-Robinson (bib122) 1988; 7 Cermakian, M Hurley (10.1016/j.jmb.2020.01.009_bib110) 2014; 111 Bartolomei (10.1016/j.jmb.2020.01.009_bib165) 1991; 351 Antoch (10.1016/j.jmb.2020.01.009_bib9) 1997; 89 Hogenesch (10.1016/j.jmb.2020.01.009_bib12) 1998; 95 Yu (10.1016/j.jmb.2020.01.009_bib41) 2009; 29 Kramer (10.1016/j.jmb.2020.01.009_bib57) 2003; 421 Shearman (10.1016/j.jmb.2020.01.009_bib8) 2000; 288 Kizer (10.1016/j.jmb.2020.01.009_bib117) 2005; 25 Denault (10.1016/j.jmb.2020.01.009_bib40) 2001; 20 Cech (10.1016/j.jmb.2020.01.009_bib153) 2014; 157 Partch (10.1016/j.jmb.2020.01.009_bib5) 2014; 24 Nakao (10.1016/j.jmb.2020.01.009_bib164) 1996; 120 Kondratov (10.1016/j.jmb.2020.01.009_bib48) 2003; 17 Narlikar (10.1016/j.jmb.2020.01.009_bib69) 2002; 108 Trojer (10.1016/j.jmb.2020.01.009_bib73) 2007; 28 Sahar (10.1016/j.jmb.2020.01.009_bib179) 2009; 9 Li (10.1016/j.jmb.2020.01.009_bib67) 2011; 21 Liu (10.1016/j.jmb.2020.01.009_bib111) 2017; 67 Lieberman-Aiden (10.1016/j.jmb.2020.01.009_bib146) 2009; 326 Bass (10.1016/j.jmb.2020.01.009_bib3) 2012; 491 Benetti (10.1016/j.jmb.2020.01.009_bib192) 2007; 178 Thresher (10.1016/j.jmb.2020.01.009_bib18) 1998; 282 Zhao (10.1016/j.jmb.2020.01.009_bib148) 2015; 59 Carrozza (10.1016/j.jmb.2020.01.009_bib115) 2005; 123 Simon (10.1016/j.jmb.2020.01.009_bib169) 2013; 21 Blasco (10.1016/j.jmb.2020.01.009_bib195) 2005; 6 Early (10.1016/j.jmb.2020.01.009_bib187) 2018; 115 Yoshitane (10.1016/j.jmb.2020.01.009_bib49) 2009; 29 Willis (10.1016/j.jmb.2020.01.009_bib178) 2008; 19 Nakahata (10.1016/j.jmb.2020.01.009_bib128) 2009; 324 Zafarullah (10.1016/j.jmb.2020.01.009_bib188) 2003; 60 Tamaru (10.1016/j.jmb.2020.01.009_bib76) 2001; 414 Allada (10.1016/j.jmb.2020.01.009_bib13) 1998; 93 Ivana (10.1016/j.jmb.2020.01.009_bib70) 2006; 7 Aagaard (10.1016/j.jmb.2020.01.009_bib82) 1999; 18 Eckel-Mahan (10.1016/j.jmb.2020.01.009_bib182) 2009; 16 Kuo (10.1016/j.jmb.2020.01.009_bib120) 1998; 20 Mattick (10.1016/j.jmb.2020.01.009_bib158) 2006; 15 Tao (10.1016/j.jmb.2020.01.009_bib136) 2011; 54 Strahl (10.1016/j.jmb.2020.01.009_bib113) 2002; 22 García-Cao (10.1016/j.jmb.2020.01.009_bib191) 2004; 36 Zhang (10.1016/j.jmb.2020.01.009_bib172) 2014; 111 Denslow (10.1016/j.jmb.2020.01.009_bib138) 2007; 26 Roenneberg (10.1016/j.jmb.2020.01.009_bib4) 2003; 13 Chan (10.1016/j.jmb.2020.01.009_bib190) 2004; 359 Kim (10.1016/j.jmb.2020.01.009_bib32) 2014; 56 Deng (10.1016/j.jmb.2020.01.009_bib199) 2009; 35 Wang (10.1016/j.jmb.2020.01.009_bib53) 2019; 74 Griffin (10.1016/j.jmb.2020.01.009_bib35) 1999; 286 Dang (10.1016/j.jmb.2020.01.009_bib94) 2016; 30 Aronson (10.1016/j.jmb.2020.01.009_bib23) 1994; 263 Sato (10.1016/j.jmb.2020.01.009_bib24) 2004; 43 Solanas (10.1016/j.jmb.2020.01.009_bib205) 2017; 170 Doi (10.1016/j.jmb.2020.01.009_bib124) 2006; 125 Belden (10.1016/j.jmb.2020.01.009_bib75) 2011; 7 Xu (10.1016/j.jmb.2020.01.009_bib149) 2016; 12 Saunders (10.1016/j.jmb.2020.01.009_bib79) 1993; 104 Zheng (10.1016/j.jmb.2020.01.009_bib16) 1999; 400 Jacobs (10.1016/j.jmb.2020.01.009_bib80) 2001; 20 Ivanova (10.1016/j.jmb.2020.01.009_bib83) 1998; 19 Dang (10.1016/j.jmb.2020.01.009_bib91) 2013; 9 Sijen (10.1016/j.jmb.2020.01.009_bib88) 2001; 107 Fan (10.1016/j.jmb.2020.01.009_bib176) 2017; 45 Tamaru (10.1016/j.jmb.2020.01.009_bib47) 2009; 16 Li (10.1016/j.jmb.2020.01.009_bib93) 2015; 112 Wang (10.1016/j.jmb.2020.01.009_bib31) 2014; 10 Bannister (10.1016/j.jmb.2020.01.009_bib65) 2011; 21 Darlington (10.1016/j.jmb.2020.01.009_bib7) 1998; 280 Hemann (10.1016/j.jmb.2020.01.009_bib193) 2001; 107 Etchegaray (10.1016/j.jmb.2020.01.009_bib102) 2006; 281 Azzalin (10.1016/j.jmb.2020.01.009_bib198) 2007; 318 Sehgal (10.1016/j.jmb.2020.01.009_bib20) 1994; 263 Raduwan (10.1016/j.jmb.2020.01.009_bib100) 2013; 288 Dardente (10.1016/j.jmb.2020.01.009_bib50) 2007; 402 Fu (10.1016/j.jmb.2020.01.009_bib177) 2003; 3 Greider (10.1016/j.jmb.2020.01.009_bib194) 1987; 51 Katada (10.1016/j.jmb.2020.01.009_bib97) 2010; 17 Naruse (10.1016/j.jmb.2020.01.009_bib119) 2004; 24 Masri (10.1016/j.jmb.2020.01.009_bib133) 2014; 158 Vitaterna (10.1016/j.jmb.2020.01.009_bib11) 1994; 264 Dunlap (10.1016/j.jmb.2020.01.009_bib1) 1999; 4 Stratmann (10.1016/j.jmb.2020.01.009_bib55) 2012; 48 Luger (10.1016/j.jmb.2020.01.009_bib61) 1997; 389 Wassenegger (10.1016/j.jmb.2020.01.009_bib89) 2005; 122 DiTacchio (10.1016/j.jmb.2020.01.009_bib106) 2011; 333 Vaquero (10.1016/j.jmb.2020.01.009_bib202) 2004; 16 Fischle (10.1016/j.jmb.2020.01.009_bib68) 2003; 15 Kondratov (10.1016/j.jmb.2020.01.009_bib185) 2009; 1 Mermet (10.1016/j.jmb.2020.01.009_bib151) 2018; 32 Panda (10.1016/j.jmb.2020.01.009_bib34) 2002; 109 Chu (10.1016/j.jmb.2020.01.009_bib168) 2015; 161 Crosthwaite (10.1016/j.jmb.2020.01.009_bib15) 1997; 276 Aguilar-Arnal (10.1016/j.jmb.2020.01.009_bib147) 2013; 20 Preitner (10.1016/j.jmb.2020.01.009_bib25) 2002; 110 Vollmers (10.1016/j.jmb.2020.01.009_bib59) 2012; 16 Dunlap (10.1016/j.jmb.2020.01.009_bib6) 1999; 96 Sato (10.1016/j.jmb.2020.01.009_bib204) 2017; 170 Moazed (10.1016/j.jmb.2020.01.009_bib152) 2009; 457 Joshi (10.1016/j.jmb.2020.01.009_bib116) 2005; 20 Sun (10.1016/j.jmb.2020.01.009_bib125) 2011; 76 Pekovic-Vaughan (10.1016/j.jmb.2020.01.009_bib186) 2014; 28 Greider (10.1016/j.jmb.2020.01.009_bib189) 1985; 43 Brownell (10.1016/j.jmb.2020.01.009_bib121) 1996; 84 Etchegaray (10.1016/j.jmb.2020.01.009_bib95) 2003; 421 Sancar (10.1016/j.jmb.2020.01.009_bib109) 2015; 11 Duong (10.1016/j.jmb.2020.01.009_bib27) 2011; 332 Rodgers (10.1016/j.jmb.2020.01.009_bib130) 2005; 434 Smith (10.1016/j.jmb.2020.01.009_bib66) 2010; 40 Dubruille (10.1016/j.jmb.2020.01.009_bib144) 2009; 5 Brown (10.1016/j.jmb.2020.01.009_bib28) 2005; 308 Nam (10.1016/j.jmb.2020.01.009_bib104) 2014; 53 Schafmeier (10.1016/j.jmb.2020.01.009_bib46) 2005; 122 Mercer (10.1016/j.jmb.2020.01.009_bib156) 2013; 20 Chen (10.1016/j.jmb.2020.01.009_bib196) 2014; 451 Brown (10.1016/j.jmb.2020.01.009_bib161) 1992; 71 Zeng (10.1016/j.jmb.2020.01.009_bib39) 1996; 380 Padmanabhan (10.1016/j.jmb.2020.01.009_bib77) 2012; 337 He (10.1016/j.jmb.2020.01.009_bib45) 2005; 280 Menet (10.1016/j.jmb.2020.01.009_bib51) 2010; 24 Volpe (10.1016/j.jmb.2020.01.009_bib90) 2002; 297 Li (10.1016/j.jmb.2020.01.009_bib114) 2009; 284 Chang (10.1016/j.jmb.2020.01.009_bib203) 2013; 153 Ripperger (10.1016/j.jmb.2020.01.009_bib71) 2006; 38 King (10.1016/j.jmb.2020.01.009_bib10) 1997; 89 McHugh (10.1016/j.jmb.2020.01.009_bib170) 2015; 521 Brockdorff (10.1016/j.jmb.2020.01.009_bib160) 1992; 71 Jacobs (10.1016/j.jmb.2020.01.009_bib81) 2002; 295 Fang (10.1016/j.jmb.2020.01.009_bib175) 2014; 159 Park (10.1016/j.jmb.2020.01.009_bib86) 2018; 19 Katayama (10.1016/j.jmb.2020.01.009_bib154) 2005; 309 Sangoram (10.1016/j.jmb.2020.01.009_bib36) 1998; 21 Rey (10.1016/j.jmb.2020.01.009_bib60) 2011; 9 Montgomery (10.1016/j.jmb.2020.01.009_bib87) 1998; 95 Tschiersch (10.1016/j.jmb.2020.01.009_bib78) 1994; 13 van der Horst (10.1016/j.jmb.2020.01.009_bib19) 1999; 398 Reischl (10.1016/j.jmb.2020.01.009_bib107) 2015; 30 Lee (10.1016/j.jmb.2020.01.009_bib92) 2010; 38 Konig (10.1016/j.jmb.2020.01.009_bib166) 2011 Mattick (10.1016/j.jmb.2020.01.009_bib157) 2009; 5 Takahashi (10.1016/j.jmb.2020.01.009_bib2) 2017; 18 Deveson (10.1016/j.jmb.2020.01.009_bib159) 2017; 33 Kondratov (10.1016/j.jmb.2020.01.009_bib184) 2006; 20 Zhou (10.1016/j.jmb.2020.01.009_bib112) 2013; 110 Cheng (10.1016/j.jmb.2020.01.009_bib26) 2005; 19 Konopka (10.1016/j.jmb.2020.01.009_bib22) 1971; 68 Durrin (10.1016/j.jmb.2020.01.009_bib63) 1992; 12 Asher (10.1016/j.jmb.2020.01.009_bib127) 2008; 134 Ptitsyn (10.1016/j.jmb.2020.01.009_bib180) 2006; 2 Menet (10.1016/j.jmb.2020.01.009_bib108) 2014; 28 Cermakian (10.1016/j.jmb.2020.01.009_bib17) 2001; 20 Becker (10.1016/j.jmb.2020.01.009_bib72) 2016; 32 Kim (10.1016/j.jmb.2020.01.009_bib42) 2007; 27 Djebali (10.1016/j.jmb.2020.01.009_bib155) 2012; 489 Bordone (10.1016/j.jmb.2020.01.009_bib131) 2005; 4 Nakahata (10.1016/j.jmb.2020.01.009_bib126) 2008; 134 Duong (10.1016/j.jmb.2020.01.009_bib30) 2014; 21 Mulligan (10.1016/j.jmb.2020.01.009_bib105) 2011; 42 Wijnen (10.1016/j.jmb.2020.01.009_bib181) 2006; 40 Araki (10.1016/j.jmb.2020.01.009_bib132) 2004; 305 Cavalli (10.1016/j.jmb.2020.01.009_bib145) 2013; 20 Curtis (10.1016/j.jmb.2020.01.009_bib96) 2004; 279 Hebbes (10.1016/j.jmb.2020.01.009_bib122) 1988; 7 Sassone-Corsi (10.1016/j.jmb.2020.01.009_bib129) 2012; 153 Santos-Rosa (10.1016/j.jmb.2020.01.009_bib98) 2002; 419 Workman (10.1016/j.jmb.2020.01.009_bib64) 1998 Xue (10.1016/j.jmb.2020.01.009_bib174) 2014; 514 King (10.1016/j.jmb.2020.01.009_bib33) 2000; 23 Azzi (10.1016/j.jmb.2020.01.009_bib140) 2014; 17 Koike (10.1016/j.jmb.2020.01.009_bib58) 2012; 338 Engreitz (10.1016/j.jmb.2020.01.009_bib162) 2013; 341 Rinn (10.1016/j.jmb.2020.01.009_bib167) 2007; 129 Grimaldi (10.1016/j.jmb.2020.01.009_bib135) 2006; 17 Belden (10.1016/j.jmb.2020.01.009_bib85) 2007; 21 Li (10.1016/j.jmb.2020.01.009_bib118) 2002; 277 Gekakis (10.1016/j.jmb.2020.01.009_bib38) 1995; 270 Palacios (10.1016/j.jmb.2020.01.009_bib201) 2010; 191 Le Martelot (10.1016/j.jmb.2020.01.009_bib99) 2012; 10 Yu (10.1016/j.jmb.2020.01.009_bib43) 2006; 20 Gai (10.1016/j.jmb.2020.01.009_bib143) 2017; 13 Grewal (10.1016/j.jmb.2020.01.009_bib123) 2007; 8 Belden (10.1016/j.jmb.2020.01.009_bib141) 2007; 25 Yudkovsky (10.1016/j.jmb.2020.01.009_bib137) 1999; 13 Peek (10.1016/j.jmb.2020.01.009_bib134) 2013; 342 Xue (10.1016/j.jmb.2020.01.009_bib139) 1998; 2 Kim (10.1016/j.jmb.2020.01.009_bib150) 2018; 359 Rutila (10.1016/j.jmb.2020.01.009_bib14) 1998; 93 Kornberg (10.1016/j.jmb.2020.01.009_bib62) 1974; 184 Baylies (10.1016/j.jmb.2020.01.009_bib21) 1987; 326 Montero (10.1016/j.jmb.2020.01.009_bib200) 2018; 9 Schafmeier (10.1016/j.jmb.2020.01.009_bib56) 2008; 22 Zhao (10.1016/j.jmb.2020.01.009_bib171) 2008; 322 Shi (10.1016/j.jmb.2020.01.009_bib103) 2004; 119 Kwok (10.1016/j.jmb.2020.01.009_bib29) 2015; 11 Plath (10.1016/j.jmb.2020.01.009_bib163) 2002; 36 Manzella (10.1016/j.jmb.2020.01.009_bib183) 2015; 5 Park (10.1016/j.jmb.2020.01.009_bib197) 2019; 14 He (10.1016/j.jmb.2020.01.009_bib44) 2006; 20 Sato (10.1016/j.jmb.2020.01.009_bib37) 2006; 38 Ruesch (10.1016/j.jmb.2020.01.009_bib84) 2015; 5 Taylor (10.1016/j.jmb.2020.01.009_bib74) 2008 |
References_xml | – volume: 17 start-page: 1921 year: 2003 end-page: 1932 ident: bib48 article-title: BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system publication-title: Genes Dev. – volume: 288 start-page: 1013 year: 2000 end-page: 1019 ident: bib8 article-title: Interacting molecular loops in the mammalian circadian clock publication-title: Science – volume: 159 start-page: 1140 year: 2014 end-page: 1152 ident: bib175 article-title: Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo publication-title: Cell – volume: 333 start-page: 1881 year: 2011 end-page: 1885 ident: bib106 article-title: Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock publication-title: Science – volume: 13 start-page: 3822 year: 1994 end-page: 3831 ident: bib78 article-title: The protein encoded by the Drosophila position-effect variegation suppressor gene Su (var) 3-9 combines domains of antagonistic regulators of homeotic gene complexes publication-title: EMBO J. – volume: 4 start-page: 1 year: 1999 end-page: 10 ident: bib1 article-title: Eukaryotic circadian systems: cycles in common publication-title: Genes Cells – volume: 29 start-page: 3675 year: 2009 end-page: 3686 ident: bib49 article-title: Roles of CLOCK phosphorylation in suppression of E-box-dependent transcription publication-title: Mol. Cell. Biol. – volume: 7 year: 2011 ident: bib75 article-title: CHD1 remodels chromatin and influences transient DNA methylation at the clock gene frequency publication-title: PLoS Genet. – volume: 451 start-page: 408 year: 2014 end-page: 414 ident: bib196 article-title: The circadian rhythm controls telomeres and telomerase activity publication-title: Biochem. Biophys. Res. Commun. – volume: 51 start-page: 887 year: 1987 end-page: 898 ident: bib194 article-title: The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity publication-title: Cell – volume: 93 start-page: 805 year: 1998 end-page: 814 ident: bib14 article-title: CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless publication-title: Cell – volume: 28 start-page: 1 year: 2007 end-page: 13 ident: bib73 article-title: Facultative heterochromatin: is there a distinctive molecular signature? publication-title: Mol. Cell – volume: 28 start-page: 8 year: 2014 end-page: 13 ident: bib108 article-title: CLOCK: BMAL1 is a pioneer-like transcription factor publication-title: Genes Dev. – volume: 5 start-page: 13752 year: 2015 ident: bib183 article-title: Circadian modulation of 8-oxoguanine DNA damage repair publication-title: Sci. Rep. – volume: 122 start-page: 13 year: 2005 end-page: 16 ident: bib89 article-title: The role of the RNAi machinery in heterochromatin formation publication-title: Cell – volume: 421 start-page: 177 year: 2003 ident: bib95 article-title: Rhythmic histone acetylation underlies transcription in the mammalian circadian clock publication-title: Nature – volume: 326 start-page: 289 year: 2009 end-page: 293 ident: bib146 article-title: Comprehensive mapping of long-range interactions reveals folding principles of the human genome publication-title: Science – volume: 359 start-page: 109 year: 2004 end-page: 122 ident: bib190 article-title: Telomeres and telomerase publication-title: Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. – volume: 288 start-page: 8380 year: 2013 end-page: 8390 ident: bib100 article-title: Methylation of histone H3 on lysine 4 by the lysine methyltransferase SET1 protein is needed for normal clock gene expression publication-title: J. Biol. Chem. – volume: 129 start-page: 1311 year: 2007 end-page: 1323 ident: bib167 article-title: Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs publication-title: Cell – volume: 341 start-page: 1237973 year: 2013 ident: bib162 article-title: The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome publication-title: Science – volume: 9 start-page: 1548 year: 2018 ident: bib200 article-title: TERRA recruitment of polycomb to telomeres is essential for histone trymethylation marks at telomeric heterochromatin publication-title: Nat. Commun. – year: 1998 ident: bib64 article-title: Alteration of nucleosome structure as a mechanism of transcriptional regulation publication-title: Annual Reviews 4139 El Camino Way, PO Box 10139, Palo Alto, CA 94303-0139, USA – volume: 38 start-page: 803 year: 2010 end-page: 814 ident: bib92 article-title: Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi publication-title: Mol. Cell – volume: 12 start-page: 1621 year: 1992 end-page: 1629 ident: bib63 article-title: Nucleosome loss activates CUP1 and HIS3 promoters to fully induced levels in the yeast Saccharomyces cerevisiae publication-title: Mol. Cell. Biol. – volume: 48 start-page: 277 year: 2012 end-page: 287 ident: bib55 article-title: Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome publication-title: Mol. Cell – volume: 16 start-page: 93 year: 2004 end-page: 105 ident: bib202 article-title: Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin publication-title: Mol. Cell – volume: 342 start-page: 1243417 year: 2013 ident: bib134 article-title: Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice publication-title: Science – volume: 5 year: 2009 ident: bib157 article-title: The genetic signatures of noncoding RNAs publication-title: PLoS Genet. – volume: 36 start-page: 94 year: 2004 ident: bib191 article-title: Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases publication-title: Nat. Genet. – volume: 9 start-page: 886 year: 2009 ident: bib179 article-title: Metabolism and cancer: the circadian clock connection publication-title: Nat. Rev. Cancer – volume: 170 start-page: 678 year: 2017 end-page: 692 ident: bib205 article-title: Aged stem cells reprogram their daily rhythmic functions to adapt to stress publication-title: Cell – volume: 284 start-page: 7970 year: 2009 end-page: 7976 ident: bib114 article-title: Histone H3 lysine 36 dimethylation (H3K36me2) is sufficient to recruit the Rpd3s histone deacetylase complex and to repress spurious transcription publication-title: J. Biol. Chem. – volume: 20 start-page: 2552 year: 2006 end-page: 2565 ident: bib44 article-title: CKI and CKII mediate the FREQUENCY-dependent phosphorylation of the WHITE COLLAR complex to close the publication-title: Genes Dev. – volume: 17 start-page: 1414 year: 2010 ident: bib97 article-title: The histone methyltransferase MLL1 permits the oscillation of circadian gene expression publication-title: Nat. Struct. Mol. Biol. – volume: 20 start-page: 723 year: 2006 end-page: 733 ident: bib43 article-title: PER-dependent rhythms in CLK phosphorylation and E-box binding regulate circadian transcription publication-title: Genes Dev. – volume: 309 start-page: 1564 year: 2005 end-page: 1566 ident: bib154 article-title: Antisense transcription in the mammalian transcriptome publication-title: Science – volume: 9 year: 2011 ident: bib60 article-title: Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver publication-title: PLoS Biol. – volume: 305 start-page: 1010 year: 2004 end-page: 1013 ident: bib132 article-title: Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration publication-title: Science – volume: 104 start-page: 573 year: 1993 end-page: 582 ident: bib79 article-title: Molecular cloning of a human homologue of Drosophila heterochromatin protein HP1 using anti-centromere autoantibodies with anti-chromo specificity publication-title: J. Cell Sci. – volume: 337 start-page: 599 year: 2012 end-page: 602 ident: bib77 article-title: Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex publication-title: Science – volume: 153 start-page: 1 year: 2012 end-page: 5 ident: bib129 article-title: Minireview: NAD+, a circadian metabolite with an epigenetic twist publication-title: Endocrinology – volume: 158 start-page: 659 year: 2014 end-page: 672 ident: bib133 article-title: Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism publication-title: Cell – volume: 112 start-page: 4357 year: 2015 end-page: 4362 ident: bib93 article-title: The frequency natural antisense transcript first promotes, then represses, frequency gene expression via facultative heterochromatin publication-title: Proc. Natl. Acad. Sci. – volume: 332 start-page: 1436 year: 2011 end-page: 1439 ident: bib27 article-title: A molecular mechanism for circadian clock negative feedback publication-title: Science – volume: 7 start-page: 461 year: 2006 ident: bib70 article-title: Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers publication-title: Nat. Rev. Genet. – volume: 21 start-page: 126 year: 2014 end-page: 132 ident: bib30 article-title: Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes publication-title: Nat. Struct. Mol. Biol. – volume: 59 start-page: 984 year: 2015 end-page: 997 ident: bib148 article-title: PARP1-and CTCF-mediated interactions between active and repressed chromatin at the lamina promote oscillating transcription publication-title: Mol. Cell – volume: 414 start-page: 277 year: 2001 end-page: 283 ident: bib76 article-title: A histone H3 methyltransferase controls DNA methylation in publication-title: Nature – volume: 359 start-page: 1274 year: 2018 end-page: 1277 ident: bib150 article-title: Rev-erbα dynamically modulates chromatin looping to control circadian gene transcription publication-title: Science – volume: 32 start-page: 29 year: 2016 end-page: 41 ident: bib72 article-title: H3K9me3-dependent heterochromatin: barrier to cell fate changes publication-title: Trends Genet. – volume: 25 start-page: 3305 year: 2005 end-page: 3316 ident: bib117 article-title: A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation publication-title: Mol. Cell. Biol. – volume: 96 start-page: 271 year: 1999 end-page: 290 ident: bib6 article-title: Molecular bases for circadian clocks publication-title: Cell – volume: 16 start-page: 833 year: 2012 end-page: 845 ident: bib59 article-title: Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome publication-title: Cell Metabol. – volume: 21 start-page: 381 year: 2011 end-page: 395 ident: bib65 article-title: Regulation of chromatin by histone modifications publication-title: Cell Res. – volume: 43 start-page: 527 year: 2004 end-page: 537 ident: bib24 article-title: A functional genomics strategy reveals Rora as a component of the mammalian circadian clock publication-title: Neuron – volume: 76 start-page: 49 year: 2011 end-page: 55 ident: bib125 article-title: Circadian epigenomic remodeling and hepatic lipogenesis: lessons from HDAC3 publication-title: Cold Spring Harbor Symp. Quant. Biol. – volume: 19 start-page: 777 year: 2018 ident: bib86 article-title: Long non-coding RNAs have age-dependent diurnal expression that coincides with age-related changes in genome-wide facultative heterochromatin publication-title: BMC Genomics – volume: 53 start-page: 791 year: 2014 end-page: 805 ident: bib104 article-title: Phosphorylation of LSD1 by PKCα is crucial for circadian rhythmicity and phase resetting publication-title: Mol. Cell – volume: 5 year: 2009 ident: bib144 article-title: A constant light-genetic screen identifies KISMET as a regulator of circadian photoresponses publication-title: PLoS Genet. – volume: 24 start-page: 6278 year: 2004 end-page: 6287 ident: bib119 article-title: Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation publication-title: Mol. Cell. Biol. – volume: 7 start-page: 1395 year: 1988 end-page: 1402 ident: bib122 article-title: A direct link between core histone acetylation and transcriptionally active chromatin publication-title: EMBO J. – volume: 93 start-page: 791 year: 1998 end-page: 804 ident: bib13 article-title: A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless publication-title: Cell – volume: 326 start-page: 390 year: 1987 end-page: 392 ident: bib21 article-title: Changes in abundance or structure of the per gene product can alter periodicity of the Drosophila clock publication-title: Nature – volume: 161 start-page: 404 year: 2015 end-page: 416 ident: bib168 article-title: Systematic discovery of Xist RNA binding proteins publication-title: Cell – volume: 120 start-page: 467 year: 1996 end-page: 473 ident: bib164 article-title: Genomic imprinting: significance in development and diseases and the molecular mechanisms publication-title: J. Biochem. – volume: 110 start-page: E4867 year: 2013 end-page: E4874 ident: bib112 article-title: Suppression of WC-independent frequency transcription by RCO-1 is essential for Neurospora circadian clock publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 40 start-page: 409 year: 2006 end-page: 448 ident: bib181 article-title: Interplay of circadian clocks and metabolic rhythms publication-title: Annu. Rev. Genet. – volume: 11 year: 2015 ident: bib109 article-title: Combinatorial control of light induced chromatin remodeling and gene activation in Neurospora publication-title: PLoS Genet. – volume: 42 start-page: 689 year: 2011 end-page: 699 ident: bib105 article-title: A SIRT1-LSD1 corepressor complex regulates Notch target gene expression and development publication-title: Mol. Cell – volume: 30 start-page: 2417 year: 2016 end-page: 2432 ident: bib94 article-title: Antisense transcription licenses nascent transcripts to mediate transcriptional gene silencing publication-title: Genes Dev. – volume: 263 start-page: 1603 year: 1994 end-page: 1606 ident: bib20 article-title: Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless publication-title: Science – volume: 263 start-page: 1578 year: 1994 end-page: 1584 ident: bib23 article-title: Negative feedback defining a circadian clock: autoregulation of the clock gene publication-title: Science – volume: 10 year: 2014 ident: bib31 article-title: Neurospora WC-1 recruits SWI/SNF to remodel frequency and initiate a circadian cycle publication-title: PLoS Genet. – volume: 40 start-page: 689 year: 2010 end-page: 701 ident: bib66 article-title: The chromatin signaling pathway: diverse mechanisms of recruitment of histone-modifying enzymes and varied biological outcomes publication-title: Mol. Cell – volume: 22 start-page: 3397 year: 2008 end-page: 3402 ident: bib56 article-title: Circadian activity and abundance rhythms of the Neurospora clock transcription factor WCC associated with rapid nucleo–cytoplasmic shuttling publication-title: Genes Dev. – volume: 21 start-page: 1101 year: 1998 end-page: 1113 ident: bib36 article-title: Mammalian circadian autoregulatory loop: a timeless ortholog and mPer1 interact and negatively regulate CLOCK-BMAL1-induced transcription publication-title: Neuron – volume: 115 start-page: E8460 year: 2018 end-page: E8468 ident: bib187 article-title: Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2 publication-title: Proc. Natl. Acad. Sci. – volume: 29 start-page: 1452 year: 2009 end-page: 1458 ident: bib41 article-title: DOUBLETIME plays a noncatalytic role to mediate CLOCK phosphorylation and repress CLOCK-dependent transcription within the Drosophila circadian clock publication-title: Mol. Cell. Biol. – volume: 18 start-page: 164 year: 2017 ident: bib2 article-title: Transcriptional architecture of the mammalian circadian clock publication-title: Nat. Rev. Genet. – volume: 125 start-page: 497 year: 2006 end-page: 508 ident: bib124 article-title: Circadian regulator CLOCK is a histone acetyltransferase publication-title: Cell – volume: 264 start-page: 719 year: 1994 end-page: 725 ident: bib11 article-title: Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior publication-title: Science – volume: 23 start-page: 713 year: 2000 end-page: 742 ident: bib33 article-title: Molecular genetics of circadian rhythms in mammals publication-title: Annu. Rev. Neurosci. – volume: 28 start-page: 548 year: 2014 end-page: 560 ident: bib186 article-title: The circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant defense pathway to modulate pulmonary fibrosis publication-title: Genes Dev. – volume: 38 start-page: 312 year: 2006 ident: bib37 article-title: Feedback repression is required for mammalian circadian clock function publication-title: Nat. Genet. – volume: 21 start-page: 5. 1 year: 2013 end-page: 5. 16 ident: bib169 article-title: Capture hybridization analysis of RNA targets (CHART) publication-title: Curr. Protoc. Mol. Biol. – volume: 282 start-page: 1490 year: 1998 end-page: 1494 ident: bib18 article-title: Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses publication-title: Science – volume: 17 start-page: 4576 year: 2006 end-page: 4583 ident: bib135 article-title: The Neurospora crassa White Collar-1 dependent blue light response requires acetylation of histone H3 lysine 14 by NGF-1 publication-title: Mol. Biol. Cell – volume: 112 start-page: 5785 year: 2015 end-page: 5790 ident: bib173 article-title: Head-to-head antisense transcription and R-loop formation promotes transcriptional activation publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 434 start-page: 113 year: 2005 ident: bib130 article-title: Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1 publication-title: Nature – volume: 30 start-page: 291 year: 2015 end-page: 301 ident: bib107 article-title: Fbxl11 is a novel negative element of the mammalian circadian clock publication-title: J. Biol. Rhythm. – volume: 134 start-page: 329 year: 2008 end-page: 340 ident: bib126 article-title: The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control publication-title: Cell – volume: 32 start-page: 347 year: 2018 end-page: 358 ident: bib151 article-title: Clock-dependent chromatin topology modulates circadian transcription and behavior publication-title: Genes Dev. – volume: 457 start-page: 413 year: 2009 end-page: 420 ident: bib152 article-title: Small RNAs in transcriptional gene silencing and genome defence publication-title: Nature – volume: 67 start-page: 203 year: 2017 end-page: 213 ident: bib111 article-title: DNA replication is required for circadian clock function by regulating rhythmic nucleosome composition publication-title: Mol. Cell – volume: 280 start-page: 17526 year: 2005 end-page: 17532 ident: bib45 article-title: Light-independent phosphorylation of WHITE COLLAR-1 regulates its function in the Neurospora circadian negative feedback loop publication-title: J. Biol. Chem. – volume: 276 start-page: 763 year: 1997 end-page: 769 ident: bib15 article-title: and publication-title: Science – volume: 20 start-page: 1206 year: 2013 ident: bib147 article-title: Cycles in spatial and temporal chromosomal organization driven by the circadian clock publication-title: Nat. Struct. Mol. Biol. – volume: 191 start-page: 1299 year: 2010 end-page: 1313 ident: bib201 article-title: SIRT1 contributes to telomere maintenance and augments global homologous recombination publication-title: J. Cell Biol. – volume: 12 year: 2016 ident: bib149 article-title: Long-range chromosome interactions mediated by cohesin shape circadian gene expression publication-title: PLoS Genet. – volume: 71 start-page: 515 year: 1992 end-page: 526 ident: bib160 article-title: The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus publication-title: Cell – year: 2011 ident: bib166 article-title: iCLIP-transcriptome-wide mapping of protein-RNA interactions with individual nucleotide resolution publication-title: J. Vis. Exp. (JoVE) – volume: 20 start-page: 1868 year: 2006 end-page: 1873 ident: bib184 article-title: Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock publication-title: Genes Dev. – volume: 24 start-page: 358 year: 2010 end-page: 367 ident: bib51 article-title: Dynamic PER repression mechanisms in the Drosophila circadian clock: from on-DNA to off-DNA publication-title: Genes Dev. – volume: 134 start-page: 317 year: 2008 end-page: 328 ident: bib127 article-title: SIRT1 regulates circadian clock gene expression through PER2 deacetylation publication-title: Cell – volume: 184 start-page: 868 year: 1974 end-page: 871 ident: bib62 article-title: Chromatin structure: a repeating unit of histones and DNA publication-title: Science – volume: 178 start-page: 925 year: 2007 end-page: 936 ident: bib192 article-title: Suv4-20h deficiency results in telomere elongation and derepression of telomere recombination publication-title: J. Cell Biol. – volume: 20 start-page: 615 year: 1998 end-page: 626 ident: bib120 article-title: Roles of histone acetyltransferases and deacetylases in gene regulation publication-title: Bioessays – volume: 318 start-page: 798 year: 2007 end-page: 801 ident: bib198 article-title: Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends publication-title: Science – volume: 14 start-page: 923 year: 2013 end-page: 930 ident: bib142 article-title: CATP is a critical component of the Neurospora circadian clock by regulating the nucleosome occupancy rhythm at the frequency locus publication-title: EMBO Rep. – volume: 27 start-page: 5014 year: 2007 end-page: 5028 ident: bib42 article-title: A DOUBLETIME kinase binding domain on the Drosophila PERIOD protein is essential for its hyperphosphorylation, transcriptional repression, and circadian clock function publication-title: Mol. Cell. Biol. – volume: 45 start-page: 5720 year: 2017 end-page: 5738 ident: bib176 article-title: A class of circadian long non-coding RNAs mark enhancers modulating long-range circadian gene regulation publication-title: Nucleic Acids Res. – volume: 400 start-page: 169 year: 1999 end-page: 173 ident: bib16 article-title: The mPer2 gene encodes a functional component of the mammalian circadian clock publication-title: Nature – volume: 20 start-page: 290 year: 2013 ident: bib145 article-title: Functional implications of genome topology publication-title: Nat. Struct. Mol. Biol. – volume: 153 start-page: 1448 year: 2013 end-page: 1460 ident: bib203 article-title: SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging publication-title: Cell – volume: 9 year: 2013 ident: bib91 article-title: Convergent transcription induces dynamic DNA methylation at disiRNA loci publication-title: PLoS Genet. – volume: 14 year: 2019 ident: bib197 article-title: BMAL1 associates with chromosome ends to control rhythms in TERRA and telomeric heterochromatin publication-title: PLoS One – volume: 514 start-page: 650 year: 2014 ident: bib174 article-title: Transcriptional interference by antisense RNA is required for circadian clock function publication-title: Nature – volume: 15 start-page: R17 year: 2006 end-page: R29 ident: bib158 article-title: Non-coding RNA publication-title: Hum. Mol. Genet. – volume: 107 start-page: 465 year: 2001 end-page: 476 ident: bib88 article-title: On the role of RNA amplification in dsRNA-triggered gene silencing publication-title: Cell – volume: 122 start-page: 235 year: 2005 end-page: 246 ident: bib46 article-title: Transcriptional feedback of publication-title: Cell – volume: 4 start-page: e31 year: 2005 ident: bib131 article-title: Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells publication-title: PLoS Biol. – volume: 280 start-page: 1599 year: 1998 end-page: 1603 ident: bib7 article-title: Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim publication-title: Science – volume: 68 start-page: 2112 year: 1971 end-page: 2116 ident: bib22 article-title: Clock mutants of Drosophila melanogaster publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 56 start-page: 738 year: 2014 end-page: 748 ident: bib32 article-title: Specificity in circadian clock feedback from targeted reconstitution of the NuRD corepressor publication-title: Mol. Cell – volume: 119 start-page: 941 year: 2004 end-page: 953 ident: bib103 article-title: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1 publication-title: Cell – volume: 89 start-page: 655 year: 1997 end-page: 667 ident: bib9 article-title: Functional identification of the mouse circadian Clock gene by transgenic BAC rescue publication-title: Cell – volume: 8 start-page: 35 year: 2007 ident: bib123 article-title: Heterochromatin revisited publication-title: Nat. Rev. Genet. – volume: 20 start-page: 3967 year: 2001 end-page: 3974 ident: bib17 article-title: Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene publication-title: EMBO J. – volume: 13 start-page: 2369 year: 1999 end-page: 2374 ident: bib137 article-title: Recruitment of the SWI/SNF chromatin remodeling complex by transcriptional activators publication-title: Genes Dev. – volume: 322 start-page: 750 year: 2008 end-page: 756 ident: bib171 article-title: Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome publication-title: Science – volume: 286 start-page: 768 year: 1999 end-page: 771 ident: bib35 article-title: Light-independent role of CRY1 and CRY2 in the mammalian circadian clock publication-title: Science – volume: 10 year: 2012 ident: bib99 article-title: Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles publication-title: PLoS Biol. – volume: 111 start-page: 16995 year: 2014 end-page: 17002 ident: bib110 article-title: Analysis of clock-regulated genes in Neurospora reveals widespread posttranscriptional control of metabolic potential publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 15 start-page: 172 year: 2003 end-page: 183 ident: bib68 article-title: Histone and chromatin cross-talk publication-title: Curr. Opin. Cell Biol. – volume: 11 year: 2015 ident: bib29 article-title: The catalytic and non-catalytic functions of the Brahma chromatin-remodeling protein collaborate to fine-tune circadian transcription in Drosophila publication-title: PLoS Genet. – volume: 35 start-page: 403 year: 2009 end-page: 413 ident: bib199 article-title: TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres publication-title: Mol. Cell – volume: 295 start-page: 2080 year: 2002 end-page: 2083 ident: bib81 article-title: Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail publication-title: Science – volume: 89 start-page: 641 year: 1997 end-page: 653 ident: bib10 article-title: Positional cloning of the mouse circadian clock gene publication-title: Cell – volume: 2 start-page: 851 year: 1998 end-page: 861 ident: bib139 article-title: NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities publication-title: Mol. Cell – volume: 402 start-page: 525 year: 2007 end-page: 536 ident: bib50 article-title: Cryptochromes impair phosphorylation of transcriptional activators in the clock: a general mechanism for circadian repression publication-title: Biochem. J. – volume: 308 start-page: 693 year: 2005 end-page: 696 ident: bib28 article-title: PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator publication-title: Science – volume: 108 start-page: 475 year: 2002 end-page: 487 ident: bib69 article-title: Cooperation between complexes that regulate chromatin structure and transcription publication-title: Cell – volume: 157 start-page: 77 year: 2014 end-page: 94 ident: bib153 article-title: The noncoding RNA revolution—trashing old rules to forge new ones publication-title: Cell – volume: 20 start-page: 300 year: 2013 end-page: 307 ident: bib156 article-title: Structure and function of long noncoding RNAs in epigenetic regulation publication-title: Nat. Struct. Mol. Biol. – volume: 71 start-page: 527 year: 1992 end-page: 542 ident: bib161 article-title: The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus publication-title: Cell – volume: 28 start-page: 4642 year: 2008 end-page: 4652 ident: bib74 article-title: Rhythmic E-box binding by CLK-CYC controls daily cycles in per and tim transcription and chromatin modifications publication-title: Mol. Cell. Biol. – volume: 398 start-page: 627 year: 1999 end-page: 630 ident: bib19 article-title: Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms publication-title: Nature – volume: 109 start-page: 307 year: 2002 end-page: 320 ident: bib34 article-title: Coordinated transcription of key pathways in the mouse by the circadian clock publication-title: Cell – volume: 43 start-page: 405 year: 1985 end-page: 413 ident: bib189 article-title: Identification of a specific telomere terminal transferase activity in Tetrahymena extracts publication-title: Cell – volume: 16 start-page: 446 year: 2009 end-page: 448 ident: bib47 article-title: CK2alpha phosphorylates BMAL1 to regulate the mammalian clock publication-title: Nat. Struct. Mol. Biol. – volume: 18 start-page: 1923 year: 1999 end-page: 1938 ident: bib82 article-title: Functional mammalian homologues of the Drosophila PEV-modifier Su (var) 3-9 encode centromere-associated proteins which complex with the heterochromatin component M31 publication-title: EMBO J. – volume: 419 start-page: 407 year: 2002 ident: bib98 article-title: Active genes are tri-methylated at K4 of histone H3 publication-title: Nature – volume: 270 start-page: 811 year: 1995 end-page: 815 ident: bib38 article-title: Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL publication-title: Science – volume: 19 start-page: 234 year: 2005 end-page: 241 ident: bib26 article-title: Regulation of the publication-title: Genes Dev. – volume: 297 start-page: 1833 year: 2002 end-page: 1837 ident: bib90 article-title: Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi publication-title: Science – volume: 84 start-page: 843 year: 1996 end-page: 851 ident: bib121 article-title: Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation publication-title: Cell – volume: 26 start-page: 5433 year: 2007 ident: bib138 article-title: The human Mi-2/NuRD complex and gene regulation publication-title: Oncogene – volume: 489 start-page: 101 year: 2012 end-page: 108 ident: bib155 article-title: Landscape of transcription in human cells publication-title: Nature – volume: 6 start-page: 611 year: 2005 ident: bib195 article-title: Telomeres and human disease: ageing, cancer and beyond publication-title: Nat. Rev. Genet. – volume: 111 start-page: 16219 year: 2014 end-page: 16224 ident: bib172 article-title: A circadian gene expression atlas in mammals: implications for biology and medicine publication-title: Proc. Natl. Acad. Sci. – volume: 19 start-page: 192 year: 1998 ident: bib83 article-title: The chromo and SET domains of the Clr4 protein are essential for silencing in fission yeast publication-title: Nat. Genet. – volume: 2 start-page: e16 year: 2006 ident: bib180 article-title: Circadian clocks are resounding in peripheral tissues publication-title: PLoS Comput. Biol. – volume: 22 start-page: 1298 year: 2002 end-page: 1306 ident: bib113 article-title: Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression publication-title: Mol. Cell. Biol. – volume: 13 year: 2017 ident: bib143 article-title: Transcriptional repression of frequency by the IEC-1-INO80 complex is required for normal Neurospora circadian clock function publication-title: PLoS Genet. – volume: 16 start-page: 462 year: 2009 end-page: 467 ident: bib182 article-title: Metabolism control by the circadian clock and vice versa publication-title: Nat. Struct. Mol. Biol. – volume: 491 start-page: 348 year: 2012 ident: bib3 article-title: Circadian topology of metabolism publication-title: Nature – volume: 17 start-page: 377 year: 2014 ident: bib140 article-title: Circadian behavior is light-reprogrammed by plastic DNA methylation publication-title: Nat. Neurosci. – volume: 1 start-page: 979 year: 2009 ident: bib185 article-title: Antioxidant N-acetyl-L-cysteine ameliorates symptoms of premature aging associated with the deficiency of the circadian protein BMAL1 publication-title: Aging (Albany NY) – volume: 113 start-page: E6072 year: 2016 end-page: E6079 ident: bib52 article-title: Mammalian Period represses and de-represses transcription by displacing CLOCK-BMAL1 from promoters in a Cryptochrome-dependent manner publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 110 start-page: 251 year: 2002 end-page: 260 ident: bib25 article-title: The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator publication-title: Cell – volume: 38 start-page: 369 year: 2006 ident: bib71 article-title: Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions publication-title: Nat. Genet. – volume: 324 start-page: 654 year: 2009 end-page: 657 ident: bib128 article-title: Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1 publication-title: Science – volume: 107 start-page: 67 year: 2001 end-page: 77 ident: bib193 article-title: The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability publication-title: Cell – volume: 20 start-page: 350 year: 2019 ident: bib101 article-title: Histone H3 lysine 4 methyltransferase is required for facultative heterochromatin at specific loci publication-title: BMC Genomics – volume: 60 start-page: 6 year: 2003 end-page: 20 ident: bib188 article-title: Molecular mechanisms of N-acetylcysteine actions publication-title: Cell. Mol. Life Sci. (CMLS) – volume: 13 start-page: R198 year: 2003 end-page: R207 ident: bib4 article-title: The network of time: understanding the molecular circadian system publication-title: Curr. Biol. – volume: 21 start-page: 175 year: 2011 end-page: 186 ident: bib67 article-title: Chromatin higher-order structures and gene regulation publication-title: Curr. Opin. Genet. Dev. – volume: 5 start-page: 93 year: 2015 end-page: 101 ident: bib84 article-title: The histone H3 lysine 9 methyltransferase DIM-5 modifies chromatin at frequency and represses light-activated gene expression publication-title: G3: Genes, Genomes, Genetics – volume: 54 start-page: 1410 year: 2011 end-page: 1420 ident: bib136 article-title: SWItch/sucrose nonfermentable (SWI/SNF) complex subunit BAF60a integrates hepatic circadian clock and energy metabolism publication-title: Hepatology – volume: 25 start-page: 587 year: 2007 end-page: 600 ident: bib141 article-title: Execution of the circadian negative feedback loop in Neurospora requires the ATP-dependent chromatin-remodeling enzyme CLOCKSWITCH publication-title: Mol. Cell – volume: 421 start-page: 948 year: 2003 end-page: 952 ident: bib57 article-title: Role for antisense RNA in regulating circadian clock function in Neurospora crassa publication-title: Nature – volume: 279 start-page: 7091 year: 2004 end-page: 7097 ident: bib96 article-title: Histone acetyltransferase-dependent chromatin remodeling and the vascular clock publication-title: J. Biol. Chem. – volume: 20 start-page: 971 year: 2005 end-page: 978 ident: bib116 article-title: Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation publication-title: Mol. Cell – volume: 338 start-page: 349 year: 2012 end-page: 354 ident: bib58 article-title: Transcriptional architecture and chromatin landscape of the core circadian clock in mammals publication-title: Science – volume: 277 start-page: 49383 year: 2002 end-page: 49388 ident: bib118 article-title: Association of the histone methyltransferase Set2 with RNA polymerase II plays a role in transcription elongation publication-title: J. Biol. Chem. – volume: 24 start-page: 90 year: 2014 end-page: 99 ident: bib5 article-title: Molecular architecture of the mammalian circadian clock publication-title: Trends Cell Biol. – volume: 36 start-page: 233 year: 2002 end-page: 278 ident: bib163 article-title: Xist RNA and the mechanism of X chromosome inactivation publication-title: Annu. Rev. Genet. – volume: 95 start-page: 5474 year: 1998 end-page: 5479 ident: bib12 article-title: The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 3 start-page: 350 year: 2003 end-page: 361 ident: bib177 article-title: The circadian clock: pacemaker and tumour suppressor publication-title: Nat. Rev. Cancer – volume: 389 start-page: 251 year: 1997 end-page: 260 ident: bib61 article-title: Crystal structure of the nucleosome core particle at 2.8 Å resolution publication-title: Nature – volume: 281 start-page: 21209 year: 2006 end-page: 21215 ident: bib102 article-title: The polycomb group protein EZH2 is required for mammalian circadian clock function publication-title: J. Biol. Chem. – volume: 20 start-page: 109 year: 2001 end-page: 117 ident: bib40 article-title: WC-2 mediates WC-1–FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora publication-title: EMBO J. – volume: 74 start-page: 771 year: 2019 end-page: 784. e3 ident: bib53 article-title: The phospho-code determining circadian feedback loop closure and output in Neurospora publication-title: Mol. Cell – volume: 95 start-page: 15502 year: 1998 end-page: 15507 ident: bib87 article-title: RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans publication-title: Proc. Natl. Acad. Sci. – volume: 33 start-page: 464 year: 2017 end-page: 478 ident: bib159 article-title: The dimensions, dynamics, and relevance of the mammalian noncoding transcriptome publication-title: Trends Genet. – volume: 19 start-page: 245 year: 2008 ident: bib178 article-title: Parkinson's disease as a neuroendocrine disorder of circadian function: dopamine-melatonin imbalance and the visual system in the genesis and progression of the degenerative process publication-title: Rev. Neurosci. – volume: 21 start-page: 1494 year: 2007 end-page: 1505 ident: bib85 article-title: The band mutation in Neurospora crassa is a dominant allele of ras-1 implicating RAS signaling in circadian output publication-title: Genes Dev. – volume: 380 start-page: 129 year: 1996 ident: bib39 article-title: A light-entrainment mechanism for the Drosophila circadian clock publication-title: Nature – volume: 170 start-page: 664 year: 2017 end-page: 677 ident: bib204 article-title: Circadian reprogramming in the liver identifies metabolic pathways of aging publication-title: Cell – volume: 18 start-page: 4961 year: 1999 end-page: 4968 ident: bib54 article-title: Role of a white collar-1-white collar-2 complex in blue-light signal transduction publication-title: EMBO J. – volume: 123 start-page: 581 year: 2005 end-page: 592 ident: bib115 article-title: Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription publication-title: Cell – volume: 351 start-page: 153 year: 1991 ident: bib165 article-title: Parental imprinting of the mouse H19 gene publication-title: Nature – volume: 20 start-page: 5232 year: 2001 end-page: 5241 ident: bib80 article-title: Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3 publication-title: EMBO J. – volume: 521 start-page: 232 year: 2015 end-page: 236 ident: bib170 article-title: The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3 publication-title: Nature – volume: 400 start-page: 169 year: 1999 ident: 10.1016/j.jmb.2020.01.009_bib16 article-title: The mPer2 gene encodes a functional component of the mammalian circadian clock publication-title: Nature doi: 10.1038/22118 – volume: 43 start-page: 527 year: 2004 ident: 10.1016/j.jmb.2020.01.009_bib24 article-title: A functional genomics strategy reveals Rora as a component of the mammalian circadian clock publication-title: Neuron doi: 10.1016/j.neuron.2004.07.018 – volume: 359 start-page: 1274 year: 2018 ident: 10.1016/j.jmb.2020.01.009_bib150 article-title: Rev-erbα dynamically modulates chromatin looping to control circadian gene transcription publication-title: Science doi: 10.1126/science.aao6891 – volume: 457 start-page: 413 year: 2009 ident: 10.1016/j.jmb.2020.01.009_bib152 article-title: Small RNAs in transcriptional gene silencing and genome defence publication-title: Nature doi: 10.1038/nature07756 – volume: 19 start-page: 234 year: 2005 ident: 10.1016/j.jmb.2020.01.009_bib26 article-title: Regulation of the Neurospora circadian clock by an RNA helicase publication-title: Genes Dev. doi: 10.1101/gad.1266805 – volume: 53 start-page: 791 year: 2014 ident: 10.1016/j.jmb.2020.01.009_bib104 article-title: Phosphorylation of LSD1 by PKCα is crucial for circadian rhythmicity and phase resetting publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.01.028 – volume: 30 start-page: 2417 year: 2016 ident: 10.1016/j.jmb.2020.01.009_bib94 article-title: Antisense transcription licenses nascent transcripts to mediate transcriptional gene silencing publication-title: Genes Dev. doi: 10.1101/gad.285791.116 – volume: 351 start-page: 153 year: 1991 ident: 10.1016/j.jmb.2020.01.009_bib165 article-title: Parental imprinting of the mouse H19 gene publication-title: Nature doi: 10.1038/351153a0 – volume: 277 start-page: 49383 year: 2002 ident: 10.1016/j.jmb.2020.01.009_bib118 article-title: Association of the histone methyltransferase Set2 with RNA polymerase II plays a role in transcription elongation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M209294200 – volume: 17 start-page: 4576 year: 2006 ident: 10.1016/j.jmb.2020.01.009_bib135 article-title: The Neurospora crassa White Collar-1 dependent blue light response requires acetylation of histone H3 lysine 14 by NGF-1 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e06-03-0232 – volume: 398 start-page: 627 year: 1999 ident: 10.1016/j.jmb.2020.01.009_bib19 article-title: Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms publication-title: Nature doi: 10.1038/19323 – issue: 50 year: 2011 ident: 10.1016/j.jmb.2020.01.009_bib166 article-title: iCLIP-transcriptome-wide mapping of protein-RNA interactions with individual nucleotide resolution publication-title: J. Vis. Exp. (JoVE) – volume: 8 start-page: 35 year: 2007 ident: 10.1016/j.jmb.2020.01.009_bib123 article-title: Heterochromatin revisited publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2008 – volume: 26 start-page: 5433 year: 2007 ident: 10.1016/j.jmb.2020.01.009_bib138 article-title: The human Mi-2/NuRD complex and gene regulation publication-title: Oncogene doi: 10.1038/sj.onc.1210611 – volume: 17 start-page: 1414 year: 2010 ident: 10.1016/j.jmb.2020.01.009_bib97 article-title: The histone methyltransferase MLL1 permits the oscillation of circadian gene expression publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1961 – volume: 33 start-page: 464 year: 2017 ident: 10.1016/j.jmb.2020.01.009_bib159 article-title: The dimensions, dynamics, and relevance of the mammalian noncoding transcriptome publication-title: Trends Genet. doi: 10.1016/j.tig.2017.04.004 – volume: 434 start-page: 113 year: 2005 ident: 10.1016/j.jmb.2020.01.009_bib130 article-title: Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1 publication-title: Nature doi: 10.1038/nature03354 – volume: 322 start-page: 750 year: 2008 ident: 10.1016/j.jmb.2020.01.009_bib171 article-title: Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome publication-title: Science doi: 10.1126/science.1163045 – volume: 20 start-page: 5232 year: 2001 ident: 10.1016/j.jmb.2020.01.009_bib80 article-title: Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3 publication-title: EMBO J. doi: 10.1093/emboj/20.18.5232 – volume: 95 start-page: 5474 year: 1998 ident: 10.1016/j.jmb.2020.01.009_bib12 article-title: The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.95.10.5474 – volume: 402 start-page: 525 year: 2007 ident: 10.1016/j.jmb.2020.01.009_bib50 article-title: Cryptochromes impair phosphorylation of transcriptional activators in the clock: a general mechanism for circadian repression publication-title: Biochem. J. doi: 10.1042/BJ20060827 – volume: 7 year: 2011 ident: 10.1016/j.jmb.2020.01.009_bib75 article-title: CHD1 remodels chromatin and influences transient DNA methylation at the clock gene frequency publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002166 – volume: 12 year: 2016 ident: 10.1016/j.jmb.2020.01.009_bib149 article-title: Long-range chromosome interactions mediated by cohesin shape circadian gene expression publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005992 – volume: 28 start-page: 4642 year: 2008 ident: 10.1016/j.jmb.2020.01.009_bib74 article-title: Rhythmic E-box binding by CLK-CYC controls daily cycles in per and tim transcription and chromatin modifications publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01612-07 – volume: 107 start-page: 67 year: 2001 ident: 10.1016/j.jmb.2020.01.009_bib193 article-title: The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability publication-title: Cell doi: 10.1016/S0092-8674(01)00504-9 – volume: 21 start-page: 1494 year: 2007 ident: 10.1016/j.jmb.2020.01.009_bib85 article-title: The band mutation in Neurospora crassa is a dominant allele of ras-1 implicating RAS signaling in circadian output publication-title: Genes Dev. doi: 10.1101/gad.1551707 – volume: 489 start-page: 101 year: 2012 ident: 10.1016/j.jmb.2020.01.009_bib155 article-title: Landscape of transcription in human cells publication-title: Nature doi: 10.1038/nature11233 – volume: 36 start-page: 233 year: 2002 ident: 10.1016/j.jmb.2020.01.009_bib163 article-title: Xist RNA and the mechanism of X chromosome inactivation publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.36.042902.092433 – volume: 170 start-page: 678 year: 2017 ident: 10.1016/j.jmb.2020.01.009_bib205 article-title: Aged stem cells reprogram their daily rhythmic functions to adapt to stress publication-title: Cell doi: 10.1016/j.cell.2017.07.035 – volume: 305 start-page: 1010 year: 2004 ident: 10.1016/j.jmb.2020.01.009_bib132 article-title: Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration publication-title: Science doi: 10.1126/science.1098014 – volume: 11 year: 2015 ident: 10.1016/j.jmb.2020.01.009_bib109 article-title: Combinatorial control of light induced chromatin remodeling and gene activation in Neurospora publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005105 – volume: 153 start-page: 1 year: 2012 ident: 10.1016/j.jmb.2020.01.009_bib129 article-title: Minireview: NAD+, a circadian metabolite with an epigenetic twist publication-title: Endocrinology doi: 10.1210/en.2011-1535 – volume: 21 start-page: 126 year: 2014 ident: 10.1016/j.jmb.2020.01.009_bib30 article-title: Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2746 – volume: 13 start-page: 2369 year: 1999 ident: 10.1016/j.jmb.2020.01.009_bib137 article-title: Recruitment of the SWI/SNF chromatin remodeling complex by transcriptional activators publication-title: Genes Dev. doi: 10.1101/gad.13.18.2369 – volume: 110 start-page: 251 year: 2002 ident: 10.1016/j.jmb.2020.01.009_bib25 article-title: The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator publication-title: Cell doi: 10.1016/S0092-8674(02)00825-5 – volume: 28 start-page: 1 year: 2007 ident: 10.1016/j.jmb.2020.01.009_bib73 article-title: Facultative heterochromatin: is there a distinctive molecular signature? publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.09.011 – volume: 21 start-page: 381 year: 2011 ident: 10.1016/j.jmb.2020.01.009_bib65 article-title: Regulation of chromatin by histone modifications publication-title: Cell Res. doi: 10.1038/cr.2011.22 – volume: 21 start-page: 5. 1 year: 2013 ident: 10.1016/j.jmb.2020.01.009_bib169 article-title: Capture hybridization analysis of RNA targets (CHART) publication-title: Curr. Protoc. Mol. Biol. – volume: 337 start-page: 599 year: 2012 ident: 10.1016/j.jmb.2020.01.009_bib77 article-title: Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex publication-title: Science doi: 10.1126/science.1221592 – volume: 22 start-page: 1298 year: 2002 ident: 10.1016/j.jmb.2020.01.009_bib113 article-title: Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.22.5.1298-1306.2002 – volume: 421 start-page: 177 year: 2003 ident: 10.1016/j.jmb.2020.01.009_bib95 article-title: Rhythmic histone acetylation underlies transcription in the mammalian circadian clock publication-title: Nature doi: 10.1038/nature01314 – volume: 13 start-page: R198 year: 2003 ident: 10.1016/j.jmb.2020.01.009_bib4 article-title: The network of time: understanding the molecular circadian system publication-title: Curr. Biol. doi: 10.1016/S0960-9822(03)00124-6 – volume: 263 start-page: 1603 year: 1994 ident: 10.1016/j.jmb.2020.01.009_bib20 article-title: Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless publication-title: Science doi: 10.1126/science.8128246 – volume: 18 start-page: 4961 year: 1999 ident: 10.1016/j.jmb.2020.01.009_bib54 article-title: Role of a white collar-1-white collar-2 complex in blue-light signal transduction publication-title: EMBO J. doi: 10.1093/emboj/18.18.4961 – volume: 20 start-page: 971 year: 2005 ident: 10.1016/j.jmb.2020.01.009_bib116 article-title: Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.11.021 – volume: 111 start-page: 16995 year: 2014 ident: 10.1016/j.jmb.2020.01.009_bib110 article-title: Analysis of clock-regulated genes in Neurospora reveals widespread posttranscriptional control of metabolic potential publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1418963111 – volume: 13 year: 2017 ident: 10.1016/j.jmb.2020.01.009_bib143 article-title: Transcriptional repression of frequency by the IEC-1-INO80 complex is required for normal Neurospora circadian clock function publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006732 – volume: 18 start-page: 1923 year: 1999 ident: 10.1016/j.jmb.2020.01.009_bib82 article-title: Functional mammalian homologues of the Drosophila PEV-modifier Su (var) 3-9 encode centromere-associated proteins which complex with the heterochromatin component M31 publication-title: EMBO J. doi: 10.1093/emboj/18.7.1923 – volume: 38 start-page: 369 year: 2006 ident: 10.1016/j.jmb.2020.01.009_bib71 article-title: Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions publication-title: Nat. Genet. doi: 10.1038/ng1738 – volume: 112 start-page: 4357 year: 2015 ident: 10.1016/j.jmb.2020.01.009_bib93 article-title: The frequency natural antisense transcript first promotes, then represses, frequency gene expression via facultative heterochromatin publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1406130112 – volume: 20 start-page: 2552 year: 2006 ident: 10.1016/j.jmb.2020.01.009_bib44 article-title: CKI and CKII mediate the FREQUENCY-dependent phosphorylation of the WHITE COLLAR complex to close the Neurospora circadian negative feedback loop publication-title: Genes Dev. doi: 10.1101/gad.1463506 – volume: 184 start-page: 868 year: 1974 ident: 10.1016/j.jmb.2020.01.009_bib62 article-title: Chromatin structure: a repeating unit of histones and DNA publication-title: Science doi: 10.1126/science.184.4139.868 – volume: 9 start-page: 1548 year: 2018 ident: 10.1016/j.jmb.2020.01.009_bib200 article-title: TERRA recruitment of polycomb to telomeres is essential for histone trymethylation marks at telomeric heterochromatin publication-title: Nat. Commun. doi: 10.1038/s41467-018-03916-3 – volume: 16 start-page: 446 year: 2009 ident: 10.1016/j.jmb.2020.01.009_bib47 article-title: CK2alpha phosphorylates BMAL1 to regulate the mammalian clock publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1578 – volume: 40 start-page: 689 year: 2010 ident: 10.1016/j.jmb.2020.01.009_bib66 article-title: The chromatin signaling pathway: diverse mechanisms of recruitment of histone-modifying enzymes and varied biological outcomes publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.11.031 – volume: 9 year: 2013 ident: 10.1016/j.jmb.2020.01.009_bib91 article-title: Convergent transcription induces dynamic DNA methylation at disiRNA loci publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003761 – volume: 23 start-page: 713 year: 2000 ident: 10.1016/j.jmb.2020.01.009_bib33 article-title: Molecular genetics of circadian rhythms in mammals publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.23.1.713 – volume: 104 start-page: 573 year: 1993 ident: 10.1016/j.jmb.2020.01.009_bib79 article-title: Molecular cloning of a human homologue of Drosophila heterochromatin protein HP1 using anti-centromere autoantibodies with anti-chromo specificity publication-title: J. Cell Sci. doi: 10.1242/jcs.104.2.573 – volume: 20 start-page: 290 year: 2013 ident: 10.1016/j.jmb.2020.01.009_bib145 article-title: Functional implications of genome topology publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2474 – volume: 14 start-page: 923 year: 2013 ident: 10.1016/j.jmb.2020.01.009_bib142 article-title: CATP is a critical component of the Neurospora circadian clock by regulating the nucleosome occupancy rhythm at the frequency locus publication-title: EMBO Rep. doi: 10.1038/embor.2013.131 – volume: 109 start-page: 307 year: 2002 ident: 10.1016/j.jmb.2020.01.009_bib34 article-title: Coordinated transcription of key pathways in the mouse by the circadian clock publication-title: Cell doi: 10.1016/S0092-8674(02)00722-5 – volume: 30 start-page: 291 year: 2015 ident: 10.1016/j.jmb.2020.01.009_bib107 article-title: Fbxl11 is a novel negative element of the mammalian circadian clock publication-title: J. Biol. Rhythm. doi: 10.1177/0748730415587407 – volume: 111 start-page: 16219 year: 2014 ident: 10.1016/j.jmb.2020.01.009_bib172 article-title: A circadian gene expression atlas in mammals: implications for biology and medicine publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1408886111 – volume: 21 start-page: 1101 year: 1998 ident: 10.1016/j.jmb.2020.01.009_bib36 article-title: Mammalian circadian autoregulatory loop: a timeless ortholog and mPer1 interact and negatively regulate CLOCK-BMAL1-induced transcription publication-title: Neuron doi: 10.1016/S0896-6273(00)80627-3 – volume: 421 start-page: 948 year: 2003 ident: 10.1016/j.jmb.2020.01.009_bib57 article-title: Role for antisense RNA in regulating circadian clock function in Neurospora crassa publication-title: Nature doi: 10.1038/nature01427 – volume: 28 start-page: 548 year: 2014 ident: 10.1016/j.jmb.2020.01.009_bib186 article-title: The circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant defense pathway to modulate pulmonary fibrosis publication-title: Genes Dev. doi: 10.1101/gad.237081.113 – volume: 264 start-page: 719 year: 1994 ident: 10.1016/j.jmb.2020.01.009_bib11 article-title: Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior publication-title: Science doi: 10.1126/science.8171325 – volume: 284 start-page: 7970 year: 2009 ident: 10.1016/j.jmb.2020.01.009_bib114 article-title: Histone H3 lysine 36 dimethylation (H3K36me2) is sufficient to recruit the Rpd3s histone deacetylase complex and to repress spurious transcription publication-title: J. Biol. Chem. doi: 10.1074/jbc.M808220200 – volume: 93 start-page: 791 year: 1998 ident: 10.1016/j.jmb.2020.01.009_bib13 article-title: A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless publication-title: Cell doi: 10.1016/S0092-8674(00)81440-3 – volume: 59 start-page: 984 year: 2015 ident: 10.1016/j.jmb.2020.01.009_bib148 article-title: PARP1-and CTCF-mediated interactions between active and repressed chromatin at the lamina promote oscillating transcription publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.07.019 – volume: 20 start-page: 723 year: 2006 ident: 10.1016/j.jmb.2020.01.009_bib43 article-title: PER-dependent rhythms in CLK phosphorylation and E-box binding regulate circadian transcription publication-title: Genes Dev. doi: 10.1101/gad.1404406 – volume: 12 start-page: 1621 year: 1992 ident: 10.1016/j.jmb.2020.01.009_bib63 article-title: Nucleosome loss activates CUP1 and HIS3 promoters to fully induced levels in the yeast Saccharomyces cerevisiae publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.12.4.1621 – volume: 281 start-page: 21209 year: 2006 ident: 10.1016/j.jmb.2020.01.009_bib102 article-title: The polycomb group protein EZH2 is required for mammalian circadian clock function publication-title: J. Biol. Chem. doi: 10.1074/jbc.M603722200 – volume: 326 start-page: 289 year: 2009 ident: 10.1016/j.jmb.2020.01.009_bib146 article-title: Comprehensive mapping of long-range interactions reveals folding principles of the human genome publication-title: Science doi: 10.1126/science.1181369 – volume: 134 start-page: 329 year: 2008 ident: 10.1016/j.jmb.2020.01.009_bib126 article-title: The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control publication-title: Cell doi: 10.1016/j.cell.2008.07.002 – volume: 15 start-page: R17 year: 2006 ident: 10.1016/j.jmb.2020.01.009_bib158 article-title: Non-coding RNA publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddl046 – volume: 332 start-page: 1436 year: 2011 ident: 10.1016/j.jmb.2020.01.009_bib27 article-title: A molecular mechanism for circadian clock negative feedback publication-title: Science doi: 10.1126/science.1196766 – volume: 419 start-page: 407 year: 2002 ident: 10.1016/j.jmb.2020.01.009_bib98 article-title: Active genes are tri-methylated at K4 of histone H3 publication-title: Nature doi: 10.1038/nature01080 – volume: 389 start-page: 251 year: 1997 ident: 10.1016/j.jmb.2020.01.009_bib61 article-title: Crystal structure of the nucleosome core particle at 2.8 Å resolution publication-title: Nature doi: 10.1038/38444 – volume: 95 start-page: 15502 year: 1998 ident: 10.1016/j.jmb.2020.01.009_bib87 article-title: RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.95.26.15502 – volume: 74 start-page: 771 year: 2019 ident: 10.1016/j.jmb.2020.01.009_bib53 article-title: The phospho-code determining circadian feedback loop closure and output in Neurospora publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.03.003 – volume: 158 start-page: 659 year: 2014 ident: 10.1016/j.jmb.2020.01.009_bib133 article-title: Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism publication-title: Cell doi: 10.1016/j.cell.2014.06.050 – volume: 9 start-page: 886 year: 2009 ident: 10.1016/j.jmb.2020.01.009_bib179 article-title: Metabolism and cancer: the circadian clock connection publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2747 – volume: 7 start-page: 461 year: 2006 ident: 10.1016/j.jmb.2020.01.009_bib70 article-title: Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1882 – volume: 27 start-page: 5014 year: 2007 ident: 10.1016/j.jmb.2020.01.009_bib42 article-title: A DOUBLETIME kinase binding domain on the Drosophila PERIOD protein is essential for its hyperphosphorylation, transcriptional repression, and circadian clock function publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.02339-06 – volume: 7 start-page: 1395 year: 1988 ident: 10.1016/j.jmb.2020.01.009_bib122 article-title: A direct link between core histone acetylation and transcriptionally active chromatin publication-title: EMBO J. doi: 10.1002/j.1460-2075.1988.tb02956.x – volume: 295 start-page: 2080 year: 2002 ident: 10.1016/j.jmb.2020.01.009_bib81 article-title: Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail publication-title: Science doi: 10.1126/science.1069473 – volume: 29 start-page: 1452 year: 2009 ident: 10.1016/j.jmb.2020.01.009_bib41 article-title: DOUBLETIME plays a noncatalytic role to mediate CLOCK phosphorylation and repress CLOCK-dependent transcription within the Drosophila circadian clock publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01777-08 – volume: 42 start-page: 689 year: 2011 ident: 10.1016/j.jmb.2020.01.009_bib105 article-title: A SIRT1-LSD1 corepressor complex regulates Notch target gene expression and development publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.04.020 – volume: 521 start-page: 232 year: 2015 ident: 10.1016/j.jmb.2020.01.009_bib170 article-title: The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3 publication-title: Nature doi: 10.1038/nature14443 – volume: 68 start-page: 2112 year: 1971 ident: 10.1016/j.jmb.2020.01.009_bib22 article-title: Clock mutants of Drosophila melanogaster publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.68.9.2112 – volume: 1 start-page: 979 year: 2009 ident: 10.1016/j.jmb.2020.01.009_bib185 article-title: Antioxidant N-acetyl-L-cysteine ameliorates symptoms of premature aging associated with the deficiency of the circadian protein BMAL1 publication-title: Aging (Albany NY) doi: 10.18632/aging.100113 – volume: 43 start-page: 405 year: 1985 ident: 10.1016/j.jmb.2020.01.009_bib189 article-title: Identification of a specific telomere terminal transferase activity in Tetrahymena extracts publication-title: Cell doi: 10.1016/0092-8674(85)90170-9 – volume: 280 start-page: 1599 year: 1998 ident: 10.1016/j.jmb.2020.01.009_bib7 article-title: Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim publication-title: Science doi: 10.1126/science.280.5369.1599 – volume: 112 start-page: 5785 year: 2015 ident: 10.1016/j.jmb.2020.01.009_bib173 article-title: Head-to-head antisense transcription and R-loop formation promotes transcriptional activation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1421197112 – volume: 318 start-page: 798 year: 2007 ident: 10.1016/j.jmb.2020.01.009_bib198 article-title: Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends publication-title: Science doi: 10.1126/science.1147182 – volume: 5 start-page: 93 year: 2015 ident: 10.1016/j.jmb.2020.01.009_bib84 article-title: The histone H3 lysine 9 methyltransferase DIM-5 modifies chromatin at frequency and represses light-activated gene expression publication-title: G3: Genes, Genomes, Genetics doi: 10.1534/g3.114.015446 – volume: 22 start-page: 3397 year: 2008 ident: 10.1016/j.jmb.2020.01.009_bib56 article-title: Circadian activity and abundance rhythms of the Neurospora clock transcription factor WCC associated with rapid nucleo–cytoplasmic shuttling publication-title: Genes Dev. doi: 10.1101/gad.507408 – volume: 24 start-page: 358 year: 2010 ident: 10.1016/j.jmb.2020.01.009_bib51 article-title: Dynamic PER repression mechanisms in the Drosophila circadian clock: from on-DNA to off-DNA publication-title: Genes Dev. doi: 10.1101/gad.1883910 – volume: 16 start-page: 833 year: 2012 ident: 10.1016/j.jmb.2020.01.009_bib59 article-title: Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome publication-title: Cell Metabol. doi: 10.1016/j.cmet.2012.11.004 – volume: 18 start-page: 164 year: 2017 ident: 10.1016/j.jmb.2020.01.009_bib2 article-title: Transcriptional architecture of the mammalian circadian clock publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2016.150 – volume: 380 start-page: 129 year: 1996 ident: 10.1016/j.jmb.2020.01.009_bib39 article-title: A light-entrainment mechanism for the Drosophila circadian clock publication-title: Nature doi: 10.1038/380129a0 – volume: 19 start-page: 192 year: 1998 ident: 10.1016/j.jmb.2020.01.009_bib83 article-title: The chromo and SET domains of the Clr4 protein are essential for silencing in fission yeast publication-title: Nat. Genet. doi: 10.1038/566 – volume: 76 start-page: 49 year: 2011 ident: 10.1016/j.jmb.2020.01.009_bib125 article-title: Circadian epigenomic remodeling and hepatic lipogenesis: lessons from HDAC3 publication-title: Cold Spring Harbor Symp. Quant. Biol. doi: 10.1101/sqb.2011.76.011494 – volume: 84 start-page: 843 year: 1996 ident: 10.1016/j.jmb.2020.01.009_bib121 article-title: Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation publication-title: Cell doi: 10.1016/S0092-8674(00)81063-6 – volume: 25 start-page: 587 year: 2007 ident: 10.1016/j.jmb.2020.01.009_bib141 article-title: Execution of the circadian negative feedback loop in Neurospora requires the ATP-dependent chromatin-remodeling enzyme CLOCKSWITCH publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.01.010 – volume: 129 start-page: 1311 year: 2007 ident: 10.1016/j.jmb.2020.01.009_bib167 article-title: Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs publication-title: Cell doi: 10.1016/j.cell.2007.05.022 – volume: 20 start-page: 350 year: 2019 ident: 10.1016/j.jmb.2020.01.009_bib101 article-title: Histone H3 lysine 4 methyltransferase is required for facultative heterochromatin at specific loci publication-title: BMC Genomics doi: 10.1186/s12864-019-5729-7 – volume: 11 year: 2015 ident: 10.1016/j.jmb.2020.01.009_bib29 article-title: The catalytic and non-catalytic functions of the Brahma chromatin-remodeling protein collaborate to fine-tune circadian transcription in Drosophila publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005307 – volume: 20 start-page: 300 year: 2013 ident: 10.1016/j.jmb.2020.01.009_bib156 article-title: Structure and function of long noncoding RNAs in epigenetic regulation publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2480 – volume: 308 start-page: 693 year: 2005 ident: 10.1016/j.jmb.2020.01.009_bib28 article-title: PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator publication-title: Science doi: 10.1126/science.1107373 – volume: 288 start-page: 8380 year: 2013 ident: 10.1016/j.jmb.2020.01.009_bib100 article-title: Methylation of histone H3 on lysine 4 by the lysine methyltransferase SET1 protein is needed for normal clock gene expression publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.359935 – volume: 38 start-page: 312 year: 2006 ident: 10.1016/j.jmb.2020.01.009_bib37 article-title: Feedback repression is required for mammalian circadian clock function publication-title: Nat. Genet. doi: 10.1038/ng1745 – volume: 24 start-page: 6278 year: 2004 ident: 10.1016/j.jmb.2020.01.009_bib119 article-title: Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.14.6278-6287.2004 – volume: 19 start-page: 777 year: 2018 ident: 10.1016/j.jmb.2020.01.009_bib86 article-title: Long non-coding RNAs have age-dependent diurnal expression that coincides with age-related changes in genome-wide facultative heterochromatin publication-title: BMC Genomics doi: 10.1186/s12864-018-5170-3 – volume: 279 start-page: 7091 year: 2004 ident: 10.1016/j.jmb.2020.01.009_bib96 article-title: Histone acetyltransferase-dependent chromatin remodeling and the vascular clock publication-title: J. Biol. Chem. doi: 10.1074/jbc.M311973200 – volume: 36 start-page: 94 year: 2004 ident: 10.1016/j.jmb.2020.01.009_bib191 article-title: Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases publication-title: Nat. Genet. doi: 10.1038/ng1278 – volume: 71 start-page: 515 year: 1992 ident: 10.1016/j.jmb.2020.01.009_bib160 article-title: The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus publication-title: Cell doi: 10.1016/0092-8674(92)90519-I – volume: 45 start-page: 5720 year: 2017 ident: 10.1016/j.jmb.2020.01.009_bib176 article-title: A class of circadian long non-coding RNAs mark enhancers modulating long-range circadian gene regulation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx156 – volume: 3 start-page: 350 year: 2003 ident: 10.1016/j.jmb.2020.01.009_bib177 article-title: The circadian clock: pacemaker and tumour suppressor publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1072 – volume: 20 start-page: 109 year: 2001 ident: 10.1016/j.jmb.2020.01.009_bib40 article-title: WC-2 mediates WC-1–FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora publication-title: EMBO J. doi: 10.1093/emboj/20.1.109 – volume: 342 start-page: 1243417 year: 2013 ident: 10.1016/j.jmb.2020.01.009_bib134 article-title: Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice publication-title: Science doi: 10.1126/science.1243417 – volume: 32 start-page: 29 year: 2016 ident: 10.1016/j.jmb.2020.01.009_bib72 article-title: H3K9me3-dependent heterochromatin: barrier to cell fate changes publication-title: Trends Genet. doi: 10.1016/j.tig.2015.11.001 – volume: 108 start-page: 475 year: 2002 ident: 10.1016/j.jmb.2020.01.009_bib69 article-title: Cooperation between complexes that regulate chromatin structure and transcription publication-title: Cell doi: 10.1016/S0092-8674(02)00654-2 – volume: 35 start-page: 403 year: 2009 ident: 10.1016/j.jmb.2020.01.009_bib199 article-title: TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.06.025 – year: 1998 ident: 10.1016/j.jmb.2020.01.009_bib64 article-title: Alteration of nucleosome structure as a mechanism of transcriptional regulation – volume: 21 start-page: 175 year: 2011 ident: 10.1016/j.jmb.2020.01.009_bib67 article-title: Chromatin higher-order structures and gene regulation publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2011.01.022 – volume: 60 start-page: 6 year: 2003 ident: 10.1016/j.jmb.2020.01.009_bib188 article-title: Molecular mechanisms of N-acetylcysteine actions publication-title: Cell. Mol. Life Sci. (CMLS) doi: 10.1007/s000180300001 – volume: 359 start-page: 109 year: 2004 ident: 10.1016/j.jmb.2020.01.009_bib190 article-title: Telomeres and telomerase publication-title: Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. doi: 10.1098/rstb.2003.1370 – volume: 270 start-page: 811 year: 1995 ident: 10.1016/j.jmb.2020.01.009_bib38 article-title: Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL publication-title: Science doi: 10.1126/science.270.5237.811 – volume: 491 start-page: 348 year: 2012 ident: 10.1016/j.jmb.2020.01.009_bib3 article-title: Circadian topology of metabolism publication-title: Nature doi: 10.1038/nature11704 – volume: 5 year: 2009 ident: 10.1016/j.jmb.2020.01.009_bib144 article-title: A constant light-genetic screen identifies KISMET as a regulator of circadian photoresponses publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000787 – volume: 280 start-page: 17526 year: 2005 ident: 10.1016/j.jmb.2020.01.009_bib45 article-title: Light-independent phosphorylation of WHITE COLLAR-1 regulates its function in the Neurospora circadian negative feedback loop publication-title: J. Biol. Chem. doi: 10.1074/jbc.M414010200 – volume: 16 start-page: 462 year: 2009 ident: 10.1016/j.jmb.2020.01.009_bib182 article-title: Metabolism control by the circadian clock and vice versa publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1595 – volume: 51 start-page: 887 year: 1987 ident: 10.1016/j.jmb.2020.01.009_bib194 article-title: The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity publication-title: Cell doi: 10.1016/0092-8674(87)90576-9 – volume: 20 start-page: 3967 year: 2001 ident: 10.1016/j.jmb.2020.01.009_bib17 article-title: Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene publication-title: EMBO J. doi: 10.1093/emboj/20.15.3967 – volume: 13 start-page: 3822 year: 1994 ident: 10.1016/j.jmb.2020.01.009_bib78 article-title: The protein encoded by the Drosophila position-effect variegation suppressor gene Su (var) 3-9 combines domains of antagonistic regulators of homeotic gene complexes publication-title: EMBO J. doi: 10.1002/j.1460-2075.1994.tb06693.x – volume: 157 start-page: 77 year: 2014 ident: 10.1016/j.jmb.2020.01.009_bib153 article-title: The noncoding RNA revolution—trashing old rules to forge new ones publication-title: Cell doi: 10.1016/j.cell.2014.03.008 – volume: 4 start-page: 1 year: 1999 ident: 10.1016/j.jmb.2020.01.009_bib1 article-title: Eukaryotic circadian systems: cycles in common publication-title: Genes Cells doi: 10.1046/j.1365-2443.1999.00239.x – volume: 20 start-page: 1868 year: 2006 ident: 10.1016/j.jmb.2020.01.009_bib184 article-title: Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock publication-title: Genes Dev. doi: 10.1101/gad.1432206 – volume: 414 start-page: 277 year: 2001 ident: 10.1016/j.jmb.2020.01.009_bib76 article-title: A histone H3 methyltransferase controls DNA methylation in Neurospora crassa publication-title: Nature doi: 10.1038/35104508 – volume: 20 start-page: 1206 year: 2013 ident: 10.1016/j.jmb.2020.01.009_bib147 article-title: Cycles in spatial and temporal chromosomal organization driven by the circadian clock publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2667 – volume: 514 start-page: 650 year: 2014 ident: 10.1016/j.jmb.2020.01.009_bib174 article-title: Transcriptional interference by antisense RNA is required for circadian clock function publication-title: Nature doi: 10.1038/nature13671 – volume: 16 start-page: 93 year: 2004 ident: 10.1016/j.jmb.2020.01.009_bib202 article-title: Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin publication-title: Mol. Cell doi: 10.1016/j.molcel.2004.08.031 – volume: 170 start-page: 664 year: 2017 ident: 10.1016/j.jmb.2020.01.009_bib204 article-title: Circadian reprogramming in the liver identifies metabolic pathways of aging publication-title: Cell doi: 10.1016/j.cell.2017.07.042 – volume: 288 start-page: 1013 year: 2000 ident: 10.1016/j.jmb.2020.01.009_bib8 article-title: Interacting molecular loops in the mammalian circadian clock publication-title: Science doi: 10.1126/science.288.5468.1013 – volume: 5 year: 2009 ident: 10.1016/j.jmb.2020.01.009_bib157 article-title: The genetic signatures of noncoding RNAs publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000459 – volume: 48 start-page: 277 year: 2012 ident: 10.1016/j.jmb.2020.01.009_bib55 article-title: Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.08.012 – volume: 20 start-page: 615 year: 1998 ident: 10.1016/j.jmb.2020.01.009_bib120 article-title: Roles of histone acetyltransferases and deacetylases in gene regulation publication-title: Bioessays doi: 10.1002/(SICI)1521-1878(199808)20:8<615::AID-BIES4>3.0.CO;2-H – volume: 333 start-page: 1881 year: 2011 ident: 10.1016/j.jmb.2020.01.009_bib106 article-title: Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock publication-title: Science doi: 10.1126/science.1206022 – volume: 54 start-page: 1410 year: 2011 ident: 10.1016/j.jmb.2020.01.009_bib136 article-title: SWItch/sucrose nonfermentable (SWI/SNF) complex subunit BAF60a integrates hepatic circadian clock and energy metabolism publication-title: Hepatology doi: 10.1002/hep.24514 – volume: 326 start-page: 390 year: 1987 ident: 10.1016/j.jmb.2020.01.009_bib21 article-title: Changes in abundance or structure of the per gene product can alter periodicity of the Drosophila clock publication-title: Nature doi: 10.1038/326390a0 – volume: 286 start-page: 768 year: 1999 ident: 10.1016/j.jmb.2020.01.009_bib35 article-title: Light-independent role of CRY1 and CRY2 in the mammalian circadian clock publication-title: Science doi: 10.1126/science.286.5440.768 – volume: 123 start-page: 581 year: 2005 ident: 10.1016/j.jmb.2020.01.009_bib115 article-title: Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription publication-title: Cell doi: 10.1016/j.cell.2005.10.023 – volume: 38 start-page: 803 year: 2010 ident: 10.1016/j.jmb.2020.01.009_bib92 article-title: Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.04.005 – volume: 10 year: 2014 ident: 10.1016/j.jmb.2020.01.009_bib31 article-title: Neurospora WC-1 recruits SWI/SNF to remodel frequency and initiate a circadian cycle publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004599 – volume: 134 start-page: 317 year: 2008 ident: 10.1016/j.jmb.2020.01.009_bib127 article-title: SIRT1 regulates circadian clock gene expression through PER2 deacetylation publication-title: Cell doi: 10.1016/j.cell.2008.06.050 – volume: 5 start-page: 13752 year: 2015 ident: 10.1016/j.jmb.2020.01.009_bib183 article-title: Circadian modulation of 8-oxoguanine DNA damage repair publication-title: Sci. Rep. doi: 10.1038/srep13752 – volume: 2 start-page: 851 year: 1998 ident: 10.1016/j.jmb.2020.01.009_bib139 article-title: NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80299-3 – volume: 276 start-page: 763 year: 1997 ident: 10.1016/j.jmb.2020.01.009_bib15 article-title: Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity publication-title: Science doi: 10.1126/science.276.5313.763 – volume: 107 start-page: 465 year: 2001 ident: 10.1016/j.jmb.2020.01.009_bib88 article-title: On the role of RNA amplification in dsRNA-triggered gene silencing publication-title: Cell doi: 10.1016/S0092-8674(01)00576-1 – volume: 309 start-page: 1564 year: 2005 ident: 10.1016/j.jmb.2020.01.009_bib154 article-title: Antisense transcription in the mammalian transcriptome publication-title: Science doi: 10.1126/science.1112009 – volume: 19 start-page: 245 year: 2008 ident: 10.1016/j.jmb.2020.01.009_bib178 article-title: Parkinson's disease as a neuroendocrine disorder of circadian function: dopamine-melatonin imbalance and the visual system in the genesis and progression of the degenerative process publication-title: Rev. Neurosci. doi: 10.1515/REVNEURO.2008.19.4-5.245 – volume: 9 year: 2011 ident: 10.1016/j.jmb.2020.01.009_bib60 article-title: Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000595 – volume: 191 start-page: 1299 year: 2010 ident: 10.1016/j.jmb.2020.01.009_bib201 article-title: SIRT1 contributes to telomere maintenance and augments global homologous recombination publication-title: J. Cell Biol. doi: 10.1083/jcb.201005160 – volume: 32 start-page: 347 year: 2018 ident: 10.1016/j.jmb.2020.01.009_bib151 article-title: Clock-dependent chromatin topology modulates circadian transcription and behavior publication-title: Genes Dev. doi: 10.1101/gad.312397.118 – volume: 120 start-page: 467 year: 1996 ident: 10.1016/j.jmb.2020.01.009_bib164 article-title: Genomic imprinting: significance in development and diseases and the molecular mechanisms publication-title: J. Biochem. doi: 10.1093/oxfordjournals.jbchem.a021434 – volume: 89 start-page: 641 year: 1997 ident: 10.1016/j.jmb.2020.01.009_bib10 article-title: Positional cloning of the mouse circadian clock gene publication-title: Cell doi: 10.1016/S0092-8674(00)80245-7 – volume: 122 start-page: 235 year: 2005 ident: 10.1016/j.jmb.2020.01.009_bib46 article-title: Transcriptional feedback of Neurospora circadian clock gene by phosphorylation-dependent inactivation of its transcription factor publication-title: Cell doi: 10.1016/j.cell.2005.05.032 – volume: 17 start-page: 1921 year: 2003 ident: 10.1016/j.jmb.2020.01.009_bib48 article-title: BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system publication-title: Genes Dev. doi: 10.1101/gad.1099503 – volume: 161 start-page: 404 year: 2015 ident: 10.1016/j.jmb.2020.01.009_bib168 article-title: Systematic discovery of Xist RNA binding proteins publication-title: Cell doi: 10.1016/j.cell.2015.03.025 – volume: 297 start-page: 1833 year: 2002 ident: 10.1016/j.jmb.2020.01.009_bib90 article-title: Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi publication-title: Science doi: 10.1126/science.1074973 – volume: 338 start-page: 349 year: 2012 ident: 10.1016/j.jmb.2020.01.009_bib58 article-title: Transcriptional architecture and chromatin landscape of the core circadian clock in mammals publication-title: Science doi: 10.1126/science.1226339 – volume: 110 start-page: E4867 year: 2013 ident: 10.1016/j.jmb.2020.01.009_bib112 article-title: Suppression of WC-independent frequency transcription by RCO-1 is essential for Neurospora circadian clock publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1315133110 – volume: 93 start-page: 805 year: 1998 ident: 10.1016/j.jmb.2020.01.009_bib14 article-title: CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless publication-title: Cell doi: 10.1016/S0092-8674(00)81441-5 – volume: 25 start-page: 3305 year: 2005 ident: 10.1016/j.jmb.2020.01.009_bib117 article-title: A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.8.3305-3316.2005 – volume: 71 start-page: 527 year: 1992 ident: 10.1016/j.jmb.2020.01.009_bib161 article-title: The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus publication-title: Cell doi: 10.1016/0092-8674(92)90520-M – volume: 113 start-page: E6072 year: 2016 ident: 10.1016/j.jmb.2020.01.009_bib52 article-title: Mammalian Period represses and de-represses transcription by displacing CLOCK-BMAL1 from promoters in a Cryptochrome-dependent manner publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1612917113 – volume: 28 start-page: 8 year: 2014 ident: 10.1016/j.jmb.2020.01.009_bib108 article-title: CLOCK: BMAL1 is a pioneer-like transcription factor publication-title: Genes Dev. doi: 10.1101/gad.228536.113 – volume: 67 start-page: 203 year: 2017 ident: 10.1016/j.jmb.2020.01.009_bib111 article-title: DNA replication is required for circadian clock function by regulating rhythmic nucleosome composition publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.05.029 – volume: 263 start-page: 1578 year: 1994 ident: 10.1016/j.jmb.2020.01.009_bib23 article-title: Negative feedback defining a circadian clock: autoregulation of the clock gene frequency publication-title: Science doi: 10.1126/science.8128244 – volume: 6 start-page: 611 year: 2005 ident: 10.1016/j.jmb.2020.01.009_bib195 article-title: Telomeres and human disease: ageing, cancer and beyond publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1656 – volume: 29 start-page: 3675 year: 2009 ident: 10.1016/j.jmb.2020.01.009_bib49 article-title: Roles of CLOCK phosphorylation in suppression of E-box-dependent transcription publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01864-08 – volume: 341 start-page: 1237973 year: 2013 ident: 10.1016/j.jmb.2020.01.009_bib162 article-title: The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome publication-title: Science doi: 10.1126/science.1237973 – volume: 10 year: 2012 ident: 10.1016/j.jmb.2020.01.009_bib99 article-title: Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001442 – volume: 15 start-page: 172 year: 2003 ident: 10.1016/j.jmb.2020.01.009_bib68 article-title: Histone and chromatin cross-talk publication-title: Curr. Opin. Cell Biol. doi: 10.1016/S0955-0674(03)00013-9 – volume: 89 start-page: 655 year: 1997 ident: 10.1016/j.jmb.2020.01.009_bib9 article-title: Functional identification of the mouse circadian Clock gene by transgenic BAC rescue publication-title: Cell doi: 10.1016/S0092-8674(00)80246-9 – volume: 2 start-page: e16 year: 2006 ident: 10.1016/j.jmb.2020.01.009_bib180 article-title: Circadian clocks are resounding in peripheral tissues publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0020016 – volume: 159 start-page: 1140 year: 2014 ident: 10.1016/j.jmb.2020.01.009_bib175 article-title: Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo publication-title: Cell doi: 10.1016/j.cell.2014.10.022 – volume: 24 start-page: 90 year: 2014 ident: 10.1016/j.jmb.2020.01.009_bib5 article-title: Molecular architecture of the mammalian circadian clock publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2013.07.002 – volume: 324 start-page: 654 year: 2009 ident: 10.1016/j.jmb.2020.01.009_bib128 article-title: Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1 publication-title: Science doi: 10.1126/science.1170803 – volume: 96 start-page: 271 year: 1999 ident: 10.1016/j.jmb.2020.01.009_bib6 article-title: Molecular bases for circadian clocks publication-title: Cell doi: 10.1016/S0092-8674(00)80566-8 – volume: 125 start-page: 497 year: 2006 ident: 10.1016/j.jmb.2020.01.009_bib124 article-title: Circadian regulator CLOCK is a histone acetyltransferase publication-title: Cell doi: 10.1016/j.cell.2006.03.033 – volume: 153 start-page: 1448 year: 2013 ident: 10.1016/j.jmb.2020.01.009_bib203 article-title: SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging publication-title: Cell doi: 10.1016/j.cell.2013.05.027 – volume: 14 year: 2019 ident: 10.1016/j.jmb.2020.01.009_bib197 article-title: BMAL1 associates with chromosome ends to control rhythms in TERRA and telomeric heterochromatin publication-title: PLoS One doi: 10.1371/journal.pone.0223803 – volume: 115 start-page: E8460 year: 2018 ident: 10.1016/j.jmb.2020.01.009_bib187 article-title: Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1800431115 – volume: 178 start-page: 925 year: 2007 ident: 10.1016/j.jmb.2020.01.009_bib192 article-title: Suv4-20h deficiency results in telomere elongation and derepression of telomere recombination publication-title: J. Cell Biol. doi: 10.1083/jcb.200703081 – volume: 119 start-page: 941 year: 2004 ident: 10.1016/j.jmb.2020.01.009_bib103 article-title: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1 publication-title: Cell doi: 10.1016/j.cell.2004.12.012 – volume: 282 start-page: 1490 year: 1998 ident: 10.1016/j.jmb.2020.01.009_bib18 article-title: Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses publication-title: Science doi: 10.1126/science.282.5393.1490 – volume: 56 start-page: 738 year: 2014 ident: 10.1016/j.jmb.2020.01.009_bib32 article-title: Specificity in circadian clock feedback from targeted reconstitution of the NuRD corepressor publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.10.017 – volume: 451 start-page: 408 year: 2014 ident: 10.1016/j.jmb.2020.01.009_bib196 article-title: The circadian rhythm controls telomeres and telomerase activity publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2014.07.138 – volume: 4 start-page: e31 year: 2005 ident: 10.1016/j.jmb.2020.01.009_bib131 article-title: Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0040031 – volume: 17 start-page: 377 year: 2014 ident: 10.1016/j.jmb.2020.01.009_bib140 article-title: Circadian behavior is light-reprogrammed by plastic DNA methylation publication-title: Nat. Neurosci. doi: 10.1038/nn.3651 – volume: 40 start-page: 409 year: 2006 ident: 10.1016/j.jmb.2020.01.009_bib181 article-title: Interplay of circadian clocks and metabolic rhythms publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.40.110405.090603 – volume: 122 start-page: 13 year: 2005 ident: 10.1016/j.jmb.2020.01.009_bib89 article-title: The role of the RNAi machinery in heterochromatin formation publication-title: Cell doi: 10.1016/j.cell.2005.06.034 |
SSID | ssj0005348 |
Score | 2.442493 |
SecondaryResourceType | review_article |
Snippet | Circadian rhythms are generated by transcriptional negative feedback loops and require histone modifications and chromatin remodeling to ensure appropriate... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3466 |
SubjectTerms | acetylation aging Animals Chromatin Assembly and Disassembly - genetics chromatin modifications chromatin remodeling circadian clocks circadian regulation circadian rhythm Circadian Rhythm - genetics Drosophila Drosophila melanogaster - genetics Feedback, Physiological Fungal Proteins - genetics gene expression Gene Expression Regulation, Developmental - genetics genes genomics heterochromatin Heterochromatin - genetics histone code histone deacetylase histones Histones - genetics lncRNAs lysine methylation methyltransferases Methyltransferases - genetics Mice Neurospora Neurospora - genetics nucleosomes Repressor Proteins - genetics RNA, Long Noncoding - genetics transcription (genetics) |
Title | Molecular Regulation of Circadian Chromatin |
URI | https://dx.doi.org/10.1016/j.jmb.2020.01.009 https://www.ncbi.nlm.nih.gov/pubmed/31954735 https://www.proquest.com/docview/2342356632 https://www.proquest.com/docview/2439431657 |
Volume | 432 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KRfQiWl_1xQqehNVtks0mRylKVexBFLyFJJtAi26L1oMXf7uZfRQF7cHjhgTCN8nky2bmG4ATb3vS-5TEhnAfM09ErG0u4lxk1mkqOLX4ons35INHdvOUPrWg3-TCYFhl7fsrn15667rlvEbzfDoaYY4v_r0IDjis04RKTDRnLMNVfvb5LcyDMtEohmPv5mWzjPEav5hwRSRJqdyJMYm_n01_cc_yDLpah7WaPEYX1fw2oOWKDixX5SQ_OrDSb6q3bULYrHXd2-i-KjcfDBBNfNQfvdpSjyBCXVzkq8UWPF5dPvQHcV0YIbYBvVlMpTMycH3DdMadD3vIMWGMJKmW0kvnBRXaeB2ojcipzsOdJ3G9zApuuHHC0G1oF5PC7ULEtSeOWG-4pczJTOapTYjLcpomXCemC0kDibK1ajgWr3hWTXjYWAUUFaKokp4KKHbhdD5kWklmLOrMGpzVD7ur4NIXDTtubKICsPjIoQs3eX9TBCUNA0elZEEfTAemPZ5mXdipDDqfKUUJvIyme_-b2D6s4hfGFxB5AO3Z67s7DLRlZo7KdXkESxfXt4PhFxXI6dY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qi-hFfFufK3gSFrfJJpscpVjqqwdR6C0k2QQquhWtB_-9mX0ogvbgdZNA-CaZfNnMfANw4m1Pes9IbAj3ceqJiLXNRZyLzDpNBacWX3RvR3z4kF6N2bgF_SYXBsMqa99f-fTSW9dfzmo0z14mE8zxxb8XwQGHdZpQyRagg-pUrA2d88vr4eg70oOmohENxwHN42YZ5vX4bMItkSSleCeGJf5-PP1FP8tjaLAKKzV_jM6rKa5ByxXrsFhVlPxYh6V-U8BtA8J-rUvfRndVxflgg2jqo_7k1ZaSBBFK4yJlLTbhYXBx3x_GdW2E2AYAZzGVzshA902qM-582EYuFcZIwrSUXjovqNDG68BuRE51Hq49ietlVnDDjROGbkG7mBZuByKuPXHEesMtTZ3MZM5sQlyWU5ZwnZguJA0kytbC4Vi_4kk1EWKPKqCoEEWV9FRAsQunX0NeKtWMeZ3TBmf1w_QqePV5w44bm6gALL5z6MJN398UQVXDQFMpmdMHM4Jpj7OsC9uVQb9mSlEFL6Ns938TO4Kl4f3tjbq5HF3vwTK2YLgBkfvQnr2-u4PAYmbmsF6lnyXV7Ic |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Regulation+of+Circadian+Chromatin&rft.jtitle=Journal+of+molecular+biology&rft.au=Zhu%2C+Qiaoqiao&rft.au=Belden%2C+William+J.&rft.date=2020-05-29&rft.issn=0022-2836&rft.volume=432&rft.issue=12&rft.spage=3466&rft.epage=3482&rft_id=info:doi/10.1016%2Fj.jmb.2020.01.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmb_2020_01_009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2836&client=summon |