Spatiotemporal transcriptome atlas reveals gene regulatory patterns during the organogenesis of the rapid growing bamboo shoots

Summary Bamboo with its remarkable growth rate and economic significance, offers an ideal system to investigate the molecular basis of organogenesis in rapidly growing plants, particular in monocots, where gene regulatory networks governing the maintenance and differentiation of shoot apical and int...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 244; no. 3; pp. 1057 - 1073
Main Authors Guo, Jing, Luo, Dan, Chen, Yamao, Li, Fengjiao, Gong, Jiajia, Yu, Fen, Zhang, Wengen, Qi, Ji, Guo, Chunce
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Bamboo with its remarkable growth rate and economic significance, offers an ideal system to investigate the molecular basis of organogenesis in rapidly growing plants, particular in monocots, where gene regulatory networks governing the maintenance and differentiation of shoot apical and intercalary meristems remain a subject of controversy. We employed both spatial and single‐nucleus transcriptome sequencing on 10× platform to precisely dissect the gene functions in various tissues and early developmental stages of bamboo shoots. Our comprehensive analysis reveals distinct cell trajectories during shoot development, uncovering critical genes and pathways involved in procambium differentiation, intercalary meristem formation, and vascular tissue development. Spatial and temporal expression patterns of key regulatory genes, particularly those related to hormone signaling and lipid metabolism, strongly support the hypothesis that intercalary meristem origin from surrounded parenchyma cells. Specific gene expressions in intercalary meristem exhibit regular and dispersed distribution pattern, offering clues for understanding the intricate molecular mechanisms that drive the rapid growth of bamboo shoots. The single‐nucleus and spatial transcriptome analysis reveal a comprehensive landscape of gene activity, enhancing the understanding of the molecular architecture of organogenesis and providing valuable resources for future genomic and genetic studies relying on identities of specific cell types.
AbstractList Bamboo with its remarkable growth rate and economic significance, offers an ideal system to investigate the molecular basis of organogenesis in rapidly growing plants, particular in monocots, where gene regulatory networks governing the maintenance and differentiation of shoot apical and intercalary meristems remain a subject of controversy. We employed both spatial and single‐nucleus transcriptome sequencing on 10× platform to precisely dissect the gene functions in various tissues and early developmental stages of bamboo shoots. Our comprehensive analysis reveals distinct cell trajectories during shoot development, uncovering critical genes and pathways involved in procambium differentiation, intercalary meristem formation, and vascular tissue development. Spatial and temporal expression patterns of key regulatory genes, particularly those related to hormone signaling and lipid metabolism, strongly support the hypothesis that intercalary meristem origin from surrounded parenchyma cells. Specific gene expressions in intercalary meristem exhibit regular and dispersed distribution pattern, offering clues for understanding the intricate molecular mechanisms that drive the rapid growth of bamboo shoots. The single‐nucleus and spatial transcriptome analysis reveal a comprehensive landscape of gene activity, enhancing the understanding of the molecular architecture of organogenesis and providing valuable resources for future genomic and genetic studies relying on identities of specific cell types.
Summary Bamboo with its remarkable growth rate and economic significance, offers an ideal system to investigate the molecular basis of organogenesis in rapidly growing plants, particular in monocots, where gene regulatory networks governing the maintenance and differentiation of shoot apical and intercalary meristems remain a subject of controversy. We employed both spatial and single‐nucleus transcriptome sequencing on 10× platform to precisely dissect the gene functions in various tissues and early developmental stages of bamboo shoots. Our comprehensive analysis reveals distinct cell trajectories during shoot development, uncovering critical genes and pathways involved in procambium differentiation, intercalary meristem formation, and vascular tissue development. Spatial and temporal expression patterns of key regulatory genes, particularly those related to hormone signaling and lipid metabolism, strongly support the hypothesis that intercalary meristem origin from surrounded parenchyma cells. Specific gene expressions in intercalary meristem exhibit regular and dispersed distribution pattern, offering clues for understanding the intricate molecular mechanisms that drive the rapid growth of bamboo shoots. The single‐nucleus and spatial transcriptome analysis reveal a comprehensive landscape of gene activity, enhancing the understanding of the molecular architecture of organogenesis and providing valuable resources for future genomic and genetic studies relying on identities of specific cell types.
Bamboo with its remarkable growth rate and economic significance, offers an ideal system to investigate the molecular basis of organogenesis in rapidly growing plants, particular in monocots, where gene regulatory networks governing the maintenance and differentiation of shoot apical and intercalary meristems remain a subject of controversy. We employed both spatial and single-nucleus transcriptome sequencing on 10× platform to precisely dissect the gene functions in various tissues and early developmental stages of bamboo shoots. Our comprehensive analysis reveals distinct cell trajectories during shoot development, uncovering critical genes and pathways involved in procambium differentiation, intercalary meristem formation, and vascular tissue development. Spatial and temporal expression patterns of key regulatory genes, particularly those related to hormone signaling and lipid metabolism, strongly support the hypothesis that intercalary meristem origin from surrounded parenchyma cells. Specific gene expressions in intercalary meristem exhibit regular and dispersed distribution pattern, offering clues for understanding the intricate molecular mechanisms that drive the rapid growth of bamboo shoots. The single-nucleus and spatial transcriptome analysis reveal a comprehensive landscape of gene activity, enhancing the understanding of the molecular architecture of organogenesis and providing valuable resources for future genomic and genetic studies relying on identities of specific cell types.Bamboo with its remarkable growth rate and economic significance, offers an ideal system to investigate the molecular basis of organogenesis in rapidly growing plants, particular in monocots, where gene regulatory networks governing the maintenance and differentiation of shoot apical and intercalary meristems remain a subject of controversy. We employed both spatial and single-nucleus transcriptome sequencing on 10× platform to precisely dissect the gene functions in various tissues and early developmental stages of bamboo shoots. Our comprehensive analysis reveals distinct cell trajectories during shoot development, uncovering critical genes and pathways involved in procambium differentiation, intercalary meristem formation, and vascular tissue development. Spatial and temporal expression patterns of key regulatory genes, particularly those related to hormone signaling and lipid metabolism, strongly support the hypothesis that intercalary meristem origin from surrounded parenchyma cells. Specific gene expressions in intercalary meristem exhibit regular and dispersed distribution pattern, offering clues for understanding the intricate molecular mechanisms that drive the rapid growth of bamboo shoots. The single-nucleus and spatial transcriptome analysis reveal a comprehensive landscape of gene activity, enhancing the understanding of the molecular architecture of organogenesis and providing valuable resources for future genomic and genetic studies relying on identities of specific cell types.
Author Luo, Dan
Yu, Fen
Chen, Yamao
Li, Fengjiao
Gong, Jiajia
Guo, Jing
Zhang, Wengen
Qi, Ji
Guo, Chunce
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0003-3689-6374
  surname: Guo
  fullname: Guo, Jing
  organization: Fudan University
– sequence: 2
  givenname: Dan
  surname: Luo
  fullname: Luo, Dan
  organization: Jiangxi Agricultural University
– sequence: 3
  givenname: Yamao
  orcidid: 0000-0002-9472-4936
  surname: Chen
  fullname: Chen, Yamao
  organization: Fudan University
– sequence: 4
  givenname: Fengjiao
  surname: Li
  fullname: Li, Fengjiao
  organization: Jiangxi Agricultural University
– sequence: 5
  givenname: Jiajia
  surname: Gong
  fullname: Gong, Jiajia
  organization: Jiangxi Agricultural University
– sequence: 6
  givenname: Fen
  orcidid: 0000-0001-7230-8520
  surname: Yu
  fullname: Yu, Fen
  organization: Jiangxi Agricultural University
– sequence: 7
  givenname: Wengen
  orcidid: 0000-0003-0946-8614
  surname: Zhang
  fullname: Zhang, Wengen
  organization: Jiangxi Agricultural University
– sequence: 8
  givenname: Ji
  orcidid: 0000-0001-7135-0524
  surname: Qi
  fullname: Qi, Ji
  email: qij@fudan.edu.cn
  organization: Fudan University
– sequence: 9
  givenname: Chunce
  orcidid: 0000-0003-3376-1116
  surname: Guo
  fullname: Guo, Chunce
  email: chunceguo@jxau.edu.cn
  organization: Jiangxi Agricultural University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39140996$$D View this record in MEDLINE/PubMed
BookMark eNqF0UFrFDEYBuAgFbutHvwDEvCih22TmSQzOUrRVigqqOBt-DJJZlNmkjHJtOzJv97sbvVQUHMJCc_3wsd7go588Aahl5Sc0XLO_bw5qwjh8glaUSbkuqV1c4RWhFTtWjDx4xidpHRDCJFcVM_QcS0pI1KKFfr1dYbsQjbTHCKMOEfwqY9uzmEyGPIICUdza2BMeDDelMewjJBD3OIymU30CeslOj_gvDE4xAF82MnkEg52_xlhdhoPMdztmIJJhYDTJoScnqOntmSbFw_3Kfr-4f23i6v19efLjxfvrtd93ZaFgFmoiOp7rTSoRnGlmZXGakKF1dQyDUQo1YJRTNCag-QNb9oKCLHCNlCfojeH3DmGn4tJuZtc6s04gjdhSV1Ned1y1jD2f0pk1TaUcF7o60f0JizRl0VKIK1qyuhevXpQi5qM7uboJojb7ncLBbw9gD6GlKKxfwgl3a7hrjTc7Rsu9vyR7V3eVehLdW7818SdG83279Hdpy9Xh4l7oQu6WQ
CitedBy_id crossref_primary_10_1186_s12864_024_11007_5
crossref_primary_10_1016_j_pld_2024_10_004
Cites_doi 10.1017/CBO9780511626227
10.1146/annurev-genet-071719-020439
10.1242/dev.057331
10.1073/pnas.2018615118
10.1093/jxb/erx299
10.1093/mp/ssr007
10.1093/pcp/pcg164
10.1111/j.1365-313X.2004.02016.x
10.1093/bioinformatics/btl446
10.1038/s41586-020-2501-8
10.1016/j.molp.2019.01.003
10.1038/s41586-018-0837-0
10.1093/molbev/msab288
10.1093/jxb/erz201
10.1104/pp.111.181875
10.1073/pnas.1016436107
10.1105/tpc.113.116053
10.1038/nature02081
10.1038/s41477-021-00917-x
10.1093/plcell/koad028
10.1093/plcell/koac193
10.1105/tpc.17.00791
10.1093/gigascience/giy115
10.1073/pnas.2018788117
10.1038/s41592-019-0619-0
10.1139/b03-131
10.1242/dev.133645
10.1038/nbt.2859
10.1016/j.cell.2021.04.048
10.1038/s41477-021-00919-9
10.1111/j.1469-8137.2011.03972.x
10.1111/mpp.13007
10.1093/bioinformatics/bts635
10.1105/tpc.112.102194
10.1093/oxfordjournals.aob.a083943
10.1093/nar/gkl315
10.1371/journal.pgen.1009043
10.1002/j.1537-2197.1947.tb13002.x
10.1111/nph.14284
10.1093/bioinformatics/btp348
10.1093/nar/gkh340
10.1111/nph.16439
10.1016/j.devcel.2021.02.021
10.1111/tpj.15960
10.1111/2041-210X.13401
10.1016/j.pbi.2009.06.006
10.1038/379066a0
10.1093/nar/gkr944
10.1111/j.1744-7909.2012.01155.x
10.1093/jxb/erab112
10.1126/science.1255215
10.1111/tpj.12939
10.1016/j.pbi.2013.10.005
10.1073/pnas.1409567111
10.1093/plphys/kiab067
10.1111/tpj.15458
10.1016/j.cub.2010.05.035
10.1016/j.pbi.2023.102451
10.1146/annurev.cellbio.20.031803.093824
10.1016/S1360-1385(03)00164-X
10.1111/pbi.12750
10.1093/jxb/erg304
10.1111/mpp.12290
10.1016/S1360-1385(01)02098-2
10.1126/science.1164147
ContentType Journal Article
Copyright 2024 The Author(s). © 2024 New Phytologist Foundation.
2024 The Author(s). New Phytologist © 2024 New Phytologist Foundation.
2024. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). © 2024 New Phytologist Foundation.
– notice: 2024 The Author(s). New Phytologist © 2024 New Phytologist Foundation.
– notice: 2024. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.20059
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef

MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1073
ExternalDocumentID 39140996
10_1111_nph_20059
NPH20059
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: the National Natural Science Foundation of China
  funderid: 31960051; 32200176; 32370246
– fundername: National Key Research & Development Program of China
  funderid: 2021YFD2200502_4
– fundername: China Postdoctoral Science Foundation
  funderid: 2021M690682
– fundername: the National Natural Science Foundation of China
  grantid: 32370246
– fundername: China Postdoctoral Science Foundation
  grantid: 2021M690682
– fundername: National Key Research & Development Program of China
  grantid: 2021YFD2200502_4
– fundername: the National Natural Science Foundation of China
  grantid: 31960051
– fundername: the National Natural Science Foundation of China
  grantid: 32200176
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPNFZ
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
ABGDZ
ABSQW
ADXHL
AEFGJ
AEYWJ
AGHNM
AGUYK
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c3869-a4fa20bccdbdab7b5bd4f9efd016fd1f4da06bb8aeb46135a9575782a00f6f7a3
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 12:11:30 EDT 2025
Thu Jul 10 22:38:48 EDT 2025
Tue Aug 19 10:10:49 EDT 2025
Wed Feb 19 02:14:31 EST 2025
Thu Aug 21 00:22:15 EDT 2025
Thu Apr 24 22:56:20 EDT 2025
Wed Jan 22 17:14:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Moso bamboo
spatial transcriptome
single‐nucleus transcriptome
organogenesis
gene regulatory network
Language English
License Attribution-NonCommercial-NoDerivs
2024 The Author(s). New Phytologist © 2024 New Phytologist Foundation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3869-a4fa20bccdbdab7b5bd4f9efd016fd1f4da06bb8aeb46135a9575782a00f6f7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9472-4936
0000-0003-0946-8614
0000-0003-3689-6374
0000-0003-3376-1116
0000-0001-7135-0524
0000-0001-7230-8520
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.20059
PMID 39140996
PQID 3112314155
PQPubID 2026848
PageCount 17
ParticipantIDs proquest_miscellaneous_3153854744
proquest_miscellaneous_3092871055
proquest_journals_3112314155
pubmed_primary_39140996
crossref_primary_10_1111_nph_20059
crossref_citationtrail_10_1111_nph_20059
wiley_primary_10_1111_nph_20059_NPH20059
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
2024-Nov
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 76
2013; 29
2004; 20
2023; 35
2013; 25
2021; 22
2006; 34
2010; 107
2019; 12
2019; 16
2020; 16
2019; 565
2016; 143
2020; 11
2021; 72
2012; 54
2003; 54
2004; 32
2009; 12
2018; 7
2021; 38
2010; 20
1947; 34
2015; 83
2006; 22
2004; 37
2003; 8
2021; 118
2022; 34
2018; 30
2014; 17
1996; 379
2012; 24
1965; 29
2003; 44
1989
2011; 138
2022; 112
2009; 25
2021; 7
2019; 70
2004; 82
2002; 7
2021; 108
2020; 226
2021; 184
2021; 186
2020; 584
2008; 322
2011; 4
2014; 111
2016; 17
2017; 214
2018; 69
2003; 426
2021; 56
2021; 55
2012; 193
2020; 117
2012; 158
2014; 345
2018; 16
2014; 32
2012; 40
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 11
  start-page: 943
  year: 2020
  end-page: 954
  article-title: P MCL: accurate clustering of hierarchical orthogroups guided by phylogenetic relationship and inference of polyploidy events
  publication-title: Methods in Ecology and Evolution
– volume: 138
  start-page: 849
  year: 2011
  end-page: 859
  article-title: Brassinosteroids control meristem size by promoting cell cycle progression in roots
  publication-title: Development
– volume: 107
  start-page: 22338
  year: 2010
  end-page: 22343
  article-title: Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 226
  start-page: 672
  year: 2020
  end-page: 678
  article-title: Moving on up – controlling internode growth
  publication-title: New Phytologist
– volume: 111
  start-page: E2760
  year: 2014
  end-page: E2769
  article-title: SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at the shoot apex to regulate the floral transition
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 158
  start-page: 340
  year: 2012
  end-page: 351
  article-title: Drought and salt stress tolerance of an Arabidopsis glutathione ‐transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid
  publication-title: Plant Physiology
– volume: 7
  start-page: 22
  year: 2002
  end-page: 31
  article-title: Missing links: the genetic architecture of flower and floral diversification
  publication-title: Trends in Plant Science
– volume: 83
  start-page: 913
  year: 2015
  end-page: 925
  article-title: OsPIN5b modulates rice ( ) plant architecture and yield by changing auxin homeostasis, transport and distribution
  publication-title: The Plant Journal
– volume: 112
  start-page: 476
  year: 2022
  end-page: 492
  article-title: Bioenergy sorghum stem growth regulation: intercalary meristem localization, development, and gene regulatory network analysis
  publication-title: The Plant Journal
– volume: 34
  start-page: 361
  year: 1947
  end-page: 370
  article-title: The development of the gynophore of the peanut plant, LI The distribution of mitoses, the region of greatest elongation, and the maintenance of vascular continuity in the intercalary meristem
  publication-title: American Journal of Botany
– volume: 345
  year: 2014
  article-title: Plant development. Integration of growth and patterning during vascular tissue formation in
  publication-title: Science
– year: 1989
– volume: 117
  start-page: 33689
  year: 2020
  end-page: 33699
  article-title: Plant stem‐cell organization and differentiation at single‐cell resolution
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 565
  start-page: 485
  year: 2019
  end-page: 489
  article-title: High levels of auxin signalling define the stem‐cell organizer of the vascular cambium
  publication-title: Nature
– volume: 186
  start-page: 767
  year: 2021
  end-page: 781
  article-title: Highly pleiotropic functions of CYP78As and AMP1 are regulated in non‐cell‐autonomous/organ‐specific manners
  publication-title: Plant Physiology
– volume: 16
  year: 2020
  article-title: AMP1 and CYP78A5/7 act through a common pathway to govern cell fate maintenance in
  publication-title: PLoS Genetics
– volume: 70
  start-page: 3911
  year: 2019
  end-page: 3926
  article-title: Cellular and molecular characterization of a thick‐walled variant reveal a pivotal role of shoot apical meristem in transverse development of bamboo culm
  publication-title: Journal of Experimental Botany
– volume: 8
  start-page: 394
  year: 2003
  end-page: 401
  article-title: Shoot apical meristem maintenance: the art of a dynamic balance
  publication-title: Trends in Plant Science
– volume: 34
  start-page: W609
  year: 2006
  end-page: W612
  article-title: PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments
  publication-title: Nucleic Acids Research
– volume: 214
  start-page: 81
  year: 2017
  end-page: 96
  article-title: Exploring key cellular processes and candidate genes regulating the primary thickening growth of Moso underground shoots
  publication-title: New Phytologist
– volume: 32
  start-page: 1792
  year: 2004
  end-page: 1797
  article-title: M : multiple sequence alignment with high accuracy and high throughput
  publication-title: Nucleic Acids Research
– volume: 34
  start-page: 3577
  year: 2022
  end-page: 3610
  article-title: Rapid growth of Moso bamboo ( ): cellular roadmaps, transcriptome dynamics, and environmental factors
  publication-title: Plant Cell
– volume: 82
  start-page: 115
  year: 2004
  end-page: 122
  article-title: Diversity of cell lengths in intercalary meristem regions of grasses: location of the proliferative cell population
  publication-title: Canadian Journal of Botany
– volume: 17
  start-page: 7
  year: 2014
  end-page: 12
  article-title: Postembryonic control of root meristem growth and development
  publication-title: Current Opinion in Plant Biology
– volume: 44
  start-page: 1350
  year: 2003
  end-page: 1358
  article-title: HD‐zip III homeobox genes that include a novel member, ZeHB‐13 (Zinnia)/ATHB‐15 ( ), are involved in procambium and xylem cell differentiation
  publication-title: Plant and Cell Physiology
– volume: 37
  start-page: 914
  year: 2004
  end-page: 939
  article-title: M : a user‐driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes
  publication-title: The Plant Journal
– volume: 108
  start-page: 859
  year: 2021
  end-page: 869
  article-title: Single‐nucleus RNA sequencing of plant tissues using a nanowell‐based system
  publication-title: The Plant Journal
– volume: 22
  start-page: 2688
  year: 2006
  end-page: 2690
  article-title: RA ML‐VI‐HPC: maximum likelihood‐based phylogenetic analyses with thousands of taxa and mixed models
  publication-title: Bioinformatics
– volume: 25
  start-page: 1972
  year: 2009
  end-page: 1973
  article-title: A : a tool for automated alignment trimming in large‐scale phylogenetic analyses
  publication-title: Bioinformatics
– volume: 29
  start-page: 15
  year: 2013
  end-page: 21
  article-title: S : ultrafast universal RNA‐seq aligner
  publication-title: Bioinformatics
– volume: 29
  start-page: 205
  year: 1965
  end-page: 217
  article-title: Intercalary growth in the aerial shoot of R. Br. Prodr.: I. structure of the growing zone
  publication-title: Annals of Botany
– volume: 32
  start-page: 381
  year: 2014
  end-page: 386
  article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
  publication-title: Nature Biotechnology
– volume: 54
  start-page: 2709
  year: 2003
  end-page: 2722
  article-title: Transcriptional regulation of secondary growth in
  publication-title: Journal of Experimental Botany
– volume: 56
  start-page: 1056
  year: 2021
  end-page: 1074
  article-title: A single‐cell analysis of the vegetative shoot apex
  publication-title: Developmental Cell
– volume: 25
  start-page: 3159
  year: 2013
  end-page: 3173
  article-title: Plant callus: mechanisms of induction and repression
  publication-title: Plant Cell
– volume: 38
  start-page: 5752
  year: 2021
  end-page: 5768
  article-title: New genes interacted with recent whole‐genome duplicates in the fast stem growth of bamboos
  publication-title: Molecular Biology and Evolution
– volume: 16
  start-page: 72
  year: 2018
  end-page: 85
  article-title: The association of hormone signalling genes, transcription and changes in shoot anatomy during moso bamboo growth
  publication-title: Plant Biotechnology Journal
– volume: 12
  start-page: 879
  year: 2019
  end-page: 892
  article-title: M M 4: a refined protein classification and annotation framework applicable to multi‐omics data analysis
  publication-title: Molecular Plant
– volume: 17
  start-page: 412
  year: 2016
  end-page: 426
  article-title: contributes to disease susceptibility in by enhancing abscisic acid (ABA) biosynthesis
  publication-title: Molecular Plant Pathology
– volume: 30
  start-page: 360
  year: 2018
  end-page: 374
  article-title: regulates shoot architecture and meristem determinacy in maize
  publication-title: Plant Cell
– volume: 12
  start-page: 593
  year: 2009
  end-page: 598
  article-title: A KNOX family TALE
  publication-title: Current Opinion in Plant Biology
– volume: 584
  start-page: 109
  year: 2020
  end-page: 114
  article-title: Antagonistic regulation of the gibberellic acid response during stem growth in rice
  publication-title: Nature
– volume: 7
  start-page: 633
  year: 2021
  end-page: 643
  article-title: Two types of bHLH transcription factor determine the competence of the pericycle for lateral root initiation
  publication-title: Nature Plants
– volume: 143
  start-page: 3238
  year: 2016
  end-page: 3248
  article-title: CLAVATA‐WUSCHEL signaling in the shoot meristem
  publication-title: Development
– volume: 76
  year: 2023
  article-title: Hormonal regulation of inflorescence and intercalary meristems in grasses
  publication-title: Current Opinion in Plant Biology
– volume: 20
  start-page: 125
  year: 2004
  end-page: 151
  article-title: The role of knox genes in plant development
  publication-title: Annual Review of Cell and Developmental Biology
– volume: 20
  start-page: 1138
  year: 2010
  end-page: 1143
  article-title: The rate of cell differentiation controls the root meristem growth phase
  publication-title: Current Biology
– volume: 16
  start-page: 1289
  year: 2019
  end-page: 1296
  article-title: Fast, sensitive and accurate integration of single‐cell data with Harmony
  publication-title: Nature Methods
– volume: 7
  start-page: 619
  year: 2021
  end-page: 632
  article-title: Local brassinosteroid biosynthesis enables optimal root growth
  publication-title: Nature Plants
– volume: 322
  start-page: 1380
  year: 2008
  end-page: 1384
  article-title: A genetic framework for the control of cell division and differentiation in the root meristem
  publication-title: Science
– volume: 7
  start-page: 1
  year: 2018
  end-page: 12
  article-title: Chromosome‐level reference genome and alternative splicing atlas of moso bamboo ( )
  publication-title: GigaScience
– volume: 54
  start-page: 760
  year: 2012
  end-page: 772
  article-title: Phloem‐mobile transcripts target to the root tip and modify root architecture
  publication-title: Journal of Integrative Plant Biology
– volume: 118
  year: 2021
  article-title: controls plant architecture by locally restricting environmental responses
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 193
  start-page: 304
  year: 2012
  end-page: 312
  article-title: New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins
  publication-title: New Phytologist
– volume: 4
  start-page: 616
  year: 2011
  end-page: 625
  article-title: Auxin‐cytokinin interaction regulates meristem development
  publication-title: Molecular Plant
– volume: 379
  start-page: 66
  year: 1996
  end-page: 69
  article-title: A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis
  publication-title: Nature
– volume: 40
  start-page: D1178
  year: 2012
  end-page: D1186
  article-title: P : a comparative platform for green plant genomics
  publication-title: Nucleic Acids Research
– volume: 24
  start-page: 3907
  year: 2012
  end-page: 3919
  article-title: Systems analysis of shoot apical meristem growth and development: integrating hormonal and mechanical signaling
  publication-title: Plant Cell
– volume: 55
  start-page: 661
  year: 2021
  end-page: 681
  article-title: Genetics of shoot meristem and shoot regeneration
  publication-title: Annual Review of Genetics
– volume: 426
  start-page: 255
  year: 2003
  end-page: 260
  article-title: Regulation of phyllotaxis by polar auxin transport
  publication-title: Nature
– volume: 22
  start-page: 48
  year: 2021
  end-page: 63
  article-title: A nonspecific lipid transfer protein, StLTP10, mediates resistance to in potato
  publication-title: Molecular Plant Pathology
– volume: 69
  start-page: 147
  year: 2018
  end-page: 154
  article-title: Auxin and above‐ground meristems
  publication-title: Journal of Experimental Botany
– volume: 184
  start-page: 3573
  year: 2021
  end-page: 3587
  article-title: Integrated analysis of multimodal single‐cell data
  publication-title: Cell
– volume: 35
  start-page: 1513
  year: 2023
  end-page: 1531
  article-title: PAT1‐type GRAS‐domain proteins control regeneration by activating DOF3.4 to drive cell proliferation in roots
  publication-title: Plant Cell
– volume: 72
  start-page: 4005
  year: 2021
  end-page: 4021
  article-title: The underground life of homeodomain‐leucine zipper transcription factors
  publication-title: Journal of Experimental Botany
– ident: e_1_2_9_49_1
  doi: 10.1017/CBO9780511626227
– ident: e_1_2_9_13_1
  doi: 10.1146/annurev-genet-071719-020439
– ident: e_1_2_9_17_1
  doi: 10.1242/dev.057331
– ident: e_1_2_9_12_1
  doi: 10.1073/pnas.2018615118
– ident: e_1_2_9_58_1
  doi: 10.1093/jxb/erx299
– ident: e_1_2_9_50_1
  doi: 10.1093/mp/ssr007
– ident: e_1_2_9_38_1
  doi: 10.1093/pcp/pcg164
– ident: e_1_2_9_53_1
  doi: 10.1111/j.1365-313X.2004.02016.x
– ident: e_1_2_9_48_1
  doi: 10.1093/bioinformatics/btl446
– ident: e_1_2_9_34_1
  doi: 10.1038/s41586-020-2501-8
– ident: e_1_2_9_43_1
  doi: 10.1016/j.molp.2019.01.003
– ident: e_1_2_9_44_1
  doi: 10.1038/s41586-018-0837-0
– ident: e_1_2_9_26_1
  doi: 10.1093/molbev/msab288
– ident: e_1_2_9_59_1
  doi: 10.1093/jxb/erz201
– ident: e_1_2_9_7_1
  doi: 10.1104/pp.111.181875
– ident: e_1_2_9_57_1
  doi: 10.1073/pnas.1016436107
– ident: e_1_2_9_23_1
  doi: 10.1105/tpc.113.116053
– ident: e_1_2_9_41_1
  doi: 10.1038/nature02081
– ident: e_1_2_9_55_1
  doi: 10.1038/s41477-021-00917-x
– ident: e_1_2_9_4_1
  doi: 10.1093/plcell/koad028
– ident: e_1_2_9_8_1
  doi: 10.1093/plcell/koac193
– ident: e_1_2_9_62_1
  doi: 10.1105/tpc.17.00791
– ident: e_1_2_9_65_1
  doi: 10.1093/gigascience/giy115
– ident: e_1_2_9_42_1
  doi: 10.1073/pnas.2018788117
– ident: e_1_2_9_27_1
  doi: 10.1038/s41592-019-0619-0
– ident: e_1_2_9_14_1
  doi: 10.1139/b03-131
– ident: e_1_2_9_46_1
  doi: 10.1242/dev.133645
– ident: e_1_2_9_54_1
  doi: 10.1038/nbt.2859
– ident: e_1_2_9_21_1
  doi: 10.1016/j.cell.2021.04.048
– ident: e_1_2_9_64_1
  doi: 10.1038/s41477-021-00919-9
– ident: e_1_2_9_19_1
  doi: 10.1111/j.1469-8137.2011.03972.x
– ident: e_1_2_9_56_1
  doi: 10.1111/mpp.13007
– ident: e_1_2_9_10_1
  doi: 10.1093/bioinformatics/bts635
– ident: e_1_2_9_33_1
  doi: 10.1105/tpc.112.102194
– ident: e_1_2_9_15_1
  doi: 10.1093/oxfordjournals.aob.a083943
– ident: e_1_2_9_52_1
  doi: 10.1093/nar/gkl315
– ident: e_1_2_9_40_1
  doi: 10.1371/journal.pgen.1009043
– ident: e_1_2_9_25_1
  doi: 10.1002/j.1537-2197.1947.tb13002.x
– ident: e_1_2_9_60_1
  doi: 10.1111/nph.14284
– ident: e_1_2_9_5_1
  doi: 10.1093/bioinformatics/btp348
– ident: e_1_2_9_11_1
  doi: 10.1093/nar/gkh340
– ident: e_1_2_9_31_1
  doi: 10.1111/nph.16439
– ident: e_1_2_9_63_1
  doi: 10.1016/j.devcel.2021.02.021
– ident: e_1_2_9_61_1
  doi: 10.1111/tpj.15960
– ident: e_1_2_9_66_1
  doi: 10.1111/2041-210X.13401
– ident: e_1_2_9_22_1
  doi: 10.1016/j.pbi.2009.06.006
– ident: e_1_2_9_29_1
  doi: 10.1038/379066a0
– ident: e_1_2_9_18_1
  doi: 10.1093/nar/gkr944
– ident: e_1_2_9_36_1
  doi: 10.1111/j.1744-7909.2012.01155.x
– ident: e_1_2_9_39_1
  doi: 10.1093/jxb/erab112
– ident: e_1_2_9_9_1
  doi: 10.1126/science.1255215
– ident: e_1_2_9_30_1
  doi: 10.1111/tpj.12939
– ident: e_1_2_9_47_1
  doi: 10.1016/j.pbi.2013.10.005
– ident: e_1_2_9_2_1
  doi: 10.1073/pnas.1409567111
– ident: e_1_2_9_35_1
  doi: 10.1093/plphys/kiab067
– ident: e_1_2_9_51_1
  doi: 10.1111/tpj.15458
– ident: e_1_2_9_32_1
  doi: 10.1016/j.cub.2010.05.035
– ident: e_1_2_9_3_1
  doi: 10.1016/j.pbi.2023.102451
– ident: e_1_2_9_20_1
  doi: 10.1146/annurev.cellbio.20.031803.093824
– ident: e_1_2_9_6_1
  doi: 10.1016/S1360-1385(03)00164-X
– ident: e_1_2_9_28_1
  doi: 10.1111/pbi.12750
– ident: e_1_2_9_37_1
  doi: 10.1093/jxb/erg304
– ident: e_1_2_9_16_1
  doi: 10.1111/mpp.12290
– ident: e_1_2_9_45_1
  doi: 10.1016/S1360-1385(01)02098-2
– ident: e_1_2_9_24_1
  doi: 10.1126/science.1164147
SSID ssj0009562
Score 2.479169
Snippet Summary Bamboo with its remarkable growth rate and economic significance, offers an ideal system to investigate the molecular basis of organogenesis in rapidly...
Bamboo with its remarkable growth rate and economic significance, offers an ideal system to investigate the molecular basis of organogenesis in rapidly growing...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1057
SubjectTerms Bamboo
bamboos
Cell differentiation
Cell Nucleus - genetics
Cell Nucleus - metabolism
Developmental stages
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Plant
gene regulatory network
Gene sequencing
Genes
Genes, Plant
Genetic analysis
Genomic analysis
genomics
Growth rate
Hormones
Landscape architecture
Liliopsida
Lipid metabolism
Lipids
Meristem - genetics
Meristem - growth & development
Meristems
Metabolism
Molecular modelling
Molecular structure
Moso bamboo
Nuclei (cytology)
Nucleus
Organogenesis
Organogenesis - genetics
Organogenesis, Plant - genetics
Parenchyma
Pattern analysis
Plant Shoots - genetics
Plant Shoots - growth & development
Plant tissues
Sasa - genetics
Sasa - growth & development
Shoots
single‐nucleus transcriptome
Spatial analysis
spatial transcriptome
Spatio-Temporal Analysis
Time Factors
transcriptome
Transcriptome - genetics
Transcriptomes
transcriptomics
Vascular tissue
Title Spatiotemporal transcriptome atlas reveals gene regulatory patterns during the organogenesis of the rapid growing bamboo shoots
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.20059
https://www.ncbi.nlm.nih.gov/pubmed/39140996
https://www.proquest.com/docview/3112314155
https://www.proquest.com/docview/3092871055
https://www.proquest.com/docview/3153854744
Volume 244
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RxKGXttDXUkBu1UMvQcGxnbV6AgRaIYFQW6Q9VIrs2KaoEK82WSF66V_v2HkI2oKq3vKYSH7MeD7HM98AvJdjY42mOkFlEQkzNk20ViwxIqPOUqNcLN92fCImZ-xoyqdL8LHPhWn5IYYfbsEy4nodDFzp-paRV7N4lsBD8l6I1QqA6BO9RbgraM_ALJiYdqxCIYpn-PKuL_oDYN7Fq9HhHD6Fr31T2ziT79uLRm-XP35jcfzPvjyDJx0QJbut5qzCkq3WYGXPI1i8eQ4_P8dI64646pI0waXFBcZfWaIaxNwkkD-h8hJUQYs3saa9n9-QWaTsrGrSpkAShJgkFo_yQbK-qIl38eFczS4MOZ_76yCm1RUiflJ_876pX8DZ4cGX_UnS1WpIymwsZKKYUzTVZWm0UTrXXBvmpHUGIaUzO44ZlQqtx8pqhgiCK8kjk75KUydcrrKXsFz5yr4GghBEGJkb7qhlKssU5-jIhcwdZdbldAQf-lkryo7IPNTTuCz6DQ0OZxGHcwTvBtFZy97xN6GNfuqLzoDrIkMcmu0EtDWCt8NrNL1wnqIq6xcok8qw30wflAkehbOcsRG8atVqaEkmA9uYFNihqBz3N7E4OZ3Ei_V_F30DjykCsDZvcgOWm_nCbiKAavQWPKLsdCvayy-SGhwT
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH4qBYle2JcpBQziwCVV6tjOWOoFENUA7QhBK80FRXZsQ9U2Hk0yqsqFv95nZ1HLJsQtyxfJy3t5n7fvAbyQY2ONpjpBYxEJMzZNtFYsMSKjzlKjXEzftjcVkwP2fsZnK7Ddn4Vp9SGGCbfgGfF_HRw8TEhf8PJqHhcTuLwCV0NG7zig-kQvSO4K2mswCyZmna5Q2MczfHo5Gv1CMS8z1hhydm7Cl76w7U6To81lozfL7z_pOP5vbW7BjY6Lklet8dyGFVvdgWuvPfLFs7vw43PcbN1pVx2TJkS1-I_xJ5aoBmk3CfpPaL8ErdDiTUxr7xdnZB5VO6uatKcgCbJMEvNH-YCsD2viXXy4UPNDQ74u_GmAaXWCpJ_U37xv6ntwsPN2_80k6dI1JGU2FjJRzCma6rI02iida64Nc9I6g6zSmS3HjEqF1mNlNUMSwZXkUUxfpakTLlfZfVitfGUfAkEWIozMDXfUMpVlinOM5ULmjjLrcjqCl323FWWnZR5SahwX_ZgGm7OIzTmC5wN03gp4_A600fd90flwXWRIRbOtQLhG8Gx4jd4XllRUZf0SMakMQ870r5gQVDjLGRvBg9auhpJkMgiOSYEVitbx5yIW04-TeLH-79CncH2yv7db7L6bfngEaxT5WHuMcgNWm8XSPkY-1egn0W3OAXuLH1c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH4qBSEu7MtAAYM4cEmVOrYzFiegjIZtVAGV5oAU2bENFW0cTTJC5cJf59lZ1LIJccvyInn5nt_n2P4ewCM5NdZoqhMEi0iYsWmitWKJERl1lhrlYvq2twsx32evlny5AU-GszCdPsT4wy14Rhyvg4PXxp1w8qqOawlcnoGzTKTTAOndd_SE4q6ggwSzYGLZywqFbTzjp6eD0S8M8zRhjRFndgk-DmXtNpp82V63erv89pOM439W5jJc7JkoedpB5wps2OoqnHvmkS0eX4Pv7-NW61656pC0IabFEcYfWaJaJN0kqD8hegli0OJNTGrvV8ekjpqdVUO6M5AEOSaJ2aN8sGwOGuJdfLhS9YEhn1b-azDT6ggpP2k-e98212F_9uLD83nSJ2tIymwqZKKYUzTVZWm0UTrXXBvmpHUGOaUzO44ZlQqtp8pqhhSCK8mjlL5KUydcrrIbsFn5yt4CghxEGJkb7qhlKssU5xjJhcwdZdbldAKPh14ryl7JPCTUOCyGGQ02ZxGbcwIPR9O6k-_4ndHW0PVF78FNkSERzXYC3ZrAg_E1-l5YUFGV9Wu0SWWYcKZ_tQkhhbOcsQnc7GA1liSTQW5MCqxQBMefi1gs9ubx4va_m96H83u7s-LNy8XrO3CBIhnrzlBuwWa7Wtu7SKZafS86zQ8xGh4P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+transcriptome+atlas+reveals+gene+regulatory+patterns+during+the+organogenesis+of+the+rapid+growing+bamboo+shoots&rft.jtitle=The+New+phytologist&rft.au=Guo%2C+Jing&rft.au=Luo%2C+Dan&rft.au=Chen%2C+Yamao&rft.au=Li%2C+Fengjiao&rft.date=2024-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=244&rft.issue=3&rft.spage=1057&rft.epage=1073&rft_id=info:doi/10.1111%2Fnph.20059&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon