Amino acids metabolism as a source for aroma volatiles biosynthesis

Aroma volatiles are essential for plant ecological fitness and reproduction. Plants produce and use volatiles to attract pollinators and seed dispersers, repel herbivores and recruit their natural enemies, and communicate with other plants. Amino acids and their biosynthetic intermediates play key r...

Full description

Saved in:
Bibliographic Details
Published inCurrent opinion in plant biology Vol. 67; p. 102221
Main Authors Maoz, Itay, Lewinsohn, Efraim, Gonda, Itay
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aroma volatiles are essential for plant ecological fitness and reproduction. Plants produce and use volatiles to attract pollinators and seed dispersers, repel herbivores and recruit their natural enemies, and communicate with other plants. Amino acids and their biosynthetic intermediates play key roles as precursors for the biosynthesis of plant volatiles. Different plants utilize different strategies and biosynthetic pathways to meet their specific biological needs. This review focuses on the different biosynthetic pathways that plants utilize to form amino acid-derived aroma volatiles, emphasizing their common and unique aspects and stressing the importance of the limiting enzymes residing in the primary-specialized metabolism interface. We also briefly review how biotechnology has used this interface and point to promising future directions for improving the quality of agricultural produce and the production of key volatiles.
AbstractList Aroma volatiles are essential for plant ecological fitness and reproduction. Plants produce and use volatiles to attract pollinators and seed dispersers, repel herbivores and recruit their natural enemies, and communicate with other plants. Amino acids and their biosynthetic intermediates play key roles as precursors for the biosynthesis of plant volatiles. Different plants utilize different strategies and biosynthetic pathways to meet their specific biological needs. This review focuses on the different biosynthetic pathways that plants utilize to form amino acid-derived aroma volatiles, emphasizing their common and unique aspects and stressing the importance of the limiting enzymes residing in the primary-specialized metabolism interface. We also briefly review how biotechnology has used this interface and point to promising future directions for improving the quality of agricultural produce and the production of key volatiles.Aroma volatiles are essential for plant ecological fitness and reproduction. Plants produce and use volatiles to attract pollinators and seed dispersers, repel herbivores and recruit their natural enemies, and communicate with other plants. Amino acids and their biosynthetic intermediates play key roles as precursors for the biosynthesis of plant volatiles. Different plants utilize different strategies and biosynthetic pathways to meet their specific biological needs. This review focuses on the different biosynthetic pathways that plants utilize to form amino acid-derived aroma volatiles, emphasizing their common and unique aspects and stressing the importance of the limiting enzymes residing in the primary-specialized metabolism interface. We also briefly review how biotechnology has used this interface and point to promising future directions for improving the quality of agricultural produce and the production of key volatiles.
Aroma volatiles are essential for plant ecological fitness and reproduction. Plants produce and use volatiles to attract pollinators and seed dispersers, repel herbivores and recruit their natural enemies, and communicate with other plants. Amino acids and their biosynthetic intermediates play key roles as precursors for the biosynthesis of plant volatiles. Different plants utilize different strategies and biosynthetic pathways to meet their specific biological needs. This review focuses on the different biosynthetic pathways that plants utilize to form amino acid-derived aroma volatiles, emphasizing their common and unique aspects and stressing the importance of the limiting enzymes residing in the primary-specialized metabolism interface. We also briefly review how biotechnology has used this interface and point to promising future directions for improving the quality of agricultural produce and the production of key volatiles.
ArticleNumber 102221
Author Lewinsohn, Efraim
Gonda, Itay
Maoz, Itay
Author_xml – sequence: 1
  givenname: Itay
  surname: Maoz
  fullname: Maoz, Itay
  email: itaym@volcani.agri.gov.il
  organization: Department of Postharvest Science, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
– sequence: 2
  givenname: Efraim
  surname: Lewinsohn
  fullname: Lewinsohn, Efraim
  email: twefraim@volcani.agri.gov.il
  organization: Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat Yishay, Israel
– sequence: 3
  givenname: Itay
  orcidid: 0000-0003-2144-1561
  surname: Gonda
  fullname: Gonda, Itay
  email: itaygonda@agri.gov.il
  organization: Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Ramat Yishay, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35533493$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1LJDEQhsOirJ8_wIvkuJce89XpbjzJ4O4Kghc9h-qkms3Q3RlTPYL_3si4HvYge0oFnqeg3veEHcxpRsYupFhJIe3VZrXt40oJpcpfKSW_sWPZNl0ldG0PyqxtV9XK2iN2QrQRQtSq0d_Zka5rrU2nj9n6Zopz4uBjID7hAn0aI00ciAOntMse-ZAyh5wm4C9phCWOSLyPiV7n5Q9SpDN2OMBIeP7xnrKnn7eP69_V_cOvu_XNfeV1a5dKDq2Vg4AeW-9Bo9G-g6YzEkzogqlDK3rd2B5kMK0NoTF6aM1gEHVjsAV9yn7s925zet4hLW6K5HEcYca0I1cOlV1dXP1fqKil6lRBLz_QXT9hcNscJ8iv7m9GBZB7wOdElHH4RKRw7z24jSs9uPce3L6H4jT_OD4uJbo0Lxni-KV5vTexJPkSMTvyEWePIWb0iwspfmG_ASImoK0
CitedBy_id crossref_primary_10_1016_j_fbio_2024_104944
crossref_primary_10_3390_fermentation10010071
crossref_primary_10_1016_j_plaphy_2025_109561
crossref_primary_10_1016_j_phytochem_2024_114111
crossref_primary_10_1016_j_fochx_2025_102319
crossref_primary_10_3390_foods14010118
crossref_primary_10_1016_j_fochx_2024_101869
crossref_primary_10_1016_j_jspr_2024_102390
crossref_primary_10_1016_j_algal_2024_103742
crossref_primary_10_1016_j_heliyon_2025_e42268
crossref_primary_10_1016_j_lwt_2023_115606
crossref_primary_10_1016_j_foodres_2024_114917
crossref_primary_10_1021_acs_jafc_3c06846
crossref_primary_10_1016_j_foodchem_2025_143813
crossref_primary_10_1002_fsn3_3674
crossref_primary_10_1021_acsnano_4c11219
crossref_primary_10_1016_j_plaphy_2023_03_003
crossref_primary_10_3390_molecules29184321
crossref_primary_10_1016_j_ibmb_2023_104031
crossref_primary_10_1016_j_pestbp_2024_105835
crossref_primary_10_1021_acs_jafc_4c04363
crossref_primary_10_3390_foods12112137
crossref_primary_10_1016_j_tifs_2025_104886
crossref_primary_10_1002_jsfa_13671
crossref_primary_10_3390_fermentation10080409
crossref_primary_10_1016_j_foodres_2022_112387
crossref_primary_10_1016_j_fbio_2025_106308
crossref_primary_10_3390_app15052726
crossref_primary_10_1016_j_lwt_2024_116142
crossref_primary_10_3390_horticulturae10111159
crossref_primary_10_1016_j_hpj_2024_02_008
crossref_primary_10_1002_fft2_509
crossref_primary_10_1007_s10811_024_03243_9
crossref_primary_10_1016_j_ijbiomac_2024_135377
crossref_primary_10_1016_j_lwt_2024_117086
crossref_primary_10_1021_acs_jafc_3c02015
crossref_primary_10_1146_annurev_arplant_040121_114908
crossref_primary_10_1016_j_foodchem_2025_143639
crossref_primary_10_1007_s10311_024_01785_5
crossref_primary_10_3390_foods14010094
crossref_primary_10_1016_j_ijfoodmicro_2023_110417
crossref_primary_10_3389_fpls_2023_1216826
crossref_primary_10_3389_frfst_2024_1405384
crossref_primary_10_3390_molecules29030606
crossref_primary_10_1016_j_fbio_2023_103422
crossref_primary_10_1016_j_pbi_2022_102332
crossref_primary_10_1016_j_foodres_2024_113936
crossref_primary_10_3390_agriculture14071129
crossref_primary_10_3390_molecules28114308
crossref_primary_10_3390_foods13060858
crossref_primary_10_3390_molecules29051075
crossref_primary_10_1186_s12870_024_05787_x
crossref_primary_10_1021_acs_jafc_3c01650
crossref_primary_10_1016_j_eja_2024_127163
crossref_primary_10_3390_foods12122430
crossref_primary_10_3389_fnut_2024_1399390
Cites_doi 10.4067/S0716-078X2000000300006
10.1038/s41586-021-03819-2
10.1111/tpj.13838
10.1111/pbi.12191
10.1021/jf9508209
10.1073/pnas.0602469103
10.1111/tpj.12149
10.1105/tpc.104.028837
10.1021/jf60188a031
10.3389/fpls.2021.814138
10.1093/mp/ssp106
10.1111/tpj.14795
10.1016/j.jfda.2018.01.014
10.3389/fpls.2017.00769
10.1093/jxb/erab072
10.1038/s41598-019-45183-2
10.1104/pp.104.045468
10.1038/nchembio.485
10.1111/tpj.14204
10.1104/pp.84.2.277
10.1002/cber.190704001156
10.1111/pce.12357
10.1038/ncomms3833
10.1073/pnas.0603732103
10.1016/j.plantsci.2018.05.020
10.1073/pnas.0606195103
10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2
10.1021/jf011465r
10.1073/pnas.1211001109
10.1038/s41467-018-07969-2
10.1242/jeb.01689
10.1105/tpc.111.086975
10.1073/pnas.2009988118
10.1126/science.aal1556
10.1074/jbc.M602708200
10.1111/tpj.12711
10.1046/j.1364-3703.2002.00131.x
10.1021/jf505523m
10.1073/pnas.1920097117
10.1093/mp/ssr108
10.1021/jf030148c
10.1093/jxb/ert250
10.1021/acs.jafc.7b00272
10.1007/s11103-017-0666-9
10.1271/bbb.70090
10.1105/tpc.113.114231
10.1006/fstl.1993.1036
10.1016/j.phytochem.2017.12.018
10.1104/pp.007146
10.1105/tpc.12.6.949
10.1016/j.cub.2011.03.059
10.3390/biology10080807
10.1105/tpc.109.073247
10.1021/jf063018n
10.1093/jxb/erp390
10.1105/tpc.113.118265
10.1038/s41580-020-00288-9
10.1105/tpc.112.097519
10.1016/j.postharvbio.2021.111657
10.1038/s41477-021-00991-1
10.1111/pbi.12253
10.3136/fstr.5.99
10.1111/nph.12913
10.1016/j.molp.2014.12.001
10.1038/s41586-020-2833-4
10.1126/science.1112614
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7S9
L.6
7X8
DOI 10.1016/j.pbi.2022.102221
DatabaseName CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1879-0356
ExternalDocumentID 35533493
10_1016_j_pbi_2022_102221
S1369526622000504
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-DZ
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEQOU
AFJKZ
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSH
SSU
SSZ
T5K
Y6R
~G-
~KM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
NPM
7S9
L.6
7X8
ID FETCH-LOGICAL-c386t-1f861f0abe8cca3e43c9a7941a4d9d45d80b376ba1d486dd743f84f4ee374e8a3
IEDL.DBID .~1
ISSN 1369-5266
1879-0356
IngestDate Fri Jul 11 02:31:48 EDT 2025
Fri Jul 11 11:55:10 EDT 2025
Thu Apr 03 07:08:29 EDT 2025
Thu Apr 24 23:05:34 EDT 2025
Tue Jul 01 03:25:41 EDT 2025
Sun Apr 06 06:53:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Fruit flavor
Aroma volatiles
PAAS
BCKA
CMS
Flowers fragrance
Branched-chain amino acids (BCAA)
BCAT
AAAT
Aromatic amino acids (AAA)
MGL
BCV
PAL
AAAD
BCAA
SAM
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-1f861f0abe8cca3e43c9a7941a4d9d45d80b376ba1d486dd743f84f4ee374e8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Review-3
ORCID 0000-0003-2144-1561
PMID 35533493
PQID 2661051292
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2661954863
proquest_miscellaneous_2661051292
pubmed_primary_35533493
crossref_primary_10_1016_j_pbi_2022_102221
crossref_citationtrail_10_1016_j_pbi_2022_102221
elsevier_sciencedirect_doi_10_1016_j_pbi_2022_102221
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
2022-Jun
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current opinion in plant biology
PublicationTitleAlternate Curr Opin Plant Biol
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Tressl, Drawert (bib16) 1973; 21
Oliva, Bar, Ovadia, Perl, Galili, Lewinsohn, Oren-Shamir (bib66) 2017; 8
Kochevenko, Araujo, Maloney, Tieman, Do, Taylor, Klee, Fernie (bib14) 2012; 5
Klahre, Gurba, Hermann, Saxenhofer, Bossolini, Guerin Patrick, Kuhlemeier (bib51) 2011; 21
Irmisch, Clavijo McCormick, Günther, Schmidt, Boeckler, Gershenzon, Unsicker, Köllner (bib37) 2014; 80
Gang, Beuerle, Ullmann, Werck-Reichhart, Pichersky (bib57) 2002; 130
Kumar, Jander (bib48) 2017; 65
Matich, Rowan (bib18) 2007; 55
Widhalm Joshua, Dudareva (bib53) 2015; 8
Jumper, Evans, Pritzel, Green, Figurnov, Ronneberger, Tunyasuvunakool, Bates, Žídek, Potapenko (bib73) 2021; 596
Chen (bib4) 1966; vol. 3
Koeduka, Fridman, Gang, Vassao, Jackson, Kish, Orlova, Spassova, Lewis, Noel (bib56) 2006; 103
Wang, Zhang, Boo, Park, Drakakaki, Zakharov (bib27) 2019; 98
Cannon, Ho (bib43) 2018; 26
Cipollini (bib6) 2000; 73
Baldwin, Scott, Einstein, Malundo, Carr, Shewfelt, Tandon (bib25) 1998; 123
Noichinda, Ueda, Imahori, Chachin (bib42) 1999; 5
Ehrlich (bib1) 1907; 40
Rowan, Lane, Allen, Fielder, Hunt (bib12) 1996; 44
Gonda, Bar, Portnoy, Lev, Burger, Schaffer, Tadmor, Gepstein, Giovannoni, Katzir (bib10) 2010; 61
Sugimoto, Engelgau, Jones, Song, Beaudry (bib30) 2021; 118
Clavijo Mccormick, Gershenzon, Unsicker (bib34) 2014; 37
Dal Cin, Tieman, Tohge, McQuinn, de Vos, Osorio, Schmelz, Taylor, Smits-Kroon, Schuurink (bib69) 2011; 23
Rose (bib2) 1957; 27
Rébeillé, Jabrin, Bligny, Loizeau, Gambonnet, Van Wilder, Douce, Ravanel (bib15) 2006; 103
Tikunov, Roohanitaziani, Meijer-Dekens, Molthoff, Paulo, Finkers, Capel, Carvajal Moreno, Maliepaard, Nijenhuis-de Vries (bib33) 2020; 103
Patrick, Huang, Dudareva, Li (bib70) 2021; 72
Irmisch, Clavijo McCormick, Boeckler, Schmidt, Reichelt, Schneider, Block, Schnitzler, Gershenzon, Unsicker (bib36) 2013; 25
Kaminaga, Schnepp, Peel, Kish, Ben-Nissan, Weiss, Orlova, Lavie, Rhodes, Wood (bib11) 2006; 281
Dabrowski, Terjesen, Zhang, Phang, Lee (bib3) 2005; 208
Van der Pijl (bib7) 1982; vol. 214
Torrens-Spence, Chiang, Smith, Vicent, Wang, Weng (bib54) 2020; 117
Hu, Wang, Ali, Chen, Zhang, Zheng, Chen (bib29) 2021; 10
Zhu, Li, Gao (bib72) 2020; 21
Tieman, Zhu, Resende, Lin, Nguyen, Bies, Rambla, Beltran, Taylor, Zhang (bib24) 2017; 355
Pérez, Olías, Luaces, Sanz (bib23) 2002; 50
Tikunov, Molthoff, de Vos, Beekwilder, van Houwelingen, van der Hooft, Nijenhuis-de Vries, Labrie, Verkerke, van de Geest (bib52) 2013; 25
Galpaz, Gonda, Shem-Tov, Barad, Tzuri, Lev, Fei, Xu, Mao, Jiao (bib41) 2018; 94
Gonda (bib44) 2014
Lindsay (bib45) 2007
Huang, Joshi, Jander (bib47) 2014; 12
Dixon, Achnine, Kota, Liu, Reddy, Wang (bib50) 2002; 3
Di, Kim, Martin, Leustek, Jhoo, Ho, Tumer (bib46) 2003; 51
Maoz, Rikanati, Schlesinger, Bar, Gonda, Levin, Kaplunov, Sela, Lichter, Lewinsohn (bib21) 2018; 274
Qualley, Widhalm, Adebesin, Kish, Dudareva (bib60) 2012; 109
Dudareva, Murfitt, Mann, Gorenstein, Kolosova, Kish, Bonham, Wood (bib39) 2000; 12
Miyazaki, Yang (bib38) 1987; 84
Molla, Sretenovic, Bansal, Qi (bib71) 2021; 7
Sugimoto, Daniel Jones, Beaudry (bib31) 2011; 136
Muhlemann, Woodworth, Morgan, Dudareva (bib58) 2014; 204
Vogt (bib49) 2010; 3
Huang, Renqiuguo, Jianxin, Natalia (bib75) 2022; 13
Gonda, Davidovich-Rikanati, Bar, Lev, Jhirad, Meshulam, Wissotsky, Portnoy, Burger, Schaffer (bib8) 2018; 148
Qian, Lynch, Guo, Rhodes, Morgan, Dudareva (bib65) 2019; 10
Gonda, Lev, Bar, Sikron, Portnoy, Davidovich-Rikanati, Burger, Schaffer, Tadmor, Giovannonni (bib9) 2013; 74
Verdonk, Haring, van Tunen, Schuurink (bib68) 2005; 17
Maeda, Shasany, Schnepp, Orlova, Taguchi, Cooper, Rhodes, Pichersky, Dudareva (bib63) 2010; 22
Castillo, Martinelli, Zakharov-Negre, Ebeler, Buzo, McKenry, Dandekar (bib40) 2017; 95
Dou, Hu, Zhao, Gao, He, Deng, Sheng, Bi, Yang, Li (bib28) 2021
Yoo, Widhalm, Qian, Maeda, Cooper, Jannasch, Gonda, Lewinsohn, Rhodes, Dudareva (bib64) 2013; 4
Hansen, Poll (bib22) 1993; 26
Sugimoto, Forsline, Beaudry (bib32) 2015; 63
Bizzio, Tieman, Munoz (bib26) 2022; 12
Tieman, Taylor, Schauer, Fernie, Hanson, Klee (bib13) 2006; 103
Knudsen, Eriksson, Gershenzon, Ståhl (bib35) 2006; 72
Oliva, Ovadia, Perl, Bar, Lewinsohn, Galili, Oren-Shamir (bib67) 2015; 13
Boatright, Negre, Chen, Kish, Wood, Peel, Orlova, Gang, Rhodes, Dudareva (bib17) 2004; 135
Kumar, Elazari, Ovadia, Bar, Nissim-Levi, Carmi, Lewinsohn, Oren-Shamir (bib19) 2021; 181
Maeda, Yoo, Dudareva (bib62) 2011; 7
Yip, Fischer, Paknia, Chari, Stark (bib74) 2020; 587
Goff, Klee (bib5) 2006; 311
Tzin, Rogachev, Meir, Moyal Ben Zvi, Masci, Vainstein, Aharoni, Galili (bib20) 2013; 64
Sakai, Hirata, Sayama, Sekiguchi, Itano, Asai, Dohra, Hara, Watanabe (bib55) 2007; 71
Kim, Swanson, Alvarez, Johnson, Cho, Clark, Colquhoun (bib59) 2019; 9
Klempien, Kaminaga, Qualley, Nagegowda, Widhalm, Orlova, Shasany, Taguchi, Kish, Cooper (bib61) 2012; 24
Dabrowski (10.1016/j.pbi.2022.102221_bib3) 2005; 208
Van der Pijl (10.1016/j.pbi.2022.102221_bib7) 1982; vol. 214
Dal Cin (10.1016/j.pbi.2022.102221_bib69) 2011; 23
Tzin (10.1016/j.pbi.2022.102221_sref20) 2013; 64
Rowan (10.1016/j.pbi.2022.102221_bib12) 1996; 44
Widhalm Joshua (10.1016/j.pbi.2022.102221_bib53) 2015; 8
Goff (10.1016/j.pbi.2022.102221_bib5) 2006; 311
Cannon (10.1016/j.pbi.2022.102221_bib43) 2018; 26
Yoo (10.1016/j.pbi.2022.102221_bib64) 2013; 4
Jumper (10.1016/j.pbi.2022.102221_bib73) 2021; 596
Hansen (10.1016/j.pbi.2022.102221_bib22) 1993; 26
Maeda (10.1016/j.pbi.2022.102221_bib62) 2011; 7
Kim (10.1016/j.pbi.2022.102221_bib59) 2019; 9
Patrick (10.1016/j.pbi.2022.102221_bib70) 2021; 72
Dou (10.1016/j.pbi.2022.102221_bib28) 2021
Huang (10.1016/j.pbi.2022.102221_bib75) 2022; 13
Rébeillé (10.1016/j.pbi.2022.102221_bib15) 2006; 103
Gonda (10.1016/j.pbi.2022.102221_bib44) 2014
Zhu (10.1016/j.pbi.2022.102221_bib72) 2020; 21
Hu (10.1016/j.pbi.2022.102221_bib29) 2021; 10
Maeda (10.1016/j.pbi.2022.102221_bib63) 2010; 22
Klempien (10.1016/j.pbi.2022.102221_bib61) 2012; 24
Cipollini (10.1016/j.pbi.2022.102221_bib6) 2000; 73
Knudsen (10.1016/j.pbi.2022.102221_bib35) 2006; 72
Qian (10.1016/j.pbi.2022.102221_sref65) 2019; 10
Clavijo Mccormick (10.1016/j.pbi.2022.102221_bib34) 2014; 37
Irmisch (10.1016/j.pbi.2022.102221_sref36) 2013; 25
Baldwin (10.1016/j.pbi.2022.102221_bib25) 1998; 123
Chen (10.1016/j.pbi.2022.102221_bib4) 1966; vol. 3
Kaminaga (10.1016/j.pbi.2022.102221_bib11) 2006; 281
Pérez (10.1016/j.pbi.2022.102221_bib23) 2002; 50
Muhlemann (10.1016/j.pbi.2022.102221_bib58) 2014; 204
Dixon (10.1016/j.pbi.2022.102221_bib50) 2002; 3
Torrens-Spence (10.1016/j.pbi.2022.102221_sref54) 2020; 117
Di (10.1016/j.pbi.2022.102221_bib46) 2003; 51
Oliva (10.1016/j.pbi.2022.102221_bib67) 2015; 13
Rose (10.1016/j.pbi.2022.102221_bib2) 1957; 27
Castillo (10.1016/j.pbi.2022.102221_bib40) 2017; 95
Dudareva (10.1016/j.pbi.2022.102221_bib39) 2000; 12
Yip (10.1016/j.pbi.2022.102221_bib74) 2020; 587
Lindsay (10.1016/j.pbi.2022.102221_bib45) 2007
Maoz (10.1016/j.pbi.2022.102221_bib21) 2018; 274
Gang (10.1016/j.pbi.2022.102221_bib57) 2002; 130
Molla (10.1016/j.pbi.2022.102221_bib71) 2021; 7
Huang (10.1016/j.pbi.2022.102221_bib47) 2014; 12
Sakai (10.1016/j.pbi.2022.102221_bib55) 2007; 71
Qualley (10.1016/j.pbi.2022.102221_bib60) 2012; 109
Koeduka (10.1016/j.pbi.2022.102221_bib56) 2006; 103
Gonda (10.1016/j.pbi.2022.102221_sref10) 2010; 61
Vogt (10.1016/j.pbi.2022.102221_bib49) 2010; 3
Tieman (10.1016/j.pbi.2022.102221_bib24) 2017; 355
Tikunov (10.1016/j.pbi.2022.102221_sref33) 2020; 103
Matich (10.1016/j.pbi.2022.102221_bib18) 2007; 55
Noichinda (10.1016/j.pbi.2022.102221_bib42) 1999; 5
Miyazaki (10.1016/j.pbi.2022.102221_bib38) 1987; 84
Tressl (10.1016/j.pbi.2022.102221_bib16) 1973; 21
Sugimoto (10.1016/j.pbi.2022.102221_sref30) 2021; 118
Irmisch (10.1016/j.pbi.2022.102221_bib37) 2014; 80
Verdonk (10.1016/j.pbi.2022.102221_bib68) 2005; 17
Gonda (10.1016/j.pbi.2022.102221_bib8) 2018; 148
Sugimoto (10.1016/j.pbi.2022.102221_bib32) 2015; 63
Ehrlich (10.1016/j.pbi.2022.102221_bib1) 1907; 40
Bizzio (10.1016/j.pbi.2022.102221_bib26) 2022; 12
Galpaz (10.1016/j.pbi.2022.102221_bib41) 2018; 94
Kumar (10.1016/j.pbi.2022.102221_bib19) 2021; 181
Sugimoto (10.1016/j.pbi.2022.102221_bib31) 2011; 136
Boatright (10.1016/j.pbi.2022.102221_bib17) 2004; 135
Gonda (10.1016/j.pbi.2022.102221_bib9) 2013; 74
Tikunov (10.1016/j.pbi.2022.102221_bib52) 2013; 25
Kochevenko (10.1016/j.pbi.2022.102221_sref14) 2012; 5
Klahre (10.1016/j.pbi.2022.102221_bib51) 2011; 21
Oliva (10.1016/j.pbi.2022.102221_bib66) 2017; 8
Kumar (10.1016/j.pbi.2022.102221_bib48) 2017; 65
Wang (10.1016/j.pbi.2022.102221_bib27) 2019; 98
Tieman (10.1016/j.pbi.2022.102221_bib13) 2006; 103
References_xml – volume: 148
  start-page: 122
  year: 2018
  end-page: 131
  ident: bib8
  article-title: Differential metabolism of L-phenylalanine in the formation of aromatic volatiles in melon (
  publication-title: Phytochemistry
– volume: 7
  start-page: 1166
  year: 2021
  end-page: 1187
  ident: bib71
  article-title: Precise plant genome editing using base editors and prime editors
  publication-title: Nature Plants
– volume: 65
  start-page: 2737
  year: 2017
  end-page: 2742
  ident: bib48
  article-title: Concurrent overexpression of
  publication-title: J Agric Food Chem
– volume: 12
  start-page: 883
  year: 2014
  end-page: 893
  ident: bib47
  article-title: The catabolic enzyme methionine gamma-lyase limits methionine accumulation in potato tubers
  publication-title: Plant Biotechnology Journal
– volume: 10
  start-page: 807
  year: 2021
  ident: bib29
  article-title: Free amino acids profile and expression analysis of core genes involved in branched-chain amino acids metabolism during fruit development of Longan (
  publication-title: Biology
– volume: 37
  start-page: 1836
  year: 2014
  end-page: 1844
  ident: bib34
  article-title: Little peaks with big effects: establishing the role of minor plant volatiles in plant–insect interactions
  publication-title: Plant Cell Environ
– volume: 596
  start-page: 583
  year: 2021
  end-page: 589
  ident: bib73
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
– volume: 50
  start-page: 4037
  year: 2002
  end-page: 4042
  ident: bib23
  article-title: Biosynthesis of strawberry aroma compounds through amino acid metabolism
  publication-title: J Agric Food Chem
– volume: 71
  start-page: 70090
  year: 2007
  ident: bib55
  article-title: Production of 2-phenylethanol in roses as the dominant floral scent compound from L-phenylalanine by two key enzymes, a PLP-dependent decarboxylase and a phenylacetaldehyde reductase
  publication-title: Biosc Biotech Biochem
– volume: 63
  start-page: 2106
  year: 2015
  end-page: 2116
  ident: bib32
  article-title: Volatile profiles of members of the USDA geneva malus core collection: utility in evaluation of a hypothesized biosynthetic pathway for esters derived from 2-methylbutanoate and 2-methylbutan-1-ol
  publication-title: J Agric Food Chem
– volume: 181
  start-page: 111657
  year: 2021
  ident: bib19
  article-title: Phenylalanine treatment generates scent in flowers by increased production of phenylpropanoid-benzenoid volatiles
  publication-title: Postharvest Biol Technol
– volume: 22
  start-page: 832
  year: 2010
  end-page: 849
  ident: bib63
  article-title: RNAi suppression of
  publication-title: Plant Cell
– volume: 587
  start-page: 157
  year: 2020
  end-page: 161
  ident: bib74
  article-title: Atomic-resolution protein structure determination by cryo-EM
  publication-title: Nature
– volume: 103
  start-page: 15687
  year: 2006
  end-page: 15692
  ident: bib15
  article-title: Methionine catabolism in
  publication-title: Proc Natl Acad Sci USA
– volume: 55
  start-page: 2727
  year: 2007
  end-page: 2735
  ident: bib18
  article-title: Pathway analysis of branched-chain ester biosynthesis in apple using deuterium labeling and enantioselective gas chromatography−mass spectrometry
  publication-title: J Agric Food Chem
– volume: 40
  start-page: 1027
  year: 1907
  end-page: 1047
  ident: bib1
  article-title: Über die bedingungen der fuselölbildung und über ihren zusammenhang mit dem eiweissaufbau der hefe
  publication-title: Ber Dtsch Chem Ges
– volume: 3
  start-page: 2
  year: 2010
  end-page: 20
  ident: bib49
  article-title: Phenylpropanoid biosynthesis
  publication-title: Mol Plant
– volume: 311
  start-page: 815
  year: 2006
  end-page: 819
  ident: bib5
  article-title: Plant volatile compounds: sensory cues for health and nutritional value?
  publication-title: Science
– volume: 123
  start-page: 906
  year: 1998
  end-page: 915
  ident: bib25
  article-title: Relationship between sensory and instrumental analysis for tomato flavor
  publication-title: J Am Soc Hortic Sci
– volume: vol. 214
  year: 1982
  ident: bib7
  publication-title: Principles of dispersal in higher plants
– volume: 9
  start-page: 8852
  year: 2019
  ident: bib59
  article-title: Down regulation of
  publication-title: Sci Rep
– volume: 74
  start-page: 458
  year: 2013
  end-page: 472
  ident: bib9
  article-title: Catabolism of L-methionine in the formation of sulfur and other volatiles in melon (
  publication-title: Plant J
– volume: 72
  start-page: 1
  year: 2006
  end-page: 120
  ident: bib35
  article-title: Diversity and distribution of floral scent
  publication-title: Bot Rev
– volume: 103
  start-page: 8287
  year: 2006
  end-page: 8292
  ident: bib13
  article-title: Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde
  publication-title: Proc Natl Acad Sci U S A
– volume: 21
  start-page: 730
  year: 2011
  end-page: 739
  ident: bib51
  article-title: Pollinator choice in petunia depends on two major genetic loci for floral scent production
  publication-title: Curr Biol
– volume: 98
  start-page: 112
  year: 2019
  end-page: 125
  ident: bib27
  article-title: PDC1, a pyruvate/α-ketoacid decarboxylase, is involved in acetaldehyde, propanal and pentanal biosynthesis in melon (
  publication-title: Plant J
– volume: 72
  start-page: 3704
  year: 2021
  end-page: 3722
  ident: bib70
  article-title: Dynamic histone acetylation in floral volatile synthesis and emission in petunia flowers
  publication-title: J Exp Bot
– volume: 130
  start-page: 1536
  year: 2002
  end-page: 1544
  ident: bib57
  article-title: Differential production of
  publication-title: Plant Physiol
– volume: 103
  start-page: 1189
  year: 2020
  end-page: 1204
  ident: bib33
  article-title: The genetic and functional analysis of flavor in commercial tomato: the FLORAL4 gene underlies a QTL for floral aroma volatiles in tomato fruit
  publication-title: Plant J
– volume: 61
  start-page: 1111
  year: 2010
  end-page: 1123
  ident: bib10
  article-title: Branched-chain and aromatic amino acid catabolism into aroma volatiles in
  publication-title: J Exp Bot
– volume: 12
  start-page: 814138
  year: 2022
  ident: bib26
  article-title: Branched-chain volatiles in fruit: a molecular perspective
  publication-title: Front Plant Sci
– volume: 117
  start-page: 10806
  year: 2020
  end-page: 10817
  ident: bib54
  article-title: Structural basis for divergent and convergent evolution of catalytic machineries in plant aromatic amino acid decarboxylase proteins
  publication-title: Proc Natl Acad Sci USA
– volume: 25
  start-page: 4737
  year: 2013
  end-page: 4754
  ident: bib36
  article-title: Two herbivore-induced cytochrome P450 enzymes CYP79D6 and CYP79D7 catalyze the formation of volatile aldoximes involved in poplar defense
  publication-title: Plant Cell
– volume: 204
  start-page: 661
  year: 2014
  end-page: 670
  ident: bib58
  article-title: The monolignol pathway contributes to the biosynthesis of volatile phenylpropenes in flowers
  publication-title: New Phytol
– volume: 5
  start-page: 366
  year: 2012
  end-page: 375
  ident: bib14
  article-title: Catabolism of branched chain amino acids supports respiration but not volatile synthesis in tomato fruits
  publication-title: Mol Plant
– volume: 10
  start-page: 15
  year: 2019
  ident: bib65
  article-title: Completion of the cytosolic post-chorismate phenylalanine biosynthetic pathway in plants
  publication-title: Nat Commun
– volume: 3
  start-page: 371
  year: 2002
  end-page: 390
  ident: bib50
  article-title: The phenylpropanoid pathway and plant defence—a genomics perspective
  publication-title: Mol Plant Pathol
– volume: 94
  start-page: 169
  year: 2018
  end-page: 191
  ident: bib41
  article-title: Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping
  publication-title: Plant J
– volume: 23
  start-page: 2738
  year: 2011
  end-page: 2753
  ident: bib69
  article-title: Identification of genes in the phenylalanine metabolic pathway by ectopic expression of a MYB transcription factor in tomato fruit
  publication-title: Plant Cell
– volume: 25
  start-page: 3067
  year: 2013
  end-page: 3078
  ident: bib52
  article-title: Non-smoky glycosyltransferase1 prevents the release of smoky aroma from tomato fruit
  publication-title: Plant Cell
– volume: 281
  start-page: 23357
  year: 2006
  end-page: 23366
  ident: bib11
  article-title: Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation
  publication-title: J Biol Chem
– volume: 13
  start-page: 125
  year: 2015
  end-page: 136
  ident: bib67
  article-title: Enhanced formation of aromatic amino acids increases fragrance without affecting flower longevity or pigmentation in
  publication-title: Plant Biotechnology Journal
– volume: 21
  start-page: 661
  year: 2020
  end-page: 677
  ident: bib72
  article-title: Applications of CRISPR–Cas in agriculture and plant biotechnology
  publication-title: Nat Rev Mol Cell Biol
– volume: 21
  start-page: 560
  year: 1973
  end-page: 565
  ident: bib16
  article-title: Biogenesis of banana volatiles
  publication-title: J Agric Food Chem
– volume: 109
  start-page: 16383
  year: 2012
  ident: bib60
  article-title: Completion of the core β-oxidative pathway of benzoic acid biosynthesis in plants
  publication-title: Proc Natl Acad Sci Unit States Am
– volume: 26
  start-page: 178
  year: 1993
  end-page: 180
  ident: bib22
  article-title: Conversion of L-isoleucine into 2-methylbut-2-enyl esters in apples
  publication-title: LWT - Food Sci Technol (Lebensmittel-Wissenschaft -Technol)
– volume: 135
  start-page: 1993
  year: 2004
  end-page: 2011
  ident: bib17
  article-title: Understanding
  publication-title: Plant Physiol
– volume: 51
  start-page: 5695
  year: 2003
  end-page: 5702
  ident: bib46
  article-title: Enhancement of the primary flavor compound methional in potato by increasing the level of soluble methionine
  publication-title: J Agric Food Chem
– volume: 355
  start-page: 391
  year: 2017
  end-page: 394
  ident: bib24
  article-title: A chemical genetic roadmap to improved tomato flavor
  publication-title: Science
– volume: 24
  start-page: 2015
  year: 2012
  end-page: 2030
  ident: bib61
  article-title: Contribution of CoA ligases to benzenoid biosynthesis in petunia flowers
  publication-title: Plant Cell
– volume: 118
  year: 2021
  ident: bib30
  article-title: Citramalate synthase yields a biosynthetic pathway for isoleucine and straight- and branched-chain ester formation in ripening apple fruit
  publication-title: Proc Natl Acad Sci USA
– volume: 136
  start-page: 429
  year: 2011
  end-page: 440
  ident: bib31
  article-title: Changes in free amino acid content in ‘Jonagold’ apple fruit as related to branched-chain ester production, ripening, and senescence
  publication-title: J Am Soc Hortic Sci
– volume: 8
  start-page: 769
  year: 2017
  ident: bib66
  article-title: Phenylpyruvate contributes to the synthesis of fragrant benzenoid–phenylpropanoids in
  publication-title: Front Plant Sci
– volume: 84
  start-page: 277
  year: 1987
  end-page: 281
  ident: bib38
  article-title: Metabolism of 5-methylthioribose to methionine
  publication-title: Plant Physiol
– volume: 17
  start-page: 1612
  year: 2005
  end-page: 1624
  ident: bib68
  article-title: ODORANT1 regulates fragrance biosynthesis in petunia flowers
  publication-title: Plant Cell
– volume: 44
  start-page: 3276
  year: 1996
  end-page: 3285
  ident: bib12
  article-title: Biosynthesis of 2-methylbutyl, 2-methyl-2-butenyl, and 2-methylbutanoate esters in Red Delicious and Granny Smith apples using deuterium-labeled substrates
  publication-title: J Agric Food Chem
– year: 2021
  ident: bib28
  article-title: RNA-seq reveals the effect of ethylene on the volatile organic components (VOCs) of Cavendish banana at different post-harvesting stages
  publication-title: J Plant Growth Regul
– start-page: 639
  year: 2007
  end-page: 688
  ident: bib45
  article-title: Flavors
  publication-title: Fennema's food chemistry
– year: 2014
  ident: bib44
– volume: 95
  start-page: 497
  year: 2017
  end-page: 505
  ident: bib40
  article-title: Effects of transgenic expression of
  publication-title: Plant Mol Biol
– volume: 26
  start-page: 445
  year: 2018
  end-page: 468
  ident: bib43
  article-title: Volatile sulfur compounds in tropical fruits
  publication-title: J Food Drug Anal
– volume: 274
  start-page: 223
  year: 2018
  end-page: 230
  ident: bib21
  article-title: Concealed ester formation and amino acid metabolism to volatile compounds in table grape (
  publication-title: Plant Sci
– volume: 12
  start-page: 949
  year: 2000
  end-page: 961
  ident: bib39
  article-title: Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers
  publication-title: Plant Cell
– volume: 27
  start-page: 631
  year: 1957
  end-page: 647
  ident: bib2
  article-title: The amino acid requirement of adult men
  publication-title: Nutr Abstr Rev
– volume: 103
  start-page: 10128
  year: 2006
  end-page: 10133
  ident: bib56
  article-title: Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester
  publication-title: Proc Natl Acad Sci USA
– volume: 7
  start-page: 19
  year: 2011
  end-page: 21
  ident: bib62
  article-title: Prephenate aminotransferase directs plant phenylalanine biosynthesis via arogenate
  publication-title: Nat Chem Biol
– volume: 4
  start-page: 2833
  year: 2013
  ident: bib64
  article-title: An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase
  publication-title: Nat Commun
– volume: 13
  start-page: 1
  year: 2022
  end-page: 15
  ident: bib75
  article-title: A peroxisomal heterodimeric enzyme is involved in benzaldehyde synthesis in plants.
  publication-title: Nature communications
– volume: vol. 3
  start-page: 53
  year: 1966
  end-page: 132
  ident: bib4
  article-title: Amino acid and protein metabolism in insect development
  publication-title: Advances in insect physiology
– volume: 80
  start-page: 1095
  year: 2014
  end-page: 1107
  ident: bib37
  article-title: Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar
  publication-title: Plant J
– volume: 8
  start-page: 83
  year: 2015
  end-page: 97
  ident: bib53
  article-title: A familiar ring to it: biosynthesis of plant benzoic acids
  publication-title: Mol Plant
– volume: 208
  start-page: 2885
  year: 2005
  end-page: 2894
  ident: bib3
  article-title: A concept of dietary dipeptides: a step to resolve the problem of amino acid availability in the early life of vertebrates
  publication-title: J Exp Biol
– volume: 73
  start-page: Y440
  year: 2000
  ident: bib6
  article-title: Secondary metabolites of vertebrate-dispersed fruits: evidence for adaptive functions
  publication-title: Rev Chil Hist Nat
– volume: 64
  start-page: 4441
  year: 2013
  end-page: 4452
  ident: bib20
  article-title: Tomato fruits expressing a bacterial feedback-insensitive 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway possess enhanced levels of multiple specialized metabolites and upgraded aroma
  publication-title: J Exp Bot
– volume: 5
  start-page: 99
  year: 1999
  end-page: 103
  ident: bib42
  article-title: Thioester production and thioalcohol specificity of alcohol acetyltransferase in strawberry fruit
  publication-title: Food Sci Technol Res
– volume: 73
  start-page: Y440
  year: 2000
  ident: 10.1016/j.pbi.2022.102221_bib6
  article-title: Secondary metabolites of vertebrate-dispersed fruits: evidence for adaptive functions
  publication-title: Rev Chil Hist Nat
  doi: 10.4067/S0716-078X2000000300006
– volume: 596
  start-page: 583
  year: 2021
  ident: 10.1016/j.pbi.2022.102221_bib73
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– volume: 27
  start-page: 631
  year: 1957
  ident: 10.1016/j.pbi.2022.102221_bib2
  article-title: The amino acid requirement of adult men
  publication-title: Nutr Abstr Rev
– volume: 94
  start-page: 169
  year: 2018
  ident: 10.1016/j.pbi.2022.102221_bib41
  article-title: Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping
  publication-title: Plant J
  doi: 10.1111/tpj.13838
– volume: 12
  start-page: 883
  year: 2014
  ident: 10.1016/j.pbi.2022.102221_bib47
  article-title: The catabolic enzyme methionine gamma-lyase limits methionine accumulation in potato tubers
  publication-title: Plant Biotechnology Journal
  doi: 10.1111/pbi.12191
– volume: 44
  start-page: 3276
  year: 1996
  ident: 10.1016/j.pbi.2022.102221_bib12
  article-title: Biosynthesis of 2-methylbutyl, 2-methyl-2-butenyl, and 2-methylbutanoate esters in Red Delicious and Granny Smith apples using deuterium-labeled substrates
  publication-title: J Agric Food Chem
  doi: 10.1021/jf9508209
– volume: 103
  start-page: 8287
  year: 2006
  ident: 10.1016/j.pbi.2022.102221_bib13
  article-title: Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0602469103
– volume: 74
  start-page: 458
  year: 2013
  ident: 10.1016/j.pbi.2022.102221_bib9
  article-title: Catabolism of L-methionine in the formation of sulfur and other volatiles in melon (Cucumis melo L.) fruit
  publication-title: Plant J
  doi: 10.1111/tpj.12149
– volume: 17
  start-page: 1612
  year: 2005
  ident: 10.1016/j.pbi.2022.102221_bib68
  article-title: ODORANT1 regulates fragrance biosynthesis in petunia flowers
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.028837
– volume: 21
  start-page: 560
  year: 1973
  ident: 10.1016/j.pbi.2022.102221_bib16
  article-title: Biogenesis of banana volatiles
  publication-title: J Agric Food Chem
  doi: 10.1021/jf60188a031
– volume: 12
  start-page: 814138
  year: 2022
  ident: 10.1016/j.pbi.2022.102221_bib26
  article-title: Branched-chain volatiles in fruit: a molecular perspective
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2021.814138
– volume: 3
  start-page: 2
  year: 2010
  ident: 10.1016/j.pbi.2022.102221_bib49
  article-title: Phenylpropanoid biosynthesis
  publication-title: Mol Plant
  doi: 10.1093/mp/ssp106
– volume: 103
  start-page: 1189
  year: 2020
  ident: 10.1016/j.pbi.2022.102221_sref33
  article-title: The genetic and functional analysis of flavor in commercial tomato: the FLORAL4 gene underlies a QTL for floral aroma volatiles in tomato fruit
  publication-title: Plant J
  doi: 10.1111/tpj.14795
– volume: 26
  start-page: 445
  year: 2018
  ident: 10.1016/j.pbi.2022.102221_bib43
  article-title: Volatile sulfur compounds in tropical fruits
  publication-title: J Food Drug Anal
  doi: 10.1016/j.jfda.2018.01.014
– volume: 8
  start-page: 769
  year: 2017
  ident: 10.1016/j.pbi.2022.102221_bib66
  article-title: Phenylpyruvate contributes to the synthesis of fragrant benzenoid–phenylpropanoids in Petunia × hybrida flowers
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.00769
– volume: 72
  start-page: 3704
  year: 2021
  ident: 10.1016/j.pbi.2022.102221_bib70
  article-title: Dynamic histone acetylation in floral volatile synthesis and emission in petunia flowers
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erab072
– volume: 9
  start-page: 8852
  year: 2019
  ident: 10.1016/j.pbi.2022.102221_bib59
  article-title: Down regulation of p-coumarate 3-hydroxylase in petunia uniquely alters the profile of emitted floral volatiles
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-45183-2
– volume: 135
  start-page: 1993
  year: 2004
  ident: 10.1016/j.pbi.2022.102221_bib17
  article-title: Understanding in vivo benzenoid metabolism in petunia petal tissue
  publication-title: Plant Physiol
  doi: 10.1104/pp.104.045468
– volume: 13
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.pbi.2022.102221_bib75
  article-title: A peroxisomal heterodimeric enzyme is involved in benzaldehyde synthesis in plants.
  publication-title: Nature communications
– volume: 7
  start-page: 19
  year: 2011
  ident: 10.1016/j.pbi.2022.102221_bib62
  article-title: Prephenate aminotransferase directs plant phenylalanine biosynthesis via arogenate
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.485
– volume: 98
  start-page: 112
  year: 2019
  ident: 10.1016/j.pbi.2022.102221_bib27
  article-title: PDC1, a pyruvate/α-ketoacid decarboxylase, is involved in acetaldehyde, propanal and pentanal biosynthesis in melon (Cucumis melo L.) fruit
  publication-title: Plant J
  doi: 10.1111/tpj.14204
– volume: 84
  start-page: 277
  year: 1987
  ident: 10.1016/j.pbi.2022.102221_bib38
  article-title: Metabolism of 5-methylthioribose to methionine
  publication-title: Plant Physiol
  doi: 10.1104/pp.84.2.277
– volume: 40
  start-page: 1027
  year: 1907
  ident: 10.1016/j.pbi.2022.102221_bib1
  article-title: Über die bedingungen der fuselölbildung und über ihren zusammenhang mit dem eiweissaufbau der hefe
  publication-title: Ber Dtsch Chem Ges
  doi: 10.1002/cber.190704001156
– volume: 37
  start-page: 1836
  year: 2014
  ident: 10.1016/j.pbi.2022.102221_bib34
  article-title: Little peaks with big effects: establishing the role of minor plant volatiles in plant–insect interactions
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.12357
– volume: 4
  start-page: 2833
  year: 2013
  ident: 10.1016/j.pbi.2022.102221_bib64
  article-title: An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase
  publication-title: Nat Commun
  doi: 10.1038/ncomms3833
– volume: 103
  start-page: 10128
  year: 2006
  ident: 10.1016/j.pbi.2022.102221_bib56
  article-title: Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0603732103
– volume: 274
  start-page: 223
  year: 2018
  ident: 10.1016/j.pbi.2022.102221_bib21
  article-title: Concealed ester formation and amino acid metabolism to volatile compounds in table grape (Vitis vinifera L.) berries
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2018.05.020
– year: 2014
  ident: 10.1016/j.pbi.2022.102221_bib44
  article-title: Conversion of Essential Amino Acids Into Aroma Volatiles in Developing Melon Fruit
– volume: 123
  start-page: 906
  year: 1998
  ident: 10.1016/j.pbi.2022.102221_bib25
  article-title: Relationship between sensory and instrumental analysis for tomato flavor
  publication-title: J Am Soc Hortic Sci
– volume: 103
  start-page: 15687
  year: 2006
  ident: 10.1016/j.pbi.2022.102221_bib15
  article-title: Methionine catabolism in Arabidopsis cells is initiated by a γ-cleavage process and leads to S-methylcysteine and isoleucine syntheses
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0606195103
– volume: 72
  start-page: 1
  year: 2006
  ident: 10.1016/j.pbi.2022.102221_bib35
  article-title: Diversity and distribution of floral scent
  publication-title: Bot Rev
  doi: 10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2
– volume: 50
  start-page: 4037
  year: 2002
  ident: 10.1016/j.pbi.2022.102221_bib23
  article-title: Biosynthesis of strawberry aroma compounds through amino acid metabolism
  publication-title: J Agric Food Chem
  doi: 10.1021/jf011465r
– volume: 109
  start-page: 16383
  year: 2012
  ident: 10.1016/j.pbi.2022.102221_bib60
  article-title: Completion of the core β-oxidative pathway of benzoic acid biosynthesis in plants
  publication-title: Proc Natl Acad Sci Unit States Am
  doi: 10.1073/pnas.1211001109
– volume: 10
  start-page: 15
  year: 2019
  ident: 10.1016/j.pbi.2022.102221_sref65
  article-title: Completion of the cytosolic post-chorismate phenylalanine biosynthetic pathway in plants
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07969-2
– volume: 208
  start-page: 2885
  year: 2005
  ident: 10.1016/j.pbi.2022.102221_bib3
  article-title: A concept of dietary dipeptides: a step to resolve the problem of amino acid availability in the early life of vertebrates
  publication-title: J Exp Biol
  doi: 10.1242/jeb.01689
– volume: vol. 3
  start-page: 53
  year: 1966
  ident: 10.1016/j.pbi.2022.102221_bib4
  article-title: Amino acid and protein metabolism in insect development
– volume: 23
  start-page: 2738
  year: 2011
  ident: 10.1016/j.pbi.2022.102221_bib69
  article-title: Identification of genes in the phenylalanine metabolic pathway by ectopic expression of a MYB transcription factor in tomato fruit
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.086975
– volume: 118
  year: 2021
  ident: 10.1016/j.pbi.2022.102221_sref30
  article-title: Citramalate synthase yields a biosynthetic pathway for isoleucine and straight- and branched-chain ester formation in ripening apple fruit
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2009988118
– volume: vol. 214
  year: 1982
  ident: 10.1016/j.pbi.2022.102221_bib7
– volume: 355
  start-page: 391
  year: 2017
  ident: 10.1016/j.pbi.2022.102221_bib24
  article-title: A chemical genetic roadmap to improved tomato flavor
  publication-title: Science
  doi: 10.1126/science.aal1556
– volume: 281
  start-page: 23357
  year: 2006
  ident: 10.1016/j.pbi.2022.102221_bib11
  article-title: Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M602708200
– start-page: 639
  year: 2007
  ident: 10.1016/j.pbi.2022.102221_bib45
  article-title: Flavors
– volume: 80
  start-page: 1095
  year: 2014
  ident: 10.1016/j.pbi.2022.102221_bib37
  article-title: Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar
  publication-title: Plant J
  doi: 10.1111/tpj.12711
– volume: 3
  start-page: 371
  year: 2002
  ident: 10.1016/j.pbi.2022.102221_bib50
  article-title: The phenylpropanoid pathway and plant defence—a genomics perspective
  publication-title: Mol Plant Pathol
  doi: 10.1046/j.1364-3703.2002.00131.x
– volume: 63
  start-page: 2106
  year: 2015
  ident: 10.1016/j.pbi.2022.102221_bib32
  article-title: Volatile profiles of members of the USDA geneva malus core collection: utility in evaluation of a hypothesized biosynthetic pathway for esters derived from 2-methylbutanoate and 2-methylbutan-1-ol
  publication-title: J Agric Food Chem
  doi: 10.1021/jf505523m
– volume: 117
  start-page: 10806
  year: 2020
  ident: 10.1016/j.pbi.2022.102221_sref54
  article-title: Structural basis for divergent and convergent evolution of catalytic machineries in plant aromatic amino acid decarboxylase proteins
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1920097117
– volume: 5
  start-page: 366
  year: 2012
  ident: 10.1016/j.pbi.2022.102221_sref14
  article-title: Catabolism of branched chain amino acids supports respiration but not volatile synthesis in tomato fruits
  publication-title: Mol Plant
  doi: 10.1093/mp/ssr108
– volume: 136
  start-page: 429
  year: 2011
  ident: 10.1016/j.pbi.2022.102221_bib31
  article-title: Changes in free amino acid content in ‘Jonagold’ apple fruit as related to branched-chain ester production, ripening, and senescence
  publication-title: J Am Soc Hortic Sci
– volume: 51
  start-page: 5695
  year: 2003
  ident: 10.1016/j.pbi.2022.102221_bib46
  article-title: Enhancement of the primary flavor compound methional in potato by increasing the level of soluble methionine
  publication-title: J Agric Food Chem
  doi: 10.1021/jf030148c
– volume: 64
  start-page: 4441
  year: 2013
  ident: 10.1016/j.pbi.2022.102221_sref20
  article-title: Tomato fruits expressing a bacterial feedback-insensitive 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway possess enhanced levels of multiple specialized metabolites and upgraded aroma
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ert250
– volume: 65
  start-page: 2737
  year: 2017
  ident: 10.1016/j.pbi.2022.102221_bib48
  article-title: Concurrent overexpression of Arabidopsis thaliana cystathionine γ-synthase and silencing of endogenous methionine γ-lyase enhance tuber methionine content in Solanum tuberosum
  publication-title: J Agric Food Chem
  doi: 10.1021/acs.jafc.7b00272
– volume: 95
  start-page: 497
  year: 2017
  ident: 10.1016/j.pbi.2022.102221_bib40
  article-title: Effects of transgenic expression of Brevibacterium linens methionine gamma lyase (MGL) on accumulation of Tylenchulus semipenetrans and key aminoacid contents in Carrizo citrange
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-017-0666-9
– volume: 71
  start-page: 70090
  year: 2007
  ident: 10.1016/j.pbi.2022.102221_bib55
  article-title: Production of 2-phenylethanol in roses as the dominant floral scent compound from L-phenylalanine by two key enzymes, a PLP-dependent decarboxylase and a phenylacetaldehyde reductase
  publication-title: Biosc Biotech Biochem
  doi: 10.1271/bbb.70090
– volume: 25
  start-page: 3067
  year: 2013
  ident: 10.1016/j.pbi.2022.102221_bib52
  article-title: Non-smoky glycosyltransferase1 prevents the release of smoky aroma from tomato fruit
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.114231
– volume: 26
  start-page: 178
  year: 1993
  ident: 10.1016/j.pbi.2022.102221_bib22
  article-title: Conversion of L-isoleucine into 2-methylbut-2-enyl esters in apples
  publication-title: LWT - Food Sci Technol (Lebensmittel-Wissenschaft -Technol)
  doi: 10.1006/fstl.1993.1036
– volume: 148
  start-page: 122
  year: 2018
  ident: 10.1016/j.pbi.2022.102221_bib8
  article-title: Differential metabolism of L-phenylalanine in the formation of aromatic volatiles in melon (Cucumis melo L.) fruit
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2017.12.018
– volume: 130
  start-page: 1536
  year: 2002
  ident: 10.1016/j.pbi.2022.102221_bib57
  article-title: Differential production of meta hydroxylated phenylpropanoids in sweet basil peltate glandular trichomes and leaves is controlled by the activities of specific acyltransferases and hydroxylases
  publication-title: Plant Physiol
  doi: 10.1104/pp.007146
– volume: 12
  start-page: 949
  year: 2000
  ident: 10.1016/j.pbi.2022.102221_bib39
  article-title: Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers
  publication-title: Plant Cell
  doi: 10.1105/tpc.12.6.949
– volume: 21
  start-page: 730
  year: 2011
  ident: 10.1016/j.pbi.2022.102221_bib51
  article-title: Pollinator choice in petunia depends on two major genetic loci for floral scent production
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2011.03.059
– volume: 10
  start-page: 807
  year: 2021
  ident: 10.1016/j.pbi.2022.102221_bib29
  article-title: Free amino acids profile and expression analysis of core genes involved in branched-chain amino acids metabolism during fruit development of Longan (Dimocarpus longan Lour.) cultivars with different aroma types
  publication-title: Biology
  doi: 10.3390/biology10080807
– volume: 22
  start-page: 832
  year: 2010
  ident: 10.1016/j.pbi.2022.102221_bib63
  article-title: RNAi suppression of arogenate dehydratase1 reveals that phenylalanine is synthesized predominantly via the arogenate pathway in petunia petals
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.073247
– volume: 55
  start-page: 2727
  year: 2007
  ident: 10.1016/j.pbi.2022.102221_bib18
  article-title: Pathway analysis of branched-chain ester biosynthesis in apple using deuterium labeling and enantioselective gas chromatography−mass spectrometry
  publication-title: J Agric Food Chem
  doi: 10.1021/jf063018n
– volume: 61
  start-page: 1111
  year: 2010
  ident: 10.1016/j.pbi.2022.102221_sref10
  article-title: Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erp390
– year: 2021
  ident: 10.1016/j.pbi.2022.102221_bib28
  article-title: RNA-seq reveals the effect of ethylene on the volatile organic components (VOCs) of Cavendish banana at different post-harvesting stages
  publication-title: J Plant Growth Regul
– volume: 25
  start-page: 4737
  year: 2013
  ident: 10.1016/j.pbi.2022.102221_sref36
  article-title: Two herbivore-induced cytochrome P450 enzymes CYP79D6 and CYP79D7 catalyze the formation of volatile aldoximes involved in poplar defense
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.118265
– volume: 21
  start-page: 661
  year: 2020
  ident: 10.1016/j.pbi.2022.102221_bib72
  article-title: Applications of CRISPR–Cas in agriculture and plant biotechnology
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/s41580-020-00288-9
– volume: 24
  start-page: 2015
  year: 2012
  ident: 10.1016/j.pbi.2022.102221_bib61
  article-title: Contribution of CoA ligases to benzenoid biosynthesis in petunia flowers
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.097519
– volume: 181
  start-page: 111657
  year: 2021
  ident: 10.1016/j.pbi.2022.102221_bib19
  article-title: Phenylalanine treatment generates scent in flowers by increased production of phenylpropanoid-benzenoid volatiles
  publication-title: Postharvest Biol Technol
  doi: 10.1016/j.postharvbio.2021.111657
– volume: 7
  start-page: 1166
  year: 2021
  ident: 10.1016/j.pbi.2022.102221_bib71
  article-title: Precise plant genome editing using base editors and prime editors
  publication-title: Nature Plants
  doi: 10.1038/s41477-021-00991-1
– volume: 13
  start-page: 125
  year: 2015
  ident: 10.1016/j.pbi.2022.102221_bib67
  article-title: Enhanced formation of aromatic amino acids increases fragrance without affecting flower longevity or pigmentation in Petunia × hybrida
  publication-title: Plant Biotechnology Journal
  doi: 10.1111/pbi.12253
– volume: 5
  start-page: 99
  year: 1999
  ident: 10.1016/j.pbi.2022.102221_bib42
  article-title: Thioester production and thioalcohol specificity of alcohol acetyltransferase in strawberry fruit
  publication-title: Food Sci Technol Res
  doi: 10.3136/fstr.5.99
– volume: 204
  start-page: 661
  year: 2014
  ident: 10.1016/j.pbi.2022.102221_bib58
  article-title: The monolignol pathway contributes to the biosynthesis of volatile phenylpropenes in flowers
  publication-title: New Phytol
  doi: 10.1111/nph.12913
– volume: 8
  start-page: 83
  year: 2015
  ident: 10.1016/j.pbi.2022.102221_bib53
  article-title: A familiar ring to it: biosynthesis of plant benzoic acids
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2014.12.001
– volume: 587
  start-page: 157
  year: 2020
  ident: 10.1016/j.pbi.2022.102221_bib74
  article-title: Atomic-resolution protein structure determination by cryo-EM
  publication-title: Nature
  doi: 10.1038/s41586-020-2833-4
– volume: 311
  start-page: 815
  year: 2006
  ident: 10.1016/j.pbi.2022.102221_bib5
  article-title: Plant volatile compounds: sensory cues for health and nutritional value?
  publication-title: Science
  doi: 10.1126/science.1112614
SSID ssj0005273
Score 2.6326406
SecondaryResourceType review_article
Snippet Aroma volatiles are essential for plant ecological fitness and reproduction. Plants produce and use volatiles to attract pollinators and seed dispersers, repel...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102221
SubjectTerms agricultural products
Aroma volatiles
Aromatic amino acids (AAA)
aromatic compounds
biosynthesis
biotechnology
Branched-chain amino acids (BCAA)
Flowers fragrance
Fruit flavor
plant biology
reproduction
Title Amino acids metabolism as a source for aroma volatiles biosynthesis
URI https://dx.doi.org/10.1016/j.pbi.2022.102221
https://www.ncbi.nlm.nih.gov/pubmed/35533493
https://www.proquest.com/docview/2661051292
https://www.proquest.com/docview/2661954863
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-iPvgifju_iOCTUNcmaZY-zqHMT0Qd-BaSJoXK1o51e9iLf7uXfog-bA9CobTcwXGX3P2Su1wQuiA8dI21rCcC7nsssdRTopN4JtQiVlxxHrt9yKdn3h-w-4_wYwX1mrMwrqyy9v2VTy-9df2nXWuzPU7T9ltAeRRCfCGk7GLieoIy1nGj_Orrd5lHmWV2xJ6jbjKbZY3XWKewRCTkqlz3BIti0yLsWcag2y20WYNH3K3k20YrNttB69c5ALz5Lup1R2mWYxWnpsAjOwXzDtNihFWBFa426TFAVKwm-UhhcEtglKEtsE7zYp4BECzSYg8Nbm_ee32vviPBi6ngUy9IBA8SX2krwBbUMhpHCuZYoJiJDAuN8DX4EK0CwwQ3BgBDIljCrKUdZoWi-2g1yzN7iHCsSSggpKlIAz8xmiqfUiPg0YQkSQv5jXZkXDcQd_dYDGVTKfYpQaHSKVRWCm2hyx-WcdU9Yxkxa1Qu_wwBCd59Gdt5Yx4JU8PlO1Rm81khHfbwHaAhy2lczztOW-igsu2PpADFKGURPfqfYMdow31VdWUnaHU6mdlTQDBTfVYO0TO01u29Pr64991D__kbs0TusQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BQYLLChZYuguskTghhSa2Y5xjqUDl1QsgcbPs2JGyapOKlAP_fsd5IDjQA1JOiUcazdgznz2TzwAnVMSeWMsFMhJhwDPHAi3Ps8DGRqZaaCFSfw55PxHjJ37zHD-vwKj7F8a3Vbaxv4npdbRu3wxaaw7meT54iJhIYswvlNYsJnwV1jw7VdyDteH17XjyodOjLjT78YEX6IqbdZvX3OS4S6T0rN76RF-lp6_gZ52GrrbgR4sfybBRcRtWXPET1i9KxHhvOzAazvKiJDrNbUVmboEenubVjOiKaNKc0xNEqUS_lDNNMDKhX6auIiYvq7cCsWCVV7vwdHX5OBoH7TUJQcqkWARRJkWUhdo4ie5gjrM00bjMIs1tYnlsZWgwjBgdWS6FtYgZMskz7hw7505qtge9oizcPpDU0FhiVtOJQXlqDdMhY1biYyjNsj6EnXVU2nKI-6sspqprFvun0KDKG1Q1Bu3D6bvIvCHQWDaYdyZXn2aBwgC_TOy4c4_C1eFLHrpw5WulPPwIPaahy8d42jvB-vCr8e27pojGGOMJ-_09xf7Cxvjx_k7dXU9u_8Cm_9K0mR1Ab_Hy6g4R0CzMUTth_wNutu_N
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amino+acids+metabolism+as+a+source+for+aroma+volatiles+biosynthesis&rft.jtitle=Current+opinion+in+plant+biology&rft.au=Maoz%2C+Itay&rft.au=Lewinsohn%2C+Efraim&rft.au=Gonda%2C+Itay&rft.date=2022-06-01&rft.eissn=1879-0356&rft.volume=67&rft.spage=102221&rft_id=info:doi/10.1016%2Fj.pbi.2022.102221&rft_id=info%3Apmid%2F35533493&rft.externalDocID=35533493
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-5266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-5266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-5266&client=summon