The effect of oxygen on formation of syngas contaminants during the thermochemical conversion of biomass
The effect of oxygen on the formation of syngas contaminants during the thermochemical conversion of carbonaceous feedstocks has been quantified using an integrated biorefinery plant operated at a biomass input of about 4.5 metric tons/day. This plant combines solids steam reforming and gases steam...
Saved in:
Published in | International journal of energy and environmental engineering Vol. 6; no. 4; pp. 405 - 417 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2015
Springer Nature B.V Springer Science + Business Media |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The effect of oxygen on the formation of syngas contaminants during the thermochemical conversion of carbonaceous feedstocks has been quantified using an integrated biorefinery plant operated at a biomass input of about 4.5 metric tons/day. This plant combines solids steam reforming and gases steam reforming processes for the conversion of biomass to syngas. It was found that the presence of low concentrations of oxygen (in air) during the thermochemical conversion process had a significant effect on the formation of contaminants in the syngas. For example, particulate organic carbon compounds (organic particulate contaminants) increased from 3.3 to 122 mg/m
3
when the oxygen input was increased from 225 ppm to 4.1 vol.% during the thermochemical conversion of wood to syngas. It is proposed that the primary free radical (
∗
) species H
∗
, OH
∗
, O
∗
, CH
3
∗
and
OOH
∗
, formed from the presence of O
2
in this high-temperature process, react with the myriad of organic compounds in the syngas at varying rates, depending upon their structure and reactivity. These processes represent the primary chemical mechanisms for the formation of high molecular weight hydrocarbons, polynuclear aromatic hydrocarbons, oxygenated hydrocarbons and polymeric materials, commonly referred to as organic particulate contaminants. The potential importance of these free-radical oxidation processes was supported by measuring the concentrations of selected oxygenated hydrocarbons in the syngas over a range of 225 ppm to 4.1 vol.% of O
2
in the thermochemical process. The concentrations of oxygenated polycyclic aromatic hydrocarbons (hydroxy-naphthalene, dihydroxy-naphthalene, dihydro-indene-2-one, and benzo-pyranone) increased by 732, 244, 83 and 195 times, respectively, when the oxygen concentration was increased from 225 ppm to 2.5 vol.%. These increases were due to the free-radical oxidation of the highly reactive PAHs during the thermochemical processes. The importance of these oxidation processes was further confirmed by studying the decrease of easily oxidized olefins. For example, the concentrations of 1,3-butadiene, acetylene, propene and ethene decreased by 9.3, 5.2, 4.5 and 3.4 times, respectively, when oxygen in the plant was increased from 1.6 to 2.5 vol.%. It is concluded that the formation of organic particulate contaminants during the thermochemical conversion of carbonaceous feedstocks can be minimized by maintaining the concentration of oxygen below 500 ppm. |
---|---|
AbstractList | (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) The effect of oxygen on the formation of syngas contaminants during the thermochemical conversion of carbonaceous feedstocks has been quantified using an integrated biorefinery plant operated at a biomass input of about 4.5 metric tons/day. This plant combines solids steam reforming and gases steam reforming processes for the conversion of biomass to syngas. It was found that the presence of low concentrations of oxygen (in air) during the thermochemical conversion process had a significant effect on the formation of contaminants in the syngas. For example, particulate organic carbon compounds (organic particulate contaminants) increased from 3.3 to 122 mg/m^sup 3^ when the oxygen input was increased from 225 ppm to 4.1 vol.% during the thermochemical conversion of wood to syngas. It is proposed that the primary free radical (...) species H..., OH..., O..., CH^sub 3^ ... and ..., formed from the presence of O2 in this high-temperature process, react with the myriad of organic compounds in the syngas at varying rates, depending upon their structure and reactivity. These processes represent the primary chemical mechanisms for the formation of high molecular weight hydrocarbons, polynuclear aromatic hydrocarbons, oxygenated hydrocarbons and polymeric materials, commonly referred to as organic particulate contaminants. The potential importance of these free-radical oxidation processes was supported by measuring the concentrations of selected oxygenated hydrocarbons in the syngas over a range of 225 ppm to 4.1 vol.% of O2 in the thermochemical process. The concentrations of oxygenated polycyclic aromatic hydrocarbons (hydroxy-naphthalene, dihydroxy-naphthalene, dihydro-indene-2-one, and benzo-pyranone) increased by 732, 244, 83 and 195 times, respectively, when the oxygen concentration was increased from 225 ppm to 2.5 vol.%. These increases were due to the free-radical oxidation of the highly reactive PAHs during the thermochemical processes. The importance of these oxidation processes was further confirmed by studying the decrease of easily oxidized olefins. For example, the concentrations of 1,3-butadiene, acetylene, propene and ethene decreased by 9.3, 5.2, 4.5 and 3.4 times, respectively, when oxygen in the plant was increased from 1.6 to 2.5 vol.%. It is concluded that the formation of organic particulate contaminants during the thermochemical conversion of carbonaceous feedstocks can be minimized by maintaining the concentration of oxygen below 500 ppm. The effect of oxygen on the formation of syngas contaminants during the thermochemical conversion of carbonaceous feedstocks has been quantified using an integrated biorefinery plant operated at a biomass input of about 4.5 metric tons/day. This plant combines solids steam reforming and gases steam reforming processes for the conversion of biomass to syngas. It was found that the presence of low concentrations of oxygen (in air) during the thermochemical conversion process had a significant effect on the formation of contaminants in the syngas. For example, particulate organic carbon compounds (organic particulate contaminants) increased from 3.3 to 122 mg/m 3 when the oxygen input was increased from 225 ppm to 4.1 vol.% during the thermochemical conversion of wood to syngas. It is proposed that the primary free radical ( ∗ ) species H ∗ , OH ∗ , O ∗ , CH 3 ∗ and OOH ∗ , formed from the presence of O 2 in this high-temperature process, react with the myriad of organic compounds in the syngas at varying rates, depending upon their structure and reactivity. These processes represent the primary chemical mechanisms for the formation of high molecular weight hydrocarbons, polynuclear aromatic hydrocarbons, oxygenated hydrocarbons and polymeric materials, commonly referred to as organic particulate contaminants. The potential importance of these free-radical oxidation processes was supported by measuring the concentrations of selected oxygenated hydrocarbons in the syngas over a range of 225 ppm to 4.1 vol.% of O 2 in the thermochemical process. The concentrations of oxygenated polycyclic aromatic hydrocarbons (hydroxy-naphthalene, dihydroxy-naphthalene, dihydro-indene-2-one, and benzo-pyranone) increased by 732, 244, 83 and 195 times, respectively, when the oxygen concentration was increased from 225 ppm to 2.5 vol.%. These increases were due to the free-radical oxidation of the highly reactive PAHs during the thermochemical processes. The importance of these oxidation processes was further confirmed by studying the decrease of easily oxidized olefins. For example, the concentrations of 1,3-butadiene, acetylene, propene and ethene decreased by 9.3, 5.2, 4.5 and 3.4 times, respectively, when oxygen in the plant was increased from 1.6 to 2.5 vol.%. It is concluded that the formation of organic particulate contaminants during the thermochemical conversion of carbonaceous feedstocks can be minimized by maintaining the concentration of oxygen below 500 ppm. |
Author | Kent Hoekman, S. Zielinska, Barbara Schuetzle, Dennis Schuetzle, Robert |
Author_xml | – sequence: 1 givenname: Dennis orcidid: 0000-0002-4744-0404 surname: Schuetzle fullname: Schuetzle, Dennis email: dennis@reii.us organization: Renewable Energy Institute International (REII) – sequence: 2 givenname: Robert surname: Schuetzle fullname: Schuetzle, Robert organization: Greyrock Energy – sequence: 3 givenname: S. surname: Kent Hoekman fullname: Kent Hoekman, S. organization: Division of Atmospheric Sciences, Desert Research Institute (DRI) – sequence: 4 givenname: Barbara surname: Zielinska fullname: Zielinska, Barbara organization: Division of Atmospheric Sciences, Desert Research Institute (DRI) |
BackLink | https://www.osti.gov/biblio/1494367$$D View this record in Osti.gov |
BookMark | eNp9kMtKAzEUhoMoWGsfwN2g69Fc5pIspXgDwU33Ic2ctCmdpCap2Lc343QhggYOOYTzhf98F-jUeQcIXRF8SzBu72KFsahLTIbibclP0ITSmpQNZ_Q09xjzUpCGnaNZjBucjxCMUj5B68UaCjAGdCq8KfznYQWu8K4wPvQq2dzl53hwKxUL7V1SvXXKpVh0-2DdqkiZzxV6r9fQW622w9gHhHhkl9b3KsZLdGbUNsLseE_R4vFhMX8uX9-eXub3r6VmvEkl6QzHbW24EaLqurxYTXDdVqSiS0M5gWXLagNEU-CaAaim6RgXpMOCNxTYFF2P3_qYrIzaJtDrHMjlBSWpRMWaNg_djEO74N_3EJPc-H1wOZYkLWNVXdNsborIOKWDjzGAkbtgexUOkmA5eJejd5m9y8G7HJj2F5MTfGtMQdntvyQdybgbvEL4kelP6Au0M5kU |
CitedBy_id | crossref_primary_10_1016_j_rser_2021_110710 crossref_primary_10_1016_j_jhazmat_2016_11_063 crossref_primary_10_1016_j_partic_2019_04_008 crossref_primary_10_3390_en12061106 crossref_primary_10_1016_j_scitotenv_2016_10_159 crossref_primary_10_1002_aic_15666 |
Cites_doi | 10.1021/ef9007032 10.1201/9781420030853 10.1007/s11783-011-0347-x 10.1016/j.fuel.2012.06.052 10.1016/0010-2180(77)90046-3 10.1002/cjce.5450620313 10.1016/S0016-2361(01)00062-X 10.1021/ef900098v 10.1016/S0167-2991(04)80464-6 10.1021/ef800551t 10.1016/S0009-2614(02)00202-6 10.1021/ef9602335 10.2172/1216415 10.1021/ef5027955 10.2172/3726 10.1021/ac60103a018 10.1289/ehp.834765 10.2172/1179256 10.3390/en20300556 10.1007/s13399-012-0066-y |
ContentType | Journal Article |
Copyright | The Author(s) 2015 Islamic Azad University 2015 |
Copyright_xml | – notice: The Author(s) 2015 – notice: Islamic Azad University 2015 |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY OTOTI |
DOI | 10.1007/s40095-015-0187-8 |
DatabaseName | SpringerOpen CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection OSTI.GOV |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2251-6832 |
EndPage | 417 |
ExternalDocumentID | 1494367 3867920141 10_1007_s40095_015_0187_8 |
GeographicLocations | Sacramento California United States--US |
GeographicLocations_xml | – name: Sacramento California – name: United States--US |
GrantInformation_xml | – fundername: U.S. Department of Energy grantid: DE-FC36-03GO13071 funderid: http://dx.doi.org/10.13039/100000015 |
GroupedDBID | -A0 0R~ 2XV 4.4 406 40G 5VS 7XC 8FE 8FG 8FH AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABFTD ABJNI ABMQK ABSXP ABTEG ABTKH ABTMW ACAOD ACDTI ACGFS ACHSB ACOKC ACPIV ACZOJ ADBBV ADINQ ADKNI ADMLS ADYFF AEFQL AEMSY AESKC AEUYN AFBBN AFKRA AFQWF AFRAH AGMZJ AGQEE AHBYD AHSBF AHYZX AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF ARAPS ATCPS BCNDV BENPR BGLVJ BHPHI C24 C6C CCPQU DPUIP EBLON EBS EJD FIGPU FNLPD GGCAI GROUPED_DOAJ H13 HCIFZ HZ~ IAO IKXTQ IPNFZ ITC IWAJR JZLTJ K6V K7- KQ8 LLZTM M~E NPVJJ NQJWS O9- OK1 P62 PATMY PIMPY PROAC PT4 PYCSY RIG RNS ROL RSV SEG SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB ABUWG AZQEC DWQXO GNUQQ JQ2 PKEHL PQEST PQQKQ PQUKI AAFGU AAPBV ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ADMDM AEFTE AESTI AEVTX AFGXO AGGBP AIMYW AJDOV AKQUC OTOTI |
ID | FETCH-LOGICAL-c386t-1df8075f8f994dd400510574142bf281eb735fe1c2e8c3eea66d3891d09862e3 |
IEDL.DBID | C6C |
ISSN | 2008-9163 |
IngestDate | Fri May 19 00:47:40 EDT 2023 Wed Aug 13 09:34:57 EDT 2025 Thu Jul 10 08:50:09 EDT 2025 Thu Apr 24 23:03:34 EDT 2025 Fri Feb 21 02:40:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Oxygen Wood Gas-phase contaminants Polynuclear aromatic hydrocarbons Diesel fuel Olefins Drop-in fuel Thermochemical conversion Biomass Gases steam reforming Solids steam reforming Syngas Particulate-phase contaminants Free-radical reactions Oxygenated volatile organic compounds Oxidation processes Gasification Integrated biorefinery Oxygenated polynuclear aromatic hydrocarbons |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c386t-1df8075f8f994dd400510574142bf281eb735fe1c2e8c3eea66d3891d09862e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE FC36-03GO13071 |
ORCID | 0000-0002-4744-0404 0000000247440404 |
OpenAccessLink | https://doi.org/10.1007/s40095-015-0187-8 |
PQID | 1733455268 |
PQPubID | 2034737 |
PageCount | 13 |
ParticipantIDs | osti_scitechconnect_1494367 proquest_journals_1733455268 crossref_primary_10_1007_s40095_015_0187_8 crossref_citationtrail_10_1007_s40095_015_0187_8 springer_journals_10_1007_s40095_015_0187_8 |
PublicationCentury | 2000 |
PublicationDate | 2015-12-01 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg – name: Iran, Islamic Republic of |
PublicationTitle | International journal of energy and environmental engineering |
PublicationTitleAbbrev | Int J Energy Environ Eng |
PublicationYear | 2015 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Science + Business Media |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Science + Business Media |
References | U.S. Department of Energy (DOE): Multi-year program plan. DOE Report #EE-1193, U.S. DOE Bioenergy Technologies Office, Golden (2015) KumarAJonesAAHannaMAThermochemical biomass gasification—a review of the current status of the technologyEnergies2009255658110.3390/en20300556 AtriGBaldwinRJacksonDWalkerRThe reaction of OH radicals and HO2 radicals with carbon monoxideCombust. Flame19773011210.1016/0010-2180(77)90046-3 European Committee for Standardization: Biomass gasification—Tar and particulates in product gases—sampling and analysis. CEN/TS Technical Report #15439, Brussels (2006) Schuetzle, D., Caldwell, M., Ganz, D., Hurley, R., Tamblyn, G., Tornatore, G., Jacobson, A.: An Assessment of Biomass Conversion Technologies and Recommendations in Support of the Deployment of a 450 ton/day Integrated Biofuels and Energy Production (IBEP) Plant for the Generation of Ethanol, Electricity and Heat from Rice Harvest Waste and other Agriculture Biomass Resources in Gridley, California. Department of Energy, Golden. Report #DE-FC36-03G013071, 1-138 (2007) SchuetzleDSampling of vehicle emissions for chemical analysis and biological testingEnviron. Health Perspect.198347536310.1289/ehp.834765 Denisov, E.T., Afanasev, I.B.: Oxidation and Antioxidants in Organic Chemistry and Biology. CRC Press, New York, 1-981 (2005) U.S. Department of Energy (DOE): Energy efficiency and renewable energy programs. U.S. DOE Bioenergy Technologies Office, Golden (2011) HendryDGMayoFRSchuetzleDRapid build-up of pyrophoric polymers from 1,3-butadiene and ethyleneCan. J. Chem. Eng.19846236737310.1002/cjce.5450620313 Gil, J., Aznar, M.P., Caballero, M.A., Frances, E., Corella, J.: Biomass gasification in fluidized bed at pilot scale with steam–oxygen mixtures—product distribution for very different operating conditions. Energy Fuels. 11, 1109–1118 (1997) Perlack, RD, Wright, LL, Turhollow, AF, Graham, RL, Stokes, BJ, Erbach, DC: Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National Laboratory Technical Report #TM-2005/66, Oak Ridge, TN (2005) Perlack, R.D., Stokes, B.J.: U.S. billion-ton update: biomass supply for a bioenergy and bioproducts industry. Oak Ridge National Laboratory Technical Report #TM-2011/224, Oak Ridge (2011) SippulaOHokkinenJPuustinenHYli-PirilaPJokiniemiJParticle emissions from small wood-fired district heating unitsEnergy Fuels2009232974298210.1021/ef900098v Van Passen, S.V.B., Kiel, J.H.A.: Tar formation in fluidized-bed gasification: impact of gasifier operating conditions. Agency for Research in Sustainable Energy Report #ECN-C-04-013, Petten (2004) HoekmanSKRobbinsCWangXZielinskaBSchuetzleDSchuetzleRCharacterization of trace contaminants in syngas from the thermochemical conversion of biomassBiomass Conv. Bioref.2013311312610.1007/s13399-012-0066-y RabouLPLMZwartRWRVreugdenhilBJBosLTar in biomass producer gas. The Energy Research Centre of the Netherlands (ECN)Energy Fuels2009236189619810.1021/ef9007032 Dry, M.E.: Fischer–Tropsch technology: studies in surface science and catalysis. 152, Stenberg, AP, Dry, ME, Ed. Elsevier, Amsterdam, pp. 533–600 (2004) WangXRobbinsCHoekmanSKChowJCWatsonJCSchuetzleDDilution sampling and analysis of particulate matter in biomass derived syngasFront. Environ. Sci. Eng. China2011532033110.1007/s11783-011-0347-x McGrathTSharmaRHajaligolMAn experimental investigation into the formation of polycyclic-aromatic hydrocarbons (PAH) from pyrolysis of biomass materialsFuel2001801787179710.1016/S0016-2361(01)00062-X Milne, T.A., Evans, R.J., Abatzoglou, N.: Biomass gasifier organic particulate contaminants—their nature, formation, and conversion. National Renewable Energy Laboratory Technical Report TP-570-25357, Golden (1998) GordonSCampbellCDifferential thermal analysis of inorganic compoundsAnal. Chem.1955271102110910.1021/ac60103a018 Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds. J. Phys. Chem. Ref. Data, Monograph 1. National Institute of Standards and Technology, Bethesda (1989) RanziECuociAFaravelliTFrassoldatiAMigliavaccaGPierucciSSommarivaSChemical kinetics of biomass pyrolysisEnergy Fuels2008224292430010.1021/ef800551t SchuetzleDTamblynGCaldwellMHanburyOSchuetzleRRodriquezRJohnsonADeichertFJorgensenRStrubleDDemonstration of a pilot integrated biorefinery for the efficient conversion of biomass to diesel fuel, DOE Technical Report #DE-EE00028762015GoldenU.S. DOE Bioenergy Technologies Office125610.2172/1179256 Bridgewater, A.V.: Advances in Thermochemical Biomass Conversion. Springer Science and Business Media, Berlin, 1-1734 (2013) U.S. Department of Energy (DOE): Thermochemical conversion. DOE Report #EE-0949, U.S. DOE Bioenergy Technologies Office, Golden (2013) BauschlicherCWRiccaARosiMMechanisms for the growth of polycyclic aromatic hydrocarbon (PAH) cationsChem. Phys. Lett.200235515916310.1016/S0009-2614(02)00202-6 StarkAKBatesRBZhaoZGhoniemAFPrediction and validation of major gas and tar species from a reactorEnergy Fuels2015292437245210.1021/ef5027955 KarimipourSGerspacherRGuptaRSpiteriRJStudy of factors affecting syngas quality and their interactions in fluidized bed gasification of lignite coalFuel201310330832010.1016/j.fuel.2012.06.052 187_CR1 187_CR5 187_CR4 T McGrath (187_CR20) 2001; 80 187_CR3 187_CR2 187_CR9 A Kumar (187_CR6) 2009; 2 187_CR8 187_CR26 187_CR7 187_CR24 E Ranzi (187_CR19) 2008; 22 S Gordon (187_CR27) 1955; 27 187_CR12 187_CR11 S Karimipour (187_CR29) 2013; 103 CW Bauschlicher (187_CR21) 2002; 355 LPLM Rabou (187_CR10) 2009; 23 X Wang (187_CR16) 2011; 5 G Atri (187_CR22) 1977; 30 DG Hendry (187_CR25) 1984; 62 187_CR14 D Schuetzle (187_CR17) 1983; 47 AK Stark (187_CR18) 2015; 29 D Schuetzle (187_CR13) 2015 SK Hoekman (187_CR15) 2013; 3 O Sippula (187_CR28) 2009; 23 187_CR23 |
References_xml | – reference: RabouLPLMZwartRWRVreugdenhilBJBosLTar in biomass producer gas. The Energy Research Centre of the Netherlands (ECN)Energy Fuels2009236189619810.1021/ef9007032 – reference: WangXRobbinsCHoekmanSKChowJCWatsonJCSchuetzleDDilution sampling and analysis of particulate matter in biomass derived syngasFront. Environ. Sci. Eng. China2011532033110.1007/s11783-011-0347-x – reference: SchuetzleDTamblynGCaldwellMHanburyOSchuetzleRRodriquezRJohnsonADeichertFJorgensenRStrubleDDemonstration of a pilot integrated biorefinery for the efficient conversion of biomass to diesel fuel, DOE Technical Report #DE-EE00028762015GoldenU.S. DOE Bioenergy Technologies Office125610.2172/1179256 – reference: Milne, T.A., Evans, R.J., Abatzoglou, N.: Biomass gasifier organic particulate contaminants—their nature, formation, and conversion. National Renewable Energy Laboratory Technical Report TP-570-25357, Golden (1998) – reference: U.S. Department of Energy (DOE): Thermochemical conversion. DOE Report #EE-0949, U.S. DOE Bioenergy Technologies Office, Golden (2013) – reference: McGrathTSharmaRHajaligolMAn experimental investigation into the formation of polycyclic-aromatic hydrocarbons (PAH) from pyrolysis of biomass materialsFuel2001801787179710.1016/S0016-2361(01)00062-X – reference: AtriGBaldwinRJacksonDWalkerRThe reaction of OH radicals and HO2 radicals with carbon monoxideCombust. Flame19773011210.1016/0010-2180(77)90046-3 – reference: Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds. J. Phys. Chem. Ref. Data, Monograph 1. National Institute of Standards and Technology, Bethesda (1989) – reference: Bridgewater, A.V.: Advances in Thermochemical Biomass Conversion. Springer Science and Business Media, Berlin, 1-1734 (2013) – reference: StarkAKBatesRBZhaoZGhoniemAFPrediction and validation of major gas and tar species from a reactorEnergy Fuels2015292437245210.1021/ef5027955 – reference: Perlack, R.D., Stokes, B.J.: U.S. billion-ton update: biomass supply for a bioenergy and bioproducts industry. Oak Ridge National Laboratory Technical Report #TM-2011/224, Oak Ridge (2011) – reference: Schuetzle, D., Caldwell, M., Ganz, D., Hurley, R., Tamblyn, G., Tornatore, G., Jacobson, A.: An Assessment of Biomass Conversion Technologies and Recommendations in Support of the Deployment of a 450 ton/day Integrated Biofuels and Energy Production (IBEP) Plant for the Generation of Ethanol, Electricity and Heat from Rice Harvest Waste and other Agriculture Biomass Resources in Gridley, California. Department of Energy, Golden. Report #DE-FC36-03G013071, 1-138 (2007) – reference: Gil, J., Aznar, M.P., Caballero, M.A., Frances, E., Corella, J.: Biomass gasification in fluidized bed at pilot scale with steam–oxygen mixtures—product distribution for very different operating conditions. Energy Fuels. 11, 1109–1118 (1997) – reference: HoekmanSKRobbinsCWangXZielinskaBSchuetzleDSchuetzleRCharacterization of trace contaminants in syngas from the thermochemical conversion of biomassBiomass Conv. Bioref.2013311312610.1007/s13399-012-0066-y – reference: European Committee for Standardization: Biomass gasification—Tar and particulates in product gases—sampling and analysis. CEN/TS Technical Report #15439, Brussels (2006) – reference: KarimipourSGerspacherRGuptaRSpiteriRJStudy of factors affecting syngas quality and their interactions in fluidized bed gasification of lignite coalFuel201310330832010.1016/j.fuel.2012.06.052 – reference: Perlack, RD, Wright, LL, Turhollow, AF, Graham, RL, Stokes, BJ, Erbach, DC: Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National Laboratory Technical Report #TM-2005/66, Oak Ridge, TN (2005) – reference: SippulaOHokkinenJPuustinenHYli-PirilaPJokiniemiJParticle emissions from small wood-fired district heating unitsEnergy Fuels2009232974298210.1021/ef900098v – reference: KumarAJonesAAHannaMAThermochemical biomass gasification—a review of the current status of the technologyEnergies2009255658110.3390/en20300556 – reference: U.S. Department of Energy (DOE): Energy efficiency and renewable energy programs. U.S. DOE Bioenergy Technologies Office, Golden (2011) – reference: GordonSCampbellCDifferential thermal analysis of inorganic compoundsAnal. Chem.1955271102110910.1021/ac60103a018 – reference: RanziECuociAFaravelliTFrassoldatiAMigliavaccaGPierucciSSommarivaSChemical kinetics of biomass pyrolysisEnergy Fuels2008224292430010.1021/ef800551t – reference: HendryDGMayoFRSchuetzleDRapid build-up of pyrophoric polymers from 1,3-butadiene and ethyleneCan. J. Chem. Eng.19846236737310.1002/cjce.5450620313 – reference: BauschlicherCWRiccaARosiMMechanisms for the growth of polycyclic aromatic hydrocarbon (PAH) cationsChem. Phys. Lett.200235515916310.1016/S0009-2614(02)00202-6 – reference: SchuetzleDSampling of vehicle emissions for chemical analysis and biological testingEnviron. Health Perspect.198347536310.1289/ehp.834765 – reference: U.S. Department of Energy (DOE): Multi-year program plan. DOE Report #EE-1193, U.S. DOE Bioenergy Technologies Office, Golden (2015) – reference: Dry, M.E.: Fischer–Tropsch technology: studies in surface science and catalysis. 152, Stenberg, AP, Dry, ME, Ed. Elsevier, Amsterdam, pp. 533–600 (2004) – reference: Denisov, E.T., Afanasev, I.B.: Oxidation and Antioxidants in Organic Chemistry and Biology. CRC Press, New York, 1-981 (2005) – reference: Van Passen, S.V.B., Kiel, J.H.A.: Tar formation in fluidized-bed gasification: impact of gasifier operating conditions. Agency for Research in Sustainable Energy Report #ECN-C-04-013, Petten (2004) – volume: 23 start-page: 6189 year: 2009 ident: 187_CR10 publication-title: Energy Fuels doi: 10.1021/ef9007032 – ident: 187_CR26 doi: 10.1201/9781420030853 – ident: 187_CR2 – volume: 5 start-page: 320 year: 2011 ident: 187_CR16 publication-title: Front. Environ. Sci. Eng. China doi: 10.1007/s11783-011-0347-x – volume: 103 start-page: 308 year: 2013 ident: 187_CR29 publication-title: Fuel doi: 10.1016/j.fuel.2012.06.052 – volume: 30 start-page: 1 year: 1977 ident: 187_CR22 publication-title: Combust. Flame doi: 10.1016/0010-2180(77)90046-3 – ident: 187_CR7 – ident: 187_CR14 – ident: 187_CR5 – ident: 187_CR9 – volume: 62 start-page: 367 year: 1984 ident: 187_CR25 publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.5450620313 – volume: 80 start-page: 1787 year: 2001 ident: 187_CR20 publication-title: Fuel doi: 10.1016/S0016-2361(01)00062-X – volume: 23 start-page: 2974 year: 2009 ident: 187_CR28 publication-title: Energy Fuels doi: 10.1021/ef900098v – ident: 187_CR24 – ident: 187_CR12 doi: 10.1016/S0167-2991(04)80464-6 – volume: 22 start-page: 4292 year: 2008 ident: 187_CR19 publication-title: Energy Fuels doi: 10.1021/ef800551t – volume: 355 start-page: 159 year: 2002 ident: 187_CR21 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(02)00202-6 – ident: 187_CR23 doi: 10.1021/ef9602335 – ident: 187_CR4 doi: 10.2172/1216415 – ident: 187_CR3 – volume: 29 start-page: 2437 year: 2015 ident: 187_CR18 publication-title: Energy Fuels doi: 10.1021/ef5027955 – ident: 187_CR8 doi: 10.2172/3726 – ident: 187_CR1 – volume: 27 start-page: 1102 year: 1955 ident: 187_CR27 publication-title: Anal. Chem. doi: 10.1021/ac60103a018 – volume: 47 start-page: 53 year: 1983 ident: 187_CR17 publication-title: Environ. Health Perspect. doi: 10.1289/ehp.834765 – ident: 187_CR11 – start-page: 1 volume-title: Demonstration of a pilot integrated biorefinery for the efficient conversion of biomass to diesel fuel, DOE Technical Report #DE-EE0002876 year: 2015 ident: 187_CR13 doi: 10.2172/1179256 – volume: 2 start-page: 556 year: 2009 ident: 187_CR6 publication-title: Energies doi: 10.3390/en20300556 – volume: 3 start-page: 113 year: 2013 ident: 187_CR15 publication-title: Biomass Conv. Bioref. doi: 10.1007/s13399-012-0066-y |
SSID | ssj0000993228 |
Score | 2.027896 |
Snippet | The effect of oxygen on the formation of syngas contaminants during the thermochemical conversion of carbonaceous feedstocks has been quantified using an... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) The effect of oxygen on the formation of syngas contaminants during the... |
SourceID | osti proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 405 |
SubjectTerms | Biomass Biorefineries Chemicals Contaminants Diesel fuels Energy Free radicals Gases High temperature Hydrocarbons Lignocellulose Molecular weight Naphthalene Organic compounds Original Research Oxidation Oxygen Particulate organic carbon Polycyclic aromatic hydrocarbons Polynuclear aromatic hydrocarbons Raw materials Renewable and Green Energy Synthesis gas VOCs Volatile organic compounds |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8NAFH5oe9GDuGJtlTl4UoImM5kkJ1FRimARqeAtJLPoQZPaVrD_3vemk7qAHnJJMgm8ZeZ7O8BhnERFZBIV4PGXBIKXcVCEmQqkCFUmpLBKk6F4O5D9B3HzGD96h9vEp1U2e6LbqHWtyEd-Eiaci5iak5yN3gKaGkXRVT9CYxnauAWnaQvaF1eDu_uFlwXxD0qsG0tHcX7EQrwJbVL9nCCEgdY0Xahs6Y_DqVWjkv0Anr9ipe4Iul6HNY8d2fmc2RuwZKpNWP3WUXALnpHtbJ6jwWrL6o8ZCgirK7YoUqTbk1n1VEwYpakXPhWGzesVGeJBusavNEnLtRJgLjHdedVoLdXrI-DehuH11fCyH_hhCoHiqZwGobbUd9imNsuE1sJpY4x4QkSljdLQlAmPrQlVZFLFjSmk1BTD1KcZGj2G70CrqiuzC4yH2kgtDXJZC4kQo7CFjWVRCm5FqaIOnDZEzJVvNE7zLl7yRYtkR_cc6Z4T3fO0A0eLJaN5l43_Xu4SZ3KECNTnVlFCkJqiDZMJLpMO9BqG5V4dJ_mX8HTguGHit8d__Wrv_491YSUi4XHZLT1oTcfvZh8xyrQ88IL4CbhL4lo priority: 102 providerName: ProQuest |
Title | The effect of oxygen on formation of syngas contaminants during the thermochemical conversion of biomass |
URI | https://link.springer.com/article/10.1007/s40095-015-0187-8 https://www.proquest.com/docview/1733455268 https://www.osti.gov/biblio/1494367 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_odtGD-Ilzc-TgSSmuTZq2Rx2bQ3CITNittPnQg7biJuh_73tZN7ahgofk0CYtvA_yS97L7wGchVGQBSZSHi5_kSd4HnqZnyhPCl8lQgqrNG0U74Zy8Chux-G4IoumuzBr8fvLiSAQgBteaugP8SbUQ59HVKWhK7uL4xQEOmiarv4cBfQR9PB5DPOnr6ysQrUSvWkFYa4FRd1a09-FnQoksquZVvdgwxT7sL1EHXgAz6hfNkvGYKVl5ecXWgIrC7a4jUiPJ1_FUzZhlI-eVTkvbHYxkSHwo_b-SiWzHGcAcxno7viM5tLFfETWhzDq90bdgVdVTfAUj-XU87UlgmEb2yQRWgvndiECBxHkNoh9k0c8tMZXgYkVNyaTUlOwUncS3N0YfgS1oizMMTDuayO1NKhOLSRiicxmNpRZLrgVuQoa0JkLMVUVozgVtnhJF1zITu4pyj0luadxA84XU95mdBp_DW6SZlLEAkRoqyjzR01xs5IILqMGtOYKSyu_m6R-xLkIicKmARdzJS69_u1XJ_8a3YStgGzJZbW0oDZ9_zCniE2meRs2RecG-7iPff26N7x_aDtL_QYoBdyn |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5UB7qMqjYgsFH8oFFJXYjpMcEKoKy1Iep0XiZiV-tAeaUHYR3R_V_9gZJ1keEtw45JKnNP4m89me-QbgS5LygrvURBj-0kiKMomKODeRkrHJpZLeWJoonp2r4YX8cZlczsG_rhaG0iq7f2L4Udva0Br51zgVQiYkTrJ__SeirlG0u9q10GhgceKmdzhlG-8dH-D4bnE-OBx9H0ZtV4HIiExNoth6EuD1mc9zaa0MsEwwsEpeep7FrkxF4l1suMuMcK5QytJmnt3Nkf07ga99A_NSYCCnwvTB0WxJB8kWukfogUdJBUi8RLePSsV6kugMTt3pQM_OHkXCXo0e_YjlPtmYDfFu8AHet0SVfWuQtQhzrlqCdw_kC5fhF2KMNQkhrPas_jtFNLK6YrOKSDo9nlY_izGjnPiizbthTXEkQ_JJx81vatsVdAtYyIIPS3j0LIkDILtfgdFr2Pgj9Kq6cqvARGydssohpKxUyGcKX_hEFaUUXpaG92G3M6I2rao5Nde40jM95mB3jXbXZHed9WF79sh1I-nx0s1rNDIa-QiJ6hrKPjITnDDlUqi0D-vdgOnW98f6Hql92OkG8cHl5z716eWXbcLCcHR2qk-Pz0_W4C0nIIW0mnXoTW5u3WckR5NyI0CSgX5lF_gPJzocTw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3RRULtAdEvsQVaH-DSKoLYjpMcEKKFFR9lhRCVuFmJP9oDJFt2K9ifxr9jxkm2UKncOOSy2STS-Nl-Yz-_AVhPUl5wl5oIp780kqJMoiLOTaRkbHKppDeWEsWToTr4IY8ukos5uOvOwpCsshsTw0Bta0Nr5JtxKoRMyJxk07eyiNO9wc7od0QVpGintSun0UDk2E1vMH0bbx_uYVtvcD7YP_92ELUVBiIjMjWJYuvJjNdnPs-ltTJANMFJVvLS8yx2ZSoS72LDXWaEc4VSljb27FaOmYAT-NoXMJ9SUtSD-a_7w9Oz2QIPUi_sLKEiHkkMkIaJbleVju5JIjeYyNOF_Tx7NC_2auzfjzjvP9u0YfYbLMFiS1vZboOz1zDnqjfw6oGZ4Vv4hYhjjTyE1Z7Vt1PEJqsrNjsfST-Pp9XPYsxIIV-0KhzWHJVkSEXpur6iIl7BxYAFTXxY0KNnySoAuf47OH-OKL-HXlVXbhmYiK1TVjkEmJUK2U3hC5-oopTCy9LwPmx1QdSm9TinUhuXeubOHOKuMe6a4q6zPnyePTJqDD6e-vMKtYxGdkIWu4a0SGaC6VMuhUr7sNo1mG5HgrH-i9s-fOka8cHt_33qw9Mv-wQLCH_9_XB4vAIvOeEoaGxWoTe5_uPWkClNyo8tJhnoZ-4F90wwIeE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+oxygen+on+formation+of+syngas+contaminants+during+the+thermochemical+conversion+of+biomass&rft.jtitle=International+journal+of+energy+and+environmental+engineering&rft.au=Schuetzle%2C+Dennis&rft.au=Schuetzle%2C+Robert&rft.au=Kent+Hoekman%2C+S.&rft.au=Zielinska%2C+Barbara&rft.date=2015-12-01&rft.issn=2008-9163&rft.eissn=2251-6832&rft.volume=6&rft.issue=4&rft.spage=405&rft.epage=417&rft_id=info:doi/10.1007%2Fs40095-015-0187-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40095_015_0187_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2008-9163&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2008-9163&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2008-9163&client=summon |