Molecular Regulation of Circadian Chromatin

Circadian rhythms are generated by transcriptional negative feedback loops and require histone modifications and chromatin remodeling to ensure appropriate timing and amplitude of clock gene expression. Circadian modifications to histones are important for transcriptional initiation and feedback inh...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular biology Vol. 432; no. 12; pp. 3466 - 3482
Main Authors Zhu, Qiaoqiao, Belden, William J.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 29.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Circadian rhythms are generated by transcriptional negative feedback loops and require histone modifications and chromatin remodeling to ensure appropriate timing and amplitude of clock gene expression. Circadian modifications to histones are important for transcriptional initiation and feedback inhibition serving as signaling platform for chromatin-remodeling enzymes. Current models indicate circadian-regulated facultative heterochromatin (CRFH) is a conserved mechanism at clock genes in Neurospora, Drosophila, and mice. CRFH consists of antiphasic rhythms in activating and repressive modifications generating chromatin states that cycle between transcriptionally permissive and nonpermissive. There are rhythms in histone H3 lysine 9 and 27 acetylation (H3K9ac and H3K27ac) and histone H3 lysine 4 methylation (H3K4me) during activation; while deacetylation, histone H3 lysine 9 methylation (H3K9me) and heterochromatin protein 1 (HP1) are hallmarks of repression. ATP-dependent chromatin-remodeling enzymes control accessibility, nucleosome positioning/occupancy, and nuclear organization. In Neurospora, the rhythm in facultative heterochromatin is mediated by the frequency (frq) natural antisense transcript (NAT) qrf. While in mammals, histone deacetylases (HDACs), histone H3 lysine 9 methyltransferase (KMT1/SUV39), and components of nucleosome remodeling and deacetylase (NuRD) are part of the nuclear PERIOD complex (PER complex). Genomics efforts have found relationships among rhythmic chromatin modifications at clock-controlled genes (ccg) revealing circadian control of genome-wide chromatin states. There are also circadian clock-regulated lncRNAs with an emerging function that includes assisting in chromatin dynamics. In this review, we explore the connections between circadian clock, chromatin remodeling, lncRNAs, and CRFH and how these impact rhythmicity, amplitude, period, and phase of circadian clock genes. A subset of mechanisms involved in circadian clock regulation with a focus on chromatin-associate events. The schematic depicts generalized factors required for proper circadian clock function that are the subject of this review. (RNA, The red solid line; DNA, black solid line; nucleosomes, gray cylinders). [Display omitted] •Chromatin modifications and chromatin remodeling are integral to circadian clock transcription.•Circadian chromatin involves cycles of activating and repression modifications.•Circadian regulated facultative heterochromatin involves deacetylation, histone H3 lysine 9 methylation, and HP1binding.•Changes to genome structure occur over the circadian cycle.•Age-related changes to circadian output likely occur because of changes to circadian chromatin.
AbstractList Circadian rhythms are generated by transcriptional negative feedback loops and require histone modifications and chromatin remodeling to ensure appropriate timing and amplitude of clock gene expression. Circadian modifications to histones are important for transcriptional initiation and feedback inhibition serving as signaling platform for chromatin-remodeling enzymes. Current models indicate circadian-regulated facultative heterochromatin (CRFH) is a conserved mechanism at clock genes in Neurospora, Drosophila, and mice. CRFH consists of antiphasic rhythms in activating and repressive modifications generating chromatin states that cycle between transcriptionally permissive and nonpermissive. There are rhythms in histone H3 lysine 9 and 27 acetylation (H3K9ac and H3K27ac) and histone H3 lysine 4 methylation (H3K4me) during activation; while deacetylation, histone H3 lysine 9 methylation (H3K9me) and heterochromatin protein 1 (HP1) are hallmarks of repression. ATP-dependent chromatin-remodeling enzymes control accessibility, nucleosome positioning/occupancy, and nuclear organization. In Neurospora, the rhythm in facultative heterochromatin is mediated by the frequency (frq) natural antisense transcript (NAT) qrf. While in mammals, histone deacetylases (HDACs), histone H3 lysine 9 methyltransferase (KMT1/SUV39), and components of nucleosome remodeling and deacetylase (NuRD) are part of the nuclear PERIOD complex (PER complex). Genomics efforts have found relationships among rhythmic chromatin modifications at clock-controlled genes (ccg) revealing circadian control of genome-wide chromatin states. There are also circadian clock-regulated lncRNAs with an emerging function that includes assisting in chromatin dynamics. In this review, we explore the connections between circadian clock, chromatin remodeling, lncRNAs, and CRFH and how these impact rhythmicity, amplitude, period, and phase of circadian clock genes. A subset of mechanisms involved in circadian clock regulation with a focus on chromatin-associate events. The schematic depicts generalized factors required for proper circadian clock function that are the subject of this review. (RNA, The red solid line; DNA, black solid line; nucleosomes, gray cylinders). [Display omitted] •Chromatin modifications and chromatin remodeling are integral to circadian clock transcription.•Circadian chromatin involves cycles of activating and repression modifications.•Circadian regulated facultative heterochromatin involves deacetylation, histone H3 lysine 9 methylation, and HP1binding.•Changes to genome structure occur over the circadian cycle.•Age-related changes to circadian output likely occur because of changes to circadian chromatin.
Circadian rhythms are generated by transcriptional negative feedback loops and require histone modifications and chromatin remodeling to ensure appropriate timing and amplitude of clock gene expression. Circadian modifications to histones are important for transcriptional initiation and feedback inhibition serving as signaling platform for chromatin-remodeling enzymes. Current models indicate circadian-regulated facultative heterochromatin (CRFH) is a conserved mechanism at clock genes in Neurospora, Drosophila, and mice. CRFH consists of antiphasic rhythms in activating and repressive modifications generating chromatin states that cycle between transcriptionally permissive and nonpermissive. There are rhythms in histone H3 lysine 9 and 27 acetylation (H3K9ac and H3K27ac) and histone H3 lysine 4 methylation (H3K4me) during activation; while deacetylation, histone H3 lysine 9 methylation (H3K9me) and heterochromatin protein 1 (HP1) are hallmarks of repression. ATP-dependent chromatin-remodeling enzymes control accessibility, nucleosome positioning/occupancy, and nuclear organization. In Neurospora, the rhythm in facultative heterochromatin is mediated by the frequency (frq) natural antisense transcript (NAT) qrf. While in mammals, histone deacetylases (HDACs), histone H3 lysine 9 methyltransferase (KMT1/SUV39), and components of nucleosome remodeling and deacetylase (NuRD) are part of the nuclear PERIOD complex (PER complex). Genomics efforts have found relationships among rhythmic chromatin modifications at clock-controlled genes (ccg) revealing circadian control of genome-wide chromatin states. There are also circadian clock-regulated lncRNAs with an emerging function that includes assisting in chromatin dynamics. In this review, we explore the connections between circadian clock, chromatin remodeling, lncRNAs, and CRFH and how these impact rhythmicity, amplitude, period, and phase of circadian clock genes.
Circadian rhythms are generated by transcriptional negative feedback loops and require histone modifications and chromatin remodeling to ensure appropriate timing and amplitude of clock gene expression. Circadian modifications to histones are important for transcriptional initiation and feedback inhibition serving as signaling platform for chromatin-remodeling enzymes. Current models indicate circadian-regulated facultative heterochromatin (CRFH) is a conserved mechanism at clock genes in Neurospora, Drosophila, and mice. CRFH consists of antiphasic rhythms in activating and repressive modifications generating chromatin states that cycle between transcriptionally permissive and nonpermissive. There are rhythms in histone H3 lysine 9 and 27 acetylation (H3K9ac and H3K27ac) and histone H3 lysine 4 methylation (H3K4me) during activation; while deacetylation, histone H3 lysine 9 methylation (H3K9me) and heterochromatin protein 1 (HP1) are hallmarks of repression. ATP-dependent chromatin-remodeling enzymes control accessibility, nucleosome positioning/occupancy, and nuclear organization. In Neurospora, the rhythm in facultative heterochromatin is mediated by the frequency (frq) natural antisense transcript (NAT) qrf. While in mammals, histone deacetylases (HDACs), histone H3 lysine 9 methyltransferase (KMT1/SUV39), and components of nucleosome remodeling and deacetylase (NuRD) are part of the nuclear PERIOD complex (PER complex). Genomics efforts have found relationships among rhythmic chromatin modifications at clock-controlled genes (ccg) revealing circadian control of genome-wide chromatin states. There are also circadian clock-regulated lncRNAs with an emerging function that includes assisting in chromatin dynamics. In this review, we explore the connections between circadian clock, chromatin remodeling, lncRNAs, and CRFH and how these impact rhythmicity, amplitude, period, and phase of circadian clock genes.Circadian rhythms are generated by transcriptional negative feedback loops and require histone modifications and chromatin remodeling to ensure appropriate timing and amplitude of clock gene expression. Circadian modifications to histones are important for transcriptional initiation and feedback inhibition serving as signaling platform for chromatin-remodeling enzymes. Current models indicate circadian-regulated facultative heterochromatin (CRFH) is a conserved mechanism at clock genes in Neurospora, Drosophila, and mice. CRFH consists of antiphasic rhythms in activating and repressive modifications generating chromatin states that cycle between transcriptionally permissive and nonpermissive. There are rhythms in histone H3 lysine 9 and 27 acetylation (H3K9ac and H3K27ac) and histone H3 lysine 4 methylation (H3K4me) during activation; while deacetylation, histone H3 lysine 9 methylation (H3K9me) and heterochromatin protein 1 (HP1) are hallmarks of repression. ATP-dependent chromatin-remodeling enzymes control accessibility, nucleosome positioning/occupancy, and nuclear organization. In Neurospora, the rhythm in facultative heterochromatin is mediated by the frequency (frq) natural antisense transcript (NAT) qrf. While in mammals, histone deacetylases (HDACs), histone H3 lysine 9 methyltransferase (KMT1/SUV39), and components of nucleosome remodeling and deacetylase (NuRD) are part of the nuclear PERIOD complex (PER complex). Genomics efforts have found relationships among rhythmic chromatin modifications at clock-controlled genes (ccg) revealing circadian control of genome-wide chromatin states. There are also circadian clock-regulated lncRNAs with an emerging function that includes assisting in chromatin dynamics. In this review, we explore the connections between circadian clock, chromatin remodeling, lncRNAs, and CRFH and how these impact rhythmicity, amplitude, period, and phase of circadian clock genes.
Author Zhu, Qiaoqiao
Belden, William J.
Author_xml – sequence: 1
  givenname: Qiaoqiao
  surname: Zhu
  fullname: Zhu, Qiaoqiao
– sequence: 2
  givenname: William J.
  surname: Belden
  fullname: Belden, William J.
  email: beldenwj@sebs.rutgers.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31954735$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1L5TAUhsPgMF4_foAbuUtB2jnJadMEV3JxPkARZGYdkvRUc2kbTXoF_711rrqYha5eODzPWTx7bGeMIzF2xKHkwOX3dbkeXClAQAm8BNBf2IKD0oWSqHbYAkCIQiiUu2wv5zUA1Fipb2wXua6rBusFO72KPflNb9Pyhm7nnUIcl7FbrkLytg12XK7uUhzm-3jAvna2z3T4uvvs74-LP6tfxeX1z9-r88vCo5JTgZqcRpCuso2kTkukSjmnRW217jR1CpV1nZUCVYu25bwC4o1X0klHyuE-O9n-vU_xYUN5MkPInvrejhQ32YgKdYVc1s3nKFYCaylRzOjxK7pxA7XmPoXBpifz1mIG-BbwKeacqHtHOJiX3mZt5t7mpbcBbubes9P85_gw_Ws4JRv6D82zrUlzycdAyWQfaPTUhkR-Mm0MH9jPUdSXyw
CitedBy_id crossref_primary_10_1080_02713683_2024_2302545
crossref_primary_10_1016_j_tcb_2024_02_005
crossref_primary_10_1371_journal_pgen_1010649
crossref_primary_10_3390_ijms21228806
crossref_primary_10_1111_mec_17425
crossref_primary_10_1016_j_jare_2022_04_007
crossref_primary_10_1111_mec_17600
crossref_primary_10_3389_fncel_2024_1464595
crossref_primary_10_7554_eLife_85241
crossref_primary_10_1080_07420528_2022_2115922
crossref_primary_10_1093_nar_gkaf162
crossref_primary_10_1016_j_jmb_2020_05_004
crossref_primary_10_1042_BCJ20240139
crossref_primary_10_1039_c9mt00289h
crossref_primary_10_1002_oby_23499
crossref_primary_10_1007_s00335_024_10050_7
crossref_primary_10_1007_s11154_022_09783_0
crossref_primary_10_1073_pnas_2203078119
crossref_primary_10_5334_jcr_219
Cites_doi 10.1038/22118
10.1016/j.neuron.2004.07.018
10.1126/science.aao6891
10.1038/nature07756
10.1101/gad.1266805
10.1016/j.molcel.2014.01.028
10.1101/gad.285791.116
10.1038/351153a0
10.1074/jbc.M209294200
10.1091/mbc.e06-03-0232
10.1038/19323
10.1038/nrg2008
10.1038/sj.onc.1210611
10.1038/nsmb.1961
10.1016/j.tig.2017.04.004
10.1038/nature03354
10.1126/science.1163045
10.1093/emboj/20.18.5232
10.1073/pnas.95.10.5474
10.1042/BJ20060827
10.1371/journal.pgen.1002166
10.1371/journal.pgen.1005992
10.1128/MCB.01612-07
10.1016/S0092-8674(01)00504-9
10.1101/gad.1551707
10.1038/nature11233
10.1146/annurev.genet.36.042902.092433
10.1016/j.cell.2017.07.035
10.1126/science.1098014
10.1371/journal.pgen.1005105
10.1210/en.2011-1535
10.1038/nsmb.2746
10.1101/gad.13.18.2369
10.1016/S0092-8674(02)00825-5
10.1016/j.molcel.2007.09.011
10.1038/cr.2011.22
10.1126/science.1221592
10.1128/MCB.22.5.1298-1306.2002
10.1038/nature01314
10.1016/S0960-9822(03)00124-6
10.1126/science.8128246
10.1093/emboj/18.18.4961
10.1016/j.molcel.2005.11.021
10.1073/pnas.1418963111
10.1371/journal.pgen.1006732
10.1093/emboj/18.7.1923
10.1038/ng1738
10.1073/pnas.1406130112
10.1101/gad.1463506
10.1126/science.184.4139.868
10.1038/s41467-018-03916-3
10.1038/nsmb.1578
10.1016/j.molcel.2010.11.031
10.1371/journal.pgen.1003761
10.1146/annurev.neuro.23.1.713
10.1242/jcs.104.2.573
10.1038/nsmb.2474
10.1038/embor.2013.131
10.1016/S0092-8674(02)00722-5
10.1177/0748730415587407
10.1073/pnas.1408886111
10.1016/S0896-6273(00)80627-3
10.1038/nature01427
10.1101/gad.237081.113
10.1126/science.8171325
10.1074/jbc.M808220200
10.1016/S0092-8674(00)81440-3
10.1016/j.molcel.2015.07.019
10.1101/gad.1404406
10.1128/MCB.12.4.1621
10.1074/jbc.M603722200
10.1126/science.1181369
10.1016/j.cell.2008.07.002
10.1093/hmg/ddl046
10.1126/science.1196766
10.1038/nature01080
10.1038/38444
10.1073/pnas.95.26.15502
10.1016/j.molcel.2019.03.003
10.1016/j.cell.2014.06.050
10.1038/nrc2747
10.1038/nrg1882
10.1128/MCB.02339-06
10.1002/j.1460-2075.1988.tb02956.x
10.1126/science.1069473
10.1128/MCB.01777-08
10.1016/j.molcel.2011.04.020
10.1038/nature14443
10.1073/pnas.68.9.2112
10.18632/aging.100113
10.1016/0092-8674(85)90170-9
10.1126/science.280.5369.1599
10.1073/pnas.1421197112
10.1126/science.1147182
10.1534/g3.114.015446
10.1101/gad.507408
10.1101/gad.1883910
10.1016/j.cmet.2012.11.004
10.1038/nrg.2016.150
10.1038/380129a0
10.1038/566
10.1101/sqb.2011.76.011494
10.1016/S0092-8674(00)81063-6
10.1016/j.molcel.2007.01.010
10.1016/j.cell.2007.05.022
10.1186/s12864-019-5729-7
10.1371/journal.pgen.1005307
10.1038/nsmb.2480
10.1126/science.1107373
10.1074/jbc.M112.359935
10.1038/ng1745
10.1128/MCB.24.14.6278-6287.2004
10.1186/s12864-018-5170-3
10.1074/jbc.M311973200
10.1038/ng1278
10.1016/0092-8674(92)90519-I
10.1093/nar/gkx156
10.1038/nrc1072
10.1093/emboj/20.1.109
10.1126/science.1243417
10.1016/j.tig.2015.11.001
10.1016/S0092-8674(02)00654-2
10.1016/j.molcel.2009.06.025
10.1016/j.gde.2011.01.022
10.1007/s000180300001
10.1098/rstb.2003.1370
10.1126/science.270.5237.811
10.1038/nature11704
10.1371/journal.pgen.1000787
10.1074/jbc.M414010200
10.1038/nsmb.1595
10.1016/0092-8674(87)90576-9
10.1093/emboj/20.15.3967
10.1002/j.1460-2075.1994.tb06693.x
10.1016/j.cell.2014.03.008
10.1046/j.1365-2443.1999.00239.x
10.1101/gad.1432206
10.1038/35104508
10.1038/nsmb.2667
10.1038/nature13671
10.1016/j.molcel.2004.08.031
10.1016/j.cell.2017.07.042
10.1126/science.288.5468.1013
10.1371/journal.pgen.1000459
10.1016/j.molcel.2012.08.012
10.1002/(SICI)1521-1878(199808)20:8<615::AID-BIES4>3.0.CO;2-H
10.1126/science.1206022
10.1002/hep.24514
10.1038/326390a0
10.1126/science.286.5440.768
10.1016/j.cell.2005.10.023
10.1016/j.molcel.2010.04.005
10.1371/journal.pgen.1004599
10.1016/j.cell.2008.06.050
10.1038/srep13752
10.1016/S1097-2765(00)80299-3
10.1126/science.276.5313.763
10.1016/S0092-8674(01)00576-1
10.1126/science.1112009
10.1515/REVNEURO.2008.19.4-5.245
10.1371/journal.pbio.1000595
10.1083/jcb.201005160
10.1101/gad.312397.118
10.1093/oxfordjournals.jbchem.a021434
10.1016/S0092-8674(00)80245-7
10.1016/j.cell.2005.05.032
10.1101/gad.1099503
10.1016/j.cell.2015.03.025
10.1126/science.1074973
10.1126/science.1226339
10.1073/pnas.1315133110
10.1016/S0092-8674(00)81441-5
10.1128/MCB.25.8.3305-3316.2005
10.1016/0092-8674(92)90520-M
10.1073/pnas.1612917113
10.1101/gad.228536.113
10.1016/j.molcel.2017.05.029
10.1126/science.8128244
10.1038/nrg1656
10.1128/MCB.01864-08
10.1126/science.1237973
10.1371/journal.pbio.1001442
10.1016/S0955-0674(03)00013-9
10.1016/S0092-8674(00)80246-9
10.1371/journal.pcbi.0020016
10.1016/j.cell.2014.10.022
10.1016/j.tcb.2013.07.002
10.1126/science.1170803
10.1016/S0092-8674(00)80566-8
10.1016/j.cell.2006.03.033
10.1016/j.cell.2013.05.027
10.1371/journal.pone.0223803
10.1073/pnas.1800431115
10.1083/jcb.200703081
10.1016/j.cell.2004.12.012
10.1126/science.282.5393.1490
10.1016/j.molcel.2014.10.017
10.1016/j.bbrc.2014.07.138
10.1371/journal.pbio.0040031
10.1038/nn.3651
10.1146/annurev.genet.40.110405.090603
10.1016/j.cell.2005.06.034
ContentType Journal Article
Copyright 2020
Copyright © 2020. Published by Elsevier Ltd.
Copyright_xml – notice: 2020
– notice: Copyright © 2020. Published by Elsevier Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.jmb.2020.01.009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1089-8638
EndPage 3482
ExternalDocumentID 31954735
10_1016_j_jmb_2020_01_009
S0022283620300395
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
-DZ
-ET
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
85S
8P~
9JM
AAAJQ
AABNK
AACTN
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARKO
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABOCM
ABPPZ
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGEKW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CJTIS
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GX1
HLW
HMG
IH2
IHE
J1W
KOM
LG5
LUGTX
LX2
LZ5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSI
SSU
SSZ
T5K
TWZ
VQA
WH7
XPP
YQT
ZMT
ZU3
~G-
.55
.GJ
186
29L
3O-
AAEDT
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADMUD
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRDE
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HVGLF
HX~
HZ~
H~9
K-O
MVM
NEJ
R2-
RIG
SBG
SEW
SIN
SSH
UQL
VH1
WUQ
X7M
XJT
XOL
Y6R
YYP
ZGI
ZKB
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c386t-39eb9306b4a76ef963e48bb925a99f9ef838abfa6238d3ad1140e17c86b6be8b3
IEDL.DBID .~1
ISSN 0022-2836
1089-8638
IngestDate Tue Aug 05 10:21:02 EDT 2025
Fri Jul 11 10:39:01 EDT 2025
Wed Feb 19 02:29:02 EST 2025
Tue Jul 01 03:50:32 EDT 2025
Thu Apr 24 23:06:35 EDT 2025
Fri Feb 23 02:47:18 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords lncRNAs
chromatin remodeling
chromatin modifications
aging
circadian regulation
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2020. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-39eb9306b4a76ef963e48bb925a99f9ef838abfa6238d3ad1140e17c86b6be8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 31954735
PQID 2342356632
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_2439431657
proquest_miscellaneous_2342356632
pubmed_primary_31954735
crossref_primary_10_1016_j_jmb_2020_01_009
crossref_citationtrail_10_1016_j_jmb_2020_01_009
elsevier_sciencedirect_doi_10_1016_j_jmb_2020_01_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-29
PublicationDateYYYYMMDD 2020-05-29
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-29
  day: 29
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of molecular biology
PublicationTitleAlternate J Mol Biol
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pekovic-Vaughan, Gibbs, Yoshitane, Yang, Pathiranage, Guo (bib186) 2014; 28
Boque-Sastre, Soler, Oliveira-Mateos, Portela, Moutinho, Sayols (bib173) 2015; 112
Sancar, Ha, Yilmaz, Tesorero, Fisher, Brunner (bib109) 2015; 11
Park, Belden (bib86) 2018; 19
Shi, Lan, Matson, Mulligan, Whetstine, Cole (bib103) 2004; 119
Dunlap (bib6) 1999; 96
Etchegaray, Lee, Wade, Reppert (bib95) 2003; 421
Eckel-Mahan, Sassone-Corsi (bib182) 2009; 16
Li, Jackson, Simon, Fleharty, Gogol, Seidel (bib114) 2009; 284
Nam, Boo, Kim, Han, Choe, Kim (bib104) 2014; 53
Reischl, Kramer (bib107) 2015; 30
Azzalin, Reichenbach, Khoriauli, Giulotto, Lingner (bib198) 2007; 318
Belden, Lewis, Selker, Loros, Dunlap (bib75) 2011; 7
Belden, Larrondo, Froehlich, Shi, Chen, Loros (bib85) 2007; 21
Doi, Hirayama, Sassone-Corsi (bib124) 2006; 125
Menet, Pescatore, Rosbash (bib108) 2014; 28
Mattick (bib157) 2009; 5
Wijnen, Young (bib181) 2006; 40
Wang, Kettenbach, Gerber, Loros, Dunlap (bib31) 2014; 10
Cech, Steitz (bib153) 2014; 157
Sassone-Corsi (bib129) 2012; 153
Nakao, Sasaki (bib164) 1996; 120
Djebali, Davis, Merkel, Dobin, Lassmann, Mortazavi (bib155) 2012; 489
Zhao, Sifakis, Sumida, Millán-Ariño, Scholz, Svensson (bib148) 2015; 59
Cha, Zhou, Liu (bib142) 2013; 14
Zeng, Qian, Myers, Rosbash (bib39) 1996; 380
Nakahata, Sahar, Astarita, Kaluzova, Sassone-Corsi (bib128) 2009; 324
Zhu, Ramakrishnan, Park, Belden (bib101) 2019; 20
Sun, Feng, Everett, Bugge, Lazar (bib125) 2011; 76
Sato, Solanas, Peixoto, Bee, Symeonidi, Schmidt (bib204) 2017; 170
Katayama, Tomaru, Kasukawa, Waki, Nakanishi, Nakamura (bib154) 2005; 309
Mermet, Yeung, Hurni, Mauvoisin, Gustafson, Jouffe (bib151) 2018; 32
Wassenegger (bib89) 2005; 122
Baylies, Bargiello, Jackson, Young (bib21) 1987; 326
Rey, Cesbron, Rougemont, Reinke, Brunner, Naef (bib60) 2011; 9
Rodgers, Lerin, Haas, Gygi, Spiegelman, Puigserver (bib130) 2005; 434
Dubruille, Murad, Rosbash, Emery (bib144) 2009; 5
Yu, Zheng, Price, Hardin (bib41) 2009; 29
Vitaterna, King, Chang, Kornhauser, Lowrey, McDonald (bib11) 1994; 264
Saunders, Chue, Goebl, Craig, Clark, Powers (bib79) 1993; 104
Chen, Wen, Shie, Lo, Wo, Wang (bib196) 2014; 451
Sangoram, Saez, Antoch, Gekakis, Staknis, Whiteley (bib36) 1998; 21
Luger, Mäder, Richmond, Sargent, Richmond (bib61) 1997; 389
Liu, Dang, Matsu-ura, He, He, Hong (bib111) 2017; 67
He, Shu, Cheng, Chen, Wang, Liu (bib45) 2005; 280
Kwok, Li, Lei, Edery, Chiu (bib29) 2015; 11
Bannister, Kouzarides (bib65) 2011; 21
Blasco (bib195) 2005; 6
Rinn, Kertesz, Wang, Squazzo, Xu, Brugmann (bib167) 2007; 129
Ptitsyn, Zvonic, Conrad, Scott, Mynatt, Gimble (bib180) 2006; 2
Fan, Zhao, Joshi, Li, Zhang, Guo (bib176) 2017; 45
Greider, Blackburn (bib194) 1987; 51
Ivanova, Bonaduce, Ivanov, Klar (bib83) 1998; 19
Bartolomei, Zemel, Tilghman (bib165) 1991; 351
Park, Zhu, Mirek, Na, Raduwan, Anthony (bib197) 2019; 14
Tamaru, Hirayama, Isojima, Nagai, Norioka, Takamatsu (bib47) 2009; 16
Peek, Affinati, Ramsey, Kuo, Yu, Sena (bib134) 2013; 342
Crosthwaite, Dunlap, Loros (bib15) 1997; 276
Zhang, Lahens, Ballance, Hughes, Hogenesch (bib172) 2014; 111
Brownell, Zhou, Ranalli, Kobayashi, Edmondson, Roth (bib121) 1996; 84
Jacobs, Taverna, Zhang, Briggs, Li, Eissenberg (bib80) 2001; 20
Roenneberg, Merrow (bib4) 2003; 13
Sato, Yamada, Ukai, Baggs, Miraglia, Kobayashi (bib37) 2006; 38
Mercer, Mattick (bib156) 2013; 20
Belden, Loros, Dunlap (bib141) 2007; 25
Chang, Guarente (bib203) 2013; 153
Griffin, Staknis, Weitz (bib35) 1999; 286
Kornberg (bib62) 1974; 184
Grimaldi, Coiro, Filetici, Berge, Dobosy, Freitag (bib135) 2006; 17
Sehgal, Price, Man, Young (bib20) 1994; 263
Partch, Green, Takahashi (bib5) 2014; 24
Tschiersch, Hofmann, Krauss, Dorn, Korge, Reuter (bib78) 1994; 13
Gekakis, Saez, Delahaye-Brown, Myers, Sehgal, Young (bib38) 1995; 270
Yoshitane, Takao, Satomi, Du, Okano, Fukada (bib49) 2009; 29
Zhao, Sun, Erwin, Song, Lee (bib171) 2008; 322
Masri, Rigor, Cervantes, Ceglia, Sebastian, Xiao (bib133) 2014; 158
Dang, Cheng, Sun, Zhou, Liu (bib94) 2016; 30
Li, Moazed, Gygi (bib118) 2002; 277
Bordone, Motta, Picard, Robinson, Jhala, Apfeld (bib131) 2005; 4
Yu, Zheng, Houl, Dauwalder, Hardin (bib43) 2006; 20
Vaquero, Scher, Lee, Erdjument-Bromage, Tempst, Reinberg (bib202) 2004; 16
Dardente, Fortier, Martineau, Cermakian (bib50) 2007; 402
Kramer, Loros, Dunlap, Crosthwaite (bib57) 2003; 421
Hemann, Strong, Hao, Greider (bib193) 2001; 107
van der Horst, Muijtjens, Kobayashi, Takano, Kanno, Takao (bib19) 1999; 398
Konig, Zarnack, Rot, Curk, Kayikci, Zupan (bib166) 2011
Koike, Yoo, Huang, Kumar, Lee, Kim (bib58) 2012; 338
Dunlap, Loros, Liu, Crosthwaite (bib1) 1999; 4
Talora, Franchi, Linden, Ballario, Macino (bib54) 1999; 18
Xue, Wong, Moreno, Young, Côté, Wang (bib139) 1998; 2
Xu, Guo, Li, Zhang, Zhao, Fan (bib149) 2016; 12
Hurley, Dasgupta, Emerson, Zhou, Ringelberg, Knabe (bib110) 2014; 111
Brown, Hendrich, Rupert, Lafreniere, Xing, Lawrence (bib161) 1992; 71
Chan, Blackburn (bib190) 2004; 359
Mulligan, Yang, Di Stefano, Ji, Ouyang, Nishikawa (bib105) 2011; 42
Willis (bib178) 2008; 19
Kim, Ko, Yu, Hardin, Edery (bib42) 2007; 27
Aronson, Johnson, Loros, Dunlap (bib23) 1994; 263
Strahl, Grant, Briggs, Sun, Bone, Caldwell (bib113) 2002; 22
Narlikar, Fan, Kingston (bib69) 2002; 108
Li, Reinberg (bib67) 2011; 21
Konopka, Benzer (bib22) 1971; 68
Bass (bib3) 2012; 491
Yudkovsky, Logie, Hahn, Peterson (bib137) 1999; 13
Curtis, Seo, Westgate, Rudic, Smyth, Chakravarti (bib96) 2004; 279
Gai, Cao, Dong, Ding, Wei, Liu (bib143) 2017; 13
Preitner, Damiola, Lopez-Molina, Zakany, Duboule, Albrecht (bib25) 2002; 110
Grewal, Jia (bib123) 2007; 8
Ivana, Ohkawa, Imbalzano (bib70) 2006; 7
Deng, Norseen, Wiedmer, Riethman, Lieberman (bib199) 2009; 35
Azzi, Dallmann, Casserly, Rehrauer, Patrignani, Maier (bib140) 2014; 17
King, Takahashi (bib33) 2000; 23
Carrozza, Li, Florens, Suganuma, Swanson, Lee (bib115) 2005; 123
McHugh, Chen, Chow, Surka, Tran, McDonel (bib170) 2015; 521
Montgomery, Xu, Fire (bib87) 1998; 95
Schafmeier, Haase, Kaldi, Scholz, Fuchs, Brunner (bib46) 2005; 122
Montero, López-Silanes, Megías, Fraga, Castells-García Á, Blasco (bib200) 2018; 9
Chiou, Yang, Rashid, Ye, Selby, Sancar (bib52) 2016; 113
Allada, White, So, Hall, Rosbash (bib13) 1998; 93
Volpe, Kidner, Hall, Teng, Grewal, Martienssen (bib90) 2002; 297
Kondratov, Chernov, Kondratova, Gorbacheva, Gudkov, Antoch (bib48) 2003; 17
Santos-Rosa, Schneider, Bannister, Sherriff, Bernstein, Emre (bib98) 2002; 419
Antoch, Song, Chang, Vitaterna, Zhao, Wilsbacher (bib9) 1997; 89
Araki, Sasaki, Milbrandt (bib132) 2004; 305
Rutila, Suri, Le, So, Rosbash, Hall (bib14) 1998; 93
Moazed (bib152) 2009; 457
Palacios, Herranz, De Bonis, Velasco, Serrano, Blasco (bib201) 2010; 191
Fang, Everett, Jager, Briggs, Armour, Feng (bib175) 2014; 159
Kizer, Phatnani, Shibata, Hall, Greenleaf, Strahl (bib117) 2005; 25
Sahar, Sassone-Corsi (bib179) 2009; 9
Zhou, Liu, Hu, Zhang, Sun, Cha (bib112) 2013; 110
King, Zhao, Sangoram, Wilsbacher, Tanaka, Antoch (bib10) 1997; 89
Sijen, Fleenor, Simmer, Thijssen, Parrish, Timmons (bib88) 2001; 107
García-Cao, O'Sullivan, Peters, Jenuwein, Blasco (bib191) 2004; 36
Naruse, Oh-hashi, Iijima, Naruse, Yoshioka, Tanaka (bib119) 2004; 24
Plath, Mlynarczyk-Evans, Nusinow, Panning (bib163) 2002; 36
Durrin, Mann, Grunstein (bib63) 1992; 12
Simon (bib169) 2013; 21
Fischle, Wang, Allis (bib68) 2003; 15
Kondratov, Kondratova, Gorbacheva, Vykhovanets, Antoch (bib184) 2006; 20
Kim, Marhon, Zhang, Steger, Won, Lazar (bib150) 2018; 359
Fu, Lee (bib177) 2003; 3
Smith, Shilatifard (bib66) 2010; 40
Kuo, Allis (bib120) 1998; 20
Greider, Blackburn (bib189) 1985; 43
Joshi, Struhl (bib116) 2005; 20
Duong, Robles, Knutti, Weitz (bib27) 2011; 332
Darlington, Wager-Smith, Ceriani, Staknis, Gekakis, Steeves (bib7) 1998; 280
Ruesch, Ramakrishnan, Park, Li, Chong, Zaman (bib84) 2015; 5
Ripperger, Schibler (bib71) 2006; 38
Thresher, Vitaterna, Miyamoto, Kazantsev, Hsu, Petit (bib18) 1998; 282
Duong, Weitz (bib30) 2014; 21
Mattick, Makunin (bib158) 2006; 15
Jacobs, Khorasanizadeh (bib81) 2002; 295
Kim, Kwak, Weitz (bib32) 2014; 56
Vollmers, Schmitz, Nathanson, Yeo, Ecker, Panda (bib59) 2012; 16
Asher, Gatfield, Stratmann, Reinke, Dibner, Kreppel (bib127) 2008; 134
Raduwan, Isola, Belden (bib100) 2013; 288
Solanas, Peixoto, Perdiguero, Jardí, Ruiz-Bonilla, Datta (bib205) 2017; 170
Takahashi (bib2) 2017; 18
Denslow, Wade (bib138) 2007; 26
Brockdorff, Ashworth, Kay, McCabe, Norris, Cooper (bib160) 1992; 71
Workman, Kingston (bib64) 1998
Manzella, Bracci, Strafella, Staffolani, Ciarapica, Copertaro (bib183) 2015; 5
Menet, Abruzzi, Desrochers, Rodriguez, Rosbash (bib51) 2010; 24
Kondratov, Vykhovanets, Kondratova, Antoch (bib185) 2009; 1
Shearman, Sriram, Weaver, Maywood, Chaves, Zheng (bib8) 2000; 288
Padmanabhan, Robles, Westerling, Weitz (bib77) 2012; 337
Becker, Nicetto, Zaret (bib72) 2016; 32
Aagaard, Laible, Selenko, Schmid, Dorn, Schotta (bib82) 1999; 18
Wang, Kettenbach, Zhou, Loros, Dunlap (bib53) 2019; 74
Lee, Li, Gu, Xue, Crosthwaite, Pertsemlidis (bib92) 2010; 38
Panda, Antoch, Miller, Su, Schook, Straume (bib34) 2002; 109
Lieberman-Aiden, Van Berkum, Williams, Imakaev, Ragoczy, Telling (bib146) 2009; 326
Benetti, Gonzalo, Jaco, Schotta, Klatt, Jenuwein (bib192) 2007; 178
Hogenesch, Gu, Jain, Bradfield (bib12) 1998; 95
Etchegaray, Yang, DeBruyne, Peters, Weaver, Jenuwein (bib102) 2006; 281
Dang, Li, Guo, Xue, Liu (bib91) 2013; 9
Xue, Ye, Anson, Yang, Xiao, Kowbel (bib174) 2014; 514
He, Cha, He, Lee, Yang, Liu (bib44) 2006; 20
Deveson, Hardwick, Mercer, Mattick (bib159) 2017; 33
Zheng, Larkin, Albrecht, Sun, Sage, Eichele (bib16) 1999; 400
Cheng, He, Wang, Liu (bib26) 2005; 19
Trojer, Reinberg (bib73) 2007; 28
Chu, Zhang, Da Rocha, Flynn, Bharadwaj, Calabrese (bib168) 2015; 161
Sato, Panda, Miraglia, Reyes, Rudic, McNamara (bib24) 2004; 43
Cavalli, Misteli (bib145) 2013; 20
Early, Menon, Wyse, Cervantes-Silva, Zaslona, Carroll (bib187) 2018; 115
Li, Joska, Ruesch, Coster, Belden (bib93) 2015; 112
Tamaru, Selker (bib76) 2001; 414
Denault, Loros, Dunlap (bib40) 2001; 20
Tao, Chen, Shi, Guo, Xu, Liu (bib136) 2011; 54
Hebbes, Thorne, Crane-Robinson (bib122) 1988; 7
Cermakian, M
Hurley (10.1016/j.jmb.2020.01.009_bib110) 2014; 111
Bartolomei (10.1016/j.jmb.2020.01.009_bib165) 1991; 351
Antoch (10.1016/j.jmb.2020.01.009_bib9) 1997; 89
Hogenesch (10.1016/j.jmb.2020.01.009_bib12) 1998; 95
Yu (10.1016/j.jmb.2020.01.009_bib41) 2009; 29
Kramer (10.1016/j.jmb.2020.01.009_bib57) 2003; 421
Shearman (10.1016/j.jmb.2020.01.009_bib8) 2000; 288
Kizer (10.1016/j.jmb.2020.01.009_bib117) 2005; 25
Denault (10.1016/j.jmb.2020.01.009_bib40) 2001; 20
Cech (10.1016/j.jmb.2020.01.009_bib153) 2014; 157
Partch (10.1016/j.jmb.2020.01.009_bib5) 2014; 24
Nakao (10.1016/j.jmb.2020.01.009_bib164) 1996; 120
Kondratov (10.1016/j.jmb.2020.01.009_bib48) 2003; 17
Narlikar (10.1016/j.jmb.2020.01.009_bib69) 2002; 108
Trojer (10.1016/j.jmb.2020.01.009_bib73) 2007; 28
Sahar (10.1016/j.jmb.2020.01.009_bib179) 2009; 9
Li (10.1016/j.jmb.2020.01.009_bib67) 2011; 21
Liu (10.1016/j.jmb.2020.01.009_bib111) 2017; 67
Lieberman-Aiden (10.1016/j.jmb.2020.01.009_bib146) 2009; 326
Bass (10.1016/j.jmb.2020.01.009_bib3) 2012; 491
Benetti (10.1016/j.jmb.2020.01.009_bib192) 2007; 178
Thresher (10.1016/j.jmb.2020.01.009_bib18) 1998; 282
Zhao (10.1016/j.jmb.2020.01.009_bib148) 2015; 59
Carrozza (10.1016/j.jmb.2020.01.009_bib115) 2005; 123
Simon (10.1016/j.jmb.2020.01.009_bib169) 2013; 21
Blasco (10.1016/j.jmb.2020.01.009_bib195) 2005; 6
Early (10.1016/j.jmb.2020.01.009_bib187) 2018; 115
Yoshitane (10.1016/j.jmb.2020.01.009_bib49) 2009; 29
Willis (10.1016/j.jmb.2020.01.009_bib178) 2008; 19
Nakahata (10.1016/j.jmb.2020.01.009_bib128) 2009; 324
Zafarullah (10.1016/j.jmb.2020.01.009_bib188) 2003; 60
Tamaru (10.1016/j.jmb.2020.01.009_bib76) 2001; 414
Allada (10.1016/j.jmb.2020.01.009_bib13) 1998; 93
Ivana (10.1016/j.jmb.2020.01.009_bib70) 2006; 7
Aagaard (10.1016/j.jmb.2020.01.009_bib82) 1999; 18
Eckel-Mahan (10.1016/j.jmb.2020.01.009_bib182) 2009; 16
Kuo (10.1016/j.jmb.2020.01.009_bib120) 1998; 20
Mattick (10.1016/j.jmb.2020.01.009_bib158) 2006; 15
Tao (10.1016/j.jmb.2020.01.009_bib136) 2011; 54
Strahl (10.1016/j.jmb.2020.01.009_bib113) 2002; 22
García-Cao (10.1016/j.jmb.2020.01.009_bib191) 2004; 36
Zhang (10.1016/j.jmb.2020.01.009_bib172) 2014; 111
Denslow (10.1016/j.jmb.2020.01.009_bib138) 2007; 26
Roenneberg (10.1016/j.jmb.2020.01.009_bib4) 2003; 13
Chan (10.1016/j.jmb.2020.01.009_bib190) 2004; 359
Kim (10.1016/j.jmb.2020.01.009_bib32) 2014; 56
Deng (10.1016/j.jmb.2020.01.009_bib199) 2009; 35
Wang (10.1016/j.jmb.2020.01.009_bib53) 2019; 74
Griffin (10.1016/j.jmb.2020.01.009_bib35) 1999; 286
Dang (10.1016/j.jmb.2020.01.009_bib94) 2016; 30
Aronson (10.1016/j.jmb.2020.01.009_bib23) 1994; 263
Sato (10.1016/j.jmb.2020.01.009_bib24) 2004; 43
Solanas (10.1016/j.jmb.2020.01.009_bib205) 2017; 170
Doi (10.1016/j.jmb.2020.01.009_bib124) 2006; 125
Belden (10.1016/j.jmb.2020.01.009_bib75) 2011; 7
Xu (10.1016/j.jmb.2020.01.009_bib149) 2016; 12
Saunders (10.1016/j.jmb.2020.01.009_bib79) 1993; 104
Zheng (10.1016/j.jmb.2020.01.009_bib16) 1999; 400
Jacobs (10.1016/j.jmb.2020.01.009_bib80) 2001; 20
Ivanova (10.1016/j.jmb.2020.01.009_bib83) 1998; 19
Dang (10.1016/j.jmb.2020.01.009_bib91) 2013; 9
Sijen (10.1016/j.jmb.2020.01.009_bib88) 2001; 107
Fan (10.1016/j.jmb.2020.01.009_bib176) 2017; 45
Tamaru (10.1016/j.jmb.2020.01.009_bib47) 2009; 16
Li (10.1016/j.jmb.2020.01.009_bib93) 2015; 112
Wang (10.1016/j.jmb.2020.01.009_bib31) 2014; 10
Bannister (10.1016/j.jmb.2020.01.009_bib65) 2011; 21
Darlington (10.1016/j.jmb.2020.01.009_bib7) 1998; 280
Hemann (10.1016/j.jmb.2020.01.009_bib193) 2001; 107
Etchegaray (10.1016/j.jmb.2020.01.009_bib102) 2006; 281
Azzalin (10.1016/j.jmb.2020.01.009_bib198) 2007; 318
Sehgal (10.1016/j.jmb.2020.01.009_bib20) 1994; 263
Raduwan (10.1016/j.jmb.2020.01.009_bib100) 2013; 288
Dardente (10.1016/j.jmb.2020.01.009_bib50) 2007; 402
Fu (10.1016/j.jmb.2020.01.009_bib177) 2003; 3
Greider (10.1016/j.jmb.2020.01.009_bib194) 1987; 51
Katada (10.1016/j.jmb.2020.01.009_bib97) 2010; 17
Naruse (10.1016/j.jmb.2020.01.009_bib119) 2004; 24
Masri (10.1016/j.jmb.2020.01.009_bib133) 2014; 158
Vitaterna (10.1016/j.jmb.2020.01.009_bib11) 1994; 264
Dunlap (10.1016/j.jmb.2020.01.009_bib1) 1999; 4
Stratmann (10.1016/j.jmb.2020.01.009_bib55) 2012; 48
Luger (10.1016/j.jmb.2020.01.009_bib61) 1997; 389
Wassenegger (10.1016/j.jmb.2020.01.009_bib89) 2005; 122
DiTacchio (10.1016/j.jmb.2020.01.009_bib106) 2011; 333
Vaquero (10.1016/j.jmb.2020.01.009_bib202) 2004; 16
Fischle (10.1016/j.jmb.2020.01.009_bib68) 2003; 15
Kondratov (10.1016/j.jmb.2020.01.009_bib185) 2009; 1
Mermet (10.1016/j.jmb.2020.01.009_bib151) 2018; 32
Panda (10.1016/j.jmb.2020.01.009_bib34) 2002; 109
Chu (10.1016/j.jmb.2020.01.009_bib168) 2015; 161
Crosthwaite (10.1016/j.jmb.2020.01.009_bib15) 1997; 276
Aguilar-Arnal (10.1016/j.jmb.2020.01.009_bib147) 2013; 20
Preitner (10.1016/j.jmb.2020.01.009_bib25) 2002; 110
Vollmers (10.1016/j.jmb.2020.01.009_bib59) 2012; 16
Dunlap (10.1016/j.jmb.2020.01.009_bib6) 1999; 96
Sato (10.1016/j.jmb.2020.01.009_bib204) 2017; 170
Moazed (10.1016/j.jmb.2020.01.009_bib152) 2009; 457
Joshi (10.1016/j.jmb.2020.01.009_bib116) 2005; 20
Sun (10.1016/j.jmb.2020.01.009_bib125) 2011; 76
Pekovic-Vaughan (10.1016/j.jmb.2020.01.009_bib186) 2014; 28
Greider (10.1016/j.jmb.2020.01.009_bib189) 1985; 43
Brownell (10.1016/j.jmb.2020.01.009_bib121) 1996; 84
Etchegaray (10.1016/j.jmb.2020.01.009_bib95) 2003; 421
Sancar (10.1016/j.jmb.2020.01.009_bib109) 2015; 11
Duong (10.1016/j.jmb.2020.01.009_bib27) 2011; 332
Rodgers (10.1016/j.jmb.2020.01.009_bib130) 2005; 434
Smith (10.1016/j.jmb.2020.01.009_bib66) 2010; 40
Dubruille (10.1016/j.jmb.2020.01.009_bib144) 2009; 5
Brown (10.1016/j.jmb.2020.01.009_bib28) 2005; 308
Nam (10.1016/j.jmb.2020.01.009_bib104) 2014; 53
Schafmeier (10.1016/j.jmb.2020.01.009_bib46) 2005; 122
Mercer (10.1016/j.jmb.2020.01.009_bib156) 2013; 20
Chen (10.1016/j.jmb.2020.01.009_bib196) 2014; 451
Brown (10.1016/j.jmb.2020.01.009_bib161) 1992; 71
Zeng (10.1016/j.jmb.2020.01.009_bib39) 1996; 380
Padmanabhan (10.1016/j.jmb.2020.01.009_bib77) 2012; 337
He (10.1016/j.jmb.2020.01.009_bib45) 2005; 280
Menet (10.1016/j.jmb.2020.01.009_bib51) 2010; 24
Volpe (10.1016/j.jmb.2020.01.009_bib90) 2002; 297
Li (10.1016/j.jmb.2020.01.009_bib114) 2009; 284
Chang (10.1016/j.jmb.2020.01.009_bib203) 2013; 153
Ripperger (10.1016/j.jmb.2020.01.009_bib71) 2006; 38
King (10.1016/j.jmb.2020.01.009_bib10) 1997; 89
McHugh (10.1016/j.jmb.2020.01.009_bib170) 2015; 521
Brockdorff (10.1016/j.jmb.2020.01.009_bib160) 1992; 71
Jacobs (10.1016/j.jmb.2020.01.009_bib81) 2002; 295
Fang (10.1016/j.jmb.2020.01.009_bib175) 2014; 159
Park (10.1016/j.jmb.2020.01.009_bib86) 2018; 19
Katayama (10.1016/j.jmb.2020.01.009_bib154) 2005; 309
Sangoram (10.1016/j.jmb.2020.01.009_bib36) 1998; 21
Rey (10.1016/j.jmb.2020.01.009_bib60) 2011; 9
Montgomery (10.1016/j.jmb.2020.01.009_bib87) 1998; 95
Tschiersch (10.1016/j.jmb.2020.01.009_bib78) 1994; 13
van der Horst (10.1016/j.jmb.2020.01.009_bib19) 1999; 398
Reischl (10.1016/j.jmb.2020.01.009_bib107) 2015; 30
Lee (10.1016/j.jmb.2020.01.009_bib92) 2010; 38
Konig (10.1016/j.jmb.2020.01.009_bib166) 2011
Mattick (10.1016/j.jmb.2020.01.009_bib157) 2009; 5
Takahashi (10.1016/j.jmb.2020.01.009_bib2) 2017; 18
Deveson (10.1016/j.jmb.2020.01.009_bib159) 2017; 33
Kondratov (10.1016/j.jmb.2020.01.009_bib184) 2006; 20
Zhou (10.1016/j.jmb.2020.01.009_bib112) 2013; 110
Cheng (10.1016/j.jmb.2020.01.009_bib26) 2005; 19
Konopka (10.1016/j.jmb.2020.01.009_bib22) 1971; 68
Durrin (10.1016/j.jmb.2020.01.009_bib63) 1992; 12
Asher (10.1016/j.jmb.2020.01.009_bib127) 2008; 134
Ptitsyn (10.1016/j.jmb.2020.01.009_bib180) 2006; 2
Menet (10.1016/j.jmb.2020.01.009_bib108) 2014; 28
Cermakian (10.1016/j.jmb.2020.01.009_bib17) 2001; 20
Becker (10.1016/j.jmb.2020.01.009_bib72) 2016; 32
Kim (10.1016/j.jmb.2020.01.009_bib42) 2007; 27
Djebali (10.1016/j.jmb.2020.01.009_bib155) 2012; 489
Bordone (10.1016/j.jmb.2020.01.009_bib131) 2005; 4
Nakahata (10.1016/j.jmb.2020.01.009_bib126) 2008; 134
Duong (10.1016/j.jmb.2020.01.009_bib30) 2014; 21
Mulligan (10.1016/j.jmb.2020.01.009_bib105) 2011; 42
Wijnen (10.1016/j.jmb.2020.01.009_bib181) 2006; 40
Araki (10.1016/j.jmb.2020.01.009_bib132) 2004; 305
Cavalli (10.1016/j.jmb.2020.01.009_bib145) 2013; 20
Curtis (10.1016/j.jmb.2020.01.009_bib96) 2004; 279
Hebbes (10.1016/j.jmb.2020.01.009_bib122) 1988; 7
Sassone-Corsi (10.1016/j.jmb.2020.01.009_bib129) 2012; 153
Santos-Rosa (10.1016/j.jmb.2020.01.009_bib98) 2002; 419
Workman (10.1016/j.jmb.2020.01.009_bib64) 1998
Xue (10.1016/j.jmb.2020.01.009_bib174) 2014; 514
King (10.1016/j.jmb.2020.01.009_bib33) 2000; 23
Azzi (10.1016/j.jmb.2020.01.009_bib140) 2014; 17
Koike (10.1016/j.jmb.2020.01.009_bib58) 2012; 338
Engreitz (10.1016/j.jmb.2020.01.009_bib162) 2013; 341
Rinn (10.1016/j.jmb.2020.01.009_bib167) 2007; 129
Grimaldi (10.1016/j.jmb.2020.01.009_bib135) 2006; 17
Belden (10.1016/j.jmb.2020.01.009_bib85) 2007; 21
Li (10.1016/j.jmb.2020.01.009_bib118) 2002; 277
Gekakis (10.1016/j.jmb.2020.01.009_bib38) 1995; 270
Palacios (10.1016/j.jmb.2020.01.009_bib201) 2010; 191
Le Martelot (10.1016/j.jmb.2020.01.009_bib99) 2012; 10
Yu (10.1016/j.jmb.2020.01.009_bib43) 2006; 20
Gai (10.1016/j.jmb.2020.01.009_bib143) 2017; 13
Grewal (10.1016/j.jmb.2020.01.009_bib123) 2007; 8
Belden (10.1016/j.jmb.2020.01.009_bib141) 2007; 25
Yudkovsky (10.1016/j.jmb.2020.01.009_bib137) 1999; 13
Peek (10.1016/j.jmb.2020.01.009_bib134) 2013; 342
Xue (10.1016/j.jmb.2020.01.009_bib139) 1998; 2
Kim (10.1016/j.jmb.2020.01.009_bib150) 2018; 359
Rutila (10.1016/j.jmb.2020.01.009_bib14) 1998; 93
Kornberg (10.1016/j.jmb.2020.01.009_bib62) 1974; 184
Baylies (10.1016/j.jmb.2020.01.009_bib21) 1987; 326
Montero (10.1016/j.jmb.2020.01.009_bib200) 2018; 9
Schafmeier (10.1016/j.jmb.2020.01.009_bib56) 2008; 22
Zhao (10.1016/j.jmb.2020.01.009_bib171) 2008; 322
Shi (10.1016/j.jmb.2020.01.009_bib103) 2004; 119
Kwok (10.1016/j.jmb.2020.01.009_bib29) 2015; 11
Plath (10.1016/j.jmb.2020.01.009_bib163) 2002; 36
Manzella (10.1016/j.jmb.2020.01.009_bib183) 2015; 5
Park (10.1016/j.jmb.2020.01.009_bib197) 2019; 14
He (10.1016/j.jmb.2020.01.009_bib44) 2006; 20
Sato (10.1016/j.jmb.2020.01.009_bib37) 2006; 38
Ruesch (10.1016/j.jmb.2020.01.009_bib84) 2015; 5
Taylor (10.1016/j.jmb.2020.01.009_bib74) 2008
References_xml – volume: 17
  start-page: 1921
  year: 2003
  end-page: 1932
  ident: bib48
  article-title: BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system
  publication-title: Genes Dev.
– volume: 288
  start-page: 1013
  year: 2000
  end-page: 1019
  ident: bib8
  article-title: Interacting molecular loops in the mammalian circadian clock
  publication-title: Science
– volume: 159
  start-page: 1140
  year: 2014
  end-page: 1152
  ident: bib175
  article-title: Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo
  publication-title: Cell
– volume: 333
  start-page: 1881
  year: 2011
  end-page: 1885
  ident: bib106
  article-title: Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock
  publication-title: Science
– volume: 13
  start-page: 3822
  year: 1994
  end-page: 3831
  ident: bib78
  article-title: The protein encoded by the Drosophila position-effect variegation suppressor gene Su (var) 3-9 combines domains of antagonistic regulators of homeotic gene complexes
  publication-title: EMBO J.
– volume: 4
  start-page: 1
  year: 1999
  end-page: 10
  ident: bib1
  article-title: Eukaryotic circadian systems: cycles in common
  publication-title: Genes Cells
– volume: 29
  start-page: 3675
  year: 2009
  end-page: 3686
  ident: bib49
  article-title: Roles of CLOCK phosphorylation in suppression of E-box-dependent transcription
  publication-title: Mol. Cell. Biol.
– volume: 7
  year: 2011
  ident: bib75
  article-title: CHD1 remodels chromatin and influences transient DNA methylation at the clock gene frequency
  publication-title: PLoS Genet.
– volume: 451
  start-page: 408
  year: 2014
  end-page: 414
  ident: bib196
  article-title: The circadian rhythm controls telomeres and telomerase activity
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 51
  start-page: 887
  year: 1987
  end-page: 898
  ident: bib194
  article-title: The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity
  publication-title: Cell
– volume: 93
  start-page: 805
  year: 1998
  end-page: 814
  ident: bib14
  article-title: CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless
  publication-title: Cell
– volume: 28
  start-page: 1
  year: 2007
  end-page: 13
  ident: bib73
  article-title: Facultative heterochromatin: is there a distinctive molecular signature?
  publication-title: Mol. Cell
– volume: 28
  start-page: 8
  year: 2014
  end-page: 13
  ident: bib108
  article-title: CLOCK: BMAL1 is a pioneer-like transcription factor
  publication-title: Genes Dev.
– volume: 5
  start-page: 13752
  year: 2015
  ident: bib183
  article-title: Circadian modulation of 8-oxoguanine DNA damage repair
  publication-title: Sci. Rep.
– volume: 122
  start-page: 13
  year: 2005
  end-page: 16
  ident: bib89
  article-title: The role of the RNAi machinery in heterochromatin formation
  publication-title: Cell
– volume: 421
  start-page: 177
  year: 2003
  ident: bib95
  article-title: Rhythmic histone acetylation underlies transcription in the mammalian circadian clock
  publication-title: Nature
– volume: 326
  start-page: 289
  year: 2009
  end-page: 293
  ident: bib146
  article-title: Comprehensive mapping of long-range interactions reveals folding principles of the human genome
  publication-title: Science
– volume: 359
  start-page: 109
  year: 2004
  end-page: 122
  ident: bib190
  article-title: Telomeres and telomerase
  publication-title: Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci.
– volume: 288
  start-page: 8380
  year: 2013
  end-page: 8390
  ident: bib100
  article-title: Methylation of histone H3 on lysine 4 by the lysine methyltransferase SET1 protein is needed for normal clock gene expression
  publication-title: J. Biol. Chem.
– volume: 129
  start-page: 1311
  year: 2007
  end-page: 1323
  ident: bib167
  article-title: Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs
  publication-title: Cell
– volume: 341
  start-page: 1237973
  year: 2013
  ident: bib162
  article-title: The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome
  publication-title: Science
– volume: 9
  start-page: 1548
  year: 2018
  ident: bib200
  article-title: TERRA recruitment of polycomb to telomeres is essential for histone trymethylation marks at telomeric heterochromatin
  publication-title: Nat. Commun.
– year: 1998
  ident: bib64
  article-title: Alteration of nucleosome structure as a mechanism of transcriptional regulation
  publication-title: Annual Reviews 4139 El Camino Way, PO Box 10139, Palo Alto, CA 94303-0139, USA
– volume: 38
  start-page: 803
  year: 2010
  end-page: 814
  ident: bib92
  article-title: Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi
  publication-title: Mol. Cell
– volume: 12
  start-page: 1621
  year: 1992
  end-page: 1629
  ident: bib63
  article-title: Nucleosome loss activates CUP1 and HIS3 promoters to fully induced levels in the yeast Saccharomyces cerevisiae
  publication-title: Mol. Cell. Biol.
– volume: 48
  start-page: 277
  year: 2012
  end-page: 287
  ident: bib55
  article-title: Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome
  publication-title: Mol. Cell
– volume: 16
  start-page: 93
  year: 2004
  end-page: 105
  ident: bib202
  article-title: Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin
  publication-title: Mol. Cell
– volume: 342
  start-page: 1243417
  year: 2013
  ident: bib134
  article-title: Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice
  publication-title: Science
– volume: 5
  year: 2009
  ident: bib157
  article-title: The genetic signatures of noncoding RNAs
  publication-title: PLoS Genet.
– volume: 36
  start-page: 94
  year: 2004
  ident: bib191
  article-title: Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases
  publication-title: Nat. Genet.
– volume: 9
  start-page: 886
  year: 2009
  ident: bib179
  article-title: Metabolism and cancer: the circadian clock connection
  publication-title: Nat. Rev. Cancer
– volume: 170
  start-page: 678
  year: 2017
  end-page: 692
  ident: bib205
  article-title: Aged stem cells reprogram their daily rhythmic functions to adapt to stress
  publication-title: Cell
– volume: 284
  start-page: 7970
  year: 2009
  end-page: 7976
  ident: bib114
  article-title: Histone H3 lysine 36 dimethylation (H3K36me2) is sufficient to recruit the Rpd3s histone deacetylase complex and to repress spurious transcription
  publication-title: J. Biol. Chem.
– volume: 20
  start-page: 2552
  year: 2006
  end-page: 2565
  ident: bib44
  article-title: CKI and CKII mediate the FREQUENCY-dependent phosphorylation of the WHITE COLLAR complex to close the
  publication-title: Genes Dev.
– volume: 17
  start-page: 1414
  year: 2010
  ident: bib97
  article-title: The histone methyltransferase MLL1 permits the oscillation of circadian gene expression
  publication-title: Nat. Struct. Mol. Biol.
– volume: 20
  start-page: 723
  year: 2006
  end-page: 733
  ident: bib43
  article-title: PER-dependent rhythms in CLK phosphorylation and E-box binding regulate circadian transcription
  publication-title: Genes Dev.
– volume: 309
  start-page: 1564
  year: 2005
  end-page: 1566
  ident: bib154
  article-title: Antisense transcription in the mammalian transcriptome
  publication-title: Science
– volume: 9
  year: 2011
  ident: bib60
  article-title: Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver
  publication-title: PLoS Biol.
– volume: 305
  start-page: 1010
  year: 2004
  end-page: 1013
  ident: bib132
  article-title: Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration
  publication-title: Science
– volume: 104
  start-page: 573
  year: 1993
  end-page: 582
  ident: bib79
  article-title: Molecular cloning of a human homologue of Drosophila heterochromatin protein HP1 using anti-centromere autoantibodies with anti-chromo specificity
  publication-title: J. Cell Sci.
– volume: 337
  start-page: 599
  year: 2012
  end-page: 602
  ident: bib77
  article-title: Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex
  publication-title: Science
– volume: 153
  start-page: 1
  year: 2012
  end-page: 5
  ident: bib129
  article-title: Minireview: NAD+, a circadian metabolite with an epigenetic twist
  publication-title: Endocrinology
– volume: 158
  start-page: 659
  year: 2014
  end-page: 672
  ident: bib133
  article-title: Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism
  publication-title: Cell
– volume: 112
  start-page: 4357
  year: 2015
  end-page: 4362
  ident: bib93
  article-title: The frequency natural antisense transcript first promotes, then represses, frequency gene expression via facultative heterochromatin
  publication-title: Proc. Natl. Acad. Sci.
– volume: 332
  start-page: 1436
  year: 2011
  end-page: 1439
  ident: bib27
  article-title: A molecular mechanism for circadian clock negative feedback
  publication-title: Science
– volume: 7
  start-page: 461
  year: 2006
  ident: bib70
  article-title: Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers
  publication-title: Nat. Rev. Genet.
– volume: 21
  start-page: 126
  year: 2014
  end-page: 132
  ident: bib30
  article-title: Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes
  publication-title: Nat. Struct. Mol. Biol.
– volume: 59
  start-page: 984
  year: 2015
  end-page: 997
  ident: bib148
  article-title: PARP1-and CTCF-mediated interactions between active and repressed chromatin at the lamina promote oscillating transcription
  publication-title: Mol. Cell
– volume: 414
  start-page: 277
  year: 2001
  end-page: 283
  ident: bib76
  article-title: A histone H3 methyltransferase controls DNA methylation in
  publication-title: Nature
– volume: 359
  start-page: 1274
  year: 2018
  end-page: 1277
  ident: bib150
  article-title: Rev-erbα dynamically modulates chromatin looping to control circadian gene transcription
  publication-title: Science
– volume: 32
  start-page: 29
  year: 2016
  end-page: 41
  ident: bib72
  article-title: H3K9me3-dependent heterochromatin: barrier to cell fate changes
  publication-title: Trends Genet.
– volume: 25
  start-page: 3305
  year: 2005
  end-page: 3316
  ident: bib117
  article-title: A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation
  publication-title: Mol. Cell. Biol.
– volume: 96
  start-page: 271
  year: 1999
  end-page: 290
  ident: bib6
  article-title: Molecular bases for circadian clocks
  publication-title: Cell
– volume: 16
  start-page: 833
  year: 2012
  end-page: 845
  ident: bib59
  article-title: Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome
  publication-title: Cell Metabol.
– volume: 21
  start-page: 381
  year: 2011
  end-page: 395
  ident: bib65
  article-title: Regulation of chromatin by histone modifications
  publication-title: Cell Res.
– volume: 43
  start-page: 527
  year: 2004
  end-page: 537
  ident: bib24
  article-title: A functional genomics strategy reveals Rora as a component of the mammalian circadian clock
  publication-title: Neuron
– volume: 76
  start-page: 49
  year: 2011
  end-page: 55
  ident: bib125
  article-title: Circadian epigenomic remodeling and hepatic lipogenesis: lessons from HDAC3
  publication-title: Cold Spring Harbor Symp. Quant. Biol.
– volume: 19
  start-page: 777
  year: 2018
  ident: bib86
  article-title: Long non-coding RNAs have age-dependent diurnal expression that coincides with age-related changes in genome-wide facultative heterochromatin
  publication-title: BMC Genomics
– volume: 53
  start-page: 791
  year: 2014
  end-page: 805
  ident: bib104
  article-title: Phosphorylation of LSD1 by PKCα is crucial for circadian rhythmicity and phase resetting
  publication-title: Mol. Cell
– volume: 5
  year: 2009
  ident: bib144
  article-title: A constant light-genetic screen identifies KISMET as a regulator of circadian photoresponses
  publication-title: PLoS Genet.
– volume: 24
  start-page: 6278
  year: 2004
  end-page: 6287
  ident: bib119
  article-title: Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation
  publication-title: Mol. Cell. Biol.
– volume: 7
  start-page: 1395
  year: 1988
  end-page: 1402
  ident: bib122
  article-title: A direct link between core histone acetylation and transcriptionally active chromatin
  publication-title: EMBO J.
– volume: 93
  start-page: 791
  year: 1998
  end-page: 804
  ident: bib13
  article-title: A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless
  publication-title: Cell
– volume: 326
  start-page: 390
  year: 1987
  end-page: 392
  ident: bib21
  article-title: Changes in abundance or structure of the per gene product can alter periodicity of the Drosophila clock
  publication-title: Nature
– volume: 161
  start-page: 404
  year: 2015
  end-page: 416
  ident: bib168
  article-title: Systematic discovery of Xist RNA binding proteins
  publication-title: Cell
– volume: 120
  start-page: 467
  year: 1996
  end-page: 473
  ident: bib164
  article-title: Genomic imprinting: significance in development and diseases and the molecular mechanisms
  publication-title: J. Biochem.
– volume: 110
  start-page: E4867
  year: 2013
  end-page: E4874
  ident: bib112
  article-title: Suppression of WC-independent frequency transcription by RCO-1 is essential for Neurospora circadian clock
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 40
  start-page: 409
  year: 2006
  end-page: 448
  ident: bib181
  article-title: Interplay of circadian clocks and metabolic rhythms
  publication-title: Annu. Rev. Genet.
– volume: 11
  year: 2015
  ident: bib109
  article-title: Combinatorial control of light induced chromatin remodeling and gene activation in Neurospora
  publication-title: PLoS Genet.
– volume: 42
  start-page: 689
  year: 2011
  end-page: 699
  ident: bib105
  article-title: A SIRT1-LSD1 corepressor complex regulates Notch target gene expression and development
  publication-title: Mol. Cell
– volume: 30
  start-page: 2417
  year: 2016
  end-page: 2432
  ident: bib94
  article-title: Antisense transcription licenses nascent transcripts to mediate transcriptional gene silencing
  publication-title: Genes Dev.
– volume: 263
  start-page: 1603
  year: 1994
  end-page: 1606
  ident: bib20
  article-title: Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless
  publication-title: Science
– volume: 263
  start-page: 1578
  year: 1994
  end-page: 1584
  ident: bib23
  article-title: Negative feedback defining a circadian clock: autoregulation of the clock gene
  publication-title: Science
– volume: 10
  year: 2014
  ident: bib31
  article-title: Neurospora WC-1 recruits SWI/SNF to remodel frequency and initiate a circadian cycle
  publication-title: PLoS Genet.
– volume: 40
  start-page: 689
  year: 2010
  end-page: 701
  ident: bib66
  article-title: The chromatin signaling pathway: diverse mechanisms of recruitment of histone-modifying enzymes and varied biological outcomes
  publication-title: Mol. Cell
– volume: 22
  start-page: 3397
  year: 2008
  end-page: 3402
  ident: bib56
  article-title: Circadian activity and abundance rhythms of the Neurospora clock transcription factor WCC associated with rapid nucleo–cytoplasmic shuttling
  publication-title: Genes Dev.
– volume: 21
  start-page: 1101
  year: 1998
  end-page: 1113
  ident: bib36
  article-title: Mammalian circadian autoregulatory loop: a timeless ortholog and mPer1 interact and negatively regulate CLOCK-BMAL1-induced transcription
  publication-title: Neuron
– volume: 115
  start-page: E8460
  year: 2018
  end-page: E8468
  ident: bib187
  article-title: Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2
  publication-title: Proc. Natl. Acad. Sci.
– volume: 29
  start-page: 1452
  year: 2009
  end-page: 1458
  ident: bib41
  article-title: DOUBLETIME plays a noncatalytic role to mediate CLOCK phosphorylation and repress CLOCK-dependent transcription within the Drosophila circadian clock
  publication-title: Mol. Cell. Biol.
– volume: 18
  start-page: 164
  year: 2017
  ident: bib2
  article-title: Transcriptional architecture of the mammalian circadian clock
  publication-title: Nat. Rev. Genet.
– volume: 125
  start-page: 497
  year: 2006
  end-page: 508
  ident: bib124
  article-title: Circadian regulator CLOCK is a histone acetyltransferase
  publication-title: Cell
– volume: 264
  start-page: 719
  year: 1994
  end-page: 725
  ident: bib11
  article-title: Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior
  publication-title: Science
– volume: 23
  start-page: 713
  year: 2000
  end-page: 742
  ident: bib33
  article-title: Molecular genetics of circadian rhythms in mammals
  publication-title: Annu. Rev. Neurosci.
– volume: 28
  start-page: 548
  year: 2014
  end-page: 560
  ident: bib186
  article-title: The circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant defense pathway to modulate pulmonary fibrosis
  publication-title: Genes Dev.
– volume: 38
  start-page: 312
  year: 2006
  ident: bib37
  article-title: Feedback repression is required for mammalian circadian clock function
  publication-title: Nat. Genet.
– volume: 21
  start-page: 5. 1
  year: 2013
  end-page: 5. 16
  ident: bib169
  article-title: Capture hybridization analysis of RNA targets (CHART)
  publication-title: Curr. Protoc. Mol. Biol.
– volume: 282
  start-page: 1490
  year: 1998
  end-page: 1494
  ident: bib18
  article-title: Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses
  publication-title: Science
– volume: 17
  start-page: 4576
  year: 2006
  end-page: 4583
  ident: bib135
  article-title: The Neurospora crassa White Collar-1 dependent blue light response requires acetylation of histone H3 lysine 14 by NGF-1
  publication-title: Mol. Biol. Cell
– volume: 112
  start-page: 5785
  year: 2015
  end-page: 5790
  ident: bib173
  article-title: Head-to-head antisense transcription and R-loop formation promotes transcriptional activation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 434
  start-page: 113
  year: 2005
  ident: bib130
  article-title: Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1
  publication-title: Nature
– volume: 30
  start-page: 291
  year: 2015
  end-page: 301
  ident: bib107
  article-title: Fbxl11 is a novel negative element of the mammalian circadian clock
  publication-title: J. Biol. Rhythm.
– volume: 134
  start-page: 329
  year: 2008
  end-page: 340
  ident: bib126
  article-title: The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
  publication-title: Cell
– volume: 32
  start-page: 347
  year: 2018
  end-page: 358
  ident: bib151
  article-title: Clock-dependent chromatin topology modulates circadian transcription and behavior
  publication-title: Genes Dev.
– volume: 457
  start-page: 413
  year: 2009
  end-page: 420
  ident: bib152
  article-title: Small RNAs in transcriptional gene silencing and genome defence
  publication-title: Nature
– volume: 67
  start-page: 203
  year: 2017
  end-page: 213
  ident: bib111
  article-title: DNA replication is required for circadian clock function by regulating rhythmic nucleosome composition
  publication-title: Mol. Cell
– volume: 280
  start-page: 17526
  year: 2005
  end-page: 17532
  ident: bib45
  article-title: Light-independent phosphorylation of WHITE COLLAR-1 regulates its function in the Neurospora circadian negative feedback loop
  publication-title: J. Biol. Chem.
– volume: 276
  start-page: 763
  year: 1997
  end-page: 769
  ident: bib15
  article-title: and
  publication-title: Science
– volume: 20
  start-page: 1206
  year: 2013
  ident: bib147
  article-title: Cycles in spatial and temporal chromosomal organization driven by the circadian clock
  publication-title: Nat. Struct. Mol. Biol.
– volume: 191
  start-page: 1299
  year: 2010
  end-page: 1313
  ident: bib201
  article-title: SIRT1 contributes to telomere maintenance and augments global homologous recombination
  publication-title: J. Cell Biol.
– volume: 12
  year: 2016
  ident: bib149
  article-title: Long-range chromosome interactions mediated by cohesin shape circadian gene expression
  publication-title: PLoS Genet.
– volume: 71
  start-page: 515
  year: 1992
  end-page: 526
  ident: bib160
  article-title: The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus
  publication-title: Cell
– year: 2011
  ident: bib166
  article-title: iCLIP-transcriptome-wide mapping of protein-RNA interactions with individual nucleotide resolution
  publication-title: J. Vis. Exp. (JoVE)
– volume: 20
  start-page: 1868
  year: 2006
  end-page: 1873
  ident: bib184
  article-title: Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock
  publication-title: Genes Dev.
– volume: 24
  start-page: 358
  year: 2010
  end-page: 367
  ident: bib51
  article-title: Dynamic PER repression mechanisms in the Drosophila circadian clock: from on-DNA to off-DNA
  publication-title: Genes Dev.
– volume: 134
  start-page: 317
  year: 2008
  end-page: 328
  ident: bib127
  article-title: SIRT1 regulates circadian clock gene expression through PER2 deacetylation
  publication-title: Cell
– volume: 184
  start-page: 868
  year: 1974
  end-page: 871
  ident: bib62
  article-title: Chromatin structure: a repeating unit of histones and DNA
  publication-title: Science
– volume: 178
  start-page: 925
  year: 2007
  end-page: 936
  ident: bib192
  article-title: Suv4-20h deficiency results in telomere elongation and derepression of telomere recombination
  publication-title: J. Cell Biol.
– volume: 20
  start-page: 615
  year: 1998
  end-page: 626
  ident: bib120
  article-title: Roles of histone acetyltransferases and deacetylases in gene regulation
  publication-title: Bioessays
– volume: 318
  start-page: 798
  year: 2007
  end-page: 801
  ident: bib198
  article-title: Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends
  publication-title: Science
– volume: 14
  start-page: 923
  year: 2013
  end-page: 930
  ident: bib142
  article-title: CATP is a critical component of the Neurospora circadian clock by regulating the nucleosome occupancy rhythm at the frequency locus
  publication-title: EMBO Rep.
– volume: 27
  start-page: 5014
  year: 2007
  end-page: 5028
  ident: bib42
  article-title: A DOUBLETIME kinase binding domain on the Drosophila PERIOD protein is essential for its hyperphosphorylation, transcriptional repression, and circadian clock function
  publication-title: Mol. Cell. Biol.
– volume: 45
  start-page: 5720
  year: 2017
  end-page: 5738
  ident: bib176
  article-title: A class of circadian long non-coding RNAs mark enhancers modulating long-range circadian gene regulation
  publication-title: Nucleic Acids Res.
– volume: 400
  start-page: 169
  year: 1999
  end-page: 173
  ident: bib16
  article-title: The mPer2 gene encodes a functional component of the mammalian circadian clock
  publication-title: Nature
– volume: 20
  start-page: 290
  year: 2013
  ident: bib145
  article-title: Functional implications of genome topology
  publication-title: Nat. Struct. Mol. Biol.
– volume: 153
  start-page: 1448
  year: 2013
  end-page: 1460
  ident: bib203
  article-title: SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging
  publication-title: Cell
– volume: 9
  year: 2013
  ident: bib91
  article-title: Convergent transcription induces dynamic DNA methylation at disiRNA loci
  publication-title: PLoS Genet.
– volume: 14
  year: 2019
  ident: bib197
  article-title: BMAL1 associates with chromosome ends to control rhythms in TERRA and telomeric heterochromatin
  publication-title: PLoS One
– volume: 514
  start-page: 650
  year: 2014
  ident: bib174
  article-title: Transcriptional interference by antisense RNA is required for circadian clock function
  publication-title: Nature
– volume: 15
  start-page: R17
  year: 2006
  end-page: R29
  ident: bib158
  article-title: Non-coding RNA
  publication-title: Hum. Mol. Genet.
– volume: 107
  start-page: 465
  year: 2001
  end-page: 476
  ident: bib88
  article-title: On the role of RNA amplification in dsRNA-triggered gene silencing
  publication-title: Cell
– volume: 122
  start-page: 235
  year: 2005
  end-page: 246
  ident: bib46
  article-title: Transcriptional feedback of
  publication-title: Cell
– volume: 4
  start-page: e31
  year: 2005
  ident: bib131
  article-title: Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells
  publication-title: PLoS Biol.
– volume: 280
  start-page: 1599
  year: 1998
  end-page: 1603
  ident: bib7
  article-title: Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim
  publication-title: Science
– volume: 68
  start-page: 2112
  year: 1971
  end-page: 2116
  ident: bib22
  article-title: Clock mutants of Drosophila melanogaster
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 56
  start-page: 738
  year: 2014
  end-page: 748
  ident: bib32
  article-title: Specificity in circadian clock feedback from targeted reconstitution of the NuRD corepressor
  publication-title: Mol. Cell
– volume: 119
  start-page: 941
  year: 2004
  end-page: 953
  ident: bib103
  article-title: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1
  publication-title: Cell
– volume: 89
  start-page: 655
  year: 1997
  end-page: 667
  ident: bib9
  article-title: Functional identification of the mouse circadian Clock gene by transgenic BAC rescue
  publication-title: Cell
– volume: 8
  start-page: 35
  year: 2007
  ident: bib123
  article-title: Heterochromatin revisited
  publication-title: Nat. Rev. Genet.
– volume: 20
  start-page: 3967
  year: 2001
  end-page: 3974
  ident: bib17
  article-title: Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene
  publication-title: EMBO J.
– volume: 13
  start-page: 2369
  year: 1999
  end-page: 2374
  ident: bib137
  article-title: Recruitment of the SWI/SNF chromatin remodeling complex by transcriptional activators
  publication-title: Genes Dev.
– volume: 322
  start-page: 750
  year: 2008
  end-page: 756
  ident: bib171
  article-title: Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome
  publication-title: Science
– volume: 286
  start-page: 768
  year: 1999
  end-page: 771
  ident: bib35
  article-title: Light-independent role of CRY1 and CRY2 in the mammalian circadian clock
  publication-title: Science
– volume: 10
  year: 2012
  ident: bib99
  article-title: Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles
  publication-title: PLoS Biol.
– volume: 111
  start-page: 16995
  year: 2014
  end-page: 17002
  ident: bib110
  article-title: Analysis of clock-regulated genes in Neurospora reveals widespread posttranscriptional control of metabolic potential
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 15
  start-page: 172
  year: 2003
  end-page: 183
  ident: bib68
  article-title: Histone and chromatin cross-talk
  publication-title: Curr. Opin. Cell Biol.
– volume: 11
  year: 2015
  ident: bib29
  article-title: The catalytic and non-catalytic functions of the Brahma chromatin-remodeling protein collaborate to fine-tune circadian transcription in Drosophila
  publication-title: PLoS Genet.
– volume: 35
  start-page: 403
  year: 2009
  end-page: 413
  ident: bib199
  article-title: TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres
  publication-title: Mol. Cell
– volume: 295
  start-page: 2080
  year: 2002
  end-page: 2083
  ident: bib81
  article-title: Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail
  publication-title: Science
– volume: 89
  start-page: 641
  year: 1997
  end-page: 653
  ident: bib10
  article-title: Positional cloning of the mouse circadian clock gene
  publication-title: Cell
– volume: 2
  start-page: 851
  year: 1998
  end-page: 861
  ident: bib139
  article-title: NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities
  publication-title: Mol. Cell
– volume: 402
  start-page: 525
  year: 2007
  end-page: 536
  ident: bib50
  article-title: Cryptochromes impair phosphorylation of transcriptional activators in the clock: a general mechanism for circadian repression
  publication-title: Biochem. J.
– volume: 308
  start-page: 693
  year: 2005
  end-page: 696
  ident: bib28
  article-title: PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator
  publication-title: Science
– volume: 108
  start-page: 475
  year: 2002
  end-page: 487
  ident: bib69
  article-title: Cooperation between complexes that regulate chromatin structure and transcription
  publication-title: Cell
– volume: 157
  start-page: 77
  year: 2014
  end-page: 94
  ident: bib153
  article-title: The noncoding RNA revolution—trashing old rules to forge new ones
  publication-title: Cell
– volume: 20
  start-page: 300
  year: 2013
  end-page: 307
  ident: bib156
  article-title: Structure and function of long noncoding RNAs in epigenetic regulation
  publication-title: Nat. Struct. Mol. Biol.
– volume: 71
  start-page: 527
  year: 1992
  end-page: 542
  ident: bib161
  article-title: The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus
  publication-title: Cell
– volume: 28
  start-page: 4642
  year: 2008
  end-page: 4652
  ident: bib74
  article-title: Rhythmic E-box binding by CLK-CYC controls daily cycles in per and tim transcription and chromatin modifications
  publication-title: Mol. Cell. Biol.
– volume: 398
  start-page: 627
  year: 1999
  end-page: 630
  ident: bib19
  article-title: Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms
  publication-title: Nature
– volume: 109
  start-page: 307
  year: 2002
  end-page: 320
  ident: bib34
  article-title: Coordinated transcription of key pathways in the mouse by the circadian clock
  publication-title: Cell
– volume: 43
  start-page: 405
  year: 1985
  end-page: 413
  ident: bib189
  article-title: Identification of a specific telomere terminal transferase activity in Tetrahymena extracts
  publication-title: Cell
– volume: 16
  start-page: 446
  year: 2009
  end-page: 448
  ident: bib47
  article-title: CK2alpha phosphorylates BMAL1 to regulate the mammalian clock
  publication-title: Nat. Struct. Mol. Biol.
– volume: 18
  start-page: 1923
  year: 1999
  end-page: 1938
  ident: bib82
  article-title: Functional mammalian homologues of the Drosophila PEV-modifier Su (var) 3-9 encode centromere-associated proteins which complex with the heterochromatin component M31
  publication-title: EMBO J.
– volume: 419
  start-page: 407
  year: 2002
  ident: bib98
  article-title: Active genes are tri-methylated at K4 of histone H3
  publication-title: Nature
– volume: 270
  start-page: 811
  year: 1995
  end-page: 815
  ident: bib38
  article-title: Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL
  publication-title: Science
– volume: 19
  start-page: 234
  year: 2005
  end-page: 241
  ident: bib26
  article-title: Regulation of the
  publication-title: Genes Dev.
– volume: 297
  start-page: 1833
  year: 2002
  end-page: 1837
  ident: bib90
  article-title: Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi
  publication-title: Science
– volume: 84
  start-page: 843
  year: 1996
  end-page: 851
  ident: bib121
  article-title: Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation
  publication-title: Cell
– volume: 26
  start-page: 5433
  year: 2007
  ident: bib138
  article-title: The human Mi-2/NuRD complex and gene regulation
  publication-title: Oncogene
– volume: 489
  start-page: 101
  year: 2012
  end-page: 108
  ident: bib155
  article-title: Landscape of transcription in human cells
  publication-title: Nature
– volume: 6
  start-page: 611
  year: 2005
  ident: bib195
  article-title: Telomeres and human disease: ageing, cancer and beyond
  publication-title: Nat. Rev. Genet.
– volume: 111
  start-page: 16219
  year: 2014
  end-page: 16224
  ident: bib172
  article-title: A circadian gene expression atlas in mammals: implications for biology and medicine
  publication-title: Proc. Natl. Acad. Sci.
– volume: 19
  start-page: 192
  year: 1998
  ident: bib83
  article-title: The chromo and SET domains of the Clr4 protein are essential for silencing in fission yeast
  publication-title: Nat. Genet.
– volume: 2
  start-page: e16
  year: 2006
  ident: bib180
  article-title: Circadian clocks are resounding in peripheral tissues
  publication-title: PLoS Comput. Biol.
– volume: 22
  start-page: 1298
  year: 2002
  end-page: 1306
  ident: bib113
  article-title: Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression
  publication-title: Mol. Cell. Biol.
– volume: 13
  year: 2017
  ident: bib143
  article-title: Transcriptional repression of frequency by the IEC-1-INO80 complex is required for normal Neurospora circadian clock function
  publication-title: PLoS Genet.
– volume: 16
  start-page: 462
  year: 2009
  end-page: 467
  ident: bib182
  article-title: Metabolism control by the circadian clock and vice versa
  publication-title: Nat. Struct. Mol. Biol.
– volume: 491
  start-page: 348
  year: 2012
  ident: bib3
  article-title: Circadian topology of metabolism
  publication-title: Nature
– volume: 17
  start-page: 377
  year: 2014
  ident: bib140
  article-title: Circadian behavior is light-reprogrammed by plastic DNA methylation
  publication-title: Nat. Neurosci.
– volume: 1
  start-page: 979
  year: 2009
  ident: bib185
  article-title: Antioxidant N-acetyl-L-cysteine ameliorates symptoms of premature aging associated with the deficiency of the circadian protein BMAL1
  publication-title: Aging (Albany NY)
– volume: 113
  start-page: E6072
  year: 2016
  end-page: E6079
  ident: bib52
  article-title: Mammalian Period represses and de-represses transcription by displacing CLOCK-BMAL1 from promoters in a Cryptochrome-dependent manner
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 110
  start-page: 251
  year: 2002
  end-page: 260
  ident: bib25
  article-title: The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator
  publication-title: Cell
– volume: 38
  start-page: 369
  year: 2006
  ident: bib71
  article-title: Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions
  publication-title: Nat. Genet.
– volume: 324
  start-page: 654
  year: 2009
  end-page: 657
  ident: bib128
  article-title: Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1
  publication-title: Science
– volume: 107
  start-page: 67
  year: 2001
  end-page: 77
  ident: bib193
  article-title: The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability
  publication-title: Cell
– volume: 20
  start-page: 350
  year: 2019
  ident: bib101
  article-title: Histone H3 lysine 4 methyltransferase is required for facultative heterochromatin at specific loci
  publication-title: BMC Genomics
– volume: 60
  start-page: 6
  year: 2003
  end-page: 20
  ident: bib188
  article-title: Molecular mechanisms of N-acetylcysteine actions
  publication-title: Cell. Mol. Life Sci. (CMLS)
– volume: 13
  start-page: R198
  year: 2003
  end-page: R207
  ident: bib4
  article-title: The network of time: understanding the molecular circadian system
  publication-title: Curr. Biol.
– volume: 21
  start-page: 175
  year: 2011
  end-page: 186
  ident: bib67
  article-title: Chromatin higher-order structures and gene regulation
  publication-title: Curr. Opin. Genet. Dev.
– volume: 5
  start-page: 93
  year: 2015
  end-page: 101
  ident: bib84
  article-title: The histone H3 lysine 9 methyltransferase DIM-5 modifies chromatin at frequency and represses light-activated gene expression
  publication-title: G3: Genes, Genomes, Genetics
– volume: 54
  start-page: 1410
  year: 2011
  end-page: 1420
  ident: bib136
  article-title: SWItch/sucrose nonfermentable (SWI/SNF) complex subunit BAF60a integrates hepatic circadian clock and energy metabolism
  publication-title: Hepatology
– volume: 25
  start-page: 587
  year: 2007
  end-page: 600
  ident: bib141
  article-title: Execution of the circadian negative feedback loop in Neurospora requires the ATP-dependent chromatin-remodeling enzyme CLOCKSWITCH
  publication-title: Mol. Cell
– volume: 421
  start-page: 948
  year: 2003
  end-page: 952
  ident: bib57
  article-title: Role for antisense RNA in regulating circadian clock function in Neurospora crassa
  publication-title: Nature
– volume: 279
  start-page: 7091
  year: 2004
  end-page: 7097
  ident: bib96
  article-title: Histone acetyltransferase-dependent chromatin remodeling and the vascular clock
  publication-title: J. Biol. Chem.
– volume: 20
  start-page: 971
  year: 2005
  end-page: 978
  ident: bib116
  article-title: Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation
  publication-title: Mol. Cell
– volume: 338
  start-page: 349
  year: 2012
  end-page: 354
  ident: bib58
  article-title: Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
  publication-title: Science
– volume: 277
  start-page: 49383
  year: 2002
  end-page: 49388
  ident: bib118
  article-title: Association of the histone methyltransferase Set2 with RNA polymerase II plays a role in transcription elongation
  publication-title: J. Biol. Chem.
– volume: 24
  start-page: 90
  year: 2014
  end-page: 99
  ident: bib5
  article-title: Molecular architecture of the mammalian circadian clock
  publication-title: Trends Cell Biol.
– volume: 36
  start-page: 233
  year: 2002
  end-page: 278
  ident: bib163
  article-title: Xist RNA and the mechanism of X chromosome inactivation
  publication-title: Annu. Rev. Genet.
– volume: 95
  start-page: 5474
  year: 1998
  end-page: 5479
  ident: bib12
  article-title: The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 3
  start-page: 350
  year: 2003
  end-page: 361
  ident: bib177
  article-title: The circadian clock: pacemaker and tumour suppressor
  publication-title: Nat. Rev. Cancer
– volume: 389
  start-page: 251
  year: 1997
  end-page: 260
  ident: bib61
  article-title: Crystal structure of the nucleosome core particle at 2.8 Å resolution
  publication-title: Nature
– volume: 281
  start-page: 21209
  year: 2006
  end-page: 21215
  ident: bib102
  article-title: The polycomb group protein EZH2 is required for mammalian circadian clock function
  publication-title: J. Biol. Chem.
– volume: 20
  start-page: 109
  year: 2001
  end-page: 117
  ident: bib40
  article-title: WC-2 mediates WC-1–FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora
  publication-title: EMBO J.
– volume: 74
  start-page: 771
  year: 2019
  end-page: 784. e3
  ident: bib53
  article-title: The phospho-code determining circadian feedback loop closure and output in Neurospora
  publication-title: Mol. Cell
– volume: 95
  start-page: 15502
  year: 1998
  end-page: 15507
  ident: bib87
  article-title: RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans
  publication-title: Proc. Natl. Acad. Sci.
– volume: 33
  start-page: 464
  year: 2017
  end-page: 478
  ident: bib159
  article-title: The dimensions, dynamics, and relevance of the mammalian noncoding transcriptome
  publication-title: Trends Genet.
– volume: 19
  start-page: 245
  year: 2008
  ident: bib178
  article-title: Parkinson's disease as a neuroendocrine disorder of circadian function: dopamine-melatonin imbalance and the visual system in the genesis and progression of the degenerative process
  publication-title: Rev. Neurosci.
– volume: 21
  start-page: 1494
  year: 2007
  end-page: 1505
  ident: bib85
  article-title: The band mutation in Neurospora crassa is a dominant allele of ras-1 implicating RAS signaling in circadian output
  publication-title: Genes Dev.
– volume: 380
  start-page: 129
  year: 1996
  ident: bib39
  article-title: A light-entrainment mechanism for the Drosophila circadian clock
  publication-title: Nature
– volume: 170
  start-page: 664
  year: 2017
  end-page: 677
  ident: bib204
  article-title: Circadian reprogramming in the liver identifies metabolic pathways of aging
  publication-title: Cell
– volume: 18
  start-page: 4961
  year: 1999
  end-page: 4968
  ident: bib54
  article-title: Role of a white collar-1-white collar-2 complex in blue-light signal transduction
  publication-title: EMBO J.
– volume: 123
  start-page: 581
  year: 2005
  end-page: 592
  ident: bib115
  article-title: Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription
  publication-title: Cell
– volume: 351
  start-page: 153
  year: 1991
  ident: bib165
  article-title: Parental imprinting of the mouse H19 gene
  publication-title: Nature
– volume: 20
  start-page: 5232
  year: 2001
  end-page: 5241
  ident: bib80
  article-title: Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3
  publication-title: EMBO J.
– volume: 521
  start-page: 232
  year: 2015
  end-page: 236
  ident: bib170
  article-title: The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3
  publication-title: Nature
– volume: 400
  start-page: 169
  year: 1999
  ident: 10.1016/j.jmb.2020.01.009_bib16
  article-title: The mPer2 gene encodes a functional component of the mammalian circadian clock
  publication-title: Nature
  doi: 10.1038/22118
– volume: 43
  start-page: 527
  year: 2004
  ident: 10.1016/j.jmb.2020.01.009_bib24
  article-title: A functional genomics strategy reveals Rora as a component of the mammalian circadian clock
  publication-title: Neuron
  doi: 10.1016/j.neuron.2004.07.018
– volume: 359
  start-page: 1274
  year: 2018
  ident: 10.1016/j.jmb.2020.01.009_bib150
  article-title: Rev-erbα dynamically modulates chromatin looping to control circadian gene transcription
  publication-title: Science
  doi: 10.1126/science.aao6891
– volume: 457
  start-page: 413
  year: 2009
  ident: 10.1016/j.jmb.2020.01.009_bib152
  article-title: Small RNAs in transcriptional gene silencing and genome defence
  publication-title: Nature
  doi: 10.1038/nature07756
– volume: 19
  start-page: 234
  year: 2005
  ident: 10.1016/j.jmb.2020.01.009_bib26
  article-title: Regulation of the Neurospora circadian clock by an RNA helicase
  publication-title: Genes Dev.
  doi: 10.1101/gad.1266805
– volume: 53
  start-page: 791
  year: 2014
  ident: 10.1016/j.jmb.2020.01.009_bib104
  article-title: Phosphorylation of LSD1 by PKCα is crucial for circadian rhythmicity and phase resetting
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.01.028
– volume: 30
  start-page: 2417
  year: 2016
  ident: 10.1016/j.jmb.2020.01.009_bib94
  article-title: Antisense transcription licenses nascent transcripts to mediate transcriptional gene silencing
  publication-title: Genes Dev.
  doi: 10.1101/gad.285791.116
– volume: 351
  start-page: 153
  year: 1991
  ident: 10.1016/j.jmb.2020.01.009_bib165
  article-title: Parental imprinting of the mouse H19 gene
  publication-title: Nature
  doi: 10.1038/351153a0
– volume: 277
  start-page: 49383
  year: 2002
  ident: 10.1016/j.jmb.2020.01.009_bib118
  article-title: Association of the histone methyltransferase Set2 with RNA polymerase II plays a role in transcription elongation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M209294200
– volume: 17
  start-page: 4576
  year: 2006
  ident: 10.1016/j.jmb.2020.01.009_bib135
  article-title: The Neurospora crassa White Collar-1 dependent blue light response requires acetylation of histone H3 lysine 14 by NGF-1
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e06-03-0232
– volume: 398
  start-page: 627
  year: 1999
  ident: 10.1016/j.jmb.2020.01.009_bib19
  article-title: Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms
  publication-title: Nature
  doi: 10.1038/19323
– issue: 50
  year: 2011
  ident: 10.1016/j.jmb.2020.01.009_bib166
  article-title: iCLIP-transcriptome-wide mapping of protein-RNA interactions with individual nucleotide resolution
  publication-title: J. Vis. Exp. (JoVE)
– volume: 8
  start-page: 35
  year: 2007
  ident: 10.1016/j.jmb.2020.01.009_bib123
  article-title: Heterochromatin revisited
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2008
– volume: 26
  start-page: 5433
  year: 2007
  ident: 10.1016/j.jmb.2020.01.009_bib138
  article-title: The human Mi-2/NuRD complex and gene regulation
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210611
– volume: 17
  start-page: 1414
  year: 2010
  ident: 10.1016/j.jmb.2020.01.009_bib97
  article-title: The histone methyltransferase MLL1 permits the oscillation of circadian gene expression
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1961
– volume: 33
  start-page: 464
  year: 2017
  ident: 10.1016/j.jmb.2020.01.009_bib159
  article-title: The dimensions, dynamics, and relevance of the mammalian noncoding transcriptome
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2017.04.004
– volume: 434
  start-page: 113
  year: 2005
  ident: 10.1016/j.jmb.2020.01.009_bib130
  article-title: Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1
  publication-title: Nature
  doi: 10.1038/nature03354
– volume: 322
  start-page: 750
  year: 2008
  ident: 10.1016/j.jmb.2020.01.009_bib171
  article-title: Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome
  publication-title: Science
  doi: 10.1126/science.1163045
– volume: 20
  start-page: 5232
  year: 2001
  ident: 10.1016/j.jmb.2020.01.009_bib80
  article-title: Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3
  publication-title: EMBO J.
  doi: 10.1093/emboj/20.18.5232
– volume: 95
  start-page: 5474
  year: 1998
  ident: 10.1016/j.jmb.2020.01.009_bib12
  article-title: The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.95.10.5474
– volume: 402
  start-page: 525
  year: 2007
  ident: 10.1016/j.jmb.2020.01.009_bib50
  article-title: Cryptochromes impair phosphorylation of transcriptional activators in the clock: a general mechanism for circadian repression
  publication-title: Biochem. J.
  doi: 10.1042/BJ20060827
– volume: 7
  year: 2011
  ident: 10.1016/j.jmb.2020.01.009_bib75
  article-title: CHD1 remodels chromatin and influences transient DNA methylation at the clock gene frequency
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002166
– volume: 12
  year: 2016
  ident: 10.1016/j.jmb.2020.01.009_bib149
  article-title: Long-range chromosome interactions mediated by cohesin shape circadian gene expression
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005992
– volume: 28
  start-page: 4642
  year: 2008
  ident: 10.1016/j.jmb.2020.01.009_bib74
  article-title: Rhythmic E-box binding by CLK-CYC controls daily cycles in per and tim transcription and chromatin modifications
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01612-07
– volume: 107
  start-page: 67
  year: 2001
  ident: 10.1016/j.jmb.2020.01.009_bib193
  article-title: The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00504-9
– volume: 21
  start-page: 1494
  year: 2007
  ident: 10.1016/j.jmb.2020.01.009_bib85
  article-title: The band mutation in Neurospora crassa is a dominant allele of ras-1 implicating RAS signaling in circadian output
  publication-title: Genes Dev.
  doi: 10.1101/gad.1551707
– volume: 489
  start-page: 101
  year: 2012
  ident: 10.1016/j.jmb.2020.01.009_bib155
  article-title: Landscape of transcription in human cells
  publication-title: Nature
  doi: 10.1038/nature11233
– volume: 36
  start-page: 233
  year: 2002
  ident: 10.1016/j.jmb.2020.01.009_bib163
  article-title: Xist RNA and the mechanism of X chromosome inactivation
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.36.042902.092433
– volume: 170
  start-page: 678
  year: 2017
  ident: 10.1016/j.jmb.2020.01.009_bib205
  article-title: Aged stem cells reprogram their daily rhythmic functions to adapt to stress
  publication-title: Cell
  doi: 10.1016/j.cell.2017.07.035
– volume: 305
  start-page: 1010
  year: 2004
  ident: 10.1016/j.jmb.2020.01.009_bib132
  article-title: Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration
  publication-title: Science
  doi: 10.1126/science.1098014
– volume: 11
  year: 2015
  ident: 10.1016/j.jmb.2020.01.009_bib109
  article-title: Combinatorial control of light induced chromatin remodeling and gene activation in Neurospora
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005105
– volume: 153
  start-page: 1
  year: 2012
  ident: 10.1016/j.jmb.2020.01.009_bib129
  article-title: Minireview: NAD+, a circadian metabolite with an epigenetic twist
  publication-title: Endocrinology
  doi: 10.1210/en.2011-1535
– volume: 21
  start-page: 126
  year: 2014
  ident: 10.1016/j.jmb.2020.01.009_bib30
  article-title: Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2746
– volume: 13
  start-page: 2369
  year: 1999
  ident: 10.1016/j.jmb.2020.01.009_bib137
  article-title: Recruitment of the SWI/SNF chromatin remodeling complex by transcriptional activators
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.18.2369
– volume: 110
  start-page: 251
  year: 2002
  ident: 10.1016/j.jmb.2020.01.009_bib25
  article-title: The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00825-5
– volume: 28
  start-page: 1
  year: 2007
  ident: 10.1016/j.jmb.2020.01.009_bib73
  article-title: Facultative heterochromatin: is there a distinctive molecular signature?
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.09.011
– volume: 21
  start-page: 381
  year: 2011
  ident: 10.1016/j.jmb.2020.01.009_bib65
  article-title: Regulation of chromatin by histone modifications
  publication-title: Cell Res.
  doi: 10.1038/cr.2011.22
– volume: 21
  start-page: 5. 1
  year: 2013
  ident: 10.1016/j.jmb.2020.01.009_bib169
  article-title: Capture hybridization analysis of RNA targets (CHART)
  publication-title: Curr. Protoc. Mol. Biol.
– volume: 337
  start-page: 599
  year: 2012
  ident: 10.1016/j.jmb.2020.01.009_bib77
  article-title: Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex
  publication-title: Science
  doi: 10.1126/science.1221592
– volume: 22
  start-page: 1298
  year: 2002
  ident: 10.1016/j.jmb.2020.01.009_bib113
  article-title: Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.22.5.1298-1306.2002
– volume: 421
  start-page: 177
  year: 2003
  ident: 10.1016/j.jmb.2020.01.009_bib95
  article-title: Rhythmic histone acetylation underlies transcription in the mammalian circadian clock
  publication-title: Nature
  doi: 10.1038/nature01314
– volume: 13
  start-page: R198
  year: 2003
  ident: 10.1016/j.jmb.2020.01.009_bib4
  article-title: The network of time: understanding the molecular circadian system
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(03)00124-6
– volume: 263
  start-page: 1603
  year: 1994
  ident: 10.1016/j.jmb.2020.01.009_bib20
  article-title: Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless
  publication-title: Science
  doi: 10.1126/science.8128246
– volume: 18
  start-page: 4961
  year: 1999
  ident: 10.1016/j.jmb.2020.01.009_bib54
  article-title: Role of a white collar-1-white collar-2 complex in blue-light signal transduction
  publication-title: EMBO J.
  doi: 10.1093/emboj/18.18.4961
– volume: 20
  start-page: 971
  year: 2005
  ident: 10.1016/j.jmb.2020.01.009_bib116
  article-title: Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.11.021
– volume: 111
  start-page: 16995
  year: 2014
  ident: 10.1016/j.jmb.2020.01.009_bib110
  article-title: Analysis of clock-regulated genes in Neurospora reveals widespread posttranscriptional control of metabolic potential
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1418963111
– volume: 13
  year: 2017
  ident: 10.1016/j.jmb.2020.01.009_bib143
  article-title: Transcriptional repression of frequency by the IEC-1-INO80 complex is required for normal Neurospora circadian clock function
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1006732
– volume: 18
  start-page: 1923
  year: 1999
  ident: 10.1016/j.jmb.2020.01.009_bib82
  article-title: Functional mammalian homologues of the Drosophila PEV-modifier Su (var) 3-9 encode centromere-associated proteins which complex with the heterochromatin component M31
  publication-title: EMBO J.
  doi: 10.1093/emboj/18.7.1923
– volume: 38
  start-page: 369
  year: 2006
  ident: 10.1016/j.jmb.2020.01.009_bib71
  article-title: Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions
  publication-title: Nat. Genet.
  doi: 10.1038/ng1738
– volume: 112
  start-page: 4357
  year: 2015
  ident: 10.1016/j.jmb.2020.01.009_bib93
  article-title: The frequency natural antisense transcript first promotes, then represses, frequency gene expression via facultative heterochromatin
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1406130112
– volume: 20
  start-page: 2552
  year: 2006
  ident: 10.1016/j.jmb.2020.01.009_bib44
  article-title: CKI and CKII mediate the FREQUENCY-dependent phosphorylation of the WHITE COLLAR complex to close the Neurospora circadian negative feedback loop
  publication-title: Genes Dev.
  doi: 10.1101/gad.1463506
– volume: 184
  start-page: 868
  year: 1974
  ident: 10.1016/j.jmb.2020.01.009_bib62
  article-title: Chromatin structure: a repeating unit of histones and DNA
  publication-title: Science
  doi: 10.1126/science.184.4139.868
– volume: 9
  start-page: 1548
  year: 2018
  ident: 10.1016/j.jmb.2020.01.009_bib200
  article-title: TERRA recruitment of polycomb to telomeres is essential for histone trymethylation marks at telomeric heterochromatin
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03916-3
– volume: 16
  start-page: 446
  year: 2009
  ident: 10.1016/j.jmb.2020.01.009_bib47
  article-title: CK2alpha phosphorylates BMAL1 to regulate the mammalian clock
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1578
– volume: 40
  start-page: 689
  year: 2010
  ident: 10.1016/j.jmb.2020.01.009_bib66
  article-title: The chromatin signaling pathway: diverse mechanisms of recruitment of histone-modifying enzymes and varied biological outcomes
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.11.031
– volume: 9
  year: 2013
  ident: 10.1016/j.jmb.2020.01.009_bib91
  article-title: Convergent transcription induces dynamic DNA methylation at disiRNA loci
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003761
– volume: 23
  start-page: 713
  year: 2000
  ident: 10.1016/j.jmb.2020.01.009_bib33
  article-title: Molecular genetics of circadian rhythms in mammals
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.23.1.713
– volume: 104
  start-page: 573
  year: 1993
  ident: 10.1016/j.jmb.2020.01.009_bib79
  article-title: Molecular cloning of a human homologue of Drosophila heterochromatin protein HP1 using anti-centromere autoantibodies with anti-chromo specificity
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.104.2.573
– volume: 20
  start-page: 290
  year: 2013
  ident: 10.1016/j.jmb.2020.01.009_bib145
  article-title: Functional implications of genome topology
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2474
– volume: 14
  start-page: 923
  year: 2013
  ident: 10.1016/j.jmb.2020.01.009_bib142
  article-title: CATP is a critical component of the Neurospora circadian clock by regulating the nucleosome occupancy rhythm at the frequency locus
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2013.131
– volume: 109
  start-page: 307
  year: 2002
  ident: 10.1016/j.jmb.2020.01.009_bib34
  article-title: Coordinated transcription of key pathways in the mouse by the circadian clock
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00722-5
– volume: 30
  start-page: 291
  year: 2015
  ident: 10.1016/j.jmb.2020.01.009_bib107
  article-title: Fbxl11 is a novel negative element of the mammalian circadian clock
  publication-title: J. Biol. Rhythm.
  doi: 10.1177/0748730415587407
– volume: 111
  start-page: 16219
  year: 2014
  ident: 10.1016/j.jmb.2020.01.009_bib172
  article-title: A circadian gene expression atlas in mammals: implications for biology and medicine
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1408886111
– volume: 21
  start-page: 1101
  year: 1998
  ident: 10.1016/j.jmb.2020.01.009_bib36
  article-title: Mammalian circadian autoregulatory loop: a timeless ortholog and mPer1 interact and negatively regulate CLOCK-BMAL1-induced transcription
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80627-3
– volume: 421
  start-page: 948
  year: 2003
  ident: 10.1016/j.jmb.2020.01.009_bib57
  article-title: Role for antisense RNA in regulating circadian clock function in Neurospora crassa
  publication-title: Nature
  doi: 10.1038/nature01427
– volume: 28
  start-page: 548
  year: 2014
  ident: 10.1016/j.jmb.2020.01.009_bib186
  article-title: The circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant defense pathway to modulate pulmonary fibrosis
  publication-title: Genes Dev.
  doi: 10.1101/gad.237081.113
– volume: 264
  start-page: 719
  year: 1994
  ident: 10.1016/j.jmb.2020.01.009_bib11
  article-title: Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior
  publication-title: Science
  doi: 10.1126/science.8171325
– volume: 284
  start-page: 7970
  year: 2009
  ident: 10.1016/j.jmb.2020.01.009_bib114
  article-title: Histone H3 lysine 36 dimethylation (H3K36me2) is sufficient to recruit the Rpd3s histone deacetylase complex and to repress spurious transcription
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M808220200
– volume: 93
  start-page: 791
  year: 1998
  ident: 10.1016/j.jmb.2020.01.009_bib13
  article-title: A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81440-3
– volume: 59
  start-page: 984
  year: 2015
  ident: 10.1016/j.jmb.2020.01.009_bib148
  article-title: PARP1-and CTCF-mediated interactions between active and repressed chromatin at the lamina promote oscillating transcription
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.07.019
– volume: 20
  start-page: 723
  year: 2006
  ident: 10.1016/j.jmb.2020.01.009_bib43
  article-title: PER-dependent rhythms in CLK phosphorylation and E-box binding regulate circadian transcription
  publication-title: Genes Dev.
  doi: 10.1101/gad.1404406
– volume: 12
  start-page: 1621
  year: 1992
  ident: 10.1016/j.jmb.2020.01.009_bib63
  article-title: Nucleosome loss activates CUP1 and HIS3 promoters to fully induced levels in the yeast Saccharomyces cerevisiae
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.12.4.1621
– volume: 281
  start-page: 21209
  year: 2006
  ident: 10.1016/j.jmb.2020.01.009_bib102
  article-title: The polycomb group protein EZH2 is required for mammalian circadian clock function
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M603722200
– volume: 326
  start-page: 289
  year: 2009
  ident: 10.1016/j.jmb.2020.01.009_bib146
  article-title: Comprehensive mapping of long-range interactions reveals folding principles of the human genome
  publication-title: Science
  doi: 10.1126/science.1181369
– volume: 134
  start-page: 329
  year: 2008
  ident: 10.1016/j.jmb.2020.01.009_bib126
  article-title: The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
  publication-title: Cell
  doi: 10.1016/j.cell.2008.07.002
– volume: 15
  start-page: R17
  year: 2006
  ident: 10.1016/j.jmb.2020.01.009_bib158
  article-title: Non-coding RNA
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddl046
– volume: 332
  start-page: 1436
  year: 2011
  ident: 10.1016/j.jmb.2020.01.009_bib27
  article-title: A molecular mechanism for circadian clock negative feedback
  publication-title: Science
  doi: 10.1126/science.1196766
– volume: 419
  start-page: 407
  year: 2002
  ident: 10.1016/j.jmb.2020.01.009_bib98
  article-title: Active genes are tri-methylated at K4 of histone H3
  publication-title: Nature
  doi: 10.1038/nature01080
– volume: 389
  start-page: 251
  year: 1997
  ident: 10.1016/j.jmb.2020.01.009_bib61
  article-title: Crystal structure of the nucleosome core particle at 2.8 Å resolution
  publication-title: Nature
  doi: 10.1038/38444
– volume: 95
  start-page: 15502
  year: 1998
  ident: 10.1016/j.jmb.2020.01.009_bib87
  article-title: RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.95.26.15502
– volume: 74
  start-page: 771
  year: 2019
  ident: 10.1016/j.jmb.2020.01.009_bib53
  article-title: The phospho-code determining circadian feedback loop closure and output in Neurospora
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.03.003
– volume: 158
  start-page: 659
  year: 2014
  ident: 10.1016/j.jmb.2020.01.009_bib133
  article-title: Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism
  publication-title: Cell
  doi: 10.1016/j.cell.2014.06.050
– volume: 9
  start-page: 886
  year: 2009
  ident: 10.1016/j.jmb.2020.01.009_bib179
  article-title: Metabolism and cancer: the circadian clock connection
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2747
– volume: 7
  start-page: 461
  year: 2006
  ident: 10.1016/j.jmb.2020.01.009_bib70
  article-title: Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1882
– volume: 27
  start-page: 5014
  year: 2007
  ident: 10.1016/j.jmb.2020.01.009_bib42
  article-title: A DOUBLETIME kinase binding domain on the Drosophila PERIOD protein is essential for its hyperphosphorylation, transcriptional repression, and circadian clock function
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.02339-06
– volume: 7
  start-page: 1395
  year: 1988
  ident: 10.1016/j.jmb.2020.01.009_bib122
  article-title: A direct link between core histone acetylation and transcriptionally active chromatin
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1988.tb02956.x
– volume: 295
  start-page: 2080
  year: 2002
  ident: 10.1016/j.jmb.2020.01.009_bib81
  article-title: Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail
  publication-title: Science
  doi: 10.1126/science.1069473
– volume: 29
  start-page: 1452
  year: 2009
  ident: 10.1016/j.jmb.2020.01.009_bib41
  article-title: DOUBLETIME plays a noncatalytic role to mediate CLOCK phosphorylation and repress CLOCK-dependent transcription within the Drosophila circadian clock
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01777-08
– volume: 42
  start-page: 689
  year: 2011
  ident: 10.1016/j.jmb.2020.01.009_bib105
  article-title: A SIRT1-LSD1 corepressor complex regulates Notch target gene expression and development
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.04.020
– volume: 521
  start-page: 232
  year: 2015
  ident: 10.1016/j.jmb.2020.01.009_bib170
  article-title: The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3
  publication-title: Nature
  doi: 10.1038/nature14443
– volume: 68
  start-page: 2112
  year: 1971
  ident: 10.1016/j.jmb.2020.01.009_bib22
  article-title: Clock mutants of Drosophila melanogaster
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.68.9.2112
– volume: 1
  start-page: 979
  year: 2009
  ident: 10.1016/j.jmb.2020.01.009_bib185
  article-title: Antioxidant N-acetyl-L-cysteine ameliorates symptoms of premature aging associated with the deficiency of the circadian protein BMAL1
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.100113
– volume: 43
  start-page: 405
  year: 1985
  ident: 10.1016/j.jmb.2020.01.009_bib189
  article-title: Identification of a specific telomere terminal transferase activity in Tetrahymena extracts
  publication-title: Cell
  doi: 10.1016/0092-8674(85)90170-9
– volume: 280
  start-page: 1599
  year: 1998
  ident: 10.1016/j.jmb.2020.01.009_bib7
  article-title: Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim
  publication-title: Science
  doi: 10.1126/science.280.5369.1599
– volume: 112
  start-page: 5785
  year: 2015
  ident: 10.1016/j.jmb.2020.01.009_bib173
  article-title: Head-to-head antisense transcription and R-loop formation promotes transcriptional activation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1421197112
– volume: 318
  start-page: 798
  year: 2007
  ident: 10.1016/j.jmb.2020.01.009_bib198
  article-title: Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends
  publication-title: Science
  doi: 10.1126/science.1147182
– volume: 5
  start-page: 93
  year: 2015
  ident: 10.1016/j.jmb.2020.01.009_bib84
  article-title: The histone H3 lysine 9 methyltransferase DIM-5 modifies chromatin at frequency and represses light-activated gene expression
  publication-title: G3: Genes, Genomes, Genetics
  doi: 10.1534/g3.114.015446
– volume: 22
  start-page: 3397
  year: 2008
  ident: 10.1016/j.jmb.2020.01.009_bib56
  article-title: Circadian activity and abundance rhythms of the Neurospora clock transcription factor WCC associated with rapid nucleo–cytoplasmic shuttling
  publication-title: Genes Dev.
  doi: 10.1101/gad.507408
– volume: 24
  start-page: 358
  year: 2010
  ident: 10.1016/j.jmb.2020.01.009_bib51
  article-title: Dynamic PER repression mechanisms in the Drosophila circadian clock: from on-DNA to off-DNA
  publication-title: Genes Dev.
  doi: 10.1101/gad.1883910
– volume: 16
  start-page: 833
  year: 2012
  ident: 10.1016/j.jmb.2020.01.009_bib59
  article-title: Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2012.11.004
– volume: 18
  start-page: 164
  year: 2017
  ident: 10.1016/j.jmb.2020.01.009_bib2
  article-title: Transcriptional architecture of the mammalian circadian clock
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2016.150
– volume: 380
  start-page: 129
  year: 1996
  ident: 10.1016/j.jmb.2020.01.009_bib39
  article-title: A light-entrainment mechanism for the Drosophila circadian clock
  publication-title: Nature
  doi: 10.1038/380129a0
– volume: 19
  start-page: 192
  year: 1998
  ident: 10.1016/j.jmb.2020.01.009_bib83
  article-title: The chromo and SET domains of the Clr4 protein are essential for silencing in fission yeast
  publication-title: Nat. Genet.
  doi: 10.1038/566
– volume: 76
  start-page: 49
  year: 2011
  ident: 10.1016/j.jmb.2020.01.009_bib125
  article-title: Circadian epigenomic remodeling and hepatic lipogenesis: lessons from HDAC3
  publication-title: Cold Spring Harbor Symp. Quant. Biol.
  doi: 10.1101/sqb.2011.76.011494
– volume: 84
  start-page: 843
  year: 1996
  ident: 10.1016/j.jmb.2020.01.009_bib121
  article-title: Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81063-6
– volume: 25
  start-page: 587
  year: 2007
  ident: 10.1016/j.jmb.2020.01.009_bib141
  article-title: Execution of the circadian negative feedback loop in Neurospora requires the ATP-dependent chromatin-remodeling enzyme CLOCKSWITCH
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.01.010
– volume: 129
  start-page: 1311
  year: 2007
  ident: 10.1016/j.jmb.2020.01.009_bib167
  article-title: Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs
  publication-title: Cell
  doi: 10.1016/j.cell.2007.05.022
– volume: 20
  start-page: 350
  year: 2019
  ident: 10.1016/j.jmb.2020.01.009_bib101
  article-title: Histone H3 lysine 4 methyltransferase is required for facultative heterochromatin at specific loci
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-5729-7
– volume: 11
  year: 2015
  ident: 10.1016/j.jmb.2020.01.009_bib29
  article-title: The catalytic and non-catalytic functions of the Brahma chromatin-remodeling protein collaborate to fine-tune circadian transcription in Drosophila
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005307
– volume: 20
  start-page: 300
  year: 2013
  ident: 10.1016/j.jmb.2020.01.009_bib156
  article-title: Structure and function of long noncoding RNAs in epigenetic regulation
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2480
– volume: 308
  start-page: 693
  year: 2005
  ident: 10.1016/j.jmb.2020.01.009_bib28
  article-title: PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator
  publication-title: Science
  doi: 10.1126/science.1107373
– volume: 288
  start-page: 8380
  year: 2013
  ident: 10.1016/j.jmb.2020.01.009_bib100
  article-title: Methylation of histone H3 on lysine 4 by the lysine methyltransferase SET1 protein is needed for normal clock gene expression
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.359935
– volume: 38
  start-page: 312
  year: 2006
  ident: 10.1016/j.jmb.2020.01.009_bib37
  article-title: Feedback repression is required for mammalian circadian clock function
  publication-title: Nat. Genet.
  doi: 10.1038/ng1745
– volume: 24
  start-page: 6278
  year: 2004
  ident: 10.1016/j.jmb.2020.01.009_bib119
  article-title: Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.14.6278-6287.2004
– volume: 19
  start-page: 777
  year: 2018
  ident: 10.1016/j.jmb.2020.01.009_bib86
  article-title: Long non-coding RNAs have age-dependent diurnal expression that coincides with age-related changes in genome-wide facultative heterochromatin
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-5170-3
– volume: 279
  start-page: 7091
  year: 2004
  ident: 10.1016/j.jmb.2020.01.009_bib96
  article-title: Histone acetyltransferase-dependent chromatin remodeling and the vascular clock
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M311973200
– volume: 36
  start-page: 94
  year: 2004
  ident: 10.1016/j.jmb.2020.01.009_bib191
  article-title: Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases
  publication-title: Nat. Genet.
  doi: 10.1038/ng1278
– volume: 71
  start-page: 515
  year: 1992
  ident: 10.1016/j.jmb.2020.01.009_bib160
  article-title: The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90519-I
– volume: 45
  start-page: 5720
  year: 2017
  ident: 10.1016/j.jmb.2020.01.009_bib176
  article-title: A class of circadian long non-coding RNAs mark enhancers modulating long-range circadian gene regulation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx156
– volume: 3
  start-page: 350
  year: 2003
  ident: 10.1016/j.jmb.2020.01.009_bib177
  article-title: The circadian clock: pacemaker and tumour suppressor
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1072
– volume: 20
  start-page: 109
  year: 2001
  ident: 10.1016/j.jmb.2020.01.009_bib40
  article-title: WC-2 mediates WC-1–FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora
  publication-title: EMBO J.
  doi: 10.1093/emboj/20.1.109
– volume: 342
  start-page: 1243417
  year: 2013
  ident: 10.1016/j.jmb.2020.01.009_bib134
  article-title: Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice
  publication-title: Science
  doi: 10.1126/science.1243417
– volume: 32
  start-page: 29
  year: 2016
  ident: 10.1016/j.jmb.2020.01.009_bib72
  article-title: H3K9me3-dependent heterochromatin: barrier to cell fate changes
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2015.11.001
– volume: 108
  start-page: 475
  year: 2002
  ident: 10.1016/j.jmb.2020.01.009_bib69
  article-title: Cooperation between complexes that regulate chromatin structure and transcription
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00654-2
– volume: 35
  start-page: 403
  year: 2009
  ident: 10.1016/j.jmb.2020.01.009_bib199
  article-title: TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.06.025
– year: 1998
  ident: 10.1016/j.jmb.2020.01.009_bib64
  article-title: Alteration of nucleosome structure as a mechanism of transcriptional regulation
– volume: 21
  start-page: 175
  year: 2011
  ident: 10.1016/j.jmb.2020.01.009_bib67
  article-title: Chromatin higher-order structures and gene regulation
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2011.01.022
– volume: 60
  start-page: 6
  year: 2003
  ident: 10.1016/j.jmb.2020.01.009_bib188
  article-title: Molecular mechanisms of N-acetylcysteine actions
  publication-title: Cell. Mol. Life Sci. (CMLS)
  doi: 10.1007/s000180300001
– volume: 359
  start-page: 109
  year: 2004
  ident: 10.1016/j.jmb.2020.01.009_bib190
  article-title: Telomeres and telomerase
  publication-title: Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci.
  doi: 10.1098/rstb.2003.1370
– volume: 270
  start-page: 811
  year: 1995
  ident: 10.1016/j.jmb.2020.01.009_bib38
  article-title: Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL
  publication-title: Science
  doi: 10.1126/science.270.5237.811
– volume: 491
  start-page: 348
  year: 2012
  ident: 10.1016/j.jmb.2020.01.009_bib3
  article-title: Circadian topology of metabolism
  publication-title: Nature
  doi: 10.1038/nature11704
– volume: 5
  year: 2009
  ident: 10.1016/j.jmb.2020.01.009_bib144
  article-title: A constant light-genetic screen identifies KISMET as a regulator of circadian photoresponses
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000787
– volume: 280
  start-page: 17526
  year: 2005
  ident: 10.1016/j.jmb.2020.01.009_bib45
  article-title: Light-independent phosphorylation of WHITE COLLAR-1 regulates its function in the Neurospora circadian negative feedback loop
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M414010200
– volume: 16
  start-page: 462
  year: 2009
  ident: 10.1016/j.jmb.2020.01.009_bib182
  article-title: Metabolism control by the circadian clock and vice versa
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1595
– volume: 51
  start-page: 887
  year: 1987
  ident: 10.1016/j.jmb.2020.01.009_bib194
  article-title: The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity
  publication-title: Cell
  doi: 10.1016/0092-8674(87)90576-9
– volume: 20
  start-page: 3967
  year: 2001
  ident: 10.1016/j.jmb.2020.01.009_bib17
  article-title: Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene
  publication-title: EMBO J.
  doi: 10.1093/emboj/20.15.3967
– volume: 13
  start-page: 3822
  year: 1994
  ident: 10.1016/j.jmb.2020.01.009_bib78
  article-title: The protein encoded by the Drosophila position-effect variegation suppressor gene Su (var) 3-9 combines domains of antagonistic regulators of homeotic gene complexes
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1994.tb06693.x
– volume: 157
  start-page: 77
  year: 2014
  ident: 10.1016/j.jmb.2020.01.009_bib153
  article-title: The noncoding RNA revolution—trashing old rules to forge new ones
  publication-title: Cell
  doi: 10.1016/j.cell.2014.03.008
– volume: 4
  start-page: 1
  year: 1999
  ident: 10.1016/j.jmb.2020.01.009_bib1
  article-title: Eukaryotic circadian systems: cycles in common
  publication-title: Genes Cells
  doi: 10.1046/j.1365-2443.1999.00239.x
– volume: 20
  start-page: 1868
  year: 2006
  ident: 10.1016/j.jmb.2020.01.009_bib184
  article-title: Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock
  publication-title: Genes Dev.
  doi: 10.1101/gad.1432206
– volume: 414
  start-page: 277
  year: 2001
  ident: 10.1016/j.jmb.2020.01.009_bib76
  article-title: A histone H3 methyltransferase controls DNA methylation in Neurospora crassa
  publication-title: Nature
  doi: 10.1038/35104508
– volume: 20
  start-page: 1206
  year: 2013
  ident: 10.1016/j.jmb.2020.01.009_bib147
  article-title: Cycles in spatial and temporal chromosomal organization driven by the circadian clock
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2667
– volume: 514
  start-page: 650
  year: 2014
  ident: 10.1016/j.jmb.2020.01.009_bib174
  article-title: Transcriptional interference by antisense RNA is required for circadian clock function
  publication-title: Nature
  doi: 10.1038/nature13671
– volume: 16
  start-page: 93
  year: 2004
  ident: 10.1016/j.jmb.2020.01.009_bib202
  article-title: Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2004.08.031
– volume: 170
  start-page: 664
  year: 2017
  ident: 10.1016/j.jmb.2020.01.009_bib204
  article-title: Circadian reprogramming in the liver identifies metabolic pathways of aging
  publication-title: Cell
  doi: 10.1016/j.cell.2017.07.042
– volume: 288
  start-page: 1013
  year: 2000
  ident: 10.1016/j.jmb.2020.01.009_bib8
  article-title: Interacting molecular loops in the mammalian circadian clock
  publication-title: Science
  doi: 10.1126/science.288.5468.1013
– volume: 5
  year: 2009
  ident: 10.1016/j.jmb.2020.01.009_bib157
  article-title: The genetic signatures of noncoding RNAs
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000459
– volume: 48
  start-page: 277
  year: 2012
  ident: 10.1016/j.jmb.2020.01.009_bib55
  article-title: Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.08.012
– volume: 20
  start-page: 615
  year: 1998
  ident: 10.1016/j.jmb.2020.01.009_bib120
  article-title: Roles of histone acetyltransferases and deacetylases in gene regulation
  publication-title: Bioessays
  doi: 10.1002/(SICI)1521-1878(199808)20:8<615::AID-BIES4>3.0.CO;2-H
– volume: 333
  start-page: 1881
  year: 2011
  ident: 10.1016/j.jmb.2020.01.009_bib106
  article-title: Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock
  publication-title: Science
  doi: 10.1126/science.1206022
– volume: 54
  start-page: 1410
  year: 2011
  ident: 10.1016/j.jmb.2020.01.009_bib136
  article-title: SWItch/sucrose nonfermentable (SWI/SNF) complex subunit BAF60a integrates hepatic circadian clock and energy metabolism
  publication-title: Hepatology
  doi: 10.1002/hep.24514
– volume: 326
  start-page: 390
  year: 1987
  ident: 10.1016/j.jmb.2020.01.009_bib21
  article-title: Changes in abundance or structure of the per gene product can alter periodicity of the Drosophila clock
  publication-title: Nature
  doi: 10.1038/326390a0
– volume: 286
  start-page: 768
  year: 1999
  ident: 10.1016/j.jmb.2020.01.009_bib35
  article-title: Light-independent role of CRY1 and CRY2 in the mammalian circadian clock
  publication-title: Science
  doi: 10.1126/science.286.5440.768
– volume: 123
  start-page: 581
  year: 2005
  ident: 10.1016/j.jmb.2020.01.009_bib115
  article-title: Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription
  publication-title: Cell
  doi: 10.1016/j.cell.2005.10.023
– volume: 38
  start-page: 803
  year: 2010
  ident: 10.1016/j.jmb.2020.01.009_bib92
  article-title: Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.04.005
– volume: 10
  year: 2014
  ident: 10.1016/j.jmb.2020.01.009_bib31
  article-title: Neurospora WC-1 recruits SWI/SNF to remodel frequency and initiate a circadian cycle
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004599
– volume: 134
  start-page: 317
  year: 2008
  ident: 10.1016/j.jmb.2020.01.009_bib127
  article-title: SIRT1 regulates circadian clock gene expression through PER2 deacetylation
  publication-title: Cell
  doi: 10.1016/j.cell.2008.06.050
– volume: 5
  start-page: 13752
  year: 2015
  ident: 10.1016/j.jmb.2020.01.009_bib183
  article-title: Circadian modulation of 8-oxoguanine DNA damage repair
  publication-title: Sci. Rep.
  doi: 10.1038/srep13752
– volume: 2
  start-page: 851
  year: 1998
  ident: 10.1016/j.jmb.2020.01.009_bib139
  article-title: NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80299-3
– volume: 276
  start-page: 763
  year: 1997
  ident: 10.1016/j.jmb.2020.01.009_bib15
  article-title: Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity
  publication-title: Science
  doi: 10.1126/science.276.5313.763
– volume: 107
  start-page: 465
  year: 2001
  ident: 10.1016/j.jmb.2020.01.009_bib88
  article-title: On the role of RNA amplification in dsRNA-triggered gene silencing
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00576-1
– volume: 309
  start-page: 1564
  year: 2005
  ident: 10.1016/j.jmb.2020.01.009_bib154
  article-title: Antisense transcription in the mammalian transcriptome
  publication-title: Science
  doi: 10.1126/science.1112009
– volume: 19
  start-page: 245
  year: 2008
  ident: 10.1016/j.jmb.2020.01.009_bib178
  article-title: Parkinson's disease as a neuroendocrine disorder of circadian function: dopamine-melatonin imbalance and the visual system in the genesis and progression of the degenerative process
  publication-title: Rev. Neurosci.
  doi: 10.1515/REVNEURO.2008.19.4-5.245
– volume: 9
  year: 2011
  ident: 10.1016/j.jmb.2020.01.009_bib60
  article-title: Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000595
– volume: 191
  start-page: 1299
  year: 2010
  ident: 10.1016/j.jmb.2020.01.009_bib201
  article-title: SIRT1 contributes to telomere maintenance and augments global homologous recombination
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201005160
– volume: 32
  start-page: 347
  year: 2018
  ident: 10.1016/j.jmb.2020.01.009_bib151
  article-title: Clock-dependent chromatin topology modulates circadian transcription and behavior
  publication-title: Genes Dev.
  doi: 10.1101/gad.312397.118
– volume: 120
  start-page: 467
  year: 1996
  ident: 10.1016/j.jmb.2020.01.009_bib164
  article-title: Genomic imprinting: significance in development and diseases and the molecular mechanisms
  publication-title: J. Biochem.
  doi: 10.1093/oxfordjournals.jbchem.a021434
– volume: 89
  start-page: 641
  year: 1997
  ident: 10.1016/j.jmb.2020.01.009_bib10
  article-title: Positional cloning of the mouse circadian clock gene
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80245-7
– volume: 122
  start-page: 235
  year: 2005
  ident: 10.1016/j.jmb.2020.01.009_bib46
  article-title: Transcriptional feedback of Neurospora circadian clock gene by phosphorylation-dependent inactivation of its transcription factor
  publication-title: Cell
  doi: 10.1016/j.cell.2005.05.032
– volume: 17
  start-page: 1921
  year: 2003
  ident: 10.1016/j.jmb.2020.01.009_bib48
  article-title: BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system
  publication-title: Genes Dev.
  doi: 10.1101/gad.1099503
– volume: 161
  start-page: 404
  year: 2015
  ident: 10.1016/j.jmb.2020.01.009_bib168
  article-title: Systematic discovery of Xist RNA binding proteins
  publication-title: Cell
  doi: 10.1016/j.cell.2015.03.025
– volume: 297
  start-page: 1833
  year: 2002
  ident: 10.1016/j.jmb.2020.01.009_bib90
  article-title: Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi
  publication-title: Science
  doi: 10.1126/science.1074973
– volume: 338
  start-page: 349
  year: 2012
  ident: 10.1016/j.jmb.2020.01.009_bib58
  article-title: Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
  publication-title: Science
  doi: 10.1126/science.1226339
– volume: 110
  start-page: E4867
  year: 2013
  ident: 10.1016/j.jmb.2020.01.009_bib112
  article-title: Suppression of WC-independent frequency transcription by RCO-1 is essential for Neurospora circadian clock
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1315133110
– volume: 93
  start-page: 805
  year: 1998
  ident: 10.1016/j.jmb.2020.01.009_bib14
  article-title: CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81441-5
– volume: 25
  start-page: 3305
  year: 2005
  ident: 10.1016/j.jmb.2020.01.009_bib117
  article-title: A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.8.3305-3316.2005
– volume: 71
  start-page: 527
  year: 1992
  ident: 10.1016/j.jmb.2020.01.009_bib161
  article-title: The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90520-M
– volume: 113
  start-page: E6072
  year: 2016
  ident: 10.1016/j.jmb.2020.01.009_bib52
  article-title: Mammalian Period represses and de-represses transcription by displacing CLOCK-BMAL1 from promoters in a Cryptochrome-dependent manner
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1612917113
– volume: 28
  start-page: 8
  year: 2014
  ident: 10.1016/j.jmb.2020.01.009_bib108
  article-title: CLOCK: BMAL1 is a pioneer-like transcription factor
  publication-title: Genes Dev.
  doi: 10.1101/gad.228536.113
– volume: 67
  start-page: 203
  year: 2017
  ident: 10.1016/j.jmb.2020.01.009_bib111
  article-title: DNA replication is required for circadian clock function by regulating rhythmic nucleosome composition
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.05.029
– volume: 263
  start-page: 1578
  year: 1994
  ident: 10.1016/j.jmb.2020.01.009_bib23
  article-title: Negative feedback defining a circadian clock: autoregulation of the clock gene frequency
  publication-title: Science
  doi: 10.1126/science.8128244
– volume: 6
  start-page: 611
  year: 2005
  ident: 10.1016/j.jmb.2020.01.009_bib195
  article-title: Telomeres and human disease: ageing, cancer and beyond
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1656
– volume: 29
  start-page: 3675
  year: 2009
  ident: 10.1016/j.jmb.2020.01.009_bib49
  article-title: Roles of CLOCK phosphorylation in suppression of E-box-dependent transcription
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01864-08
– volume: 341
  start-page: 1237973
  year: 2013
  ident: 10.1016/j.jmb.2020.01.009_bib162
  article-title: The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome
  publication-title: Science
  doi: 10.1126/science.1237973
– volume: 10
  year: 2012
  ident: 10.1016/j.jmb.2020.01.009_bib99
  article-title: Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001442
– volume: 15
  start-page: 172
  year: 2003
  ident: 10.1016/j.jmb.2020.01.009_bib68
  article-title: Histone and chromatin cross-talk
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/S0955-0674(03)00013-9
– volume: 89
  start-page: 655
  year: 1997
  ident: 10.1016/j.jmb.2020.01.009_bib9
  article-title: Functional identification of the mouse circadian Clock gene by transgenic BAC rescue
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80246-9
– volume: 2
  start-page: e16
  year: 2006
  ident: 10.1016/j.jmb.2020.01.009_bib180
  article-title: Circadian clocks are resounding in peripheral tissues
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0020016
– volume: 159
  start-page: 1140
  year: 2014
  ident: 10.1016/j.jmb.2020.01.009_bib175
  article-title: Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo
  publication-title: Cell
  doi: 10.1016/j.cell.2014.10.022
– volume: 24
  start-page: 90
  year: 2014
  ident: 10.1016/j.jmb.2020.01.009_bib5
  article-title: Molecular architecture of the mammalian circadian clock
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2013.07.002
– volume: 324
  start-page: 654
  year: 2009
  ident: 10.1016/j.jmb.2020.01.009_bib128
  article-title: Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1
  publication-title: Science
  doi: 10.1126/science.1170803
– volume: 96
  start-page: 271
  year: 1999
  ident: 10.1016/j.jmb.2020.01.009_bib6
  article-title: Molecular bases for circadian clocks
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80566-8
– volume: 125
  start-page: 497
  year: 2006
  ident: 10.1016/j.jmb.2020.01.009_bib124
  article-title: Circadian regulator CLOCK is a histone acetyltransferase
  publication-title: Cell
  doi: 10.1016/j.cell.2006.03.033
– volume: 153
  start-page: 1448
  year: 2013
  ident: 10.1016/j.jmb.2020.01.009_bib203
  article-title: SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging
  publication-title: Cell
  doi: 10.1016/j.cell.2013.05.027
– volume: 14
  year: 2019
  ident: 10.1016/j.jmb.2020.01.009_bib197
  article-title: BMAL1 associates with chromosome ends to control rhythms in TERRA and telomeric heterochromatin
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0223803
– volume: 115
  start-page: E8460
  year: 2018
  ident: 10.1016/j.jmb.2020.01.009_bib187
  article-title: Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1800431115
– volume: 178
  start-page: 925
  year: 2007
  ident: 10.1016/j.jmb.2020.01.009_bib192
  article-title: Suv4-20h deficiency results in telomere elongation and derepression of telomere recombination
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200703081
– volume: 119
  start-page: 941
  year: 2004
  ident: 10.1016/j.jmb.2020.01.009_bib103
  article-title: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1
  publication-title: Cell
  doi: 10.1016/j.cell.2004.12.012
– volume: 282
  start-page: 1490
  year: 1998
  ident: 10.1016/j.jmb.2020.01.009_bib18
  article-title: Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses
  publication-title: Science
  doi: 10.1126/science.282.5393.1490
– volume: 56
  start-page: 738
  year: 2014
  ident: 10.1016/j.jmb.2020.01.009_bib32
  article-title: Specificity in circadian clock feedback from targeted reconstitution of the NuRD corepressor
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.10.017
– volume: 451
  start-page: 408
  year: 2014
  ident: 10.1016/j.jmb.2020.01.009_bib196
  article-title: The circadian rhythm controls telomeres and telomerase activity
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2014.07.138
– volume: 4
  start-page: e31
  year: 2005
  ident: 10.1016/j.jmb.2020.01.009_bib131
  article-title: Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0040031
– volume: 17
  start-page: 377
  year: 2014
  ident: 10.1016/j.jmb.2020.01.009_bib140
  article-title: Circadian behavior is light-reprogrammed by plastic DNA methylation
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3651
– volume: 40
  start-page: 409
  year: 2006
  ident: 10.1016/j.jmb.2020.01.009_bib181
  article-title: Interplay of circadian clocks and metabolic rhythms
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.40.110405.090603
– volume: 122
  start-page: 13
  year: 2005
  ident: 10.1016/j.jmb.2020.01.009_bib89
  article-title: The role of the RNAi machinery in heterochromatin formation
  publication-title: Cell
  doi: 10.1016/j.cell.2005.06.034
SSID ssj0005348
Score 2.442493
SecondaryResourceType review_article
Snippet Circadian rhythms are generated by transcriptional negative feedback loops and require histone modifications and chromatin remodeling to ensure appropriate...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3466
SubjectTerms acetylation
aging
Animals
Chromatin Assembly and Disassembly - genetics
chromatin modifications
chromatin remodeling
circadian clocks
circadian regulation
circadian rhythm
Circadian Rhythm - genetics
Drosophila
Drosophila melanogaster - genetics
Feedback, Physiological
Fungal Proteins - genetics
gene expression
Gene Expression Regulation, Developmental - genetics
genes
genomics
heterochromatin
Heterochromatin - genetics
histone code
histone deacetylase
histones
Histones - genetics
lncRNAs
lysine
methylation
methyltransferases
Methyltransferases - genetics
Mice
Neurospora
Neurospora - genetics
nucleosomes
Repressor Proteins - genetics
RNA, Long Noncoding - genetics
transcription (genetics)
Title Molecular Regulation of Circadian Chromatin
URI https://dx.doi.org/10.1016/j.jmb.2020.01.009
https://www.ncbi.nlm.nih.gov/pubmed/31954735
https://www.proquest.com/docview/2342356632
https://www.proquest.com/docview/2439431657
Volume 432
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KRfQiWl_1xQqehNVtks0mRylKVexBFLyFJJtAi26L1oMXf7uZfRQF7cHjhgTCN8nky2bmG4ATb3vS-5TEhnAfM09ErG0u4lxk1mkqOLX4ons35INHdvOUPrWg3-TCYFhl7fsrn15667rlvEbzfDoaYY4v_r0IDjis04RKTDRnLMNVfvb5LcyDMtEohmPv5mWzjPEav5hwRSRJqdyJMYm_n01_cc_yDLpah7WaPEYX1fw2oOWKDixX5SQ_OrDSb6q3bULYrHXd2-i-KjcfDBBNfNQfvdpSjyBCXVzkq8UWPF5dPvQHcV0YIbYBvVlMpTMycH3DdMadD3vIMWGMJKmW0kvnBRXaeB2ojcipzsOdJ3G9zApuuHHC0G1oF5PC7ULEtSeOWG-4pczJTOapTYjLcpomXCemC0kDibK1ajgWr3hWTXjYWAUUFaKokp4KKHbhdD5kWklmLOrMGpzVD7ur4NIXDTtubKICsPjIoQs3eX9TBCUNA0elZEEfTAemPZ5mXdipDDqfKUUJvIyme_-b2D6s4hfGFxB5AO3Z67s7DLRlZo7KdXkESxfXt4PhFxXI6dY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qi-hFfFufK3gSFrfJJpscpVjqqwdR6C0k2QQquhWtB_-9mX0ogvbgdZNA-CaZfNnMfANw4m1Pes9IbAj3ceqJiLXNRZyLzDpNBacWX3RvR3z4kF6N2bgF_SYXBsMqa99f-fTSW9dfzmo0z14mE8zxxb8XwQGHdZpQyRagg-pUrA2d88vr4eg70oOmohENxwHN42YZ5vX4bMItkSSleCeGJf5-PP1FP8tjaLAKKzV_jM6rKa5ByxXrsFhVlPxYh6V-U8BtA8J-rUvfRndVxflgg2jqo_7k1ZaSBBFK4yJlLTbhYXBx3x_GdW2E2AYAZzGVzshA902qM-582EYuFcZIwrSUXjovqNDG68BuRE51Hq49ietlVnDDjROGbkG7mBZuByKuPXHEesMtTZ3MZM5sQlyWU5ZwnZguJA0kytbC4Vi_4kk1EWKPKqCoEEWV9FRAsQunX0NeKtWMeZ3TBmf1w_QqePV5w44bm6gALL5z6MJN398UQVXDQFMpmdMHM4Jpj7OsC9uVQb9mSlEFL6Ns938TO4Kl4f3tjbq5HF3vwTK2YLgBkfvQnr2-u4PAYmbmsF6lnyXV7Ic
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Regulation+of+Circadian+Chromatin&rft.jtitle=Journal+of+molecular+biology&rft.au=Zhu%2C+Qiaoqiao&rft.au=Belden%2C+William+J.&rft.date=2020-05-29&rft.issn=0022-2836&rft.volume=432&rft.issue=12&rft.spage=3466&rft.epage=3482&rft_id=info:doi/10.1016%2Fj.jmb.2020.01.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmb_2020_01_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2836&client=summon