Rapid and effective detection of Macrobrachium rosenbergii nodavirus using a combination of nucleic acid sequence-based amplification test and immunochromatographic strip

[Display omitted] •The NASBA-LFD for detecting MrNV-chin was developed by amlification at 41 °C in a single tube within 90 min followed by hybridization.•The NASBA-LFD was specific for MrNV.•Sensitivity of NASBA-LFD was about 104 times higher in comparison to PCR-based detection.•The NASBA-LFD would...

Full description

Saved in:
Bibliographic Details
Published inJournal of invertebrate pathology Vol. 198; p. 107921
Main Authors Lin, Feng, Shen, Jinyu, Liu, Yuelin, Huang, Aixia, Zhang, Haiqi, Chen, Fan, Zhou, Dongren, Zhou, Yang, Hao, Guijie
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •The NASBA-LFD for detecting MrNV-chin was developed by amlification at 41 °C in a single tube within 90 min followed by hybridization.•The NASBA-LFD was specific for MrNV.•Sensitivity of NASBA-LFD was about 104 times higher in comparison to PCR-based detection.•The NASBA-LFD would be a simple, rapid and reliable method for detection of WTD. Nucleic acid sequence-based amplification (NASBA) provides a fast and convenient approach for nucleic acid amplification under isothermal conditions, and its combination with an immunoassay-based lateral flow dipstick (LFD) could produce a higher detection efficiency for M. rosenbergii nodavirus isolated from China (MrNV-chin). In this study, two specific primers and a labelled probe of the capsid protein gene of MrNV-chin were constructed. The process of this assay mainly included a single-step amplification at a temperature of 41 ℃ for 90 min, and hybridization with an FITC-labeled probe for 5 min, with the hybridization been required for visual identification during LFD assay. The test results indicated that, the NASBA-LFD assay showed sensitivity for 1.0 fg M. rosenbergii total RNA with MrNV-chin infection, which was 104 times that of the present RT-PCR approach for the detection of MrNV. In addition, no products were created for shrimps with infection of other kinds of either DNA or RNA virus, which indicated that the NASBA-LFD was specific for MrNV. Therefore, the combination of NASBA and LFD is a new alternative detection method for MrNV which is rapid, accurate, sensitive and specific without expensive equipment and specialised personnel. Early detection of this infectious disease among aquatic organisms will help implement efficient therapeutic strategy to prevent its spread, enhance animal health and limit loss of aquatic breeds in the event of an outbreak.
AbstractList Nucleic acid sequence-based amplification (NASBA) provides a fast and convenient approach for nucleic acid amplification under isothermal conditions, and its combination with an immunoassay-based lateral flow dipstick (LFD) could produce a higher detection efficiency for M. rosenbergii nodavirus isolated from China (MrNV-chin). In this study, two specific primers and a labelled probe of the capsid protein gene of MrNV-chin were constructed. The process of this assay mainly included a single-step amplification at a temperature of 41 ℃ for 90 min, and hybridization with an FITC-labeled probe for 5 min, with the hybridization been required for visual identification during LFD assay. The test results indicated that, the NASBA-LFD assay showed sensitivity for 1.0 fg M. rosenbergii total RNA with MrNV-chin infection, which was 104 times that of the present RT-PCR approach for the detection of MrNV. In addition, no products were created for shrimps with infection of other kinds of either DNA or RNA virus, which indicated that the NASBA-LFD was specific for MrNV. Therefore, the combination of NASBA and LFD is a new alternative detection method for MrNV which is rapid, accurate, sensitive and specific without expensive equipment and specialised personnel. Early detection of this infectious disease among aquatic organisms will help implement efficient therapeutic strategy to prevent its spread, enhance animal health and limit loss of aquatic breeds in the event of an outbreak.Nucleic acid sequence-based amplification (NASBA) provides a fast and convenient approach for nucleic acid amplification under isothermal conditions, and its combination with an immunoassay-based lateral flow dipstick (LFD) could produce a higher detection efficiency for M. rosenbergii nodavirus isolated from China (MrNV-chin). In this study, two specific primers and a labelled probe of the capsid protein gene of MrNV-chin were constructed. The process of this assay mainly included a single-step amplification at a temperature of 41 ℃ for 90 min, and hybridization with an FITC-labeled probe for 5 min, with the hybridization been required for visual identification during LFD assay. The test results indicated that, the NASBA-LFD assay showed sensitivity for 1.0 fg M. rosenbergii total RNA with MrNV-chin infection, which was 104 times that of the present RT-PCR approach for the detection of MrNV. In addition, no products were created for shrimps with infection of other kinds of either DNA or RNA virus, which indicated that the NASBA-LFD was specific for MrNV. Therefore, the combination of NASBA and LFD is a new alternative detection method for MrNV which is rapid, accurate, sensitive and specific without expensive equipment and specialised personnel. Early detection of this infectious disease among aquatic organisms will help implement efficient therapeutic strategy to prevent its spread, enhance animal health and limit loss of aquatic breeds in the event of an outbreak.
[Display omitted] •The NASBA-LFD for detecting MrNV-chin was developed by amlification at 41 °C in a single tube within 90 min followed by hybridization.•The NASBA-LFD was specific for MrNV.•Sensitivity of NASBA-LFD was about 104 times higher in comparison to PCR-based detection.•The NASBA-LFD would be a simple, rapid and reliable method for detection of WTD. Nucleic acid sequence-based amplification (NASBA) provides a fast and convenient approach for nucleic acid amplification under isothermal conditions, and its combination with an immunoassay-based lateral flow dipstick (LFD) could produce a higher detection efficiency for M. rosenbergii nodavirus isolated from China (MrNV-chin). In this study, two specific primers and a labelled probe of the capsid protein gene of MrNV-chin were constructed. The process of this assay mainly included a single-step amplification at a temperature of 41 ℃ for 90 min, and hybridization with an FITC-labeled probe for 5 min, with the hybridization been required for visual identification during LFD assay. The test results indicated that, the NASBA-LFD assay showed sensitivity for 1.0 fg M. rosenbergii total RNA with MrNV-chin infection, which was 104 times that of the present RT-PCR approach for the detection of MrNV. In addition, no products were created for shrimps with infection of other kinds of either DNA or RNA virus, which indicated that the NASBA-LFD was specific for MrNV. Therefore, the combination of NASBA and LFD is a new alternative detection method for MrNV which is rapid, accurate, sensitive and specific without expensive equipment and specialised personnel. Early detection of this infectious disease among aquatic organisms will help implement efficient therapeutic strategy to prevent its spread, enhance animal health and limit loss of aquatic breeds in the event of an outbreak.
Nucleic acid sequence-based amplification (NASBA) provides a fast and convenient approach for nucleic acid amplification under isothermal conditions, and its combination with an immunoassay-based lateral flow dipstick (LFD) could produce a higher detection efficiency for M. rosenbergii nodavirus isolated from China (MrNV-chin). In this study, two specific primers and a labelled probe of the capsid protein gene of MrNV-chin were constructed. The process of this assay mainly included a single-step amplification at a temperature of 41 ℃ for 90 min, and hybridization with an FITC-labeled probe for 5 min, with the hybridization been required for visual identification during LFD assay. The test results indicated that, the NASBA-LFD assay showed sensitivity for 1.0 fg M. rosenbergii total RNA with MrNV-chin infection, which was 10⁴ times that of the present RT-PCR approach for the detection of MrNV. In addition, no products were created for shrimps with infection of other kinds of either DNA or RNA virus, which indicated that the NASBA-LFD was specific for MrNV. Therefore, the combination of NASBA and LFD is a new alternative detection method for MrNV which is rapid, accurate, sensitive and specific without expensive equipment and specialised personnel. Early detection of this infectious disease among aquatic organisms will help implement efficient therapeutic strategy to prevent its spread, enhance animal health and limit loss of aquatic breeds in the event of an outbreak.
Nucleic acid sequence-based amplification (NASBA) provides a fast and convenient approach for nucleic acid amplification under isothermal conditions, and its combination with an immunoassay-based lateral flow dipstick (LFD) could produce a higher detection efficiency for M. rosenbergii nodavirus isolated from China (MrNV-chin). In this study, two specific primers and a labelled probe of the capsid protein gene of MrNV-chin were constructed. The process of this assay mainly included a single-step amplification at a temperature of 41 ℃ for 90 min, and hybridization with an FITC-labeled probe for 5 min, with the hybridization been required for visual identification during LFD assay. The test results indicated that, the NASBA-LFD assay showed sensitivity for 1.0 fg M. rosenbergii total RNA with MrNV-chin infection, which was 10 times that of the present RT-PCR approach for the detection of MrNV. In addition, no products were created for shrimps with infection of other kinds of either DNA or RNA virus, which indicated that the NASBA-LFD was specific for MrNV. Therefore, the combination of NASBA and LFD is a new alternative detection method for MrNV which is rapid, accurate, sensitive and specific without expensive equipment and specialised personnel. Early detection of this infectious disease among aquatic organisms will help implement efficient therapeutic strategy to prevent its spread, enhance animal health and limit loss of aquatic breeds in the event of an outbreak.
ArticleNumber 107921
Author Liu, Yuelin
Zhou, Dongren
Hao, Guijie
Huang, Aixia
Zhou, Yang
Shen, Jinyu
Chen, Fan
Zhang, Haiqi
Lin, Feng
Author_xml – sequence: 1
  givenname: Feng
  surname: Lin
  fullname: Lin, Feng
  organization: Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
– sequence: 2
  givenname: Jinyu
  surname: Shen
  fullname: Shen, Jinyu
  organization: Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
– sequence: 3
  givenname: Yuelin
  surname: Liu
  fullname: Liu, Yuelin
  organization: Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
– sequence: 4
  givenname: Aixia
  surname: Huang
  fullname: Huang, Aixia
  organization: Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
– sequence: 5
  givenname: Haiqi
  surname: Zhang
  fullname: Zhang, Haiqi
  organization: Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
– sequence: 6
  givenname: Fan
  surname: Chen
  fullname: Chen, Fan
  email: chenfan101@163.com
  organization: Hangzhou Centre for Agricultural Technology Extension, Hangzhou 310017, China
– sequence: 7
  givenname: Dongren
  surname: Zhou
  fullname: Zhou, Dongren
  organization: Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
– sequence: 8
  givenname: Yang
  surname: Zhou
  fullname: Zhou, Yang
  email: zhouyang@ujs.edu.cn
  organization: Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
– sequence: 9
  givenname: Guijie
  surname: Hao
  fullname: Hao, Guijie
  email: haoguijie@hotmail.com
  organization: Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37023892$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9u1DAQhy1URLeFB-CCfOSSxXY2iSNOqOKfVISE4GxN7MnurBI72MlKvBJPidNtOXCoOHks_T7PeL4rduGDR8ZeSrGVQtZvjtsjTVslVJnvTavkE7aRoq0LoUV1wTZCKFUoIeUlu0rpKHJV1e0zdlk2mdGt2rDf32Aix8E7jn2PdqYTcofzWgXPQ8-_gI2hi2APtIw8hoS-w7gn4j44OFFcEl8S-T0HbsPYkYcH1C92QLIcbG6R8OeC3mLRQcLccZwG6smewzOm-W4IGsfFB3uIYYQ57CNMh_xAmiNNz9nTHoaEL-7Pa_bjw_vvN5-K268fP9-8uy1sqeu5kHpXKylqqHQpRAW6hkbrsu96KKVC3QgNUu52Ov-_dS10bSMBlOwcuLJyVXnNXp_fnWLII6fZjJQsDgN4DEsySpc71VTN7j-iTZv7taJeo6_uo0s3ojNTpBHiL_OgIgfkOZDXnVLE_m9ECrPqNkeTdZtVtznrzkzzD2NpvtvoHIGGR8m3ZxLzJk-E0SRLqx5HMbs3LtAj9B8pqMcb
CitedBy_id crossref_primary_10_3390_bios13090885
crossref_primary_10_1099_jmm_0_001892
crossref_primary_10_1016_j_lfs_2024_123209
Cites_doi 10.1016/j.aca.2018.10.054
10.1046/j.1365-2761.2003.00493.x
10.1021/jf0404804
10.1101/gr.1.1.25
10.1046/j.1365-2761.2003.00486.x
10.1093/nar/30.6.e26
10.1021/acs.jafc.1c07182
10.5740/jaoacint.16-0132
10.1016/j.mcp.2008.12.003
10.3389/fsens.2021.752600
10.1099/vir.0.79777-0
10.1016/j.bios.2014.08.069
10.1111/j.1745-4581.2007.00099.x
10.1128/JCM.36.11.3164-3169.1998
10.1007/s11033-011-1389-7
10.1046/j.1365-2761.2003.00432.x
10.1016/j.mcp.2020.101507
10.1007/s00253-022-11785-6
10.1007/s00216-017-0620-3
10.1016/S0006-291X(02)02896-6
10.1016/j.diagmicrobio.2019.03.015
10.1016/j.mcp.2010.07.003
10.3354/dao062191
10.1002/bio.4226
10.1016/j.aquaculture.2004.06.009
10.1046/j.1472-765x.2000.00670.x
10.1016/j.bios.2021.113689
10.1021/acs.accounts.6b00417
10.1128/JCM.00173-10
10.1111/j.1365-2672.1994.tb02821.x
10.1073/pnas.87.5.1874
10.1371/journal.pone.0265391
10.1016/0166-0934(94)90040-X
10.1016/j.bios.2015.04.078
10.1159/000437354
10.1039/D0AY01762K
10.1128/JCM.02187-05
10.1016/0166-0934(91)90069-C
10.1016/j.aquaculture.2006.05.022
10.1016/j.mcp.2021.101772
10.1016/j.jviromet.2008.06.025
10.1002/jmv.23216
10.1007/s42770-018-0002-9
10.1039/D1NR00564B
10.1007/s40291-018-0346-8
10.1016/j.ab.2018.03.013
10.1038/350091a0
10.1016/j.bbrc.2021.06.023
10.1016/j.jviromet.2018.10.015
10.1016/j.mcp.2015.09.003
10.1007/s00604-022-05522-z
10.1186/1472-6750-9-7
10.1016/j.jviromet.2008.10.018
10.1016/j.jviromet.2011.09.006
10.1186/s12879-021-06678-4
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright © 2023 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Inc.
– notice: Copyright © 2023 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.jip.2023.107921
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Agriculture
EISSN 1096-0805
ExternalDocumentID 37023892
10_1016_j_jip_2023_107921
S0022201123000381
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
CBWCG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
KOM
LG5
LW8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSZ
T5K
TN5
TWZ
UNMZH
VH1
WH7
WUQ
XOL
XPP
YZZ
ZCG
ZMT
ZU3
ZXP
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c386t-18462106a583005a86a7883fbfa312e8708a114488929d9ab971aa21bdad35d53
IEDL.DBID .~1
ISSN 0022-2011
1096-0805
IngestDate Mon Jul 21 11:08:21 EDT 2025
Fri Jul 11 10:51:04 EDT 2025
Wed Feb 19 02:23:38 EST 2025
Thu Apr 24 22:55:54 EDT 2025
Tue Jul 01 01:33:27 EDT 2025
Fri Feb 23 02:34:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Macrobrachium rosenbergii nodavirus
Hybridization
NASBA
Lateral flow dipstick
Language English
License Copyright © 2023 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-18462106a583005a86a7883fbfa312e8708a114488929d9ab971aa21bdad35d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 37023892
PQID 2798709065
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2834275745
proquest_miscellaneous_2798709065
pubmed_primary_37023892
crossref_primary_10_1016_j_jip_2023_107921
crossref_citationtrail_10_1016_j_jip_2023_107921
elsevier_sciencedirect_doi_10_1016_j_jip_2023_107921
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of invertebrate pathology
PublicationTitleAlternate J Invertebr Pathol
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zheng, Xie, Tang, Widada, Jean, B.J.C.J.o.V. (b0275) 2004; 20
Guo, Wang, Shen, Hu, Ding, Yao, Qian (b0075) 2021; 13
Hamidi, Ghourchian (b0085) 2015; 72
Delmulle, De Saeger, Sibanda, Barna-Vetro, Van Peteghem (b0045) 2005; 53
Ju, Kim, Ahn, Park (b0095) 2021; 13
Kainulainen, Elf, Susi, Maki, Pitkaranta, Koskinen, Korpela, Eboigbodin (b0110) 2019; 263
Ju, Kim, Park, Lee, Kim, Hong, Lee, Yong, Park (b0100) 2022; 196
van Gemen, van Beuningen, Nabbe, van Strijp, Jurriaans, Lens, Kievits (b0220) 1994; 49
Zhang, Xu, Liu, Cao, Yang, Song, Shao, Tu, Qi (b0270) 2021; 60
Brink, Vervoort, Middeldorp, Meijer, van den Brule (b0020) 1998; 36
Kiatpathomchai, Jaroenram, Arunrut, Jitrapakdee, Flegel (b0120) 2008; 153
Zhai, Liu, Chen, Lu, Zhang, Lv, Bie (b0265) 2019; 50
Collins, Ko, Fung, Chan, Xing, Lau, Yu (b0030) 2003; 300
Li, Lin, Sun, Huang, Chen, Hao, Yuan, Zhang, Su (b0135) 2020; 50
Puthawibool, Senapin, Flegel, Kiatpathomchai (b0180) 2010; 24
Bastos, Perez, Silva, Lemos, Simonetti, Medina-Pestana, Silva, Ferraz (b0010) 2012; 84
Mohsen, Kool (b0160) 2016; 49
Xu, Guo, Maina, Yang, Hu, Li, Qiu, Xin (b0250) 2018; 549
Liu, Cao, Lin, Ye, Xu (b0145) 2015; 58
Wang, Yang, Xia, Yan, Zou, Zhang (b0225) 2021; 21
Widada, Durand, Cambournac, Qian, Shi, Dejonghe, Richard, Bonami (b0240) 2003; 26
Qian, Shi, Zhang, Cao, Liu, Li, Xie, Cambournac, Bonami (b0185) 2003; 26
Gracias, McKillip (b0065) 2007; 15
Compton (b0035) 1991; 350
Widada, Bonami (b0235) 2004; 85
Weusten, Carpay, Oosterlaken, van Zuijlen, van de Wiel (b0230) 2002; 30
Liu, Zheng, Yang, Xu, Kang, Jiang, Yang, Qu, Liu (b0150) 2022; 106
Puthawibool, Senapin, Kiatpathomchai, Flegel (b0175) 2009; 156
Kievits, van Gemen, van Strijp, Schukkink, Dircks, Adriaanse, Malek, Sooknanan, Lens (b0125) 1991; 35
Fahy, Kwoh, Gingeras (b0060) 1991; 1
Simpkins, Chan, Hays, Popping, Cook (b0210) 2000; 30
Wu, Chen, Xiao, Deng (b0245) 2016; 99
Li, Macdonald (b0140) 2015; 64
Yan, Li, Luo, Jin, Qiu, Lin (b0260) 2022; 189
Boulet, Micalessi, Horvath, Benoy, Depuydt, Bogers (b0015) 2010; 48
Barreda-Garcia, S., Miranda-Castro, R., de-Los-Santos-Alvarez, N., Miranda-Ordieres, A.J., Lobo-Castanon, M.J., 2018. Helicase-dependent isothermal amplification: a novel tool in the development of molecular-based analytical systems for rapid pathogen detection. Anal. Bioanal. Chem. 410, 679-693.
McClernon, Vavro, St Clair (b0155) 2006; 44
Qian, Wang, Wu, Ji, Wu (b0190) 2019; 1050
Sahul Hameed, Yoganandhan, Sri Widada, Bonami (b0205) 2004; 62
Hameed, Yoganandhan, Widada, Bonami (b0080) 2004; 238
Oliveira, Veigas, Baptista (b0170) 2021; 2
Juma, Takita, Ito, Yamagata, Akagi, Arikawa, Kojima, Biyani, Fujiwara, Nakura, Yanagihara, Yasukawa (b0105) 2021; 567
Saedi, Moeini, Tan, Yusoff, Daud, Chu, Tan, Bhassu (b0200) 2012; 39
Nai, Doeven, Guijt (b0165) 2022; 17
Romestand, Bonami (b0195) 2003; 26
Dong, Wen, Wu, Lian (b0050) 2006; 261
Uyttendaele, Schukkink, van Gemen, Debevere (b0215) 1994; 77
Guatelli, Whitfield, Kwoh, Barringer, Richman, Gingeras (b0070) 1990; 87
Jaroenram, Kiatpathomchai, Flegel (b0090) 2009; 23
Davi, Kissenkotter, Faye, Bohlken-Fascher, Stahl-Hennig, Faye, Faye, Sall, Weidmann, Ademowo, Hufert, Czerny, Abd El Wahed (b0040) 2019; 95
Elf, Olli, Hirvonen, Auvinen, Eboigbodin (b0055) 2018; 22
Xue, Lu, Yang, Hu, Zhang, Ren, Wu, Xia, Deng, Wang (b0255) 2022; 70
Zhou, Wu, Lin, Chen, Yuan, Ding, Gao, Hang (b0280) 2015; 29
Chen, Xiong, Cui, Yang, Mao, Li, Chen, Zheng (b0025) 2011; 178
Lee, La Mura, Allnutt, Powell (b0130) 2009; 9
Karasawa, Arakawa (b0115) 2022; 37
Bastos (10.1016/j.jip.2023.107921_b0010) 2012; 84
Widada (10.1016/j.jip.2023.107921_b0240) 2003; 26
Zhou (10.1016/j.jip.2023.107921_b0280) 2015; 29
Delmulle (10.1016/j.jip.2023.107921_b0045) 2005; 53
Davi (10.1016/j.jip.2023.107921_b0040) 2019; 95
Hameed (10.1016/j.jip.2023.107921_b0080) 2004; 238
Liu (10.1016/j.jip.2023.107921_b0145) 2015; 58
Guatelli (10.1016/j.jip.2023.107921_b0070) 1990; 87
Boulet (10.1016/j.jip.2023.107921_b0015) 2010; 48
Elf (10.1016/j.jip.2023.107921_b0055) 2018; 22
Li (10.1016/j.jip.2023.107921_b0135) 2020; 50
Romestand (10.1016/j.jip.2023.107921_b0195) 2003; 26
Ju (10.1016/j.jip.2023.107921_b0100) 2022; 196
Dong (10.1016/j.jip.2023.107921_b0050) 2006; 261
van Gemen (10.1016/j.jip.2023.107921_b0220) 1994; 49
Xu (10.1016/j.jip.2023.107921_b0250) 2018; 549
Oliveira (10.1016/j.jip.2023.107921_b0170) 2021; 2
Lee (10.1016/j.jip.2023.107921_b0130) 2009; 9
Ju (10.1016/j.jip.2023.107921_b0095) 2021; 13
Brink (10.1016/j.jip.2023.107921_b0020) 1998; 36
Sahul Hameed (10.1016/j.jip.2023.107921_b0205) 2004; 62
Wu (10.1016/j.jip.2023.107921_b0245) 2016; 99
Saedi (10.1016/j.jip.2023.107921_b0200) 2012; 39
Zhai (10.1016/j.jip.2023.107921_b0265) 2019; 50
Widada (10.1016/j.jip.2023.107921_b0235) 2004; 85
10.1016/j.jip.2023.107921_b0005
Compton (10.1016/j.jip.2023.107921_b0035) 1991; 350
Qian (10.1016/j.jip.2023.107921_b0185) 2003; 26
Mohsen (10.1016/j.jip.2023.107921_b0160) 2016; 49
Wang (10.1016/j.jip.2023.107921_b0225) 2021; 21
Gracias (10.1016/j.jip.2023.107921_b0065) 2007; 15
Guo (10.1016/j.jip.2023.107921_b0075) 2021; 13
Zhang (10.1016/j.jip.2023.107921_b0270) 2021; 60
Karasawa (10.1016/j.jip.2023.107921_b0115) 2022; 37
Liu (10.1016/j.jip.2023.107921_b0150) 2022; 106
Chen (10.1016/j.jip.2023.107921_b0025) 2011; 178
Puthawibool (10.1016/j.jip.2023.107921_b0180) 2010; 24
Kiatpathomchai (10.1016/j.jip.2023.107921_b0120) 2008; 153
Xue (10.1016/j.jip.2023.107921_b0255) 2022; 70
Simpkins (10.1016/j.jip.2023.107921_b0210) 2000; 30
Collins (10.1016/j.jip.2023.107921_b0030) 2003; 300
Nai (10.1016/j.jip.2023.107921_b0165) 2022; 17
Kainulainen (10.1016/j.jip.2023.107921_b0110) 2019; 263
Kievits (10.1016/j.jip.2023.107921_b0125) 1991; 35
Zheng (10.1016/j.jip.2023.107921_b0275) 2004; 20
Jaroenram (10.1016/j.jip.2023.107921_b0090) 2009; 23
Puthawibool (10.1016/j.jip.2023.107921_b0175) 2009; 156
Weusten (10.1016/j.jip.2023.107921_b0230) 2002; 30
Qian (10.1016/j.jip.2023.107921_b0190) 2019; 1050
Uyttendaele (10.1016/j.jip.2023.107921_b0215) 1994; 77
Li (10.1016/j.jip.2023.107921_b0140) 2015; 64
Juma (10.1016/j.jip.2023.107921_b0105) 2021; 567
Hamidi (10.1016/j.jip.2023.107921_b0085) 2015; 72
McClernon (10.1016/j.jip.2023.107921_b0155) 2006; 44
Yan (10.1016/j.jip.2023.107921_b0260) 2022; 189
Fahy (10.1016/j.jip.2023.107921_b0060) 1991; 1
References_xml – volume: 23
  start-page: 65
  year: 2009
  end-page: 70
  ident: b0090
  article-title: Rapid and sensitive detection of white spot syndrome virus by loop-mediated isothermal amplification combined with a lateral flow dipstick
  publication-title: Mol. Cell. Probes.
– volume: 15
  start-page: 295
  year: 2007
  end-page: 309
  ident: b0065
  article-title: Nucleic acid sequence-based amplification (NASBA) in molecular bacteriology: A procedural guide
  publication-title: J. Rapid. Meth. Aut. Mic.
– volume: 39
  start-page: 5785
  year: 2012
  end-page: 5790
  ident: b0200
  article-title: Detection and phylogenetic profiling of nodavirus associated with white tail disease in Malaysian Macrobrachium rosenbergii de Man
  publication-title: Mol. Biol. Rep.
– volume: 13
  start-page: 447
  year: 2021
  end-page: 452
  ident: b0075
  article-title: Sensitive detection of RNA based on concatenated self-fuelled strand displacement amplification and hairpin-AgNCs
  publication-title: Anal. Methods.
– volume: 189
  start-page: 437
  year: 2022
  ident: b0260
  article-title: Photothermal biosensor for HPV16 based on strand-displacement amplification and gold nanoparticles using a thermometer as readout
  publication-title: Mikrochim. Acta.
– volume: 36
  start-page: 3164
  year: 1998
  end-page: 3169
  ident: b0020
  article-title: Nucleic acid sequence-based amplification, a new method for analysis of spliced and unspliced Epstein-Barr virus latent transcripts, and its comparison with reverse transcriptase PCR
  publication-title: J. Clin. Microbiol.
– volume: 238
  start-page: 127
  year: 2004
  end-page: 133
  ident: b0080
  article-title: Studies on the occurrence of Macrobrachium rosenbergii nodavirus and extra small virus-like particles associated with white tail disease of M-rosenbergii in India by RT-PCR detection
  publication-title: Aquaculture.
– volume: 300
  start-page: 507
  year: 2003
  end-page: 515
  ident: b0030
  article-title: Rapid and sensitive detection of avian influenza virus subtype H7 using NASBA
  publication-title: Biochem. Bioph. Res. Co.
– volume: 106
  start-page: 1651
  year: 2022
  end-page: 1661
  ident: b0150
  article-title: Establishment and application of ERA-LFD method for rapid detection of feline calicivirus
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 549
  start-page: 136
  year: 2018
  end-page: 142
  ident: b0250
  article-title: An aptasensor for staphylococcus aureus based on nicking enzyme amplification reaction and rolling circle amplification
  publication-title: Anal. Biochem.
– volume: 22
  start-page: 595
  year: 2018
  end-page: 602
  ident: b0055
  article-title: Molecular Detection of Streptococcus pyogenes by Strand Invasion Based Amplification Assay
  publication-title: Mol. Diagn. Ther.
– volume: 49
  start-page: 2540
  year: 2016
  end-page: 2550
  ident: b0160
  article-title: The Discovery of Rolling Circle Amplification and Rolling Circle Transcription
  publication-title: Acc. Chem. Res.
– volume: 9
  start-page: 7
  year: 2009
  ident: b0130
  article-title: Detection of genetically modified organisms (GMOs) using isothermal amplification of target DNA sequences
  publication-title: Bmc. Biotechnol.
– volume: 196
  year: 2022
  ident: b0100
  article-title: Rapid and accurate clinical testing for COVID-19 by nicking and extension chain reaction system-based amplification (NESBA)
  publication-title: Biosens. Bioelectron.
– volume: 20
  start-page: 62
  year: 2004
  end-page: 66
  ident: b0275
  article-title: Nucleic Acid Detection and Partial Sequence Analysis of Macrobrachium rosenbergii Nodavirus
  publication-title: Chinese. J. Virol.
– volume: 70
  start-page: 1670
  year: 2022
  end-page: 1678
  ident: b0255
  article-title: Isothermal RNA Amplification for the Detection of Viable Pathogenic Bacteria to Estimate the Salmonella Virulence for Causing Enteritis
  publication-title: J. Agric. Food. Chem.
– volume: 44
  start-page: 2280
  year: 2006
  end-page: 2282
  ident: b0155
  article-title: Evaluation of a real-time nucleic acid sequence-based amplification assay using molecular beacons for detection of human immunodeficiency virus type 1
  publication-title: J. Clin. Microbiol.
– volume: 49
  start-page: 157
  year: 1994
  end-page: 167
  ident: b0220
  article-title: A one-tube quantitative HIV-1 RNA NASBA nucleic acid amplification assay using electrochemiluminescent (ECL) labelled probes
  publication-title: J. Virol. Methods.
– volume: 261
  start-page: 1144
  year: 2006
  end-page: 1150
  ident: b0050
  article-title: Preparation of monoclonal antibody against Macrobrachium rosenbergii Nodavirus and application of TAS-ELISA for virus diagnosis in post-larvae hatcheries in east China during 2000–2004
  publication-title: Aquaculture.
– volume: 21
  start-page: 1020
  year: 2021
  ident: b0225
  article-title: Application and evaluation of nucleic acid sequence-based amplification, PCR and cryptococcal antigen test for diagnosis of cryptococcosis
  publication-title: BMC. Infect. Dis.
– volume: 26
  start-page: 71
  year: 2003
  end-page: 75
  ident: b0195
  article-title: A sandwich enzyme linked immunosorbent assay (S-ELISA) for detection of MrNV in the giant freshwater prawn, Macrobrachium rosenbergii (de Man)
  publication-title: J. Fish. Dis.
– volume: 53
  start-page: 3364
  year: 2005
  end-page: 3368
  ident: b0045
  article-title: Development of an immunoassay-based lateral flow dipstick for the rapid detection of aflatoxin B1 in pig feed
  publication-title: J. Agric. Food. Chem.
– volume: 17
  start-page: e0265391
  year: 2022
  ident: b0165
  article-title: An improved nucleic acid sequence-based amplification method mediated by T4 gene 32 protein
  publication-title: PLoS. One.
– volume: 350
  start-page: 91
  year: 1991
  end-page: 92
  ident: b0035
  article-title: Nucleic acid sequence-based amplification
  publication-title: Nature.
– volume: 26
  start-page: 521
  year: 2003
  end-page: 527
  ident: b0185
  article-title: Extra small virus-like particles (XSV) and nodavirus associated with whitish muscle disease in the giant freshwater prawn
  publication-title: Macrobrachium. rosenbergii. J. Fish. Dis.
– reference: Barreda-Garcia, S., Miranda-Castro, R., de-Los-Santos-Alvarez, N., Miranda-Ordieres, A.J., Lobo-Castanon, M.J., 2018. Helicase-dependent isothermal amplification: a novel tool in the development of molecular-based analytical systems for rapid pathogen detection. Anal. Bioanal. Chem. 410, 679-693.
– volume: 1050
  start-page: 1
  year: 2019
  end-page: 15
  ident: b0190
  article-title: Nicking enzyme-assisted amplification (NEAA) technology and its applications: A review
  publication-title: Anal. Chim. Acta.
– volume: 153
  start-page: 214
  year: 2008
  end-page: 217
  ident: b0120
  article-title: Shrimp Taura syndrome virus detection by reverse transcription loop-mediated isothermal amplification combined with a lateral flow dipstick
  publication-title: J. Virol. Methods.
– volume: 13
  start-page: 10785
  year: 2021
  end-page: 10791
  ident: b0095
  article-title: Ultrasensitive version of nucleic acid sequence-based amplification (NASBA) utilizing a nicking and extension chain reaction system
  publication-title: Nanoscale.
– volume: 64
  start-page: 196
  year: 2015
  end-page: 211
  ident: b0140
  article-title: Advances in isothermal amplification: novel strategies inspired by biological processes
  publication-title: Biosens. Bioelectron.
– volume: 30
  start-page: e26
  year: 2002
  ident: b0230
  article-title: Principles of quantitation of viral loads using nucleic acid sequence-based amplification in combination with homogeneous detection using molecular beacons
  publication-title: Nucleic. Acids. Res.
– volume: 48
  start-page: 2524
  year: 2010
  end-page: 2529
  ident: b0015
  article-title: Nucleic acid sequence-based amplification assay for human papillomavirus mRNA detection and typing: evidence for DNA amplification
  publication-title: J. Clin. Microbiol.
– volume: 37
  start-page: 822
  year: 2022
  end-page: 827
  ident: b0115
  article-title: Detection of micro-RNA by a combination of nucleic acid sequence-based amplification and a novel chemiluminescent pyrophosphate assay
  publication-title: Luminescence.
– volume: 58
  start-page: 197
  year: 2015
  end-page: 204
  ident: b0145
  article-title: Partial Sequence of a Novel Virus Isolated from Pelodiscus sinensis Hemorrhagic Disease
  publication-title: Intervirology.
– volume: 29
  start-page: 389
  year: 2015
  end-page: 395
  ident: b0280
  article-title: Rapid detection of Bombyx mori nucleopolyhedrovirus (BmNPV) by loop-mediated isothermal amplification assay combined with a lateral flow dipstick method
  publication-title: Mol. Cell. Probes.
– volume: 567
  start-page: 195
  year: 2021
  end-page: 200
  ident: b0105
  article-title: Optimization of reaction condition of recombinase polymerase amplification to detect SARS-CoV-2 DNA and RNA using a statistical method
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 85
  start-page: 643
  year: 2004
  end-page: 646
  ident: b0235
  article-title: Characteristics of the monocistronic genome of extra small virus, a virus-like particle associated with Macrobrachium rosenbergii nodavirus: possible candidate for a new species of satellite virus
  publication-title: J. Gen. Virol.
– volume: 60
  year: 2021
  ident: b0270
  article-title: Enzymatic recombinase amplification coupled with CRISPR-Cas12a for ultrasensitive, rapid, and specific Porcine circovirus 3 detection
  publication-title: Mol. Cell. Probes.
– volume: 77
  start-page: 694
  year: 1994
  end-page: 701
  ident: b0215
  article-title: Identification of Campylobacter jejuni, Campylobacter coli and campylobacter lari by the nucleic acid amplification system NASBAR
  publication-title: J. Appl. Bacteriol.
– volume: 2
  year: 2021
  ident: b0170
  article-title: Isothermal Amplification of Nucleic Acids: The Race for the Next “Gold Standard”
  publication-title: Front. Sens.
– volume: 72
  start-page: 121
  year: 2015
  end-page: 126
  ident: b0085
  article-title: Colorimetric monitoring of rolling circle amplification for detection of H5N1 influenza virus using metal indicator
  publication-title: Biosens. Bioelectron.
– volume: 87
  start-page: 1874
  year: 1990
  end-page: 1878
  ident: b0070
  article-title: Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 263
  start-page: 75
  year: 2019
  end-page: 80
  ident: b0110
  article-title: Detection of human rhinoviruses by reverse transcription strand invasion based amplification method (RT-SIBA)
  publication-title: J. Virol. Methods.
– volume: 62
  start-page: 191
  year: 2004
  end-page: 196
  ident: b0205
  article-title: Experimental transmission and tissue tropism of Macrobrachium rosenbergii nodavirus (MrNV) and its associated extra small virus (XSV)
  publication-title: Dis. Aquat. Organ.
– volume: 156
  start-page: 27
  year: 2009
  end-page: 31
  ident: b0175
  article-title: Detection of shrimp infectious myonecrosis virus by reverse transcription loop-mediated isothermal amplification combined with a lateral flow dipstick
  publication-title: J. Virol. Methods.
– volume: 99
  start-page: 1596
  year: 2016
  end-page: 1599
  ident: b0245
  article-title: Development of Reverse Transcription Thermostable Helicase-Dependent DNA Amplification for the Detection of Tomato Spotted Wilt Virus
  publication-title: J. AOAC. Int.
– volume: 30
  start-page: 75
  year: 2000
  end-page: 79
  ident: b0210
  article-title: An RNA transcription-based amplification technique (NASBA) for the detection of viable Salmonella enterica
  publication-title: Lett. Appl. Microbiol.
– volume: 35
  start-page: 273
  year: 1991
  end-page: 286
  ident: b0125
  article-title: NASBA isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HIV-1 infection
  publication-title: J. Virol. Methods.
– volume: 95
  start-page: 41
  year: 2019
  end-page: 45
  ident: b0040
  article-title: Recombinase polymerase amplification assay for rapid detection of Monkeypox virus
  publication-title: Diagn. Microbiol. Infect. Dis.
– volume: 1
  start-page: 25
  year: 1991
  end-page: 33
  ident: b0060
  article-title: Self-sustained sequence replication (3SR): an isothermal transcription-based amplification system alternative to PCR
  publication-title: PCR. Methods. Appl.
– volume: 84
  start-page: 596
  year: 2012
  end-page: 600
  ident: b0010
  article-title: Transcription-mediated amplification (TMA) for the assessment of viremia in hemodialysis patients with hepatitis C
  publication-title: J. Med. Virol.
– volume: 50
  start-page: 255
  year: 2019
  end-page: 261
  ident: b0265
  article-title: Development of a real-time nucleic acid sequence-based amplification assay for the rapid detection of Salmonella spp. from food
  publication-title: Braz. J. Microbiol.
– volume: 26
  start-page: 583
  year: 2003
  end-page: 590
  ident: b0240
  article-title: Genome-based detection methods of Macrobrachium rosenbergii nodavirus, a pathogen of the giant freshwater prawn, Macrobrachium rosenbergii: dot-blot, in situ hybridization and RT-PCR
  publication-title: J. Fish. Dis.
– volume: 50
  year: 2020
  ident: b0135
  article-title: Detection of cyprinid herpesvirus 2 by loop-mediated isothermal amplification in combination with a lateral flow dipstick
  publication-title: Mol. Cell. Probe.
– volume: 178
  start-page: 153
  year: 2011
  end-page: 160
  ident: b0025
  article-title: Rapid and sensitive detection of mud crab Scylla serrata reovirus by a reverse transcription loop-mediated isothermal amplification assay
  publication-title: J. Virol. Methods.
– volume: 24
  start-page: 244
  year: 2010
  end-page: 249
  ident: b0180
  article-title: Rapid and sensitive detection of Macrobrachium rosenbergii nodavirus in giant freshwater prawns by reverse transcription loop-mediated isothermal amplification combined with a lateral flow dipstick
  publication-title: Mol. Cell. Probes.
– volume: 1050
  start-page: 1
  year: 2019
  ident: 10.1016/j.jip.2023.107921_b0190
  article-title: Nicking enzyme-assisted amplification (NEAA) technology and its applications: A review
  publication-title: Anal. Chim. Acta.
  doi: 10.1016/j.aca.2018.10.054
– volume: 26
  start-page: 583
  year: 2003
  ident: 10.1016/j.jip.2023.107921_b0240
  article-title: Genome-based detection methods of Macrobrachium rosenbergii nodavirus, a pathogen of the giant freshwater prawn, Macrobrachium rosenbergii: dot-blot, in situ hybridization and RT-PCR
  publication-title: J. Fish. Dis.
  doi: 10.1046/j.1365-2761.2003.00493.x
– volume: 53
  start-page: 3364
  year: 2005
  ident: 10.1016/j.jip.2023.107921_b0045
  article-title: Development of an immunoassay-based lateral flow dipstick for the rapid detection of aflatoxin B1 in pig feed
  publication-title: J. Agric. Food. Chem.
  doi: 10.1021/jf0404804
– volume: 1
  start-page: 25
  year: 1991
  ident: 10.1016/j.jip.2023.107921_b0060
  article-title: Self-sustained sequence replication (3SR): an isothermal transcription-based amplification system alternative to PCR
  publication-title: PCR. Methods. Appl.
  doi: 10.1101/gr.1.1.25
– volume: 26
  start-page: 521
  year: 2003
  ident: 10.1016/j.jip.2023.107921_b0185
  article-title: Extra small virus-like particles (XSV) and nodavirus associated with whitish muscle disease in the giant freshwater prawn
  publication-title: Macrobrachium. rosenbergii. J. Fish. Dis.
  doi: 10.1046/j.1365-2761.2003.00486.x
– volume: 30
  start-page: e26
  year: 2002
  ident: 10.1016/j.jip.2023.107921_b0230
  article-title: Principles of quantitation of viral loads using nucleic acid sequence-based amplification in combination with homogeneous detection using molecular beacons
  publication-title: Nucleic. Acids. Res.
  doi: 10.1093/nar/30.6.e26
– volume: 70
  start-page: 1670
  year: 2022
  ident: 10.1016/j.jip.2023.107921_b0255
  article-title: Isothermal RNA Amplification for the Detection of Viable Pathogenic Bacteria to Estimate the Salmonella Virulence for Causing Enteritis
  publication-title: J. Agric. Food. Chem.
  doi: 10.1021/acs.jafc.1c07182
– volume: 99
  start-page: 1596
  year: 2016
  ident: 10.1016/j.jip.2023.107921_b0245
  article-title: Development of Reverse Transcription Thermostable Helicase-Dependent DNA Amplification for the Detection of Tomato Spotted Wilt Virus
  publication-title: J. AOAC. Int.
  doi: 10.5740/jaoacint.16-0132
– volume: 23
  start-page: 65
  year: 2009
  ident: 10.1016/j.jip.2023.107921_b0090
  article-title: Rapid and sensitive detection of white spot syndrome virus by loop-mediated isothermal amplification combined with a lateral flow dipstick
  publication-title: Mol. Cell. Probes.
  doi: 10.1016/j.mcp.2008.12.003
– volume: 2
  year: 2021
  ident: 10.1016/j.jip.2023.107921_b0170
  article-title: Isothermal Amplification of Nucleic Acids: The Race for the Next “Gold Standard”
  publication-title: Front. Sens.
  doi: 10.3389/fsens.2021.752600
– volume: 85
  start-page: 643
  year: 2004
  ident: 10.1016/j.jip.2023.107921_b0235
  article-title: Characteristics of the monocistronic genome of extra small virus, a virus-like particle associated with Macrobrachium rosenbergii nodavirus: possible candidate for a new species of satellite virus
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.79777-0
– volume: 64
  start-page: 196
  year: 2015
  ident: 10.1016/j.jip.2023.107921_b0140
  article-title: Advances in isothermal amplification: novel strategies inspired by biological processes
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2014.08.069
– volume: 15
  start-page: 295
  year: 2007
  ident: 10.1016/j.jip.2023.107921_b0065
  article-title: Nucleic acid sequence-based amplification (NASBA) in molecular bacteriology: A procedural guide
  publication-title: J. Rapid. Meth. Aut. Mic.
  doi: 10.1111/j.1745-4581.2007.00099.x
– volume: 36
  start-page: 3164
  year: 1998
  ident: 10.1016/j.jip.2023.107921_b0020
  article-title: Nucleic acid sequence-based amplification, a new method for analysis of spliced and unspliced Epstein-Barr virus latent transcripts, and its comparison with reverse transcriptase PCR
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.36.11.3164-3169.1998
– volume: 39
  start-page: 5785
  year: 2012
  ident: 10.1016/j.jip.2023.107921_b0200
  article-title: Detection and phylogenetic profiling of nodavirus associated with white tail disease in Malaysian Macrobrachium rosenbergii de Man
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/s11033-011-1389-7
– volume: 26
  start-page: 71
  year: 2003
  ident: 10.1016/j.jip.2023.107921_b0195
  article-title: A sandwich enzyme linked immunosorbent assay (S-ELISA) for detection of MrNV in the giant freshwater prawn, Macrobrachium rosenbergii (de Man)
  publication-title: J. Fish. Dis.
  doi: 10.1046/j.1365-2761.2003.00432.x
– volume: 50
  year: 2020
  ident: 10.1016/j.jip.2023.107921_b0135
  article-title: Detection of cyprinid herpesvirus 2 by loop-mediated isothermal amplification in combination with a lateral flow dipstick
  publication-title: Mol. Cell. Probe.
  doi: 10.1016/j.mcp.2020.101507
– volume: 106
  start-page: 1651
  year: 2022
  ident: 10.1016/j.jip.2023.107921_b0150
  article-title: Establishment and application of ERA-LFD method for rapid detection of feline calicivirus
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-022-11785-6
– ident: 10.1016/j.jip.2023.107921_b0005
  doi: 10.1007/s00216-017-0620-3
– volume: 300
  start-page: 507
  year: 2003
  ident: 10.1016/j.jip.2023.107921_b0030
  article-title: Rapid and sensitive detection of avian influenza virus subtype H7 using NASBA
  publication-title: Biochem. Bioph. Res. Co.
  doi: 10.1016/S0006-291X(02)02896-6
– volume: 95
  start-page: 41
  year: 2019
  ident: 10.1016/j.jip.2023.107921_b0040
  article-title: Recombinase polymerase amplification assay for rapid detection of Monkeypox virus
  publication-title: Diagn. Microbiol. Infect. Dis.
  doi: 10.1016/j.diagmicrobio.2019.03.015
– volume: 24
  start-page: 244
  year: 2010
  ident: 10.1016/j.jip.2023.107921_b0180
  article-title: Rapid and sensitive detection of Macrobrachium rosenbergii nodavirus in giant freshwater prawns by reverse transcription loop-mediated isothermal amplification combined with a lateral flow dipstick
  publication-title: Mol. Cell. Probes.
  doi: 10.1016/j.mcp.2010.07.003
– volume: 62
  start-page: 191
  year: 2004
  ident: 10.1016/j.jip.2023.107921_b0205
  article-title: Experimental transmission and tissue tropism of Macrobrachium rosenbergii nodavirus (MrNV) and its associated extra small virus (XSV)
  publication-title: Dis. Aquat. Organ.
  doi: 10.3354/dao062191
– volume: 37
  start-page: 822
  year: 2022
  ident: 10.1016/j.jip.2023.107921_b0115
  article-title: Detection of micro-RNA by a combination of nucleic acid sequence-based amplification and a novel chemiluminescent pyrophosphate assay
  publication-title: Luminescence.
  doi: 10.1002/bio.4226
– volume: 238
  start-page: 127
  year: 2004
  ident: 10.1016/j.jip.2023.107921_b0080
  article-title: Studies on the occurrence of Macrobrachium rosenbergii nodavirus and extra small virus-like particles associated with white tail disease of M-rosenbergii in India by RT-PCR detection
  publication-title: Aquaculture.
  doi: 10.1016/j.aquaculture.2004.06.009
– volume: 30
  start-page: 75
  year: 2000
  ident: 10.1016/j.jip.2023.107921_b0210
  article-title: An RNA transcription-based amplification technique (NASBA) for the detection of viable Salmonella enterica
  publication-title: Lett. Appl. Microbiol.
  doi: 10.1046/j.1472-765x.2000.00670.x
– volume: 196
  year: 2022
  ident: 10.1016/j.jip.2023.107921_b0100
  article-title: Rapid and accurate clinical testing for COVID-19 by nicking and extension chain reaction system-based amplification (NESBA)
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2021.113689
– volume: 49
  start-page: 2540
  year: 2016
  ident: 10.1016/j.jip.2023.107921_b0160
  article-title: The Discovery of Rolling Circle Amplification and Rolling Circle Transcription
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00417
– volume: 48
  start-page: 2524
  year: 2010
  ident: 10.1016/j.jip.2023.107921_b0015
  article-title: Nucleic acid sequence-based amplification assay for human papillomavirus mRNA detection and typing: evidence for DNA amplification
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.00173-10
– volume: 77
  start-page: 694
  year: 1994
  ident: 10.1016/j.jip.2023.107921_b0215
  article-title: Identification of Campylobacter jejuni, Campylobacter coli and campylobacter lari by the nucleic acid amplification system NASBAR
  publication-title: J. Appl. Bacteriol.
  doi: 10.1111/j.1365-2672.1994.tb02821.x
– volume: 87
  start-page: 1874
  year: 1990
  ident: 10.1016/j.jip.2023.107921_b0070
  article-title: Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.87.5.1874
– volume: 17
  start-page: e0265391
  year: 2022
  ident: 10.1016/j.jip.2023.107921_b0165
  article-title: An improved nucleic acid sequence-based amplification method mediated by T4 gene 32 protein
  publication-title: PLoS. One.
  doi: 10.1371/journal.pone.0265391
– volume: 49
  start-page: 157
  year: 1994
  ident: 10.1016/j.jip.2023.107921_b0220
  article-title: A one-tube quantitative HIV-1 RNA NASBA nucleic acid amplification assay using electrochemiluminescent (ECL) labelled probes
  publication-title: J. Virol. Methods.
  doi: 10.1016/0166-0934(94)90040-X
– volume: 72
  start-page: 121
  year: 2015
  ident: 10.1016/j.jip.2023.107921_b0085
  article-title: Colorimetric monitoring of rolling circle amplification for detection of H5N1 influenza virus using metal indicator
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.04.078
– volume: 58
  start-page: 197
  year: 2015
  ident: 10.1016/j.jip.2023.107921_b0145
  article-title: Partial Sequence of a Novel Virus Isolated from Pelodiscus sinensis Hemorrhagic Disease
  publication-title: Intervirology.
  doi: 10.1159/000437354
– volume: 20
  start-page: 62
  year: 2004
  ident: 10.1016/j.jip.2023.107921_b0275
  article-title: Nucleic Acid Detection and Partial Sequence Analysis of Macrobrachium rosenbergii Nodavirus
  publication-title: Chinese. J. Virol.
– volume: 13
  start-page: 447
  year: 2021
  ident: 10.1016/j.jip.2023.107921_b0075
  article-title: Sensitive detection of RNA based on concatenated self-fuelled strand displacement amplification and hairpin-AgNCs
  publication-title: Anal. Methods.
  doi: 10.1039/D0AY01762K
– volume: 44
  start-page: 2280
  year: 2006
  ident: 10.1016/j.jip.2023.107921_b0155
  article-title: Evaluation of a real-time nucleic acid sequence-based amplification assay using molecular beacons for detection of human immunodeficiency virus type 1
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.02187-05
– volume: 35
  start-page: 273
  year: 1991
  ident: 10.1016/j.jip.2023.107921_b0125
  article-title: NASBA isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HIV-1 infection
  publication-title: J. Virol. Methods.
  doi: 10.1016/0166-0934(91)90069-C
– volume: 261
  start-page: 1144
  year: 2006
  ident: 10.1016/j.jip.2023.107921_b0050
  article-title: Preparation of monoclonal antibody against Macrobrachium rosenbergii Nodavirus and application of TAS-ELISA for virus diagnosis in post-larvae hatcheries in east China during 2000–2004
  publication-title: Aquaculture.
  doi: 10.1016/j.aquaculture.2006.05.022
– volume: 60
  year: 2021
  ident: 10.1016/j.jip.2023.107921_b0270
  article-title: Enzymatic recombinase amplification coupled with CRISPR-Cas12a for ultrasensitive, rapid, and specific Porcine circovirus 3 detection
  publication-title: Mol. Cell. Probes.
  doi: 10.1016/j.mcp.2021.101772
– volume: 153
  start-page: 214
  year: 2008
  ident: 10.1016/j.jip.2023.107921_b0120
  article-title: Shrimp Taura syndrome virus detection by reverse transcription loop-mediated isothermal amplification combined with a lateral flow dipstick
  publication-title: J. Virol. Methods.
  doi: 10.1016/j.jviromet.2008.06.025
– volume: 84
  start-page: 596
  year: 2012
  ident: 10.1016/j.jip.2023.107921_b0010
  article-title: Transcription-mediated amplification (TMA) for the assessment of viremia in hemodialysis patients with hepatitis C
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.23216
– volume: 50
  start-page: 255
  year: 2019
  ident: 10.1016/j.jip.2023.107921_b0265
  article-title: Development of a real-time nucleic acid sequence-based amplification assay for the rapid detection of Salmonella spp. from food
  publication-title: Braz. J. Microbiol.
  doi: 10.1007/s42770-018-0002-9
– volume: 13
  start-page: 10785
  year: 2021
  ident: 10.1016/j.jip.2023.107921_b0095
  article-title: Ultrasensitive version of nucleic acid sequence-based amplification (NASBA) utilizing a nicking and extension chain reaction system
  publication-title: Nanoscale.
  doi: 10.1039/D1NR00564B
– volume: 22
  start-page: 595
  year: 2018
  ident: 10.1016/j.jip.2023.107921_b0055
  article-title: Molecular Detection of Streptococcus pyogenes by Strand Invasion Based Amplification Assay
  publication-title: Mol. Diagn. Ther.
  doi: 10.1007/s40291-018-0346-8
– volume: 549
  start-page: 136
  year: 2018
  ident: 10.1016/j.jip.2023.107921_b0250
  article-title: An aptasensor for staphylococcus aureus based on nicking enzyme amplification reaction and rolling circle amplification
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2018.03.013
– volume: 350
  start-page: 91
  year: 1991
  ident: 10.1016/j.jip.2023.107921_b0035
  article-title: Nucleic acid sequence-based amplification
  publication-title: Nature.
  doi: 10.1038/350091a0
– volume: 567
  start-page: 195
  year: 2021
  ident: 10.1016/j.jip.2023.107921_b0105
  article-title: Optimization of reaction condition of recombinase polymerase amplification to detect SARS-CoV-2 DNA and RNA using a statistical method
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2021.06.023
– volume: 263
  start-page: 75
  year: 2019
  ident: 10.1016/j.jip.2023.107921_b0110
  article-title: Detection of human rhinoviruses by reverse transcription strand invasion based amplification method (RT-SIBA)
  publication-title: J. Virol. Methods.
  doi: 10.1016/j.jviromet.2018.10.015
– volume: 29
  start-page: 389
  year: 2015
  ident: 10.1016/j.jip.2023.107921_b0280
  article-title: Rapid detection of Bombyx mori nucleopolyhedrovirus (BmNPV) by loop-mediated isothermal amplification assay combined with a lateral flow dipstick method
  publication-title: Mol. Cell. Probes.
  doi: 10.1016/j.mcp.2015.09.003
– volume: 189
  start-page: 437
  year: 2022
  ident: 10.1016/j.jip.2023.107921_b0260
  article-title: Photothermal biosensor for HPV16 based on strand-displacement amplification and gold nanoparticles using a thermometer as readout
  publication-title: Mikrochim. Acta.
  doi: 10.1007/s00604-022-05522-z
– volume: 9
  start-page: 7
  year: 2009
  ident: 10.1016/j.jip.2023.107921_b0130
  article-title: Detection of genetically modified organisms (GMOs) using isothermal amplification of target DNA sequences
  publication-title: Bmc. Biotechnol.
  doi: 10.1186/1472-6750-9-7
– volume: 156
  start-page: 27
  year: 2009
  ident: 10.1016/j.jip.2023.107921_b0175
  article-title: Detection of shrimp infectious myonecrosis virus by reverse transcription loop-mediated isothermal amplification combined with a lateral flow dipstick
  publication-title: J. Virol. Methods.
  doi: 10.1016/j.jviromet.2008.10.018
– volume: 178
  start-page: 153
  year: 2011
  ident: 10.1016/j.jip.2023.107921_b0025
  article-title: Rapid and sensitive detection of mud crab Scylla serrata reovirus by a reverse transcription loop-mediated isothermal amplification assay
  publication-title: J. Virol. Methods.
  doi: 10.1016/j.jviromet.2011.09.006
– volume: 21
  start-page: 1020
  year: 2021
  ident: 10.1016/j.jip.2023.107921_b0225
  article-title: Application and evaluation of nucleic acid sequence-based amplification, PCR and cryptococcal antigen test for diagnosis of cryptococcosis
  publication-title: BMC. Infect. Dis.
  doi: 10.1186/s12879-021-06678-4
SSID ssj0011569
Score 2.3726828
Snippet [Display omitted] •The NASBA-LFD for detecting MrNV-chin was developed by amlification at 41 °C in a single tube within 90 min followed by hybridization.•The...
Nucleic acid sequence-based amplification (NASBA) provides a fast and convenient approach for nucleic acid amplification under isothermal conditions, and its...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107921
SubjectTerms animal health
Animals
China
coat proteins
DNA
gene amplification
genes
human resources
Hybridization
immunoaffinity chromatography
infectious diseases
invertebrates
Lateral flow dipstick
Macrobrachium rosenbergii nodavirus
NASBA
Nodaviridae - genetics
Nucleic Acid Amplification Techniques - methods
Palaemonidae
RNA
RNA Viruses - genetics
Self-Sustained Sequence Replication
temperature
therapeutics
Title Rapid and effective detection of Macrobrachium rosenbergii nodavirus using a combination of nucleic acid sequence-based amplification test and immunochromatographic strip
URI https://dx.doi.org/10.1016/j.jip.2023.107921
https://www.ncbi.nlm.nih.gov/pubmed/37023892
https://www.proquest.com/docview/2798709065
https://www.proquest.com/docview/2834275745
Volume 198
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQqFJ7qOiWthS6ciVOlVI2zofj4wqBtq3KoQIJcbEmsUONaLIK2R77g_iVzMTxShzYQ4-J7GSSmYzfxM_PjB2ZWNo6AyxysiqPaMIwgtQWERiL4LwsSSuW2Bbn-eIy_X6VXW2xk7AWhmiVY-73OX3I1uOZ4_FtHi-dozW-OLZheCKIHua7aAV7KinKv_5b0zwQ8OQqKIZT6zCzOXC8bh1JVooEj6US8XNj03PYcxiDznbZ6xE88rm37w3bss2EvZrfdKOAhp2wF9ft8KP8LXv4BUtnODSGe9IG5jVubD9wrxre1vwnkApTR3TK1R-OJnm2l3O8aQ38dd3qnhMv_oYDx_eDNTSErg3JILuKQ4W3CHTsiIZEvCOR1OvxXyBHKNsPRjhaidJWv7sWQbIXysYL0LYhyz12eXZ6cbKIxp0Zoiop8j7CsjDHWjGHrCC5eyhywFI6qcsaklhYzAEFYKGFyQHRl1FQKhkDiLg0YJLMZMk7tt20jf3AuMGesjazsqghFZUCM7NYtRhRpspiLbPPZsEnuhply2n3jDsd-Gm3Gt2oyY3au3GffVl3WXrNjk2N0-Bo_STwNI4pm7p9DkGh8YOkWRZobLu610IqfH6F0G5DmyJJhcxkim3e-4haW5pIglFKfPw_ww7YSzrybLZDtt13K_sJcVNfTocPY8p25t9-LM4fAYZ-GWo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQcEJRXeRoJLkihG-d94FAB1ZY-DqiVKi5mEjslVZusslkQF34QV_4g38TJShy6B6QeN2snk8xk5pv484wQr4yf2DIiJDlREXu8YOhRaFOPjAU4z3OuFctsi8N4ehx-OolO1sSfcS8M0yoH3-98eu-thyNbw9PcmlUV7_FFbIN5AkT3610Ds3LP_vyBvG3-bvcDlPxaqZ2PR--n3tBawCuCNO485DUxkp2YopTrtVMaE3LBoMxLCnxlYcQpIVOAdQM-mIzyLPGJlJ8bMkFkuFUE_P61EO6C2ya8_bXklQBhxdlYopzFG5dSe1LZWcU1MlWA30mm_MuC4WVgtw96O3fE7QGtym33QO6KNVtviFvbp-1QscNuiOtfmv7L_D3x-zPNKiOpNtKxROBIpbFdT_aqZVPKA-KyTy3zNxcXEiI5ellVybox9L1qF3PJRPxTSRIKQdJO49Sa6y5XhaQClxj53x7HYFyRWfHl8PFRAjt3vRAVb31pim9tA1TuKnPjBNynZHZfHF-Jvh6I9bqp7SMhDWYmpZnkaUmhKjIyE4s0yag8zCySp00xGXWii6FOOrfrONcjIe5MQ42a1aidGjfFm-WUmSsSsmpwOCpa_2PpGkFs1bSXo1FoeABe1qHaNou5VkmG-8-AJVeMSYNQJVESYsxDZ1FLSYOEcVumHv-fYC_EjenRwb7e3z3ceyJu8j-OSvdUrHftwj4DaOvy5_1LIsXXq34r_wImcVLs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+and+effective+detection+of+Macrobrachium+rosenbergii+nodavirus+using+a+combination+of+nucleic+acid+sequence-based+amplification+test+and+immunochromatographic+strip&rft.jtitle=Journal+of+invertebrate+pathology&rft.au=Lin%2C+Feng&rft.au=Shen%2C+Jinyu&rft.au=Liu%2C+Yuelin&rft.au=Huang%2C+Aixia&rft.date=2023-06-01&rft.issn=1096-0805&rft.eissn=1096-0805&rft.volume=198&rft.spage=107921&rft_id=info:doi/10.1016%2Fj.jip.2023.107921&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2011&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2011&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2011&client=summon