Pulmonary time-of-flight MR angiography at 1.0 T: Comparison between 2D and 3D tone acquisitions

The purpose of this study was to compare the performance of 2D vs. 3D time-of-flight (TOF) methods in imaging the normal pulmonary arteries with commercially available 1.0 T equipment. The study was conducted in 20 volunteers and 7 patients with suspected pulmonary embolism (PE). To reduce artifacts...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance imaging Vol. 13; no. 7; pp. 949 - 957
Main Authors Laissy, Jean-Pierre, Assayag, Patrick, Henry-Feugeas, Marie-Cecile, Tebboune, Djamel, Berger, Jean-François, Limot, Olivier, Falise, Beatrice, Chillon, Sylvie, Valere, Paul E., Schouman-Claeys, Elisabeth
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 1995
Elsevier Science
Subjects
Online AccessGet full text
ISSN0730-725X
1873-5894
DOI10.1016/0730-725X(95)02001-A

Cover

Abstract The purpose of this study was to compare the performance of 2D vs. 3D time-of-flight (TOF) methods in imaging the normal pulmonary arteries with commercially available 1.0 T equipment. The study was conducted in 20 volunteers and 7 patients with suspected pulmonary embolism (PE). To reduce artifacts caused by cardiac and respiratory motion, MR images were acquired in volunteers using two-dimensional (2D), gradient-recalled echo (GRE), breath-hold techniques, and three-dimensional (3D) acquisitions. Sagittal thin (6-mm) segmented k-space 2D sections obtained with cardiac gating during systole (turboFLASH, TR/TE9/6ms, 14 segments of 9 lines) and incremented flip-angles (TONE), and 50-mm 3D volume TONE acquisitions with 32 partitions (FISP, TR/TE34/10ms) were successively performed. In the second phase of the study, patients were examined only with the 3D technique. Images of volunteers were qualitatively and quantitatively analyzed. S N ratios were statistically compared by means of the paired-sample Wilcoxon ranked-signed test, a value of p < .05 being significant. In volunteers, 3D acquisitions displayed significantly more segment-order pulmonary arteries on average than did 2D acquisitions (2.95 ± 0.64 vs. 2.2 ± 0.85, respectively; p < .01). Moreover, the signal intensity of arteries within the lungs was less homogeneous in the 2D than in the 3D technique, with a signal intensity ratio between peripheral and proximal arteries of 63% ± 7% and 73% ± 2%, respectively ( p < .05). In patients, no erroneous diagnoses were obtained using the 3D technique. 3D images of normal lungs provide MR angiograms of better quality than do 2D images, and require less contribution from subjects because they are performed in free breathing. Ongoing improvements in MR sequences and further studies are now necessary to assess the value of 3D TONE MRA in the diagnosis of PE.
AbstractList The purpose of this study was to compare the performance of 2D vs. 3D time-of-flight (TOF) methods in imaging the normal pulmonary arteries with commercially available 1.0 T equipment. The study was conducted in 20 volunteers and 7 patients with suspected pulmonary embolism (PE). To reduce artifacts caused by cardiac and respiratory motion, MR images were acquired in volunteers using two-dimensional (2D), gradient-recalled echo (GRE), breath-hold techniques, and three-dimensional (3D) acquisitions. Sagittal thin (6-MM) segmented k-space 2D sections obtained with cardiac gating during systole (turboFLASH, TR/TE9/6 ms, 14 segments of 9 lines) and incremented flip-angles (TONE), and 50-mm 3D volume TONE acquisitions with 32 partitions (FISP, TR/TE34/10ms) were successively performed. In the second phase of the study, patients were examined only with the 3D technique. Images of volunteers were qualitatively and quantitatively analyzed. S/N ratios were statistically compared by means of the paired-sample Wilcoxon ranked-signed test, a value of p < .05 being significant. In volunteers, 3D acquisitions displayed significantly more segment-order pulmonary arteries on average than did 2d acquisitions displayed significantly more segment-order pulmonary arteries on average than did 2D acquisitions (2.95 +/- 0.64 vs. 2.2 +/- 0.85, respectively; p < .01). Moreover, the signal intensity of arteries within the lungs was less homogeneous in the 2D than in the 3D technique, with a signal intensity ratio between peripheral and proximal arteries of 63% +/- 7% and 73% +/- 2%, respectively (p < .05). In patients, no erroneous diagnoses were obtained using the 3D technique. 3D images of normal lungs provide MR angiograms of better quality than do 2D images, and require less contribution from subjects because they are performed in free breathing. Ongoing improvements in MR sequences and further studies are now necessary to assess the value of 3D TONE MRA in the diagnosis of PE.The purpose of this study was to compare the performance of 2D vs. 3D time-of-flight (TOF) methods in imaging the normal pulmonary arteries with commercially available 1.0 T equipment. The study was conducted in 20 volunteers and 7 patients with suspected pulmonary embolism (PE). To reduce artifacts caused by cardiac and respiratory motion, MR images were acquired in volunteers using two-dimensional (2D), gradient-recalled echo (GRE), breath-hold techniques, and three-dimensional (3D) acquisitions. Sagittal thin (6-MM) segmented k-space 2D sections obtained with cardiac gating during systole (turboFLASH, TR/TE9/6 ms, 14 segments of 9 lines) and incremented flip-angles (TONE), and 50-mm 3D volume TONE acquisitions with 32 partitions (FISP, TR/TE34/10ms) were successively performed. In the second phase of the study, patients were examined only with the 3D technique. Images of volunteers were qualitatively and quantitatively analyzed. S/N ratios were statistically compared by means of the paired-sample Wilcoxon ranked-signed test, a value of p < .05 being significant. In volunteers, 3D acquisitions displayed significantly more segment-order pulmonary arteries on average than did 2d acquisitions displayed significantly more segment-order pulmonary arteries on average than did 2D acquisitions (2.95 +/- 0.64 vs. 2.2 +/- 0.85, respectively; p < .01). Moreover, the signal intensity of arteries within the lungs was less homogeneous in the 2D than in the 3D technique, with a signal intensity ratio between peripheral and proximal arteries of 63% +/- 7% and 73% +/- 2%, respectively (p < .05). In patients, no erroneous diagnoses were obtained using the 3D technique. 3D images of normal lungs provide MR angiograms of better quality than do 2D images, and require less contribution from subjects because they are performed in free breathing. Ongoing improvements in MR sequences and further studies are now necessary to assess the value of 3D TONE MRA in the diagnosis of PE.
The purpose of this study was to compare the performance of 2D vs. 3D time-of-flight (TOF) methods in imaging the normal pulmonary arteries with commercially available 1.0 T equipment. The study was conducted in 20 volunteers and 7 patients with suspected pulmonary embolism (PE). To reduce artifacts caused by cardiac and respiratory motion, MR images were acquired in volunteers using two-dimensional (2D), gradient-recalled echo (GRE), breath-hold techniques, and three-dimensional (3D) acquisitions. Sagittal thin (6-MM) segmented k-space 2D sections obtained with cardiac gating during systole (turboFLASH, TR/TE9/6 ms, 14 segments of 9 lines) and incremented flip-angles (TONE), and 50-mm 3D volume TONE acquisitions with 32 partitions (FISP, TR/TE34/10ms) were successively performed. In the second phase of the study, patients were examined only with the 3D technique. Images of volunteers were qualitatively and quantitatively analyzed. S/N ratios were statistically compared by means of the paired-sample Wilcoxon ranked-signed test, a value of p < .05 being significant. In volunteers, 3D acquisitions displayed significantly more segment-order pulmonary arteries on average than did 2d acquisitions displayed significantly more segment-order pulmonary arteries on average than did 2D acquisitions (2.95 +/- 0.64 vs. 2.2 +/- 0.85, respectively; p < .01). Moreover, the signal intensity of arteries within the lungs was less homogeneous in the 2D than in the 3D technique, with a signal intensity ratio between peripheral and proximal arteries of 63% +/- 7% and 73% +/- 2%, respectively (p < .05). In patients, no erroneous diagnoses were obtained using the 3D technique. 3D images of normal lungs provide MR angiograms of better quality than do 2D images, and require less contribution from subjects because they are performed in free breathing. Ongoing improvements in MR sequences and further studies are now necessary to assess the value of 3D TONE MRA in the diagnosis of PE.
The purpose of this study was to compare the performance of 2D vs. 3D time-of-flight (TOF) methods in imaging the normal pulmonary arteries with commercially available 1.0 T equipment. The study was conducted in 20 volunteers and 7 patients with suspected pulmonary embolism (PE). To reduce artifacts caused by cardiac and respiratory motion, MR images were acquired in volunteers using two-dimensional (2D), gradient-recalled echo (GRE), breath-hold techniques, and three-dimensional (3D) acquisitions. Sagittal thin (6-mm) segmented k-space 2D sections obtained with cardiac gating during systole (turboFLASH, TR/TE9/6ms, 14 segments of 9 lines) and incremented flip-angles (TONE), and 50-mm 3D volume TONE acquisitions with 32 partitions (FISP, TR/TE34/10ms) were successively performed. In the second phase of the study, patients were examined only with the 3D technique. Images of volunteers were qualitatively and quantitatively analyzed. S N ratios were statistically compared by means of the paired-sample Wilcoxon ranked-signed test, a value of p < .05 being significant. In volunteers, 3D acquisitions displayed significantly more segment-order pulmonary arteries on average than did 2D acquisitions (2.95 ± 0.64 vs. 2.2 ± 0.85, respectively; p < .01). Moreover, the signal intensity of arteries within the lungs was less homogeneous in the 2D than in the 3D technique, with a signal intensity ratio between peripheral and proximal arteries of 63% ± 7% and 73% ± 2%, respectively ( p < .05). In patients, no erroneous diagnoses were obtained using the 3D technique. 3D images of normal lungs provide MR angiograms of better quality than do 2D images, and require less contribution from subjects because they are performed in free breathing. Ongoing improvements in MR sequences and further studies are now necessary to assess the value of 3D TONE MRA in the diagnosis of PE.
Author Laissy, Jean-Pierre
Schouman-Claeys, Elisabeth
Valere, Paul E.
Falise, Beatrice
Berger, Jean-François
Chillon, Sylvie
Assayag, Patrick
Tebboune, Djamel
Limot, Olivier
Henry-Feugeas, Marie-Cecile
Author_xml – sequence: 1
  givenname: Jean-Pierre
  surname: Laissy
  fullname: Laissy, Jean-Pierre
  organization: Department of Radiology, Centre Hospitalier et Universitaire Bichat-Claude Bernard, 46 rue Henri Huchard, 75877 Paris cedex 18 France
– sequence: 2
  givenname: Patrick
  surname: Assayag
  fullname: Assayag, Patrick
  organization: Department of Cardiology, Centre Hospitalier et Universitaire Bichat-Claude Bernard, 46 rue Henri Huchard, 75877 Paris cedex 18 France
– sequence: 3
  givenname: Marie-Cecile
  surname: Henry-Feugeas
  fullname: Henry-Feugeas, Marie-Cecile
  organization: Department of Radiology, Centre Hospitalier et Universitaire Bichat-Claude Bernard, 46 rue Henri Huchard, 75877 Paris cedex 18 France
– sequence: 4
  givenname: Djamel
  surname: Tebboune
  fullname: Tebboune, Djamel
  organization: Department of Radiology, Centre Hospitalier et Universitaire Bichat-Claude Bernard, 46 rue Henri Huchard, 75877 Paris cedex 18 France
– sequence: 5
  givenname: Jean-François
  surname: Berger
  fullname: Berger, Jean-François
  organization: Department of Radiology, Centre Hospitalier et Universitaire Bichat-Claude Bernard, 46 rue Henri Huchard, 75877 Paris cedex 18 France
– sequence: 6
  givenname: Olivier
  surname: Limot
  fullname: Limot, Olivier
  organization: Department of Radiology, Centre Hospitalier et Universitaire Bichat-Claude Bernard, 46 rue Henri Huchard, 75877 Paris cedex 18 France
– sequence: 7
  givenname: Beatrice
  surname: Falise
  fullname: Falise, Beatrice
  organization: Siemens Medical Systems, 39-47 Boulevard d'Ornano, 93527 Saint-Denis Cédex 2 France
– sequence: 8
  givenname: Sylvie
  surname: Chillon
  fullname: Chillon, Sylvie
  organization: Department of Radiology, Centre Hospitalier et Universitaire Bichat-Claude Bernard, 46 rue Henri Huchard, 75877 Paris cedex 18 France
– sequence: 9
  givenname: Paul E.
  surname: Valere
  fullname: Valere, Paul E.
  organization: Department of Cardiology, Centre Hospitalier et Universitaire Bichat-Claude Bernard, 46 rue Henri Huchard, 75877 Paris cedex 18 France
– sequence: 10
  givenname: Elisabeth
  surname: Schouman-Claeys
  fullname: Schouman-Claeys, Elisabeth
  organization: Department of Radiology, Centre Hospitalier et Universitaire Bichat-Claude Bernard, 46 rue Henri Huchard, 75877 Paris cedex 18 France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2931964$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/8583873$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvFDEQhC0UFDaBfwCSDwjBYUL7tZ7JAWm14SUFgVCQuBmP7dkYzdgb2wPKv8fLLjlwgFMf-qtSV9cJOgoxOIQeEzgjQJYvQTJoJBVfn3fiBVAA0qzuoQVpJWtE2_EjtLhDHqCTnL8DgKBMHKPjVrSscgv07dM8TjHodIuLn1wTh2YY_ea64A-fsQ4bHzdJb69vsS6YnAG-OsfrOG118jkG3Lvy07mA6UVlLWYXuNQbsTY3s8---BjyQ3R_0GN2jw7zFH158_pq_a65_Pj2_Xp12RjWLktDha0BOOtNZ3g78EFQo23PQQpuNRU9uKWlsuMauGCcM20F4T0BqYeaFdgperb33aZ4M7tc1OSzceOog4tzVlK2DCTvKvjkAM795KzaJj_V-Orwkrp_etjrbPQ4JB2Mz3cY7Rjplrxi53vMpJhzcoMyvuhd5JK0HxUBtWtJ7SpQuwpUJ9TvltSqivlf4j_2_5G92stcfeQP75LKxrtgnPXJmaJs9P82-AWr6abD
CODEN MRIMDQ
CitedBy_id crossref_primary_10_1016_S0887_2171_97_90011_1
crossref_primary_10_1016_S0730_725X_98_00012_5
crossref_primary_10_1016_S0730_725X_97_00001_5
crossref_primary_10_1016_S1076_6332_98_80230_4
Cites_doi 10.1148/radiology.172.2.2748814
10.1148/radiology.190.2.8284406
10.1148/radiology.189.1.8372181
10.1148/radiology.183.2.1561352
10.2214/ajr.154.5.2108568
10.1002/jmri.1880040205
10.1097/00004728-199205000-00012
10.1016/0720-048X(95)00626-2
10.2214/ajr.161.1.8517291
10.2214/ajr.159.5.1414805
10.1148/radiology.182.3.1311115
10.1148/radiology.179.1.2006288
10.1148/radiology.183.2.1561351
10.2214/ajr.154.3.2106232
10.1007/BF00595833
10.1148/radiology.189.2.8210385
10.1148/radiology.181.3.1947074
10.2214/ajr.162.5.8165977
10.1148/radiology.183.3.1584917
10.1097/00004728-199405000-00011
ContentType Journal Article
Copyright 1995
1996 INIST-CNRS
Copyright_xml – notice: 1995
– notice: 1996 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/0730-725X(95)02001-A
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5894
EndPage 957
ExternalDocumentID 8583873
2931964
10_1016_0730_725X_95_02001_A
0730725X9502001A
Genre Journal Article
Comparative Study
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABFNM
ABGSF
ABJNI
ABLVK
ABMAC
ABMZM
ABNEU
ABOCM
ABUDA
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEVXI
AFCTW
AFFNX
AFKWA
AFRHN
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJRQY
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSQ
SSU
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
~G-
~S-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c386t-25d00143bc9c48f4f52cadb40754da25b0e6d2794a0453443ad514b107af89403
IEDL.DBID .~1
ISSN 0730-725X
IngestDate Thu Sep 04 16:12:51 EDT 2025
Wed Feb 19 02:35:49 EST 2025
Mon Jul 21 09:17:04 EDT 2025
Thu Apr 24 22:58:03 EDT 2025
Tue Jul 01 02:40:45 EDT 2025
Fri Feb 23 02:16:58 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords 3D imaging
2D imaging
Pulmonary arteries
Time-of-flight (TOF) method
Vascular disease
Pulmonary embolism
Radiodiagnosis
Angiography
Respiratory disease
Time of flight method
Cardiovascular disease
Tridimensional image
Pulmonary artery
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-25d00143bc9c48f4f52cadb40754da25b0e6d2794a0453443ad514b107af89403
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 8583873
PQID 77830749
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_77830749
pubmed_primary_8583873
pascalfrancis_primary_2931964
crossref_citationtrail_10_1016_0730_725X_95_02001_A
crossref_primary_10_1016_0730_725X_95_02001_A
elsevier_sciencedirect_doi_10_1016_0730_725X_95_02001_A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1995
1995-1-00
1995-00-00
19950101
PublicationDateYYYYMMDD 1995-01-01
PublicationDate_xml – year: 1995
  text: 1995
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: Netherlands
PublicationTitle Magnetic resonance imaging
PublicationTitleAlternate Magn Reson Imaging
PublicationYear 1995
Publisher Elsevier Inc
Elsevier Science
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science
References Loubeyre, Revel, Douek, Delignette, Baldy, Genin, Amiel (BIB4) 1994; 162
Richardson, MacFall, Sostman, Spritzer (BIB18) 1994; 4
Schiebler, Holland, Hatabu, Listerud, Foo, Palevsky, Edmunds, Gefter (BIB13) 1993; 189
Foo, MacFall, Hayes, Sostman, Slayman (BIB7) 1992; 183
Webb, Sostman (BIB1) 1992; 182
Erdman, Peschock, Redman, Bonte, Meyerson, Jayson, Miller, Clarke, Parkey (BIB17) 1994; 190
Isoda, Masui, Hasegawa, Shirakawa, Ohta, Takahashi, Kaneko (BIB12) 1994; 18
Rubin, Herfkins, Napel, Pelc, Bergin (BIB14) 1993; 185
Kauczor, Gamroth, Tuengerthal, Herb, Schad, Semmler, van Kaick (BIB9) 1992; 2
Anderson, Saloner, Tsuruda, Lee (BIB21) 1990; 154
Hatabu, Gefter, Listerud (BIB8) 1992; 16
Edelman, Mattle, Atkinson, Hoogewoud (BIB19) 1990; 154
Lewin, Laub, Hausmann (BIB20) 1991; 179
Mayo, MacKay, Müller (BIB3) 1992; 159
Grist, Sostman, MacFall, Foo, Spritzer, Witty, Newman, Debatin, Tapson, Saltzman (BIB11) 1993; 189
Edelman, Wentz, Mattle, Zhao, Liu, Kim, Laub (BIB5) 1989; 172
Laissy, J.P.; Bancal, C.; Sekkal, S.; Chillon, S.; Berger, J.F.; Limot, O.; Tebboune, D.; Henry-Feugeas, M.C.; Falise, B.; Aubier, M.; Schouman-Claeys, E. Pulmonary MR angiography at 1.0 T: Early results with k-space segmented and postcontrast TurboFLASH two-dimensional time-of-flight sequences. Eur. J. Radiol. (in press).
Bergin, Noll, Pauly, Glover, Macovski (BIB6) 1992; 183
Wielopolski, Haacke, Adler (BIB10) 1992; 183
Higgins, Caputo (BIB2) 1993; 161
Edelman, Manning, Burstein, Paulin (BIB16) 1991; 181
Rubin (10.1016/0730-725X(95)02001-A_BIB14) 1993; 185
Bergin (10.1016/0730-725X(95)02001-A_BIB6) 1992; 183
Erdman (10.1016/0730-725X(95)02001-A_BIB17) 1994; 190
Anderson (10.1016/0730-725X(95)02001-A_BIB21) 1990; 154
Richardson (10.1016/0730-725X(95)02001-A_BIB18) 1994; 4
Higgins (10.1016/0730-725X(95)02001-A_BIB2) 1993; 161
Grist (10.1016/0730-725X(95)02001-A_BIB11) 1993; 189
Schiebler (10.1016/0730-725X(95)02001-A_BIB13) 1993; 189
Edelman (10.1016/0730-725X(95)02001-A_BIB16) 1991; 181
Isoda (10.1016/0730-725X(95)02001-A_BIB12) 1994; 18
Edelman (10.1016/0730-725X(95)02001-A_BIB19) 1990; 154
Lewin (10.1016/0730-725X(95)02001-A_BIB20) 1991; 179
Webb (10.1016/0730-725X(95)02001-A_BIB1) 1992; 182
Hatabu (10.1016/0730-725X(95)02001-A_BIB8) 1992; 16
Foo (10.1016/0730-725X(95)02001-A_BIB7) 1992; 183
Wielopolski (10.1016/0730-725X(95)02001-A_BIB10) 1992; 183
Loubeyre (10.1016/0730-725X(95)02001-A_BIB4) 1994; 162
Kauczor (10.1016/0730-725X(95)02001-A_BIB9) 1992; 2
Mayo (10.1016/0730-725X(95)02001-A_BIB3) 1992; 159
Edelman (10.1016/0730-725X(95)02001-A_BIB5) 1989; 172
10.1016/0730-725X(95)02001-A_BIB15
References_xml – volume: 189
  start-page: 125
  year: 1993
  end-page: 131
  ident: BIB13
  article-title: Suspected pulmonary embolism: Prospective evaluation with pulmonary MR angiography
  publication-title: Radiology
– volume: 161
  start-page: 13
  year: 1993
  end-page: 22
  ident: BIB2
  article-title: Role of MR imaging in acquired and congenital cardiovascular disease
  publication-title: AJR
– volume: 154
  start-page: 937
  year: 1990
  end-page: 946
  ident: BIB19
  article-title: MR angiography
  publication-title: AJR
– volume: 16
  start-page: 410
  year: 1992
  end-page: 417
  ident: BIB8
  article-title: Pulmonary angiography utilizing phased-array surface coils
  publication-title: J. Comput. Assist. Tomogr.
– volume: 189
  start-page: 523
  year: 1993
  end-page: 530
  ident: BIB11
  article-title: Pulmonary angiography with MR imaging: Preliminary clinical experience
  publication-title: Radiology
– volume: 2
  start-page: 214
  year: 1992
  end-page: 222
  ident: BIB9
  article-title: MR angiography: Clinical applications in thoracic surgery
  publication-title: Eur. Radiol.
– volume: 183
  start-page: 473
  year: 1992
  end-page: 477
  ident: BIB7
  article-title: Pulmonary vasculature: Single breath-hold MR imaging with phased-array coils
  publication-title: Radiology
– volume: 182
  start-page: 621
  year: 1992
  end-page: 630
  ident: BIB1
  article-title: MR imaging of thoracic disease: Clinical uses
  publication-title: Radiology
– volume: 18
  start-page: 402
  year: 1994
  end-page: 407
  ident: BIB12
  article-title: Pulmonary MR angiography: A comparison of 2D and 3D time-of-flight
  publication-title: J. Comput. Assist. Tomogr.
– volume: 190
  start-page: 499
  year: 1994
  end-page: 508
  ident: BIB17
  article-title: Pulmonary embolism: Comparison of MR images with radionuclide and angiographic studies
  publication-title: Radiology
– volume: 183
  start-page: 465
  year: 1992
  end-page: 472
  ident: BIB10
  article-title: Three-dimensional MR imaging of the pulmonary vasculature: Preliminary experience
  publication-title: Radiology
– volume: 183
  start-page: 673
  year: 1992
  end-page: 676
  ident: BIB6
  article-title: MR imaging of lung parenchyma: A solution to susceptibility
  publication-title: Radiology
– volume: 185
  start-page: 217
  year: 1993
  ident: BIB14
  article-title: Breath-hold pulmonary MR angiography: Comparison of imaging strategies
  publication-title: Radiology
– volume: 181
  start-page: 641
  year: 1991
  end-page: 643
  ident: BIB16
  article-title: Coronary arteries: Breath-hold MR angiography
  publication-title: Radiology
– reference: Laissy, J.P.; Bancal, C.; Sekkal, S.; Chillon, S.; Berger, J.F.; Limot, O.; Tebboune, D.; Henry-Feugeas, M.C.; Falise, B.; Aubier, M.; Schouman-Claeys, E. Pulmonary MR angiography at 1.0 T: Early results with k-space segmented and postcontrast TurboFLASH two-dimensional time-of-flight sequences. Eur. J. Radiol. (in press).
– volume: 159
  start-page: 951
  year: 1992
  end-page: 956
  ident: BIB3
  article-title: MR imaging of the lungs: Value of short TE spin-echo pulse sequences
  publication-title: AJR
– volume: 162
  start-page: 1035
  year: 1994
  end-page: 1039
  ident: BIB4
  article-title: Dynamic contrast-enhanced MR angiography of pulmonary embolism: Comparison with pulmonary angiography
  publication-title: AJR
– volume: 172
  start-page: 351
  year: 1989
  end-page: 357
  ident: BIB5
  article-title: Projection arteriography and venography: initial clinical results with MR
  publication-title: Radiology
– volume: 154
  start-page: 623
  year: 1990
  end-page: 629
  ident: BIB21
  article-title: Artifacts in maximum intensity projection display of MR angiograms
  publication-title: AJR
– volume: 4
  start-page: 131
  year: 1994
  end-page: 137
  ident: BIB18
  article-title: Asymmetric-echo, short TE, retrospectively gated MR imaging of the heart and pulmonary vessels
  publication-title: J. Magn. Reson. Imaging
– volume: 179
  start-page: 261
  year: 1991
  end-page: 264
  ident: BIB20
  article-title: Three-dimensional time-of-flight MR angiography: Applications in the abdomen and thorax
  publication-title: Radiology
– volume: 172
  start-page: 351
  year: 1989
  ident: 10.1016/0730-725X(95)02001-A_BIB5
  article-title: Projection arteriography and venography: initial clinical results with MR
  publication-title: Radiology
  doi: 10.1148/radiology.172.2.2748814
– volume: 190
  start-page: 499
  year: 1994
  ident: 10.1016/0730-725X(95)02001-A_BIB17
  article-title: Pulmonary embolism: Comparison of MR images with radionuclide and angiographic studies
  publication-title: Radiology
  doi: 10.1148/radiology.190.2.8284406
– volume: 189
  start-page: 125
  year: 1993
  ident: 10.1016/0730-725X(95)02001-A_BIB13
  article-title: Suspected pulmonary embolism: Prospective evaluation with pulmonary MR angiography
  publication-title: Radiology
  doi: 10.1148/radiology.189.1.8372181
– volume: 183
  start-page: 473
  year: 1992
  ident: 10.1016/0730-725X(95)02001-A_BIB7
  article-title: Pulmonary vasculature: Single breath-hold MR imaging with phased-array coils
  publication-title: Radiology
  doi: 10.1148/radiology.183.2.1561352
– volume: 185
  start-page: 217
  issue: P
  year: 1993
  ident: 10.1016/0730-725X(95)02001-A_BIB14
  article-title: Breath-hold pulmonary MR angiography: Comparison of imaging strategies
  publication-title: Radiology
– volume: 154
  start-page: 937
  year: 1990
  ident: 10.1016/0730-725X(95)02001-A_BIB19
  article-title: MR angiography
  publication-title: AJR
  doi: 10.2214/ajr.154.5.2108568
– volume: 4
  start-page: 131
  year: 1994
  ident: 10.1016/0730-725X(95)02001-A_BIB18
  article-title: Asymmetric-echo, short TE, retrospectively gated MR imaging of the heart and pulmonary vessels
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.1880040205
– volume: 16
  start-page: 410
  year: 1992
  ident: 10.1016/0730-725X(95)02001-A_BIB8
  article-title: Pulmonary angiography utilizing phased-array surface coils
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-199205000-00012
– ident: 10.1016/0730-725X(95)02001-A_BIB15
  doi: 10.1016/0720-048X(95)00626-2
– volume: 161
  start-page: 13
  year: 1993
  ident: 10.1016/0730-725X(95)02001-A_BIB2
  article-title: Role of MR imaging in acquired and congenital cardiovascular disease
  publication-title: AJR
  doi: 10.2214/ajr.161.1.8517291
– volume: 159
  start-page: 951
  year: 1992
  ident: 10.1016/0730-725X(95)02001-A_BIB3
  article-title: MR imaging of the lungs: Value of short TE spin-echo pulse sequences
  publication-title: AJR
  doi: 10.2214/ajr.159.5.1414805
– volume: 182
  start-page: 621
  year: 1992
  ident: 10.1016/0730-725X(95)02001-A_BIB1
  article-title: MR imaging of thoracic disease: Clinical uses
  publication-title: Radiology
  doi: 10.1148/radiology.182.3.1311115
– volume: 179
  start-page: 261
  year: 1991
  ident: 10.1016/0730-725X(95)02001-A_BIB20
  article-title: Three-dimensional time-of-flight MR angiography: Applications in the abdomen and thorax
  publication-title: Radiology
  doi: 10.1148/radiology.179.1.2006288
– volume: 183
  start-page: 465
  year: 1992
  ident: 10.1016/0730-725X(95)02001-A_BIB10
  article-title: Three-dimensional MR imaging of the pulmonary vasculature: Preliminary experience
  publication-title: Radiology
  doi: 10.1148/radiology.183.2.1561351
– volume: 154
  start-page: 623
  year: 1990
  ident: 10.1016/0730-725X(95)02001-A_BIB21
  article-title: Artifacts in maximum intensity projection display of MR angiograms
  publication-title: AJR
  doi: 10.2214/ajr.154.3.2106232
– volume: 2
  start-page: 214
  year: 1992
  ident: 10.1016/0730-725X(95)02001-A_BIB9
  article-title: MR angiography: Clinical applications in thoracic surgery
  publication-title: Eur. Radiol.
  doi: 10.1007/BF00595833
– volume: 189
  start-page: 523
  year: 1993
  ident: 10.1016/0730-725X(95)02001-A_BIB11
  article-title: Pulmonary angiography with MR imaging: Preliminary clinical experience
  publication-title: Radiology
  doi: 10.1148/radiology.189.2.8210385
– volume: 181
  start-page: 641
  year: 1991
  ident: 10.1016/0730-725X(95)02001-A_BIB16
  article-title: Coronary arteries: Breath-hold MR angiography
  publication-title: Radiology
  doi: 10.1148/radiology.181.3.1947074
– volume: 162
  start-page: 1035
  year: 1994
  ident: 10.1016/0730-725X(95)02001-A_BIB4
  article-title: Dynamic contrast-enhanced MR angiography of pulmonary embolism: Comparison with pulmonary angiography
  publication-title: AJR
  doi: 10.2214/ajr.162.5.8165977
– volume: 183
  start-page: 673
  year: 1992
  ident: 10.1016/0730-725X(95)02001-A_BIB6
  article-title: MR imaging of lung parenchyma: A solution to susceptibility
  publication-title: Radiology
  doi: 10.1148/radiology.183.3.1584917
– volume: 18
  start-page: 402
  year: 1994
  ident: 10.1016/0730-725X(95)02001-A_BIB12
  article-title: Pulmonary MR angiography: A comparison of 2D and 3D time-of-flight
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-199405000-00011
SSID ssj0005235
Score 1.4655838
Snippet The purpose of this study was to compare the performance of 2D vs. 3D time-of-flight (TOF) methods in imaging the normal pulmonary arteries with commercially...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 949
SubjectTerms 2D imaging
3D imaging
Adult
Aged
Biological and medical sciences
Blood and lymphatic vessels
Cardiology. Vascular system
Case-Control Studies
Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous
Humans
Image Processing, Computer-Assisted
Magnetic Resonance Angiography - methods
Medical sciences
Middle Aged
Observer Variation
Predictive Value of Tests
Pulmonary arteries
Pulmonary Artery - anatomy & histology
Pulmonary Artery - pathology
Pulmonary Embolism - diagnosis
Pulmonary Embolism - epidemiology
Time-of-flight (TOF) method
Title Pulmonary time-of-flight MR angiography at 1.0 T: Comparison between 2D and 3D tone acquisitions
URI https://dx.doi.org/10.1016/0730-725X(95)02001-A
https://www.ncbi.nlm.nih.gov/pubmed/8583873
https://www.proquest.com/docview/77830749
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-QwFA-Lgiwsi5_s7O5oDnvQQ5w2H23jrYzKuMuIiMLcsmnSysAwzurMwYt_-77XpkUPIngNL0nJ7yX5veZ9EPILU4RYLWOW8KhksrQl00XsWVFmPoYmx-vE8-PLZHQrf0_U5EUsDLpVhrO_OdPr0zq0DMJqDhbT6QB1M-VqolWEfkE5BrDLFFX9-Pmll0dTYxOEGUq30XNxMujaDrU6qsdg-Vu305eFfYQ1q5piF2-z0fpWOt8kXwOdpHnzxVvkUznfJhvj8GC-Q_5erWagaPbhiWIVeXZfsWqG9jgdX1M7v5uGjNXULml8HNGbEzrsKhPS4MRF-SnIeipOKabuptb9W02Dr9cuuT0_uxmOWCiqwJzIkiXjyqNZJAqnncwqWSnurC_ArlPSW66KqEw8h11qgewJKYX1wKkKsBJtlWkZiT2yNoe5vhGaZBKkBexgj7ygKpzVMJSIY6t4JV2PiHYxjQsZx7Hwxcy0rmUIgUEIjFamhsDkPcK6Xosm48Y78mmLk3mlOQYuhXd69l_B2k0HFAjzlPXIQQuzgU2HLyl2Xt6vHk2aZqB8UvfIXoN-1zXDZ-hUfP_wR_0gn5uoefzL85OsLR9WZR94z7LYrzV7n6znF39Gl_8B7cr52g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5BKwESqsqjItBSHzjAwc2uH7trblFLFaCpEEql3IzX3q0iRWlokwMXfjszu95Ve6gqcbXGD3nG9jf2-BuAD0QR4oxKeSaSiqvKVdyUaeBlVYQUi7xoiOcn59n4Qn2b6dmtvzAUVhn3_nZPb3brWDKMszlczedDss1c6JnRCcUFjR7DtsKOKazv6O_tMI82ySZKcxLvvs-l2bAv-2j0p6YRPrrveHq-cjc4aXWb7eJ-ONocS6e7sBPxJBu1Q34Bj6rlS3gyiS_mr-DXj80CLc1d_2GURp5f1bxekEPOJj-ZW17OI2U1c2uWHiVs-pkd96kJWYziYuIEZQOTJ4y4u5nzvzfzGOz1Gi5Ov0yPxzxmVeBeFtmaCx3IL5KlN14Vtaq18C6U6NhpFZzQZVJlQeAydYj2pFLSBQRVJbqJri6MSuQebC2xrzfAskKhtMQlHAgY1KV3BpuSaeq0qJUfgOwm0_pIOU6ZLxa2iy0jFVhSgTXaNiqwowHwvtaqpdx4QD7v9GTvmI7FU-GBmgd31Np3hxiIiMoGcNip2eKqo6cUt6yuNjc2zwu0PmUGsNdqv69a0Dt0Lt_-96AO4el4OjmzZ1_Pv7-DZ-0Xerry2Yet9fWmOkAQtC7fN1b-D68O-20
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pulmonary+time-of-flight+MR+angiography+at+1.0+T%3A+comparison+between+2D+and+3D+tone+acquisitions&rft.jtitle=Magnetic+resonance+imaging&rft.au=Laissy%2C+J+P&rft.au=Assayag%2C+P&rft.au=Henry-Feugeas%2C+M+C&rft.au=Tebboune%2C+D&rft.date=1995&rft.issn=0730-725X&rft.volume=13&rft.issue=7&rft.spage=949&rft_id=info:doi/10.1016%2F0730-725X%2895%2902001-A&rft_id=info%3Apmid%2F8583873&rft.externalDocID=8583873
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon