Amino acids metabolism as a source for aroma volatiles biosynthesis
Aroma volatiles are essential for plant ecological fitness and reproduction. Plants produce and use volatiles to attract pollinators and seed dispersers, repel herbivores and recruit their natural enemies, and communicate with other plants. Amino acids and their biosynthetic intermediates play key r...
Saved in:
Published in | Current opinion in plant biology Vol. 67; p. 102221 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aroma volatiles are essential for plant ecological fitness and reproduction. Plants produce and use volatiles to attract pollinators and seed dispersers, repel herbivores and recruit their natural enemies, and communicate with other plants. Amino acids and their biosynthetic intermediates play key roles as precursors for the biosynthesis of plant volatiles. Different plants utilize different strategies and biosynthetic pathways to meet their specific biological needs. This review focuses on the different biosynthetic pathways that plants utilize to form amino acid-derived aroma volatiles, emphasizing their common and unique aspects and stressing the importance of the limiting enzymes residing in the primary-specialized metabolism interface. We also briefly review how biotechnology has used this interface and point to promising future directions for improving the quality of agricultural produce and the production of key volatiles. |
---|---|
AbstractList | Aroma volatiles are essential for plant ecological fitness and reproduction. Plants produce and use volatiles to attract pollinators and seed dispersers, repel herbivores and recruit their natural enemies, and communicate with other plants. Amino acids and their biosynthetic intermediates play key roles as precursors for the biosynthesis of plant volatiles. Different plants utilize different strategies and biosynthetic pathways to meet their specific biological needs. This review focuses on the different biosynthetic pathways that plants utilize to form amino acid-derived aroma volatiles, emphasizing their common and unique aspects and stressing the importance of the limiting enzymes residing in the primary-specialized metabolism interface. We also briefly review how biotechnology has used this interface and point to promising future directions for improving the quality of agricultural produce and the production of key volatiles.Aroma volatiles are essential for plant ecological fitness and reproduction. Plants produce and use volatiles to attract pollinators and seed dispersers, repel herbivores and recruit their natural enemies, and communicate with other plants. Amino acids and their biosynthetic intermediates play key roles as precursors for the biosynthesis of plant volatiles. Different plants utilize different strategies and biosynthetic pathways to meet their specific biological needs. This review focuses on the different biosynthetic pathways that plants utilize to form amino acid-derived aroma volatiles, emphasizing their common and unique aspects and stressing the importance of the limiting enzymes residing in the primary-specialized metabolism interface. We also briefly review how biotechnology has used this interface and point to promising future directions for improving the quality of agricultural produce and the production of key volatiles. Aroma volatiles are essential for plant ecological fitness and reproduction. Plants produce and use volatiles to attract pollinators and seed dispersers, repel herbivores and recruit their natural enemies, and communicate with other plants. Amino acids and their biosynthetic intermediates play key roles as precursors for the biosynthesis of plant volatiles. Different plants utilize different strategies and biosynthetic pathways to meet their specific biological needs. This review focuses on the different biosynthetic pathways that plants utilize to form amino acid-derived aroma volatiles, emphasizing their common and unique aspects and stressing the importance of the limiting enzymes residing in the primary-specialized metabolism interface. We also briefly review how biotechnology has used this interface and point to promising future directions for improving the quality of agricultural produce and the production of key volatiles. |
ArticleNumber | 102221 |
Author | Lewinsohn, Efraim Gonda, Itay Maoz, Itay |
Author_xml | – sequence: 1 givenname: Itay surname: Maoz fullname: Maoz, Itay email: itaym@volcani.agri.gov.il organization: Department of Postharvest Science, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel – sequence: 2 givenname: Efraim surname: Lewinsohn fullname: Lewinsohn, Efraim email: twefraim@volcani.agri.gov.il organization: Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat Yishay, Israel – sequence: 3 givenname: Itay orcidid: 0000-0003-2144-1561 surname: Gonda fullname: Gonda, Itay email: itaygonda@agri.gov.il organization: Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat Yishay, Israel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35533493$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1LJDEQhsOirJ8_wIvkuJce89XpbjzJ4O4Kghc9h-qkms3Q3RlTPYL_3si4HvYge0oFnqeg3veEHcxpRsYupFhJIe3VZrXt40oJpcpfKSW_sWPZNl0ldG0PyqxtV9XK2iN2QrQRQtSq0d_Zka5rrU2nj9n6Zopz4uBjID7hAn0aI00ciAOntMse-ZAyh5wm4C9phCWOSLyPiV7n5Q9SpDN2OMBIeP7xnrKnn7eP69_V_cOvu_XNfeV1a5dKDq2Vg4AeW-9Bo9G-g6YzEkzogqlDK3rd2B5kMK0NoTF6aM1gEHVjsAV9yn7s925zet4hLW6K5HEcYca0I1cOlV1dXP1fqKil6lRBLz_QXT9hcNscJ8iv7m9GBZB7wOdElHH4RKRw7z24jSs9uPce3L6H4jT_OD4uJbo0Lxni-KV5vTexJPkSMTvyEWePIWb0iwspfmG_ASImoK0 |
CitedBy_id | crossref_primary_10_1016_j_fbio_2024_104944 crossref_primary_10_3390_fermentation10010071 crossref_primary_10_1016_j_plaphy_2025_109561 crossref_primary_10_1016_j_phytochem_2024_114111 crossref_primary_10_1016_j_fochx_2025_102319 crossref_primary_10_3390_foods14010118 crossref_primary_10_1016_j_fochx_2024_101869 crossref_primary_10_1016_j_jspr_2024_102390 crossref_primary_10_1016_j_algal_2024_103742 crossref_primary_10_1016_j_heliyon_2025_e42268 crossref_primary_10_1016_j_lwt_2023_115606 crossref_primary_10_1016_j_foodres_2024_114917 crossref_primary_10_1021_acs_jafc_3c06846 crossref_primary_10_1016_j_foodchem_2025_143813 crossref_primary_10_1002_fsn3_3674 crossref_primary_10_1021_acsnano_4c11219 crossref_primary_10_1016_j_plaphy_2023_03_003 crossref_primary_10_3390_molecules29184321 crossref_primary_10_1016_j_ibmb_2023_104031 crossref_primary_10_1016_j_pestbp_2024_105835 crossref_primary_10_1021_acs_jafc_4c04363 crossref_primary_10_3390_foods12112137 crossref_primary_10_1016_j_tifs_2025_104886 crossref_primary_10_1002_jsfa_13671 crossref_primary_10_3390_fermentation10080409 crossref_primary_10_1016_j_foodres_2022_112387 crossref_primary_10_1016_j_fbio_2025_106308 crossref_primary_10_3390_app15052726 crossref_primary_10_1016_j_lwt_2024_116142 crossref_primary_10_3390_horticulturae10111159 crossref_primary_10_1016_j_hpj_2024_02_008 crossref_primary_10_1002_fft2_509 crossref_primary_10_1007_s10811_024_03243_9 crossref_primary_10_1016_j_ijbiomac_2024_135377 crossref_primary_10_1016_j_lwt_2024_117086 crossref_primary_10_1021_acs_jafc_3c02015 crossref_primary_10_1146_annurev_arplant_040121_114908 crossref_primary_10_1016_j_foodchem_2025_143639 crossref_primary_10_1007_s10311_024_01785_5 crossref_primary_10_3390_foods14010094 crossref_primary_10_1016_j_ijfoodmicro_2023_110417 crossref_primary_10_3389_fpls_2023_1216826 crossref_primary_10_3389_frfst_2024_1405384 crossref_primary_10_3390_molecules29030606 crossref_primary_10_1016_j_fbio_2023_103422 crossref_primary_10_1016_j_pbi_2022_102332 crossref_primary_10_1016_j_foodres_2024_113936 crossref_primary_10_3390_agriculture14071129 crossref_primary_10_3390_molecules28114308 crossref_primary_10_3390_foods13060858 crossref_primary_10_3390_molecules29051075 crossref_primary_10_1186_s12870_024_05787_x crossref_primary_10_1021_acs_jafc_3c01650 crossref_primary_10_1016_j_eja_2024_127163 crossref_primary_10_3390_foods12122430 crossref_primary_10_3389_fnut_2024_1399390 |
Cites_doi | 10.4067/S0716-078X2000000300006 10.1038/s41586-021-03819-2 10.1111/tpj.13838 10.1111/pbi.12191 10.1021/jf9508209 10.1073/pnas.0602469103 10.1111/tpj.12149 10.1105/tpc.104.028837 10.1021/jf60188a031 10.3389/fpls.2021.814138 10.1093/mp/ssp106 10.1111/tpj.14795 10.1016/j.jfda.2018.01.014 10.3389/fpls.2017.00769 10.1093/jxb/erab072 10.1038/s41598-019-45183-2 10.1104/pp.104.045468 10.1038/nchembio.485 10.1111/tpj.14204 10.1104/pp.84.2.277 10.1002/cber.190704001156 10.1111/pce.12357 10.1038/ncomms3833 10.1073/pnas.0603732103 10.1016/j.plantsci.2018.05.020 10.1073/pnas.0606195103 10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2 10.1021/jf011465r 10.1073/pnas.1211001109 10.1038/s41467-018-07969-2 10.1242/jeb.01689 10.1105/tpc.111.086975 10.1073/pnas.2009988118 10.1126/science.aal1556 10.1074/jbc.M602708200 10.1111/tpj.12711 10.1046/j.1364-3703.2002.00131.x 10.1021/jf505523m 10.1073/pnas.1920097117 10.1093/mp/ssr108 10.1021/jf030148c 10.1093/jxb/ert250 10.1021/acs.jafc.7b00272 10.1007/s11103-017-0666-9 10.1271/bbb.70090 10.1105/tpc.113.114231 10.1006/fstl.1993.1036 10.1016/j.phytochem.2017.12.018 10.1104/pp.007146 10.1105/tpc.12.6.949 10.1016/j.cub.2011.03.059 10.3390/biology10080807 10.1105/tpc.109.073247 10.1021/jf063018n 10.1093/jxb/erp390 10.1105/tpc.113.118265 10.1038/s41580-020-00288-9 10.1105/tpc.112.097519 10.1016/j.postharvbio.2021.111657 10.1038/s41477-021-00991-1 10.1111/pbi.12253 10.3136/fstr.5.99 10.1111/nph.12913 10.1016/j.molp.2014.12.001 10.1038/s41586-020-2833-4 10.1126/science.1112614 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7S9 L.6 7X8 |
DOI | 10.1016/j.pbi.2022.102221 |
DatabaseName | CrossRef PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1879-0356 |
ExternalDocumentID | 35533493 10_1016_j_pbi_2022_102221 S1369526622000504 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -DZ .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADQTV ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEQOU AFJKZ AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSA SSH SSU SSZ T5K Y6R ~G- ~KM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION NPM 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c386t-1f861f0abe8cca3e43c9a7941a4d9d45d80b376ba1d486dd743f84f4ee374e8a3 |
IEDL.DBID | .~1 |
ISSN | 1369-5266 1879-0356 |
IngestDate | Fri Jul 11 02:31:48 EDT 2025 Fri Jul 11 11:55:10 EDT 2025 Thu Apr 03 07:08:29 EDT 2025 Thu Apr 24 23:05:34 EDT 2025 Tue Jul 01 03:25:41 EDT 2025 Sun Apr 06 06:53:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fruit flavor Aroma volatiles PAAS BCKA CMS Flowers fragrance Branched-chain amino acids (BCAA) BCAT AAAT Aromatic amino acids (AAA) MGL BCV PAL AAAD BCAA SAM |
Language | English |
License | Copyright © 2022 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c386t-1f861f0abe8cca3e43c9a7941a4d9d45d80b376ba1d486dd743f84f4ee374e8a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Review-3 |
ORCID | 0000-0003-2144-1561 |
PMID | 35533493 |
PQID | 2661051292 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2661954863 proquest_miscellaneous_2661051292 pubmed_primary_35533493 crossref_primary_10_1016_j_pbi_2022_102221 crossref_citationtrail_10_1016_j_pbi_2022_102221 elsevier_sciencedirect_doi_10_1016_j_pbi_2022_102221 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 2022-06-00 2022-Jun 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current opinion in plant biology |
PublicationTitleAlternate | Curr Opin Plant Biol |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Tressl, Drawert (bib16) 1973; 21 Oliva, Bar, Ovadia, Perl, Galili, Lewinsohn, Oren-Shamir (bib66) 2017; 8 Kochevenko, Araujo, Maloney, Tieman, Do, Taylor, Klee, Fernie (bib14) 2012; 5 Klahre, Gurba, Hermann, Saxenhofer, Bossolini, Guerin Patrick, Kuhlemeier (bib51) 2011; 21 Irmisch, Clavijo McCormick, Günther, Schmidt, Boeckler, Gershenzon, Unsicker, Köllner (bib37) 2014; 80 Gang, Beuerle, Ullmann, Werck-Reichhart, Pichersky (bib57) 2002; 130 Kumar, Jander (bib48) 2017; 65 Matich, Rowan (bib18) 2007; 55 Widhalm Joshua, Dudareva (bib53) 2015; 8 Jumper, Evans, Pritzel, Green, Figurnov, Ronneberger, Tunyasuvunakool, Bates, Žídek, Potapenko (bib73) 2021; 596 Chen (bib4) 1966; vol. 3 Koeduka, Fridman, Gang, Vassao, Jackson, Kish, Orlova, Spassova, Lewis, Noel (bib56) 2006; 103 Wang, Zhang, Boo, Park, Drakakaki, Zakharov (bib27) 2019; 98 Cannon, Ho (bib43) 2018; 26 Cipollini (bib6) 2000; 73 Baldwin, Scott, Einstein, Malundo, Carr, Shewfelt, Tandon (bib25) 1998; 123 Noichinda, Ueda, Imahori, Chachin (bib42) 1999; 5 Ehrlich (bib1) 1907; 40 Rowan, Lane, Allen, Fielder, Hunt (bib12) 1996; 44 Gonda, Bar, Portnoy, Lev, Burger, Schaffer, Tadmor, Gepstein, Giovannoni, Katzir (bib10) 2010; 61 Sugimoto, Engelgau, Jones, Song, Beaudry (bib30) 2021; 118 Clavijo Mccormick, Gershenzon, Unsicker (bib34) 2014; 37 Dal Cin, Tieman, Tohge, McQuinn, de Vos, Osorio, Schmelz, Taylor, Smits-Kroon, Schuurink (bib69) 2011; 23 Rose (bib2) 1957; 27 Rébeillé, Jabrin, Bligny, Loizeau, Gambonnet, Van Wilder, Douce, Ravanel (bib15) 2006; 103 Tikunov, Roohanitaziani, Meijer-Dekens, Molthoff, Paulo, Finkers, Capel, Carvajal Moreno, Maliepaard, Nijenhuis-de Vries (bib33) 2020; 103 Patrick, Huang, Dudareva, Li (bib70) 2021; 72 Irmisch, Clavijo McCormick, Boeckler, Schmidt, Reichelt, Schneider, Block, Schnitzler, Gershenzon, Unsicker (bib36) 2013; 25 Kaminaga, Schnepp, Peel, Kish, Ben-Nissan, Weiss, Orlova, Lavie, Rhodes, Wood (bib11) 2006; 281 Dabrowski, Terjesen, Zhang, Phang, Lee (bib3) 2005; 208 Van der Pijl (bib7) 1982; vol. 214 Torrens-Spence, Chiang, Smith, Vicent, Wang, Weng (bib54) 2020; 117 Hu, Wang, Ali, Chen, Zhang, Zheng, Chen (bib29) 2021; 10 Zhu, Li, Gao (bib72) 2020; 21 Tieman, Zhu, Resende, Lin, Nguyen, Bies, Rambla, Beltran, Taylor, Zhang (bib24) 2017; 355 Pérez, Olías, Luaces, Sanz (bib23) 2002; 50 Tikunov, Molthoff, de Vos, Beekwilder, van Houwelingen, van der Hooft, Nijenhuis-de Vries, Labrie, Verkerke, van de Geest (bib52) 2013; 25 Galpaz, Gonda, Shem-Tov, Barad, Tzuri, Lev, Fei, Xu, Mao, Jiao (bib41) 2018; 94 Gonda (bib44) 2014 Lindsay (bib45) 2007 Huang, Joshi, Jander (bib47) 2014; 12 Dixon, Achnine, Kota, Liu, Reddy, Wang (bib50) 2002; 3 Di, Kim, Martin, Leustek, Jhoo, Ho, Tumer (bib46) 2003; 51 Maoz, Rikanati, Schlesinger, Bar, Gonda, Levin, Kaplunov, Sela, Lichter, Lewinsohn (bib21) 2018; 274 Qualley, Widhalm, Adebesin, Kish, Dudareva (bib60) 2012; 109 Dudareva, Murfitt, Mann, Gorenstein, Kolosova, Kish, Bonham, Wood (bib39) 2000; 12 Miyazaki, Yang (bib38) 1987; 84 Molla, Sretenovic, Bansal, Qi (bib71) 2021; 7 Sugimoto, Daniel Jones, Beaudry (bib31) 2011; 136 Muhlemann, Woodworth, Morgan, Dudareva (bib58) 2014; 204 Vogt (bib49) 2010; 3 Huang, Renqiuguo, Jianxin, Natalia (bib75) 2022; 13 Gonda, Davidovich-Rikanati, Bar, Lev, Jhirad, Meshulam, Wissotsky, Portnoy, Burger, Schaffer (bib8) 2018; 148 Qian, Lynch, Guo, Rhodes, Morgan, Dudareva (bib65) 2019; 10 Gonda, Lev, Bar, Sikron, Portnoy, Davidovich-Rikanati, Burger, Schaffer, Tadmor, Giovannonni (bib9) 2013; 74 Verdonk, Haring, van Tunen, Schuurink (bib68) 2005; 17 Maeda, Shasany, Schnepp, Orlova, Taguchi, Cooper, Rhodes, Pichersky, Dudareva (bib63) 2010; 22 Castillo, Martinelli, Zakharov-Negre, Ebeler, Buzo, McKenry, Dandekar (bib40) 2017; 95 Dou, Hu, Zhao, Gao, He, Deng, Sheng, Bi, Yang, Li (bib28) 2021 Yoo, Widhalm, Qian, Maeda, Cooper, Jannasch, Gonda, Lewinsohn, Rhodes, Dudareva (bib64) 2013; 4 Hansen, Poll (bib22) 1993; 26 Sugimoto, Forsline, Beaudry (bib32) 2015; 63 Bizzio, Tieman, Munoz (bib26) 2022; 12 Tieman, Taylor, Schauer, Fernie, Hanson, Klee (bib13) 2006; 103 Knudsen, Eriksson, Gershenzon, Ståhl (bib35) 2006; 72 Oliva, Ovadia, Perl, Bar, Lewinsohn, Galili, Oren-Shamir (bib67) 2015; 13 Boatright, Negre, Chen, Kish, Wood, Peel, Orlova, Gang, Rhodes, Dudareva (bib17) 2004; 135 Kumar, Elazari, Ovadia, Bar, Nissim-Levi, Carmi, Lewinsohn, Oren-Shamir (bib19) 2021; 181 Maeda, Yoo, Dudareva (bib62) 2011; 7 Yip, Fischer, Paknia, Chari, Stark (bib74) 2020; 587 Goff, Klee (bib5) 2006; 311 Tzin, Rogachev, Meir, Moyal Ben Zvi, Masci, Vainstein, Aharoni, Galili (bib20) 2013; 64 Sakai, Hirata, Sayama, Sekiguchi, Itano, Asai, Dohra, Hara, Watanabe (bib55) 2007; 71 Kim, Swanson, Alvarez, Johnson, Cho, Clark, Colquhoun (bib59) 2019; 9 Klempien, Kaminaga, Qualley, Nagegowda, Widhalm, Orlova, Shasany, Taguchi, Kish, Cooper (bib61) 2012; 24 Dabrowski (10.1016/j.pbi.2022.102221_bib3) 2005; 208 Van der Pijl (10.1016/j.pbi.2022.102221_bib7) 1982; vol. 214 Dal Cin (10.1016/j.pbi.2022.102221_bib69) 2011; 23 Tzin (10.1016/j.pbi.2022.102221_sref20) 2013; 64 Rowan (10.1016/j.pbi.2022.102221_bib12) 1996; 44 Widhalm Joshua (10.1016/j.pbi.2022.102221_bib53) 2015; 8 Goff (10.1016/j.pbi.2022.102221_bib5) 2006; 311 Cannon (10.1016/j.pbi.2022.102221_bib43) 2018; 26 Yoo (10.1016/j.pbi.2022.102221_bib64) 2013; 4 Jumper (10.1016/j.pbi.2022.102221_bib73) 2021; 596 Hansen (10.1016/j.pbi.2022.102221_bib22) 1993; 26 Maeda (10.1016/j.pbi.2022.102221_bib62) 2011; 7 Kim (10.1016/j.pbi.2022.102221_bib59) 2019; 9 Patrick (10.1016/j.pbi.2022.102221_bib70) 2021; 72 Dou (10.1016/j.pbi.2022.102221_bib28) 2021 Huang (10.1016/j.pbi.2022.102221_bib75) 2022; 13 Rébeillé (10.1016/j.pbi.2022.102221_bib15) 2006; 103 Gonda (10.1016/j.pbi.2022.102221_bib44) 2014 Zhu (10.1016/j.pbi.2022.102221_bib72) 2020; 21 Hu (10.1016/j.pbi.2022.102221_bib29) 2021; 10 Maeda (10.1016/j.pbi.2022.102221_bib63) 2010; 22 Klempien (10.1016/j.pbi.2022.102221_bib61) 2012; 24 Cipollini (10.1016/j.pbi.2022.102221_bib6) 2000; 73 Knudsen (10.1016/j.pbi.2022.102221_bib35) 2006; 72 Qian (10.1016/j.pbi.2022.102221_sref65) 2019; 10 Clavijo Mccormick (10.1016/j.pbi.2022.102221_bib34) 2014; 37 Irmisch (10.1016/j.pbi.2022.102221_sref36) 2013; 25 Baldwin (10.1016/j.pbi.2022.102221_bib25) 1998; 123 Chen (10.1016/j.pbi.2022.102221_bib4) 1966; vol. 3 Kaminaga (10.1016/j.pbi.2022.102221_bib11) 2006; 281 Pérez (10.1016/j.pbi.2022.102221_bib23) 2002; 50 Muhlemann (10.1016/j.pbi.2022.102221_bib58) 2014; 204 Dixon (10.1016/j.pbi.2022.102221_bib50) 2002; 3 Torrens-Spence (10.1016/j.pbi.2022.102221_sref54) 2020; 117 Di (10.1016/j.pbi.2022.102221_bib46) 2003; 51 Oliva (10.1016/j.pbi.2022.102221_bib67) 2015; 13 Rose (10.1016/j.pbi.2022.102221_bib2) 1957; 27 Castillo (10.1016/j.pbi.2022.102221_bib40) 2017; 95 Dudareva (10.1016/j.pbi.2022.102221_bib39) 2000; 12 Yip (10.1016/j.pbi.2022.102221_bib74) 2020; 587 Lindsay (10.1016/j.pbi.2022.102221_bib45) 2007 Maoz (10.1016/j.pbi.2022.102221_bib21) 2018; 274 Gang (10.1016/j.pbi.2022.102221_bib57) 2002; 130 Molla (10.1016/j.pbi.2022.102221_bib71) 2021; 7 Huang (10.1016/j.pbi.2022.102221_bib47) 2014; 12 Sakai (10.1016/j.pbi.2022.102221_bib55) 2007; 71 Qualley (10.1016/j.pbi.2022.102221_bib60) 2012; 109 Koeduka (10.1016/j.pbi.2022.102221_bib56) 2006; 103 Gonda (10.1016/j.pbi.2022.102221_sref10) 2010; 61 Vogt (10.1016/j.pbi.2022.102221_bib49) 2010; 3 Tieman (10.1016/j.pbi.2022.102221_bib24) 2017; 355 Tikunov (10.1016/j.pbi.2022.102221_sref33) 2020; 103 Matich (10.1016/j.pbi.2022.102221_bib18) 2007; 55 Noichinda (10.1016/j.pbi.2022.102221_bib42) 1999; 5 Miyazaki (10.1016/j.pbi.2022.102221_bib38) 1987; 84 Tressl (10.1016/j.pbi.2022.102221_bib16) 1973; 21 Sugimoto (10.1016/j.pbi.2022.102221_sref30) 2021; 118 Irmisch (10.1016/j.pbi.2022.102221_bib37) 2014; 80 Verdonk (10.1016/j.pbi.2022.102221_bib68) 2005; 17 Gonda (10.1016/j.pbi.2022.102221_bib8) 2018; 148 Sugimoto (10.1016/j.pbi.2022.102221_bib32) 2015; 63 Ehrlich (10.1016/j.pbi.2022.102221_bib1) 1907; 40 Bizzio (10.1016/j.pbi.2022.102221_bib26) 2022; 12 Galpaz (10.1016/j.pbi.2022.102221_bib41) 2018; 94 Kumar (10.1016/j.pbi.2022.102221_bib19) 2021; 181 Sugimoto (10.1016/j.pbi.2022.102221_bib31) 2011; 136 Boatright (10.1016/j.pbi.2022.102221_bib17) 2004; 135 Gonda (10.1016/j.pbi.2022.102221_bib9) 2013; 74 Tikunov (10.1016/j.pbi.2022.102221_bib52) 2013; 25 Kochevenko (10.1016/j.pbi.2022.102221_sref14) 2012; 5 Klahre (10.1016/j.pbi.2022.102221_bib51) 2011; 21 Oliva (10.1016/j.pbi.2022.102221_bib66) 2017; 8 Kumar (10.1016/j.pbi.2022.102221_bib48) 2017; 65 Wang (10.1016/j.pbi.2022.102221_bib27) 2019; 98 Tieman (10.1016/j.pbi.2022.102221_bib13) 2006; 103 |
References_xml | – volume: 148 start-page: 122 year: 2018 end-page: 131 ident: bib8 article-title: Differential metabolism of L-phenylalanine in the formation of aromatic volatiles in melon ( publication-title: Phytochemistry – volume: 7 start-page: 1166 year: 2021 end-page: 1187 ident: bib71 article-title: Precise plant genome editing using base editors and prime editors publication-title: Nature Plants – volume: 65 start-page: 2737 year: 2017 end-page: 2742 ident: bib48 article-title: Concurrent overexpression of publication-title: J Agric Food Chem – volume: 12 start-page: 883 year: 2014 end-page: 893 ident: bib47 article-title: The catabolic enzyme methionine gamma-lyase limits methionine accumulation in potato tubers publication-title: Plant Biotechnology Journal – volume: 10 start-page: 807 year: 2021 ident: bib29 article-title: Free amino acids profile and expression analysis of core genes involved in branched-chain amino acids metabolism during fruit development of Longan ( publication-title: Biology – volume: 37 start-page: 1836 year: 2014 end-page: 1844 ident: bib34 article-title: Little peaks with big effects: establishing the role of minor plant volatiles in plant–insect interactions publication-title: Plant Cell Environ – volume: 596 start-page: 583 year: 2021 end-page: 589 ident: bib73 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature – volume: 50 start-page: 4037 year: 2002 end-page: 4042 ident: bib23 article-title: Biosynthesis of strawberry aroma compounds through amino acid metabolism publication-title: J Agric Food Chem – volume: 71 start-page: 70090 year: 2007 ident: bib55 article-title: Production of 2-phenylethanol in roses as the dominant floral scent compound from L-phenylalanine by two key enzymes, a PLP-dependent decarboxylase and a phenylacetaldehyde reductase publication-title: Biosc Biotech Biochem – volume: 63 start-page: 2106 year: 2015 end-page: 2116 ident: bib32 article-title: Volatile profiles of members of the USDA geneva malus core collection: utility in evaluation of a hypothesized biosynthetic pathway for esters derived from 2-methylbutanoate and 2-methylbutan-1-ol publication-title: J Agric Food Chem – volume: 181 start-page: 111657 year: 2021 ident: bib19 article-title: Phenylalanine treatment generates scent in flowers by increased production of phenylpropanoid-benzenoid volatiles publication-title: Postharvest Biol Technol – volume: 22 start-page: 832 year: 2010 end-page: 849 ident: bib63 article-title: RNAi suppression of publication-title: Plant Cell – volume: 587 start-page: 157 year: 2020 end-page: 161 ident: bib74 article-title: Atomic-resolution protein structure determination by cryo-EM publication-title: Nature – volume: 103 start-page: 15687 year: 2006 end-page: 15692 ident: bib15 article-title: Methionine catabolism in publication-title: Proc Natl Acad Sci USA – volume: 55 start-page: 2727 year: 2007 end-page: 2735 ident: bib18 article-title: Pathway analysis of branched-chain ester biosynthesis in apple using deuterium labeling and enantioselective gas chromatography−mass spectrometry publication-title: J Agric Food Chem – volume: 40 start-page: 1027 year: 1907 end-page: 1047 ident: bib1 article-title: Über die bedingungen der fuselölbildung und über ihren zusammenhang mit dem eiweissaufbau der hefe publication-title: Ber Dtsch Chem Ges – volume: 3 start-page: 2 year: 2010 end-page: 20 ident: bib49 article-title: Phenylpropanoid biosynthesis publication-title: Mol Plant – volume: 311 start-page: 815 year: 2006 end-page: 819 ident: bib5 article-title: Plant volatile compounds: sensory cues for health and nutritional value? publication-title: Science – volume: 123 start-page: 906 year: 1998 end-page: 915 ident: bib25 article-title: Relationship between sensory and instrumental analysis for tomato flavor publication-title: J Am Soc Hortic Sci – volume: vol. 214 year: 1982 ident: bib7 publication-title: Principles of dispersal in higher plants – volume: 9 start-page: 8852 year: 2019 ident: bib59 article-title: Down regulation of publication-title: Sci Rep – volume: 74 start-page: 458 year: 2013 end-page: 472 ident: bib9 article-title: Catabolism of L-methionine in the formation of sulfur and other volatiles in melon ( publication-title: Plant J – volume: 72 start-page: 1 year: 2006 end-page: 120 ident: bib35 article-title: Diversity and distribution of floral scent publication-title: Bot Rev – volume: 103 start-page: 8287 year: 2006 end-page: 8292 ident: bib13 article-title: Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde publication-title: Proc Natl Acad Sci U S A – volume: 21 start-page: 730 year: 2011 end-page: 739 ident: bib51 article-title: Pollinator choice in petunia depends on two major genetic loci for floral scent production publication-title: Curr Biol – volume: 98 start-page: 112 year: 2019 end-page: 125 ident: bib27 article-title: PDC1, a pyruvate/α-ketoacid decarboxylase, is involved in acetaldehyde, propanal and pentanal biosynthesis in melon ( publication-title: Plant J – volume: 72 start-page: 3704 year: 2021 end-page: 3722 ident: bib70 article-title: Dynamic histone acetylation in floral volatile synthesis and emission in petunia flowers publication-title: J Exp Bot – volume: 130 start-page: 1536 year: 2002 end-page: 1544 ident: bib57 article-title: Differential production of publication-title: Plant Physiol – volume: 103 start-page: 1189 year: 2020 end-page: 1204 ident: bib33 article-title: The genetic and functional analysis of flavor in commercial tomato: the FLORAL4 gene underlies a QTL for floral aroma volatiles in tomato fruit publication-title: Plant J – volume: 61 start-page: 1111 year: 2010 end-page: 1123 ident: bib10 article-title: Branched-chain and aromatic amino acid catabolism into aroma volatiles in publication-title: J Exp Bot – volume: 12 start-page: 814138 year: 2022 ident: bib26 article-title: Branched-chain volatiles in fruit: a molecular perspective publication-title: Front Plant Sci – volume: 117 start-page: 10806 year: 2020 end-page: 10817 ident: bib54 article-title: Structural basis for divergent and convergent evolution of catalytic machineries in plant aromatic amino acid decarboxylase proteins publication-title: Proc Natl Acad Sci USA – volume: 25 start-page: 4737 year: 2013 end-page: 4754 ident: bib36 article-title: Two herbivore-induced cytochrome P450 enzymes CYP79D6 and CYP79D7 catalyze the formation of volatile aldoximes involved in poplar defense publication-title: Plant Cell – volume: 204 start-page: 661 year: 2014 end-page: 670 ident: bib58 article-title: The monolignol pathway contributes to the biosynthesis of volatile phenylpropenes in flowers publication-title: New Phytol – volume: 5 start-page: 366 year: 2012 end-page: 375 ident: bib14 article-title: Catabolism of branched chain amino acids supports respiration but not volatile synthesis in tomato fruits publication-title: Mol Plant – volume: 10 start-page: 15 year: 2019 ident: bib65 article-title: Completion of the cytosolic post-chorismate phenylalanine biosynthetic pathway in plants publication-title: Nat Commun – volume: 3 start-page: 371 year: 2002 end-page: 390 ident: bib50 article-title: The phenylpropanoid pathway and plant defence—a genomics perspective publication-title: Mol Plant Pathol – volume: 94 start-page: 169 year: 2018 end-page: 191 ident: bib41 article-title: Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping publication-title: Plant J – volume: 23 start-page: 2738 year: 2011 end-page: 2753 ident: bib69 article-title: Identification of genes in the phenylalanine metabolic pathway by ectopic expression of a MYB transcription factor in tomato fruit publication-title: Plant Cell – volume: 25 start-page: 3067 year: 2013 end-page: 3078 ident: bib52 article-title: Non-smoky glycosyltransferase1 prevents the release of smoky aroma from tomato fruit publication-title: Plant Cell – volume: 281 start-page: 23357 year: 2006 end-page: 23366 ident: bib11 article-title: Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation publication-title: J Biol Chem – volume: 13 start-page: 125 year: 2015 end-page: 136 ident: bib67 article-title: Enhanced formation of aromatic amino acids increases fragrance without affecting flower longevity or pigmentation in publication-title: Plant Biotechnology Journal – volume: 21 start-page: 661 year: 2020 end-page: 677 ident: bib72 article-title: Applications of CRISPR–Cas in agriculture and plant biotechnology publication-title: Nat Rev Mol Cell Biol – volume: 21 start-page: 560 year: 1973 end-page: 565 ident: bib16 article-title: Biogenesis of banana volatiles publication-title: J Agric Food Chem – volume: 109 start-page: 16383 year: 2012 ident: bib60 article-title: Completion of the core β-oxidative pathway of benzoic acid biosynthesis in plants publication-title: Proc Natl Acad Sci Unit States Am – volume: 26 start-page: 178 year: 1993 end-page: 180 ident: bib22 article-title: Conversion of L-isoleucine into 2-methylbut-2-enyl esters in apples publication-title: LWT - Food Sci Technol (Lebensmittel-Wissenschaft -Technol) – volume: 135 start-page: 1993 year: 2004 end-page: 2011 ident: bib17 article-title: Understanding publication-title: Plant Physiol – volume: 51 start-page: 5695 year: 2003 end-page: 5702 ident: bib46 article-title: Enhancement of the primary flavor compound methional in potato by increasing the level of soluble methionine publication-title: J Agric Food Chem – volume: 355 start-page: 391 year: 2017 end-page: 394 ident: bib24 article-title: A chemical genetic roadmap to improved tomato flavor publication-title: Science – volume: 24 start-page: 2015 year: 2012 end-page: 2030 ident: bib61 article-title: Contribution of CoA ligases to benzenoid biosynthesis in petunia flowers publication-title: Plant Cell – volume: 118 year: 2021 ident: bib30 article-title: Citramalate synthase yields a biosynthetic pathway for isoleucine and straight- and branched-chain ester formation in ripening apple fruit publication-title: Proc Natl Acad Sci USA – volume: 136 start-page: 429 year: 2011 end-page: 440 ident: bib31 article-title: Changes in free amino acid content in ‘Jonagold’ apple fruit as related to branched-chain ester production, ripening, and senescence publication-title: J Am Soc Hortic Sci – volume: 8 start-page: 769 year: 2017 ident: bib66 article-title: Phenylpyruvate contributes to the synthesis of fragrant benzenoid–phenylpropanoids in publication-title: Front Plant Sci – volume: 84 start-page: 277 year: 1987 end-page: 281 ident: bib38 article-title: Metabolism of 5-methylthioribose to methionine publication-title: Plant Physiol – volume: 17 start-page: 1612 year: 2005 end-page: 1624 ident: bib68 article-title: ODORANT1 regulates fragrance biosynthesis in petunia flowers publication-title: Plant Cell – volume: 44 start-page: 3276 year: 1996 end-page: 3285 ident: bib12 article-title: Biosynthesis of 2-methylbutyl, 2-methyl-2-butenyl, and 2-methylbutanoate esters in Red Delicious and Granny Smith apples using deuterium-labeled substrates publication-title: J Agric Food Chem – year: 2021 ident: bib28 article-title: RNA-seq reveals the effect of ethylene on the volatile organic components (VOCs) of Cavendish banana at different post-harvesting stages publication-title: J Plant Growth Regul – start-page: 639 year: 2007 end-page: 688 ident: bib45 article-title: Flavors publication-title: Fennema's food chemistry – year: 2014 ident: bib44 – volume: 95 start-page: 497 year: 2017 end-page: 505 ident: bib40 article-title: Effects of transgenic expression of publication-title: Plant Mol Biol – volume: 26 start-page: 445 year: 2018 end-page: 468 ident: bib43 article-title: Volatile sulfur compounds in tropical fruits publication-title: J Food Drug Anal – volume: 274 start-page: 223 year: 2018 end-page: 230 ident: bib21 article-title: Concealed ester formation and amino acid metabolism to volatile compounds in table grape ( publication-title: Plant Sci – volume: 12 start-page: 949 year: 2000 end-page: 961 ident: bib39 article-title: Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers publication-title: Plant Cell – volume: 27 start-page: 631 year: 1957 end-page: 647 ident: bib2 article-title: The amino acid requirement of adult men publication-title: Nutr Abstr Rev – volume: 103 start-page: 10128 year: 2006 end-page: 10133 ident: bib56 article-title: Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester publication-title: Proc Natl Acad Sci USA – volume: 7 start-page: 19 year: 2011 end-page: 21 ident: bib62 article-title: Prephenate aminotransferase directs plant phenylalanine biosynthesis via arogenate publication-title: Nat Chem Biol – volume: 4 start-page: 2833 year: 2013 ident: bib64 article-title: An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase publication-title: Nat Commun – volume: 13 start-page: 1 year: 2022 end-page: 15 ident: bib75 article-title: A peroxisomal heterodimeric enzyme is involved in benzaldehyde synthesis in plants. publication-title: Nature communications – volume: vol. 3 start-page: 53 year: 1966 end-page: 132 ident: bib4 article-title: Amino acid and protein metabolism in insect development publication-title: Advances in insect physiology – volume: 80 start-page: 1095 year: 2014 end-page: 1107 ident: bib37 article-title: Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar publication-title: Plant J – volume: 8 start-page: 83 year: 2015 end-page: 97 ident: bib53 article-title: A familiar ring to it: biosynthesis of plant benzoic acids publication-title: Mol Plant – volume: 208 start-page: 2885 year: 2005 end-page: 2894 ident: bib3 article-title: A concept of dietary dipeptides: a step to resolve the problem of amino acid availability in the early life of vertebrates publication-title: J Exp Biol – volume: 73 start-page: Y440 year: 2000 ident: bib6 article-title: Secondary metabolites of vertebrate-dispersed fruits: evidence for adaptive functions publication-title: Rev Chil Hist Nat – volume: 64 start-page: 4441 year: 2013 end-page: 4452 ident: bib20 article-title: Tomato fruits expressing a bacterial feedback-insensitive 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway possess enhanced levels of multiple specialized metabolites and upgraded aroma publication-title: J Exp Bot – volume: 5 start-page: 99 year: 1999 end-page: 103 ident: bib42 article-title: Thioester production and thioalcohol specificity of alcohol acetyltransferase in strawberry fruit publication-title: Food Sci Technol Res – volume: 73 start-page: Y440 year: 2000 ident: 10.1016/j.pbi.2022.102221_bib6 article-title: Secondary metabolites of vertebrate-dispersed fruits: evidence for adaptive functions publication-title: Rev Chil Hist Nat doi: 10.4067/S0716-078X2000000300006 – volume: 596 start-page: 583 year: 2021 ident: 10.1016/j.pbi.2022.102221_bib73 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature doi: 10.1038/s41586-021-03819-2 – volume: 27 start-page: 631 year: 1957 ident: 10.1016/j.pbi.2022.102221_bib2 article-title: The amino acid requirement of adult men publication-title: Nutr Abstr Rev – volume: 94 start-page: 169 year: 2018 ident: 10.1016/j.pbi.2022.102221_bib41 article-title: Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping publication-title: Plant J doi: 10.1111/tpj.13838 – volume: 12 start-page: 883 year: 2014 ident: 10.1016/j.pbi.2022.102221_bib47 article-title: The catabolic enzyme methionine gamma-lyase limits methionine accumulation in potato tubers publication-title: Plant Biotechnology Journal doi: 10.1111/pbi.12191 – volume: 44 start-page: 3276 year: 1996 ident: 10.1016/j.pbi.2022.102221_bib12 article-title: Biosynthesis of 2-methylbutyl, 2-methyl-2-butenyl, and 2-methylbutanoate esters in Red Delicious and Granny Smith apples using deuterium-labeled substrates publication-title: J Agric Food Chem doi: 10.1021/jf9508209 – volume: 103 start-page: 8287 year: 2006 ident: 10.1016/j.pbi.2022.102221_bib13 article-title: Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0602469103 – volume: 74 start-page: 458 year: 2013 ident: 10.1016/j.pbi.2022.102221_bib9 article-title: Catabolism of L-methionine in the formation of sulfur and other volatiles in melon (Cucumis melo L.) fruit publication-title: Plant J doi: 10.1111/tpj.12149 – volume: 17 start-page: 1612 year: 2005 ident: 10.1016/j.pbi.2022.102221_bib68 article-title: ODORANT1 regulates fragrance biosynthesis in petunia flowers publication-title: Plant Cell doi: 10.1105/tpc.104.028837 – volume: 21 start-page: 560 year: 1973 ident: 10.1016/j.pbi.2022.102221_bib16 article-title: Biogenesis of banana volatiles publication-title: J Agric Food Chem doi: 10.1021/jf60188a031 – volume: 12 start-page: 814138 year: 2022 ident: 10.1016/j.pbi.2022.102221_bib26 article-title: Branched-chain volatiles in fruit: a molecular perspective publication-title: Front Plant Sci doi: 10.3389/fpls.2021.814138 – volume: 3 start-page: 2 year: 2010 ident: 10.1016/j.pbi.2022.102221_bib49 article-title: Phenylpropanoid biosynthesis publication-title: Mol Plant doi: 10.1093/mp/ssp106 – volume: 103 start-page: 1189 year: 2020 ident: 10.1016/j.pbi.2022.102221_sref33 article-title: The genetic and functional analysis of flavor in commercial tomato: the FLORAL4 gene underlies a QTL for floral aroma volatiles in tomato fruit publication-title: Plant J doi: 10.1111/tpj.14795 – volume: 26 start-page: 445 year: 2018 ident: 10.1016/j.pbi.2022.102221_bib43 article-title: Volatile sulfur compounds in tropical fruits publication-title: J Food Drug Anal doi: 10.1016/j.jfda.2018.01.014 – volume: 8 start-page: 769 year: 2017 ident: 10.1016/j.pbi.2022.102221_bib66 article-title: Phenylpyruvate contributes to the synthesis of fragrant benzenoid–phenylpropanoids in Petunia × hybrida flowers publication-title: Front Plant Sci doi: 10.3389/fpls.2017.00769 – volume: 72 start-page: 3704 year: 2021 ident: 10.1016/j.pbi.2022.102221_bib70 article-title: Dynamic histone acetylation in floral volatile synthesis and emission in petunia flowers publication-title: J Exp Bot doi: 10.1093/jxb/erab072 – volume: 9 start-page: 8852 year: 2019 ident: 10.1016/j.pbi.2022.102221_bib59 article-title: Down regulation of p-coumarate 3-hydroxylase in petunia uniquely alters the profile of emitted floral volatiles publication-title: Sci Rep doi: 10.1038/s41598-019-45183-2 – volume: 135 start-page: 1993 year: 2004 ident: 10.1016/j.pbi.2022.102221_bib17 article-title: Understanding in vivo benzenoid metabolism in petunia petal tissue publication-title: Plant Physiol doi: 10.1104/pp.104.045468 – volume: 13 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.pbi.2022.102221_bib75 article-title: A peroxisomal heterodimeric enzyme is involved in benzaldehyde synthesis in plants. publication-title: Nature communications – volume: 7 start-page: 19 year: 2011 ident: 10.1016/j.pbi.2022.102221_bib62 article-title: Prephenate aminotransferase directs plant phenylalanine biosynthesis via arogenate publication-title: Nat Chem Biol doi: 10.1038/nchembio.485 – volume: 98 start-page: 112 year: 2019 ident: 10.1016/j.pbi.2022.102221_bib27 article-title: PDC1, a pyruvate/α-ketoacid decarboxylase, is involved in acetaldehyde, propanal and pentanal biosynthesis in melon (Cucumis melo L.) fruit publication-title: Plant J doi: 10.1111/tpj.14204 – volume: 84 start-page: 277 year: 1987 ident: 10.1016/j.pbi.2022.102221_bib38 article-title: Metabolism of 5-methylthioribose to methionine publication-title: Plant Physiol doi: 10.1104/pp.84.2.277 – volume: 40 start-page: 1027 year: 1907 ident: 10.1016/j.pbi.2022.102221_bib1 article-title: Über die bedingungen der fuselölbildung und über ihren zusammenhang mit dem eiweissaufbau der hefe publication-title: Ber Dtsch Chem Ges doi: 10.1002/cber.190704001156 – volume: 37 start-page: 1836 year: 2014 ident: 10.1016/j.pbi.2022.102221_bib34 article-title: Little peaks with big effects: establishing the role of minor plant volatiles in plant–insect interactions publication-title: Plant Cell Environ doi: 10.1111/pce.12357 – volume: 4 start-page: 2833 year: 2013 ident: 10.1016/j.pbi.2022.102221_bib64 article-title: An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase publication-title: Nat Commun doi: 10.1038/ncomms3833 – volume: 103 start-page: 10128 year: 2006 ident: 10.1016/j.pbi.2022.102221_bib56 article-title: Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0603732103 – volume: 274 start-page: 223 year: 2018 ident: 10.1016/j.pbi.2022.102221_bib21 article-title: Concealed ester formation and amino acid metabolism to volatile compounds in table grape (Vitis vinifera L.) berries publication-title: Plant Sci doi: 10.1016/j.plantsci.2018.05.020 – year: 2014 ident: 10.1016/j.pbi.2022.102221_bib44 article-title: Conversion of Essential Amino Acids Into Aroma Volatiles in Developing Melon Fruit – volume: 123 start-page: 906 year: 1998 ident: 10.1016/j.pbi.2022.102221_bib25 article-title: Relationship between sensory and instrumental analysis for tomato flavor publication-title: J Am Soc Hortic Sci – volume: 103 start-page: 15687 year: 2006 ident: 10.1016/j.pbi.2022.102221_bib15 article-title: Methionine catabolism in Arabidopsis cells is initiated by a γ-cleavage process and leads to S-methylcysteine and isoleucine syntheses publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0606195103 – volume: 72 start-page: 1 year: 2006 ident: 10.1016/j.pbi.2022.102221_bib35 article-title: Diversity and distribution of floral scent publication-title: Bot Rev doi: 10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2 – volume: 50 start-page: 4037 year: 2002 ident: 10.1016/j.pbi.2022.102221_bib23 article-title: Biosynthesis of strawberry aroma compounds through amino acid metabolism publication-title: J Agric Food Chem doi: 10.1021/jf011465r – volume: 109 start-page: 16383 year: 2012 ident: 10.1016/j.pbi.2022.102221_bib60 article-title: Completion of the core β-oxidative pathway of benzoic acid biosynthesis in plants publication-title: Proc Natl Acad Sci Unit States Am doi: 10.1073/pnas.1211001109 – volume: 10 start-page: 15 year: 2019 ident: 10.1016/j.pbi.2022.102221_sref65 article-title: Completion of the cytosolic post-chorismate phenylalanine biosynthetic pathway in plants publication-title: Nat Commun doi: 10.1038/s41467-018-07969-2 – volume: 208 start-page: 2885 year: 2005 ident: 10.1016/j.pbi.2022.102221_bib3 article-title: A concept of dietary dipeptides: a step to resolve the problem of amino acid availability in the early life of vertebrates publication-title: J Exp Biol doi: 10.1242/jeb.01689 – volume: vol. 3 start-page: 53 year: 1966 ident: 10.1016/j.pbi.2022.102221_bib4 article-title: Amino acid and protein metabolism in insect development – volume: 23 start-page: 2738 year: 2011 ident: 10.1016/j.pbi.2022.102221_bib69 article-title: Identification of genes in the phenylalanine metabolic pathway by ectopic expression of a MYB transcription factor in tomato fruit publication-title: Plant Cell doi: 10.1105/tpc.111.086975 – volume: 118 year: 2021 ident: 10.1016/j.pbi.2022.102221_sref30 article-title: Citramalate synthase yields a biosynthetic pathway for isoleucine and straight- and branched-chain ester formation in ripening apple fruit publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2009988118 – volume: vol. 214 year: 1982 ident: 10.1016/j.pbi.2022.102221_bib7 – volume: 355 start-page: 391 year: 2017 ident: 10.1016/j.pbi.2022.102221_bib24 article-title: A chemical genetic roadmap to improved tomato flavor publication-title: Science doi: 10.1126/science.aal1556 – volume: 281 start-page: 23357 year: 2006 ident: 10.1016/j.pbi.2022.102221_bib11 article-title: Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation publication-title: J Biol Chem doi: 10.1074/jbc.M602708200 – start-page: 639 year: 2007 ident: 10.1016/j.pbi.2022.102221_bib45 article-title: Flavors – volume: 80 start-page: 1095 year: 2014 ident: 10.1016/j.pbi.2022.102221_bib37 article-title: Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar publication-title: Plant J doi: 10.1111/tpj.12711 – volume: 3 start-page: 371 year: 2002 ident: 10.1016/j.pbi.2022.102221_bib50 article-title: The phenylpropanoid pathway and plant defence—a genomics perspective publication-title: Mol Plant Pathol doi: 10.1046/j.1364-3703.2002.00131.x – volume: 63 start-page: 2106 year: 2015 ident: 10.1016/j.pbi.2022.102221_bib32 article-title: Volatile profiles of members of the USDA geneva malus core collection: utility in evaluation of a hypothesized biosynthetic pathway for esters derived from 2-methylbutanoate and 2-methylbutan-1-ol publication-title: J Agric Food Chem doi: 10.1021/jf505523m – volume: 117 start-page: 10806 year: 2020 ident: 10.1016/j.pbi.2022.102221_sref54 article-title: Structural basis for divergent and convergent evolution of catalytic machineries in plant aromatic amino acid decarboxylase proteins publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1920097117 – volume: 5 start-page: 366 year: 2012 ident: 10.1016/j.pbi.2022.102221_sref14 article-title: Catabolism of branched chain amino acids supports respiration but not volatile synthesis in tomato fruits publication-title: Mol Plant doi: 10.1093/mp/ssr108 – volume: 136 start-page: 429 year: 2011 ident: 10.1016/j.pbi.2022.102221_bib31 article-title: Changes in free amino acid content in ‘Jonagold’ apple fruit as related to branched-chain ester production, ripening, and senescence publication-title: J Am Soc Hortic Sci – volume: 51 start-page: 5695 year: 2003 ident: 10.1016/j.pbi.2022.102221_bib46 article-title: Enhancement of the primary flavor compound methional in potato by increasing the level of soluble methionine publication-title: J Agric Food Chem doi: 10.1021/jf030148c – volume: 64 start-page: 4441 year: 2013 ident: 10.1016/j.pbi.2022.102221_sref20 article-title: Tomato fruits expressing a bacterial feedback-insensitive 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway possess enhanced levels of multiple specialized metabolites and upgraded aroma publication-title: J Exp Bot doi: 10.1093/jxb/ert250 – volume: 65 start-page: 2737 year: 2017 ident: 10.1016/j.pbi.2022.102221_bib48 article-title: Concurrent overexpression of Arabidopsis thaliana cystathionine γ-synthase and silencing of endogenous methionine γ-lyase enhance tuber methionine content in Solanum tuberosum publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.7b00272 – volume: 95 start-page: 497 year: 2017 ident: 10.1016/j.pbi.2022.102221_bib40 article-title: Effects of transgenic expression of Brevibacterium linens methionine gamma lyase (MGL) on accumulation of Tylenchulus semipenetrans and key aminoacid contents in Carrizo citrange publication-title: Plant Mol Biol doi: 10.1007/s11103-017-0666-9 – volume: 71 start-page: 70090 year: 2007 ident: 10.1016/j.pbi.2022.102221_bib55 article-title: Production of 2-phenylethanol in roses as the dominant floral scent compound from L-phenylalanine by two key enzymes, a PLP-dependent decarboxylase and a phenylacetaldehyde reductase publication-title: Biosc Biotech Biochem doi: 10.1271/bbb.70090 – volume: 25 start-page: 3067 year: 2013 ident: 10.1016/j.pbi.2022.102221_bib52 article-title: Non-smoky glycosyltransferase1 prevents the release of smoky aroma from tomato fruit publication-title: Plant Cell doi: 10.1105/tpc.113.114231 – volume: 26 start-page: 178 year: 1993 ident: 10.1016/j.pbi.2022.102221_bib22 article-title: Conversion of L-isoleucine into 2-methylbut-2-enyl esters in apples publication-title: LWT - Food Sci Technol (Lebensmittel-Wissenschaft -Technol) doi: 10.1006/fstl.1993.1036 – volume: 148 start-page: 122 year: 2018 ident: 10.1016/j.pbi.2022.102221_bib8 article-title: Differential metabolism of L-phenylalanine in the formation of aromatic volatiles in melon (Cucumis melo L.) fruit publication-title: Phytochemistry doi: 10.1016/j.phytochem.2017.12.018 – volume: 130 start-page: 1536 year: 2002 ident: 10.1016/j.pbi.2022.102221_bib57 article-title: Differential production of meta hydroxylated phenylpropanoids in sweet basil peltate glandular trichomes and leaves is controlled by the activities of specific acyltransferases and hydroxylases publication-title: Plant Physiol doi: 10.1104/pp.007146 – volume: 12 start-page: 949 year: 2000 ident: 10.1016/j.pbi.2022.102221_bib39 article-title: Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers publication-title: Plant Cell doi: 10.1105/tpc.12.6.949 – volume: 21 start-page: 730 year: 2011 ident: 10.1016/j.pbi.2022.102221_bib51 article-title: Pollinator choice in petunia depends on two major genetic loci for floral scent production publication-title: Curr Biol doi: 10.1016/j.cub.2011.03.059 – volume: 10 start-page: 807 year: 2021 ident: 10.1016/j.pbi.2022.102221_bib29 article-title: Free amino acids profile and expression analysis of core genes involved in branched-chain amino acids metabolism during fruit development of Longan (Dimocarpus longan Lour.) cultivars with different aroma types publication-title: Biology doi: 10.3390/biology10080807 – volume: 22 start-page: 832 year: 2010 ident: 10.1016/j.pbi.2022.102221_bib63 article-title: RNAi suppression of arogenate dehydratase1 reveals that phenylalanine is synthesized predominantly via the arogenate pathway in petunia petals publication-title: Plant Cell doi: 10.1105/tpc.109.073247 – volume: 55 start-page: 2727 year: 2007 ident: 10.1016/j.pbi.2022.102221_bib18 article-title: Pathway analysis of branched-chain ester biosynthesis in apple using deuterium labeling and enantioselective gas chromatography−mass spectrometry publication-title: J Agric Food Chem doi: 10.1021/jf063018n – volume: 61 start-page: 1111 year: 2010 ident: 10.1016/j.pbi.2022.102221_sref10 article-title: Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit publication-title: J Exp Bot doi: 10.1093/jxb/erp390 – year: 2021 ident: 10.1016/j.pbi.2022.102221_bib28 article-title: RNA-seq reveals the effect of ethylene on the volatile organic components (VOCs) of Cavendish banana at different post-harvesting stages publication-title: J Plant Growth Regul – volume: 25 start-page: 4737 year: 2013 ident: 10.1016/j.pbi.2022.102221_sref36 article-title: Two herbivore-induced cytochrome P450 enzymes CYP79D6 and CYP79D7 catalyze the formation of volatile aldoximes involved in poplar defense publication-title: Plant Cell doi: 10.1105/tpc.113.118265 – volume: 21 start-page: 661 year: 2020 ident: 10.1016/j.pbi.2022.102221_bib72 article-title: Applications of CRISPR–Cas in agriculture and plant biotechnology publication-title: Nat Rev Mol Cell Biol doi: 10.1038/s41580-020-00288-9 – volume: 24 start-page: 2015 year: 2012 ident: 10.1016/j.pbi.2022.102221_bib61 article-title: Contribution of CoA ligases to benzenoid biosynthesis in petunia flowers publication-title: Plant Cell doi: 10.1105/tpc.112.097519 – volume: 181 start-page: 111657 year: 2021 ident: 10.1016/j.pbi.2022.102221_bib19 article-title: Phenylalanine treatment generates scent in flowers by increased production of phenylpropanoid-benzenoid volatiles publication-title: Postharvest Biol Technol doi: 10.1016/j.postharvbio.2021.111657 – volume: 7 start-page: 1166 year: 2021 ident: 10.1016/j.pbi.2022.102221_bib71 article-title: Precise plant genome editing using base editors and prime editors publication-title: Nature Plants doi: 10.1038/s41477-021-00991-1 – volume: 13 start-page: 125 year: 2015 ident: 10.1016/j.pbi.2022.102221_bib67 article-title: Enhanced formation of aromatic amino acids increases fragrance without affecting flower longevity or pigmentation in Petunia × hybrida publication-title: Plant Biotechnology Journal doi: 10.1111/pbi.12253 – volume: 5 start-page: 99 year: 1999 ident: 10.1016/j.pbi.2022.102221_bib42 article-title: Thioester production and thioalcohol specificity of alcohol acetyltransferase in strawberry fruit publication-title: Food Sci Technol Res doi: 10.3136/fstr.5.99 – volume: 204 start-page: 661 year: 2014 ident: 10.1016/j.pbi.2022.102221_bib58 article-title: The monolignol pathway contributes to the biosynthesis of volatile phenylpropenes in flowers publication-title: New Phytol doi: 10.1111/nph.12913 – volume: 8 start-page: 83 year: 2015 ident: 10.1016/j.pbi.2022.102221_bib53 article-title: A familiar ring to it: biosynthesis of plant benzoic acids publication-title: Mol Plant doi: 10.1016/j.molp.2014.12.001 – volume: 587 start-page: 157 year: 2020 ident: 10.1016/j.pbi.2022.102221_bib74 article-title: Atomic-resolution protein structure determination by cryo-EM publication-title: Nature doi: 10.1038/s41586-020-2833-4 – volume: 311 start-page: 815 year: 2006 ident: 10.1016/j.pbi.2022.102221_bib5 article-title: Plant volatile compounds: sensory cues for health and nutritional value? publication-title: Science doi: 10.1126/science.1112614 |
SSID | ssj0005273 |
Score | 2.6326406 |
SecondaryResourceType | review_article |
Snippet | Aroma volatiles are essential for plant ecological fitness and reproduction. Plants produce and use volatiles to attract pollinators and seed dispersers, repel... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102221 |
SubjectTerms | agricultural products Aroma volatiles Aromatic amino acids (AAA) aromatic compounds biosynthesis biotechnology Branched-chain amino acids (BCAA) Flowers fragrance Fruit flavor plant biology reproduction |
Title | Amino acids metabolism as a source for aroma volatiles biosynthesis |
URI | https://dx.doi.org/10.1016/j.pbi.2022.102221 https://www.ncbi.nlm.nih.gov/pubmed/35533493 https://www.proquest.com/docview/2661051292 https://www.proquest.com/docview/2661954863 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-iPvgifju_iOCTUNcmaZY-zqHMT0Qd-BaSJoXK1o51e9iLf7uXfog-bA9CobTcwXGX3P2Su1wQuiA8dI21rCcC7nsssdRTopN4JtQiVlxxHrt9yKdn3h-w-4_wYwX1mrMwrqyy9v2VTy-9df2nXWuzPU7T9ltAeRRCfCGk7GLieoIy1nGj_Orrd5lHmWV2xJ6jbjKbZY3XWKewRCTkqlz3BIti0yLsWcag2y20WYNH3K3k20YrNttB69c5ALz5Lup1R2mWYxWnpsAjOwXzDtNihFWBFa426TFAVKwm-UhhcEtglKEtsE7zYp4BECzSYg8Nbm_ee32vviPBi6ngUy9IBA8SX2krwBbUMhpHCuZYoJiJDAuN8DX4EK0CwwQ3BgBDIljCrKUdZoWi-2g1yzN7iHCsSSggpKlIAz8xmiqfUiPg0YQkSQv5jXZkXDcQd_dYDGVTKfYpQaHSKVRWCm2hyx-WcdU9Yxkxa1Qu_wwBCd59Gdt5Yx4JU8PlO1Rm81khHfbwHaAhy2lczztOW-igsu2PpADFKGURPfqfYMdow31VdWUnaHU6mdlTQDBTfVYO0TO01u29Pr64991D__kbs0TusQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BQYLLChZYuguskTghhSa2Y5xjqUDl1QsgcbPs2JGyapOKlAP_fsd5IDjQA1JOiUcazdgznz2TzwAnVMSeWMsFMhJhwDPHAi3Ps8DGRqZaaCFSfw55PxHjJ37zHD-vwKj7F8a3Vbaxv4npdbRu3wxaaw7meT54iJhIYswvlNYsJnwV1jw7VdyDteH17XjyodOjLjT78YEX6IqbdZvX3OS4S6T0rN76RF-lp6_gZ52GrrbgR4sfybBRcRtWXPET1i9KxHhvOzAazvKiJDrNbUVmboEenubVjOiKaNKc0xNEqUS_lDNNMDKhX6auIiYvq7cCsWCVV7vwdHX5OBoH7TUJQcqkWARRJkWUhdo4ie5gjrM00bjMIs1tYnlsZWgwjBgdWS6FtYgZMskz7hw7505qtge9oizcPpDU0FhiVtOJQXlqDdMhY1biYyjNsj6EnXVU2nKI-6sspqprFvun0KDKG1Q1Bu3D6bvIvCHQWDaYdyZXn2aBwgC_TOy4c4_C1eFLHrpw5WulPPwIPaahy8d42jvB-vCr8e27pojGGOMJ-_09xf7Cxvjx_k7dXU9u_8Cm_9K0mR1Ab_Hy6g4R0CzMUTth_wNutu_N |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amino+acids+metabolism+as+a+source+for+aroma+volatiles+biosynthesis&rft.jtitle=Current+opinion+in+plant+biology&rft.au=Maoz%2C+Itay&rft.au=Lewinsohn%2C+Efraim&rft.au=Gonda%2C+Itay&rft.date=2022-06-01&rft.eissn=1879-0356&rft.volume=67&rft.spage=102221&rft_id=info:doi/10.1016%2Fj.pbi.2022.102221&rft_id=info%3Apmid%2F35533493&rft.externalDocID=35533493 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-5266&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-5266&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-5266&client=summon |