The effect of oxygen on formation of syngas contaminants during the thermochemical conversion of biomass

The effect of oxygen on the formation of syngas contaminants during the thermochemical conversion of carbonaceous feedstocks has been quantified using an integrated biorefinery plant operated at a biomass input of about 4.5 metric tons/day. This plant combines solids steam reforming and gases steam...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of energy and environmental engineering Vol. 6; no. 4; pp. 405 - 417
Main Authors Schuetzle, Dennis, Schuetzle, Robert, Kent Hoekman, S., Zielinska, Barbara
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2015
Springer Nature B.V
Springer Science + Business Media
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The effect of oxygen on the formation of syngas contaminants during the thermochemical conversion of carbonaceous feedstocks has been quantified using an integrated biorefinery plant operated at a biomass input of about 4.5 metric tons/day. This plant combines solids steam reforming and gases steam reforming processes for the conversion of biomass to syngas. It was found that the presence of low concentrations of oxygen (in air) during the thermochemical conversion process had a significant effect on the formation of contaminants in the syngas. For example, particulate organic carbon compounds (organic particulate contaminants) increased from 3.3 to 122 mg/m 3 when the oxygen input was increased from 225 ppm to 4.1 vol.% during the thermochemical conversion of wood to syngas. It is proposed that the primary free radical ( ∗ ) species H ∗ , OH ∗ , O ∗ , CH 3 ∗ and OOH ∗ , formed from the presence of O 2 in this high-temperature process, react with the myriad of organic compounds in the syngas at varying rates, depending upon their structure and reactivity. These processes represent the primary chemical mechanisms for the formation of high molecular weight hydrocarbons, polynuclear aromatic hydrocarbons, oxygenated hydrocarbons and polymeric materials, commonly referred to as organic particulate contaminants. The potential importance of these free-radical oxidation processes was supported by measuring the concentrations of selected oxygenated hydrocarbons in the syngas over a range of 225 ppm to 4.1 vol.% of O 2 in the thermochemical process. The concentrations of oxygenated polycyclic aromatic hydrocarbons (hydroxy-naphthalene, dihydroxy-naphthalene, dihydro-indene-2-one, and benzo-pyranone) increased by 732, 244, 83 and 195 times, respectively, when the oxygen concentration was increased from 225 ppm to 2.5 vol.%. These increases were due to the free-radical oxidation of the highly reactive PAHs during the thermochemical processes. The importance of these oxidation processes was further confirmed by studying the decrease of easily oxidized olefins. For example, the concentrations of 1,3-butadiene, acetylene, propene and ethene decreased by 9.3, 5.2, 4.5 and 3.4 times, respectively, when oxygen in the plant was increased from 1.6 to 2.5 vol.%. It is concluded that the formation of organic particulate contaminants during the thermochemical conversion of carbonaceous feedstocks can be minimized by maintaining the concentration of oxygen below 500 ppm.
AbstractList (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) The effect of oxygen on the formation of syngas contaminants during the thermochemical conversion of carbonaceous feedstocks has been quantified using an integrated biorefinery plant operated at a biomass input of about 4.5 metric tons/day. This plant combines solids steam reforming and gases steam reforming processes for the conversion of biomass to syngas. It was found that the presence of low concentrations of oxygen (in air) during the thermochemical conversion process had a significant effect on the formation of contaminants in the syngas. For example, particulate organic carbon compounds (organic particulate contaminants) increased from 3.3 to 122 mg/m^sup 3^ when the oxygen input was increased from 225 ppm to 4.1 vol.% during the thermochemical conversion of wood to syngas. It is proposed that the primary free radical (...) species H..., OH..., O..., CH^sub 3^ ... and ..., formed from the presence of O2 in this high-temperature process, react with the myriad of organic compounds in the syngas at varying rates, depending upon their structure and reactivity. These processes represent the primary chemical mechanisms for the formation of high molecular weight hydrocarbons, polynuclear aromatic hydrocarbons, oxygenated hydrocarbons and polymeric materials, commonly referred to as organic particulate contaminants. The potential importance of these free-radical oxidation processes was supported by measuring the concentrations of selected oxygenated hydrocarbons in the syngas over a range of 225 ppm to 4.1 vol.% of O2 in the thermochemical process. The concentrations of oxygenated polycyclic aromatic hydrocarbons (hydroxy-naphthalene, dihydroxy-naphthalene, dihydro-indene-2-one, and benzo-pyranone) increased by 732, 244, 83 and 195 times, respectively, when the oxygen concentration was increased from 225 ppm to 2.5 vol.%. These increases were due to the free-radical oxidation of the highly reactive PAHs during the thermochemical processes. The importance of these oxidation processes was further confirmed by studying the decrease of easily oxidized olefins. For example, the concentrations of 1,3-butadiene, acetylene, propene and ethene decreased by 9.3, 5.2, 4.5 and 3.4 times, respectively, when oxygen in the plant was increased from 1.6 to 2.5 vol.%. It is concluded that the formation of organic particulate contaminants during the thermochemical conversion of carbonaceous feedstocks can be minimized by maintaining the concentration of oxygen below 500 ppm.
The effect of oxygen on the formation of syngas contaminants during the thermochemical conversion of carbonaceous feedstocks has been quantified using an integrated biorefinery plant operated at a biomass input of about 4.5 metric tons/day. This plant combines solids steam reforming and gases steam reforming processes for the conversion of biomass to syngas. It was found that the presence of low concentrations of oxygen (in air) during the thermochemical conversion process had a significant effect on the formation of contaminants in the syngas. For example, particulate organic carbon compounds (organic particulate contaminants) increased from 3.3 to 122 mg/m 3 when the oxygen input was increased from 225 ppm to 4.1 vol.% during the thermochemical conversion of wood to syngas. It is proposed that the primary free radical ( ∗ ) species H ∗ , OH ∗ , O ∗ , CH 3 ∗ and OOH ∗ , formed from the presence of O 2 in this high-temperature process, react with the myriad of organic compounds in the syngas at varying rates, depending upon their structure and reactivity. These processes represent the primary chemical mechanisms for the formation of high molecular weight hydrocarbons, polynuclear aromatic hydrocarbons, oxygenated hydrocarbons and polymeric materials, commonly referred to as organic particulate contaminants. The potential importance of these free-radical oxidation processes was supported by measuring the concentrations of selected oxygenated hydrocarbons in the syngas over a range of 225 ppm to 4.1 vol.% of O 2 in the thermochemical process. The concentrations of oxygenated polycyclic aromatic hydrocarbons (hydroxy-naphthalene, dihydroxy-naphthalene, dihydro-indene-2-one, and benzo-pyranone) increased by 732, 244, 83 and 195 times, respectively, when the oxygen concentration was increased from 225 ppm to 2.5 vol.%. These increases were due to the free-radical oxidation of the highly reactive PAHs during the thermochemical processes. The importance of these oxidation processes was further confirmed by studying the decrease of easily oxidized olefins. For example, the concentrations of 1,3-butadiene, acetylene, propene and ethene decreased by 9.3, 5.2, 4.5 and 3.4 times, respectively, when oxygen in the plant was increased from 1.6 to 2.5 vol.%. It is concluded that the formation of organic particulate contaminants during the thermochemical conversion of carbonaceous feedstocks can be minimized by maintaining the concentration of oxygen below 500 ppm.
Author Kent Hoekman, S.
Zielinska, Barbara
Schuetzle, Dennis
Schuetzle, Robert
Author_xml – sequence: 1
  givenname: Dennis
  orcidid: 0000-0002-4744-0404
  surname: Schuetzle
  fullname: Schuetzle, Dennis
  email: dennis@reii.us
  organization: Renewable Energy Institute International (REII)
– sequence: 2
  givenname: Robert
  surname: Schuetzle
  fullname: Schuetzle, Robert
  organization: Greyrock Energy
– sequence: 3
  givenname: S.
  surname: Kent Hoekman
  fullname: Kent Hoekman, S.
  organization: Division of Atmospheric Sciences, Desert Research Institute (DRI)
– sequence: 4
  givenname: Barbara
  surname: Zielinska
  fullname: Zielinska, Barbara
  organization: Division of Atmospheric Sciences, Desert Research Institute (DRI)
BackLink https://www.osti.gov/biblio/1494367$$D View this record in Osti.gov
BookMark eNp9kMtKAzEUhoMoWGsfwN2g69Fc5pIspXgDwU33Ic2ctCmdpCap2Lc343QhggYOOYTzhf98F-jUeQcIXRF8SzBu72KFsahLTIbibclP0ITSmpQNZ_Q09xjzUpCGnaNZjBucjxCMUj5B68UaCjAGdCq8KfznYQWu8K4wPvQq2dzl53hwKxUL7V1SvXXKpVh0-2DdqkiZzxV6r9fQW622w9gHhHhkl9b3KsZLdGbUNsLseE_R4vFhMX8uX9-eXub3r6VmvEkl6QzHbW24EaLqurxYTXDdVqSiS0M5gWXLagNEU-CaAaim6RgXpMOCNxTYFF2P3_qYrIzaJtDrHMjlBSWpRMWaNg_djEO74N_3EJPc-H1wOZYkLWNVXdNsborIOKWDjzGAkbtgexUOkmA5eJejd5m9y8G7HJj2F5MTfGtMQdntvyQdybgbvEL4kelP6Au0M5kU
CitedBy_id crossref_primary_10_1016_j_rser_2021_110710
crossref_primary_10_1016_j_jhazmat_2016_11_063
crossref_primary_10_1016_j_partic_2019_04_008
crossref_primary_10_3390_en12061106
crossref_primary_10_1016_j_scitotenv_2016_10_159
crossref_primary_10_1002_aic_15666
Cites_doi 10.1021/ef9007032
10.1201/9781420030853
10.1007/s11783-011-0347-x
10.1016/j.fuel.2012.06.052
10.1016/0010-2180(77)90046-3
10.1002/cjce.5450620313
10.1016/S0016-2361(01)00062-X
10.1021/ef900098v
10.1016/S0167-2991(04)80464-6
10.1021/ef800551t
10.1016/S0009-2614(02)00202-6
10.1021/ef9602335
10.2172/1216415
10.1021/ef5027955
10.2172/3726
10.1021/ac60103a018
10.1289/ehp.834765
10.2172/1179256
10.3390/en20300556
10.1007/s13399-012-0066-y
ContentType Journal Article
Copyright The Author(s) 2015
Islamic Azad University 2015
Copyright_xml – notice: The Author(s) 2015
– notice: Islamic Azad University 2015
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
OTOTI
DOI 10.1007/s40095-015-0187-8
DatabaseName SpringerOpen
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
OSTI.GOV
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2251-6832
EndPage 417
ExternalDocumentID 1494367
3867920141
10_1007_s40095_015_0187_8
GeographicLocations Sacramento California
United States--US
GeographicLocations_xml – name: Sacramento California
– name: United States--US
GrantInformation_xml – fundername: U.S. Department of Energy
  grantid: DE-FC36-03GO13071
  funderid: http://dx.doi.org/10.13039/100000015
GroupedDBID -A0
0R~
2XV
4.4
406
40G
5VS
7XC
8FE
8FG
8FH
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABFTD
ABJNI
ABMQK
ABSXP
ABTEG
ABTKH
ABTMW
ACAOD
ACDTI
ACGFS
ACHSB
ACOKC
ACPIV
ACZOJ
ADBBV
ADINQ
ADKNI
ADMLS
ADYFF
AEFQL
AEMSY
AESKC
AEUYN
AFBBN
AFKRA
AFQWF
AFRAH
AGMZJ
AGQEE
AHBYD
AHSBF
AHYZX
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
ARAPS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
C24
C6C
CCPQU
DPUIP
EBLON
EBS
EJD
FIGPU
FNLPD
GGCAI
GROUPED_DOAJ
H13
HCIFZ
HZ~
IAO
IKXTQ
IPNFZ
ITC
IWAJR
JZLTJ
K6V
K7-
KQ8
LLZTM
M~E
NPVJJ
NQJWS
O9-
OK1
P62
PATMY
PIMPY
PROAC
PT4
PYCSY
RIG
RNS
ROL
RSV
SEG
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
PKEHL
PQEST
PQQKQ
PQUKI
AAFGU
AAPBV
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ADMDM
AEFTE
AESTI
AEVTX
AFGXO
AGGBP
AIMYW
AJDOV
AKQUC
OTOTI
ID FETCH-LOGICAL-c386t-1df8075f8f994dd400510574142bf281eb735fe1c2e8c3eea66d3891d09862e3
IEDL.DBID C6C
ISSN 2008-9163
IngestDate Fri May 19 00:47:40 EDT 2023
Wed Aug 13 09:34:57 EDT 2025
Thu Jul 10 08:50:09 EDT 2025
Thu Apr 24 23:03:34 EDT 2025
Fri Feb 21 02:40:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Oxygen
Wood
Gas-phase contaminants
Polynuclear aromatic hydrocarbons
Diesel fuel
Olefins
Drop-in fuel
Thermochemical conversion
Biomass
Gases steam reforming
Solids steam reforming
Syngas
Particulate-phase contaminants
Free-radical reactions
Oxygenated volatile organic compounds
Oxidation processes
Gasification
Integrated biorefinery
Oxygenated polynuclear aromatic hydrocarbons
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-1df8075f8f994dd400510574142bf281eb735fe1c2e8c3eea66d3891d09862e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
FC36-03GO13071
ORCID 0000-0002-4744-0404
0000000247440404
OpenAccessLink https://doi.org/10.1007/s40095-015-0187-8
PQID 1733455268
PQPubID 2034737
PageCount 13
ParticipantIDs osti_scitechconnect_1494367
proquest_journals_1733455268
crossref_primary_10_1007_s40095_015_0187_8
crossref_citationtrail_10_1007_s40095_015_0187_8
springer_journals_10_1007_s40095_015_0187_8
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
– name: Iran, Islamic Republic of
PublicationTitle International journal of energy and environmental engineering
PublicationTitleAbbrev Int J Energy Environ Eng
PublicationYear 2015
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Science + Business Media
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Science + Business Media
References U.S. Department of Energy (DOE): Multi-year program plan. DOE Report #EE-1193, U.S. DOE Bioenergy Technologies Office, Golden (2015)
KumarAJonesAAHannaMAThermochemical biomass gasification—a review of the current status of the technologyEnergies2009255658110.3390/en20300556
AtriGBaldwinRJacksonDWalkerRThe reaction of OH radicals and HO2 radicals with carbon monoxideCombust. Flame19773011210.1016/0010-2180(77)90046-3
European Committee for Standardization: Biomass gasification—Tar and particulates in product gases—sampling and analysis. CEN/TS Technical Report #15439, Brussels (2006)
Schuetzle, D., Caldwell, M., Ganz, D., Hurley, R., Tamblyn, G., Tornatore, G., Jacobson, A.: An Assessment of Biomass Conversion Technologies and Recommendations in Support of the Deployment of a 450 ton/day Integrated Biofuels and Energy Production (IBEP) Plant for the Generation of Ethanol, Electricity and Heat from Rice Harvest Waste and other Agriculture Biomass Resources in Gridley, California. Department of Energy, Golden. Report #DE-FC36-03G013071, 1-138 (2007)
SchuetzleDSampling of vehicle emissions for chemical analysis and biological testingEnviron. Health Perspect.198347536310.1289/ehp.834765
Denisov, E.T., Afanasev, I.B.: Oxidation and Antioxidants in Organic Chemistry and Biology. CRC Press, New York, 1-981 (2005)
U.S. Department of Energy (DOE): Energy efficiency and renewable energy programs. U.S. DOE Bioenergy Technologies Office, Golden (2011)
HendryDGMayoFRSchuetzleDRapid build-up of pyrophoric polymers from 1,3-butadiene and ethyleneCan. J. Chem. Eng.19846236737310.1002/cjce.5450620313
Gil, J., Aznar, M.P., Caballero, M.A., Frances, E., Corella, J.: Biomass gasification in fluidized bed at pilot scale with steam–oxygen mixtures—product distribution for very different operating conditions. Energy Fuels. 11, 1109–1118 (1997)
Perlack, RD, Wright, LL, Turhollow, AF, Graham, RL, Stokes, BJ, Erbach, DC: Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National Laboratory Technical Report #TM-2005/66, Oak Ridge, TN (2005)
Perlack, R.D., Stokes, B.J.: U.S. billion-ton update: biomass supply for a bioenergy and bioproducts industry. Oak Ridge National Laboratory Technical Report #TM-2011/224, Oak Ridge (2011)
SippulaOHokkinenJPuustinenHYli-PirilaPJokiniemiJParticle emissions from small wood-fired district heating unitsEnergy Fuels2009232974298210.1021/ef900098v
Van Passen, S.V.B., Kiel, J.H.A.: Tar formation in fluidized-bed gasification: impact of gasifier operating conditions. Agency for Research in Sustainable Energy Report #ECN-C-04-013, Petten (2004)
HoekmanSKRobbinsCWangXZielinskaBSchuetzleDSchuetzleRCharacterization of trace contaminants in syngas from the thermochemical conversion of biomassBiomass Conv. Bioref.2013311312610.1007/s13399-012-0066-y
RabouLPLMZwartRWRVreugdenhilBJBosLTar in biomass producer gas. The Energy Research Centre of the Netherlands (ECN)Energy Fuels2009236189619810.1021/ef9007032
Dry, M.E.: Fischer–Tropsch technology: studies in surface science and catalysis. 152, Stenberg, AP, Dry, ME, Ed. Elsevier, Amsterdam, pp. 533–600 (2004)
WangXRobbinsCHoekmanSKChowJCWatsonJCSchuetzleDDilution sampling and analysis of particulate matter in biomass derived syngasFront. Environ. Sci. Eng. China2011532033110.1007/s11783-011-0347-x
McGrathTSharmaRHajaligolMAn experimental investigation into the formation of polycyclic-aromatic hydrocarbons (PAH) from pyrolysis of biomass materialsFuel2001801787179710.1016/S0016-2361(01)00062-X
Milne, T.A., Evans, R.J., Abatzoglou, N.: Biomass gasifier organic particulate contaminants—their nature, formation, and conversion. National Renewable Energy Laboratory Technical Report TP-570-25357, Golden (1998)
GordonSCampbellCDifferential thermal analysis of inorganic compoundsAnal. Chem.1955271102110910.1021/ac60103a018
Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds. J. Phys. Chem. Ref. Data, Monograph 1. National Institute of Standards and Technology, Bethesda (1989)
RanziECuociAFaravelliTFrassoldatiAMigliavaccaGPierucciSSommarivaSChemical kinetics of biomass pyrolysisEnergy Fuels2008224292430010.1021/ef800551t
SchuetzleDTamblynGCaldwellMHanburyOSchuetzleRRodriquezRJohnsonADeichertFJorgensenRStrubleDDemonstration of a pilot integrated biorefinery for the efficient conversion of biomass to diesel fuel, DOE Technical Report #DE-EE00028762015GoldenU.S. DOE Bioenergy Technologies Office125610.2172/1179256
Bridgewater, A.V.: Advances in Thermochemical Biomass Conversion. Springer Science and Business Media, Berlin, 1-1734 (2013)
U.S. Department of Energy (DOE): Thermochemical conversion. DOE Report #EE-0949, U.S. DOE Bioenergy Technologies Office, Golden (2013)
BauschlicherCWRiccaARosiMMechanisms for the growth of polycyclic aromatic hydrocarbon (PAH) cationsChem. Phys. Lett.200235515916310.1016/S0009-2614(02)00202-6
StarkAKBatesRBZhaoZGhoniemAFPrediction and validation of major gas and tar species from a reactorEnergy Fuels2015292437245210.1021/ef5027955
KarimipourSGerspacherRGuptaRSpiteriRJStudy of factors affecting syngas quality and their interactions in fluidized bed gasification of lignite coalFuel201310330832010.1016/j.fuel.2012.06.052
187_CR1
187_CR5
187_CR4
T McGrath (187_CR20) 2001; 80
187_CR3
187_CR2
187_CR9
A Kumar (187_CR6) 2009; 2
187_CR8
187_CR26
187_CR7
187_CR24
E Ranzi (187_CR19) 2008; 22
S Gordon (187_CR27) 1955; 27
187_CR12
187_CR11
S Karimipour (187_CR29) 2013; 103
CW Bauschlicher (187_CR21) 2002; 355
LPLM Rabou (187_CR10) 2009; 23
X Wang (187_CR16) 2011; 5
G Atri (187_CR22) 1977; 30
DG Hendry (187_CR25) 1984; 62
187_CR14
D Schuetzle (187_CR17) 1983; 47
AK Stark (187_CR18) 2015; 29
D Schuetzle (187_CR13) 2015
SK Hoekman (187_CR15) 2013; 3
O Sippula (187_CR28) 2009; 23
187_CR23
References_xml – reference: RabouLPLMZwartRWRVreugdenhilBJBosLTar in biomass producer gas. The Energy Research Centre of the Netherlands (ECN)Energy Fuels2009236189619810.1021/ef9007032
– reference: WangXRobbinsCHoekmanSKChowJCWatsonJCSchuetzleDDilution sampling and analysis of particulate matter in biomass derived syngasFront. Environ. Sci. Eng. China2011532033110.1007/s11783-011-0347-x
– reference: SchuetzleDTamblynGCaldwellMHanburyOSchuetzleRRodriquezRJohnsonADeichertFJorgensenRStrubleDDemonstration of a pilot integrated biorefinery for the efficient conversion of biomass to diesel fuel, DOE Technical Report #DE-EE00028762015GoldenU.S. DOE Bioenergy Technologies Office125610.2172/1179256
– reference: Milne, T.A., Evans, R.J., Abatzoglou, N.: Biomass gasifier organic particulate contaminants—their nature, formation, and conversion. National Renewable Energy Laboratory Technical Report TP-570-25357, Golden (1998)
– reference: U.S. Department of Energy (DOE): Thermochemical conversion. DOE Report #EE-0949, U.S. DOE Bioenergy Technologies Office, Golden (2013)
– reference: McGrathTSharmaRHajaligolMAn experimental investigation into the formation of polycyclic-aromatic hydrocarbons (PAH) from pyrolysis of biomass materialsFuel2001801787179710.1016/S0016-2361(01)00062-X
– reference: AtriGBaldwinRJacksonDWalkerRThe reaction of OH radicals and HO2 radicals with carbon monoxideCombust. Flame19773011210.1016/0010-2180(77)90046-3
– reference: Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds. J. Phys. Chem. Ref. Data, Monograph 1. National Institute of Standards and Technology, Bethesda (1989)
– reference: Bridgewater, A.V.: Advances in Thermochemical Biomass Conversion. Springer Science and Business Media, Berlin, 1-1734 (2013)
– reference: StarkAKBatesRBZhaoZGhoniemAFPrediction and validation of major gas and tar species from a reactorEnergy Fuels2015292437245210.1021/ef5027955
– reference: Perlack, R.D., Stokes, B.J.: U.S. billion-ton update: biomass supply for a bioenergy and bioproducts industry. Oak Ridge National Laboratory Technical Report #TM-2011/224, Oak Ridge (2011)
– reference: Schuetzle, D., Caldwell, M., Ganz, D., Hurley, R., Tamblyn, G., Tornatore, G., Jacobson, A.: An Assessment of Biomass Conversion Technologies and Recommendations in Support of the Deployment of a 450 ton/day Integrated Biofuels and Energy Production (IBEP) Plant for the Generation of Ethanol, Electricity and Heat from Rice Harvest Waste and other Agriculture Biomass Resources in Gridley, California. Department of Energy, Golden. Report #DE-FC36-03G013071, 1-138 (2007)
– reference: Gil, J., Aznar, M.P., Caballero, M.A., Frances, E., Corella, J.: Biomass gasification in fluidized bed at pilot scale with steam–oxygen mixtures—product distribution for very different operating conditions. Energy Fuels. 11, 1109–1118 (1997)
– reference: HoekmanSKRobbinsCWangXZielinskaBSchuetzleDSchuetzleRCharacterization of trace contaminants in syngas from the thermochemical conversion of biomassBiomass Conv. Bioref.2013311312610.1007/s13399-012-0066-y
– reference: European Committee for Standardization: Biomass gasification—Tar and particulates in product gases—sampling and analysis. CEN/TS Technical Report #15439, Brussels (2006)
– reference: KarimipourSGerspacherRGuptaRSpiteriRJStudy of factors affecting syngas quality and their interactions in fluidized bed gasification of lignite coalFuel201310330832010.1016/j.fuel.2012.06.052
– reference: Perlack, RD, Wright, LL, Turhollow, AF, Graham, RL, Stokes, BJ, Erbach, DC: Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National Laboratory Technical Report #TM-2005/66, Oak Ridge, TN (2005)
– reference: SippulaOHokkinenJPuustinenHYli-PirilaPJokiniemiJParticle emissions from small wood-fired district heating unitsEnergy Fuels2009232974298210.1021/ef900098v
– reference: KumarAJonesAAHannaMAThermochemical biomass gasification—a review of the current status of the technologyEnergies2009255658110.3390/en20300556
– reference: U.S. Department of Energy (DOE): Energy efficiency and renewable energy programs. U.S. DOE Bioenergy Technologies Office, Golden (2011)
– reference: GordonSCampbellCDifferential thermal analysis of inorganic compoundsAnal. Chem.1955271102110910.1021/ac60103a018
– reference: RanziECuociAFaravelliTFrassoldatiAMigliavaccaGPierucciSSommarivaSChemical kinetics of biomass pyrolysisEnergy Fuels2008224292430010.1021/ef800551t
– reference: HendryDGMayoFRSchuetzleDRapid build-up of pyrophoric polymers from 1,3-butadiene and ethyleneCan. J. Chem. Eng.19846236737310.1002/cjce.5450620313
– reference: BauschlicherCWRiccaARosiMMechanisms for the growth of polycyclic aromatic hydrocarbon (PAH) cationsChem. Phys. Lett.200235515916310.1016/S0009-2614(02)00202-6
– reference: SchuetzleDSampling of vehicle emissions for chemical analysis and biological testingEnviron. Health Perspect.198347536310.1289/ehp.834765
– reference: U.S. Department of Energy (DOE): Multi-year program plan. DOE Report #EE-1193, U.S. DOE Bioenergy Technologies Office, Golden (2015)
– reference: Dry, M.E.: Fischer–Tropsch technology: studies in surface science and catalysis. 152, Stenberg, AP, Dry, ME, Ed. Elsevier, Amsterdam, pp. 533–600 (2004)
– reference: Denisov, E.T., Afanasev, I.B.: Oxidation and Antioxidants in Organic Chemistry and Biology. CRC Press, New York, 1-981 (2005)
– reference: Van Passen, S.V.B., Kiel, J.H.A.: Tar formation in fluidized-bed gasification: impact of gasifier operating conditions. Agency for Research in Sustainable Energy Report #ECN-C-04-013, Petten (2004)
– volume: 23
  start-page: 6189
  year: 2009
  ident: 187_CR10
  publication-title: Energy Fuels
  doi: 10.1021/ef9007032
– ident: 187_CR26
  doi: 10.1201/9781420030853
– ident: 187_CR2
– volume: 5
  start-page: 320
  year: 2011
  ident: 187_CR16
  publication-title: Front. Environ. Sci. Eng. China
  doi: 10.1007/s11783-011-0347-x
– volume: 103
  start-page: 308
  year: 2013
  ident: 187_CR29
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.06.052
– volume: 30
  start-page: 1
  year: 1977
  ident: 187_CR22
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(77)90046-3
– ident: 187_CR7
– ident: 187_CR14
– ident: 187_CR5
– ident: 187_CR9
– volume: 62
  start-page: 367
  year: 1984
  ident: 187_CR25
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.5450620313
– volume: 80
  start-page: 1787
  year: 2001
  ident: 187_CR20
  publication-title: Fuel
  doi: 10.1016/S0016-2361(01)00062-X
– volume: 23
  start-page: 2974
  year: 2009
  ident: 187_CR28
  publication-title: Energy Fuels
  doi: 10.1021/ef900098v
– ident: 187_CR24
– ident: 187_CR12
  doi: 10.1016/S0167-2991(04)80464-6
– volume: 22
  start-page: 4292
  year: 2008
  ident: 187_CR19
  publication-title: Energy Fuels
  doi: 10.1021/ef800551t
– volume: 355
  start-page: 159
  year: 2002
  ident: 187_CR21
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)00202-6
– ident: 187_CR23
  doi: 10.1021/ef9602335
– ident: 187_CR4
  doi: 10.2172/1216415
– ident: 187_CR3
– volume: 29
  start-page: 2437
  year: 2015
  ident: 187_CR18
  publication-title: Energy Fuels
  doi: 10.1021/ef5027955
– ident: 187_CR8
  doi: 10.2172/3726
– ident: 187_CR1
– volume: 27
  start-page: 1102
  year: 1955
  ident: 187_CR27
  publication-title: Anal. Chem.
  doi: 10.1021/ac60103a018
– volume: 47
  start-page: 53
  year: 1983
  ident: 187_CR17
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.834765
– ident: 187_CR11
– start-page: 1
  volume-title: Demonstration of a pilot integrated biorefinery for the efficient conversion of biomass to diesel fuel, DOE Technical Report #DE-EE0002876
  year: 2015
  ident: 187_CR13
  doi: 10.2172/1179256
– volume: 2
  start-page: 556
  year: 2009
  ident: 187_CR6
  publication-title: Energies
  doi: 10.3390/en20300556
– volume: 3
  start-page: 113
  year: 2013
  ident: 187_CR15
  publication-title: Biomass Conv. Bioref.
  doi: 10.1007/s13399-012-0066-y
SSID ssj0000993228
Score 2.027896
Snippet The effect of oxygen on the formation of syngas contaminants during the thermochemical conversion of carbonaceous feedstocks has been quantified using an...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) The effect of oxygen on the formation of syngas contaminants during the...
SourceID osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 405
SubjectTerms Biomass
Biorefineries
Chemicals
Contaminants
Diesel fuels
Energy
Free radicals
Gases
High temperature
Hydrocarbons
Lignocellulose
Molecular weight
Naphthalene
Organic compounds
Original Research
Oxidation
Oxygen
Particulate organic carbon
Polycyclic aromatic hydrocarbons
Polynuclear aromatic hydrocarbons
Raw materials
Renewable and Green Energy
Synthesis gas
VOCs
Volatile organic compounds
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8NAFH5oe9GDuGJtlTl4UoImM5kkJ1FRimARqeAtJLPoQZPaVrD_3vemk7qAHnJJMgm8ZeZ7O8BhnERFZBIV4PGXBIKXcVCEmQqkCFUmpLBKk6F4O5D9B3HzGD96h9vEp1U2e6LbqHWtyEd-Eiaci5iak5yN3gKaGkXRVT9CYxnauAWnaQvaF1eDu_uFlwXxD0qsG0tHcX7EQrwJbVL9nCCEgdY0Xahs6Y_DqVWjkv0Anr9ipe4Iul6HNY8d2fmc2RuwZKpNWP3WUXALnpHtbJ6jwWrL6o8ZCgirK7YoUqTbk1n1VEwYpakXPhWGzesVGeJBusavNEnLtRJgLjHdedVoLdXrI-DehuH11fCyH_hhCoHiqZwGobbUd9imNsuE1sJpY4x4QkSljdLQlAmPrQlVZFLFjSmk1BTD1KcZGj2G70CrqiuzC4yH2kgtDXJZC4kQo7CFjWVRCm5FqaIOnDZEzJVvNE7zLl7yRYtkR_cc6Z4T3fO0A0eLJaN5l43_Xu4SZ3KECNTnVlFCkJqiDZMJLpMO9BqG5V4dJ_mX8HTguGHit8d__Wrv_491YSUi4XHZLT1oTcfvZh8xyrQ88IL4CbhL4lo
  priority: 102
  providerName: ProQuest
Title The effect of oxygen on formation of syngas contaminants during the thermochemical conversion of biomass
URI https://link.springer.com/article/10.1007/s40095-015-0187-8
https://www.proquest.com/docview/1733455268
https://www.osti.gov/biblio/1494367
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_odtGD-Ilzc-TgSSmuTZq2Rx2bQ3CITNittPnQg7biJuh_73tZN7ahgofk0CYtvA_yS97L7wGchVGQBSZSHi5_kSd4HnqZnyhPCl8lQgqrNG0U74Zy8Chux-G4IoumuzBr8fvLiSAQgBteaugP8SbUQ59HVKWhK7uL4xQEOmiarv4cBfQR9PB5DPOnr6ysQrUSvWkFYa4FRd1a09-FnQoksquZVvdgwxT7sL1EHXgAz6hfNkvGYKVl5ecXWgIrC7a4jUiPJ1_FUzZhlI-eVTkvbHYxkSHwo_b-SiWzHGcAcxno7viM5tLFfETWhzDq90bdgVdVTfAUj-XU87UlgmEb2yQRWgvndiECBxHkNoh9k0c8tMZXgYkVNyaTUlOwUncS3N0YfgS1oizMMTDuayO1NKhOLSRiicxmNpRZLrgVuQoa0JkLMVUVozgVtnhJF1zITu4pyj0luadxA84XU95mdBp_DW6SZlLEAkRoqyjzR01xs5IILqMGtOYKSyu_m6R-xLkIicKmARdzJS69_u1XJ_8a3YStgGzJZbW0oDZ9_zCniE2meRs2RecG-7iPff26N7x_aDtL_QYoBdyn
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5UB7qMqjYgsFH8oFFJXYjpMcEKoKy1Iep0XiZiV-tAeaUHYR3R_V_9gZJ1keEtw45JKnNP4m89me-QbgS5LygrvURBj-0kiKMomKODeRkrHJpZLeWJoonp2r4YX8cZlczsG_rhaG0iq7f2L4Udva0Br51zgVQiYkTrJ__SeirlG0u9q10GhgceKmdzhlG-8dH-D4bnE-OBx9H0ZtV4HIiExNoth6EuD1mc9zaa0MsEwwsEpeep7FrkxF4l1suMuMcK5QytJmnt3Nkf07ga99A_NSYCCnwvTB0WxJB8kWukfogUdJBUi8RLePSsV6kugMTt3pQM_OHkXCXo0e_YjlPtmYDfFu8AHet0SVfWuQtQhzrlqCdw_kC5fhF2KMNQkhrPas_jtFNLK6YrOKSDo9nlY_izGjnPiizbthTXEkQ_JJx81vatsVdAtYyIIPS3j0LIkDILtfgdFr2Pgj9Kq6cqvARGydssohpKxUyGcKX_hEFaUUXpaG92G3M6I2rao5Nde40jM95mB3jXbXZHed9WF79sh1I-nx0s1rNDIa-QiJ6hrKPjITnDDlUqi0D-vdgOnW98f6Hql92OkG8cHl5z716eWXbcLCcHR2qk-Pz0_W4C0nIIW0mnXoTW5u3WckR5NyI0CSgX5lF_gPJzocTw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3RRULtAdEvsQVaH-DSKoLYjpMcEKKFFR9lhRCVuFmJP9oDJFt2K9ifxr9jxkm2UKncOOSy2STS-Nl-Yz-_AVhPUl5wl5oIp780kqJMoiLOTaRkbHKppDeWEsWToTr4IY8ukos5uOvOwpCsshsTw0Bta0Nr5JtxKoRMyJxk07eyiNO9wc7od0QVpGintSun0UDk2E1vMH0bbx_uYVtvcD7YP_92ELUVBiIjMjWJYuvJjNdnPs-ltTJANMFJVvLS8yx2ZSoS72LDXWaEc4VSljb27FaOmYAT-NoXMJ9SUtSD-a_7w9Oz2QIPUi_sLKEiHkkMkIaJbleVju5JIjeYyNOF_Tx7NC_2auzfjzjvP9u0YfYbLMFiS1vZboOz1zDnqjfw6oGZ4Vv4hYhjjTyE1Z7Vt1PEJqsrNjsfST-Pp9XPYsxIIV-0KhzWHJVkSEXpur6iIl7BxYAFTXxY0KNnySoAuf47OH-OKL-HXlVXbhmYiK1TVjkEmJUK2U3hC5-oopTCy9LwPmx1QdSm9TinUhuXeubOHOKuMe6a4q6zPnyePTJqDD6e-vMKtYxGdkIWu4a0SGaC6VMuhUr7sNo1mG5HgrH-i9s-fOka8cHt_33qw9Mv-wQLCH_9_XB4vAIvOeEoaGxWoTe5_uPWkClNyo8tJhnoZ-4F90wwIeE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+oxygen+on+formation+of+syngas+contaminants+during+the+thermochemical+conversion+of+biomass&rft.jtitle=International+journal+of+energy+and+environmental+engineering&rft.au=Schuetzle%2C+Dennis&rft.au=Schuetzle%2C+Robert&rft.au=Kent+Hoekman%2C+S.&rft.au=Zielinska%2C+Barbara&rft.date=2015-12-01&rft.issn=2008-9163&rft.eissn=2251-6832&rft.volume=6&rft.issue=4&rft.spage=405&rft.epage=417&rft_id=info:doi/10.1007%2Fs40095-015-0187-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40095_015_0187_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2008-9163&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2008-9163&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2008-9163&client=summon