An Efficient Hybrid Method for Animating the Growth of Large-Scale Cumulus-Type Cloud
We present an efficient method for creating large-scale animations of vertical developing cumulus-type cloud growth. The dynamics of cloud formation, growth, and motion are complex phenomena, and depicting these dynamics remains a significant challenge in the area of simulation and animation of natu...
Saved in:
Published in | Journal of the Society for Art and Science Vol. 6; no. 4; pp. 179 - 196 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English Japanese |
Published |
The Society for Art and Science
2007
|
Subjects | |
Online Access | Get full text |
ISSN | 1347-2267 1347-2267 |
DOI | 10.3756/artsci.6.179 |
Cover
Abstract | We present an efficient method for creating large-scale animations of vertical developing cumulus-type cloud growth. The dynamics of cloud formation, growth, and motion are complex phenomena, and depicting these dynamics remains a significant challenge in the area of simulation and animation of natural phenomena in computer graphics. A novel aspect of this paper is the combination of a physical simulation method and a stochastic simulation method for obtaining an animation of large-scale phenomena with effects that are more natural. The physical simulation method is used to accurately solve fluid dynamics on a relatively small scale and prepare a 3D primitive pattern of a realistic animation of cloud growth. The stochastic simulation method uses 1/fβ noise functions and performs a large-scale simulation of an air current caused by the rising and condensation of water vapor due to the thermal effect. Many copies of the 3D primitive pattern are recursively mapped into the air current to constitute a large-scale continuous cloud growth. This combination of the physical and stochastic simulation methods can animate large-scale phenomena efficiently without enormous computational time and memory. The physical and stochastic simulations are achieved by particle-based methods, and the mapping is applied on simulated particles. Experimental results show that the proposed method efficiently creates realistic animations of large-scale cumulus and cumulonimbus clouds. |
---|---|
AbstractList | We present an efficient method for creating large-scale animations of vertical developing cumulus-type cloud growth. The dynamics of cloud formation, growth, and motion are complex phenomena, and depicting these dynamics remains a significant challenge in the area of simulation and animation of natural phenomena in computer graphics. A novel aspect of this paper is the combination of a physical simulation method and a stochastic simulation method for obtaining an animation of large-scale phenomena with effects that are more natural. The physical simulation method is used to accurately solve fluid dynamics on a relatively small scale and prepare a 3D primitive pattern of a realistic animation of cloud growth. The stochastic simulation method uses 1/fβ noise functions and performs a large-scale simulation of an air current caused by the rising and condensation of water vapor due to the thermal effect. Many copies of the 3D primitive pattern are recursively mapped into the air current to constitute a large-scale continuous cloud growth. This combination of the physical and stochastic simulation methods can animate large-scale phenomena efficiently without enormous computational time and memory. The physical and stochastic simulations are achieved by particle-based methods, and the mapping is applied on simulated particles. Experimental results show that the proposed method efficiently creates realistic animations of large-scale cumulus and cumulonimbus clouds. |
Author | Chiba, Norishige Mamat, Abdukadir Fujimoto, Tadahiro Mamitimin, Geni |
Author_xml | – sequence: 1 fullname: Mamat, Abdukadir organization: Iwate University – sequence: 1 fullname: Mamitimin, Geni organization: Xinjiang University – sequence: 1 fullname: Fujimoto, Tadahiro organization: Iwate University – sequence: 1 fullname: Chiba, Norishige organization: Iwate University |
BookMark | eNp1kMFOAjEQhhuDiYDefIA-gIvb7W4LNwlBMMF4EM6b2W7LliwtabsxvL1FDBoTD810Zr5_MvMPUM9YIxG6J-mI8oI9ggte6BEbET65Qn1Cc55kGeO9X_8bNPB-l6ZsQkjaR5upwXOltNDSBLw8Vk7X-FWGxtZYWYenRu8haLPFoZF44exHaLBVeAVuK5N3Aa3Es27ftZ1P1sdDTFrb1bfoWkHr5d13HKLN83w9Wyart8XLbLpKBB2zSVIwxkWaF0U1zhSwOoMqH_NKUUirmhNVCMh4xYFwLiLIqSwyYAQkCBWrFR2i7DxXOOu9k6oUOsR1rQkOdFuStDwZU56NKVkZjYmihz-ig4tHuuN_-NMZ3_kAW3mBI6RFK3_g_OtFyaUlGnClNPQT45OBZA |
CitedBy_id | crossref_primary_10_3756_artsci_15_55 |
Cites_doi | 10.1145/325165.325248 10.1029/1999GL011257 10.1111/1467-8659.00500 10.1145/1073204.1073282 10.1016/0378-4371(92)90018-L 10.1145/882262.882335 10.1002/vis.4340050104 10.1016/B978-155860848-1/50029-2 10.1016/0167-2789(89)90220-0 10.1145/325165.325247 10.13182/NSE96-A24205 10.1109/PCCGA.2003.1238299 10.1142/9789814368223_0001 10.1109/PCCGA.2001.962893 10.1145/383259.383260 10.1145/311535.311548 10.1146/annurev.astro.30.1.543 10.1145/344779.344795 10.1002/(SICI)1099-1778(199710/12)8:4<191::AID-VIS160>3.0.CO;2-1 10.1145/964965.808594 10.1007/978-3-7091-6874-5_8 |
ContentType | Journal Article |
Copyright | 2007 Mamat Abdukadir, Fujimoto, Tadahiro, Mamtimin Geni, and Chiba, Norishige |
Copyright_xml | – notice: 2007 Mamat Abdukadir, Fujimoto, Tadahiro, Mamtimin Geni, and Chiba, Norishige |
DBID | AAYXX CITATION |
DOI | 10.3756/artsci.6.179 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1347-2267 |
EndPage | 196 |
ExternalDocumentID | 10_3756_artsci_6_179 article_artsci_6_4_6_4_179_article_char_en |
GroupedDBID | ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS JSF KQ8 RJT AAYXX CITATION |
ID | FETCH-LOGICAL-c3869-5667c0455b82fa6d2ab487bf3a0bd71f5ca27b7a177c7c073e52a61aeacf7a1b3 |
ISSN | 1347-2267 |
IngestDate | Tue Jul 01 03:27:39 EDT 2025 Thu Apr 24 22:58:56 EDT 2025 Wed Sep 03 06:29:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 4 |
Language | English Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3869-5667c0455b82fa6d2ab487bf3a0bd71f5ca27b7a177c7c073e52a61aeacf7a1b3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/artsci/6/4/6_4_179/_article/-char/en |
PageCount | 18 |
ParticipantIDs | crossref_citationtrail_10_3756_artsci_6_179 crossref_primary_10_3756_artsci_6_179 jstage_primary_article_artsci_6_4_6_4_179_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20070000 |
PublicationDateYYYYMMDD | 2007-01-01 |
PublicationDate_xml | – year: 2007 text: 20070000 |
PublicationDecade | 2000 |
PublicationTitle | Journal of the Society for Art and Science |
PublicationTitleAlternate | The Journal of the Society for Art and Science |
PublicationYear | 2007 |
Publisher | The Society for Art and Science |
Publisher_xml | – name: The Society for Art and Science |
References | [6] G. Gardner, “Visual Simulation of Clouds,” Proc. of SIGGRAPH 1985, pp. 297-304. [7] J. Kajiya and B. V. Herzen, “Ray tracing volume densities,” Proc. of SIGGRAPH 1984, pp. 165-174. [28] D. Takeshita, S. Ota, M. Tamura, T. Fujimoto, K. Muraoka, and N. Chiba, “Particle-based visual simulation of explosive flames,” Proc. of Pacific Graphics 2003, pp. 482-486. [29] R. Voss, “Random Fractals: Self-affinity in Noise, Music, Mountains, and Clouds,” Physica D, Vol. 38, pp. 362-371, 1989. [27] D. Takeshita, T. Fujimoto, and N. Chiba, “Recursive particle generator for animating plume fluid,” International Workshop on Advanced Image Technology 2005, pp. 487-492. [18] K. Nagel and E. Raschke, “Self-organizing Criticality in Cloud Formation,” Physica A, Vol. 182, pp. 519-531, 1992. [10] T. Kikuchi, K. Muraoka, and N. Chiba, “Visual Simulation of Cumulonimbus Clouds,” The Journal of The Institute of Image Electronics Engineers of Japan, Vol. 27, No. 4, pp. 317-326, 1998, in Japanese. [11] S. Koshizuka and Y. Oka, “Moving-particle Semi-implicit Method for Fragmentation of Incompressible Fluid,” Nuclear Science Engineering, Vol. 123, pp. 421-434, 1996. [3] Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, and T. Nishita, “A simple, efficient method for realistic animation of clouds,” Proc. of SIGGRAPH 2000, pp. 19-28. [4] D. Ebert, F. Musgrave, D. Peachey, K. Perlin, and S. Worley, Texturing & Modeling: A Procedural Approach, Morgan Kaufmann, 3rd Edition, 2002. [21] H. O. Peitgen and D. Saupe, (Eds), The Science of Fractal Image, Springer-Verlag, 1988. [9] T. Kikuchi, K. Muraoka, and N. Chiba, “Visual Simulation of Cumulus Type Clouds,” The Journal of The Institute of Image Electronics Engineers of Japan, Vol. 28, No. 2, pp. 140-151, 1999, in Japanese. [5] R. Fedkiw, J. Stam and H. W. Jensen, “Visual simulation of smoke,” Proc. of SIGGRAPH 2001, pp. 15-22. [26] A. Selle, N. Rasmussen, and R. Fedkiw, “A vortex particle method for smoke, water and explosions,” Proc. of SIGGRAPH 2005, pp. 910-914. [31] WW2010, “Clouds and Precipitation,” http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/cld/home.rxml [8] K. Kaneko, “Simulating physics with coupled map lattices-pattern dynamics, information flow, and thermodynamics of spatiotemporal chaos”, World Scientific, Singapore, Vol. 1, 1990. [12] R. Miyazaki, S. Yoshida, Y. Dobashi, and T. Nishita, “A method for modeling clouds based on atmospheric fluid dynamics,” Proc. of Pacific Graphics 2001, pp. 363-372. [17] M. J. Harris, “Real-time Cloud Simulation and Rendering,” PhD thesis, University of North Carolina, 2003. [16] M. J. Harris, W. V. Baxter, T. Scheuermann and A. Lastra, “Simulation of cloud dynamics on graphics hardware,” Proc. of Eurographics on Graphics Hardware 2003, pp. 92-101. [19] F. Neyret, “Qualitative simulation of convective cloud formation and evolution,” Proc. of Eurographics Computer Animation and Simulation Workshop 1997, pp. 113-124. [24] J. Stam, “Stable fluids,” Proc. of SIGGRAPH 1999, pp. 121-128. [2] N. Chiba, K. Muraoka, H. Takahashi and M. Miura, “Two-dimensional Visual Simulation of Flames, Smoke and the Spread of Fire,” The Journal of Visualization and Computer Animation, Vol. 5, pp. 37-53, 1994. [23] N. Rasmussen, D. Q. Nguyen, W. Geiger, and R. Fedkiw, “Smoke simulation for large-scale phenomena,” Proc. of SIGGRAPH 2003, pp. 703-707. [30] NASA Education, “The importance of understanding clouds,” http://icp.giss.nasa.gov/education/cloudintro [15] M. J. Harris and A. Lastra, “Real-time cloud rendering,” Proc. of Eurographics 2001, pp. 76-84. [22] W. Qiang, B. J. Jun, C. Chun, T. Fujimoto, and N. Chiba, “Surface reconstruction for animation of ocean waves,” Proc. of CAD/Graphics 2005, pp. 477-482. [25] B. Stevens, “Cloud Transitions and Decoupling in Shear-free Stratocumulus-topped Boundary Layers,” Geophysical Research Letters, Vol. 27, No. 16, pp. 2557-2560, 2000. [14] J. J. Monaghan, “Smoothed Particle Hydro-dynamics,” Annual Review of Astronomy and Astrophysics, Vol. 30, pp. 543-574, 1992. [1] N. Chiba, K. Muraoka, A. Doi, and J. Hosokawa, “Rendering of Forest Scenery Using 3D Texture,” The Journal of Visualization and Computer Animation, Vol. 8, pp. 191-199, 1997. [20] K. Perlin, “An image synthesizer,” Proc. of SIGGRAPH 1985, pp. 287-296. [13] M. Muller, D. Charypar and M. Gross, “Particle-based fluid simulation for interactive applications ,” Proc. of SIGGRAPH/Eurographics symposium on Computer animation 2003, pp. 154-159. 22 23 24 25 26 27 28 29 KIKUCHI TSUKASA (9) 1999; 28 (11) 1996; 123 30 31 12 13 14 15 16 17 18 KIKUCHI TSUKASA (10) 1998; 27 19 1 2 3 4 5 6 7 8 20 21 |
References_xml | – reference: [6] G. Gardner, “Visual Simulation of Clouds,” Proc. of SIGGRAPH 1985, pp. 297-304. – reference: [3] Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, and T. Nishita, “A simple, efficient method for realistic animation of clouds,” Proc. of SIGGRAPH 2000, pp. 19-28. – reference: [4] D. Ebert, F. Musgrave, D. Peachey, K. Perlin, and S. Worley, Texturing & Modeling: A Procedural Approach, Morgan Kaufmann, 3rd Edition, 2002. – reference: [2] N. Chiba, K. Muraoka, H. Takahashi and M. Miura, “Two-dimensional Visual Simulation of Flames, Smoke and the Spread of Fire,” The Journal of Visualization and Computer Animation, Vol. 5, pp. 37-53, 1994. – reference: [8] K. Kaneko, “Simulating physics with coupled map lattices-pattern dynamics, information flow, and thermodynamics of spatiotemporal chaos”, World Scientific, Singapore, Vol. 1, 1990. – reference: [22] W. Qiang, B. J. Jun, C. Chun, T. Fujimoto, and N. Chiba, “Surface reconstruction for animation of ocean waves,” Proc. of CAD/Graphics 2005, pp. 477-482. – reference: [1] N. Chiba, K. Muraoka, A. Doi, and J. Hosokawa, “Rendering of Forest Scenery Using 3D Texture,” The Journal of Visualization and Computer Animation, Vol. 8, pp. 191-199, 1997. – reference: [12] R. Miyazaki, S. Yoshida, Y. Dobashi, and T. Nishita, “A method for modeling clouds based on atmospheric fluid dynamics,” Proc. of Pacific Graphics 2001, pp. 363-372. – reference: [5] R. Fedkiw, J. Stam and H. W. Jensen, “Visual simulation of smoke,” Proc. of SIGGRAPH 2001, pp. 15-22. – reference: [31] WW2010, “Clouds and Precipitation,” http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/cld/home.rxml – reference: [18] K. Nagel and E. Raschke, “Self-organizing Criticality in Cloud Formation,” Physica A, Vol. 182, pp. 519-531, 1992. – reference: [9] T. Kikuchi, K. Muraoka, and N. Chiba, “Visual Simulation of Cumulus Type Clouds,” The Journal of The Institute of Image Electronics Engineers of Japan, Vol. 28, No. 2, pp. 140-151, 1999, in Japanese. – reference: [23] N. Rasmussen, D. Q. Nguyen, W. Geiger, and R. Fedkiw, “Smoke simulation for large-scale phenomena,” Proc. of SIGGRAPH 2003, pp. 703-707. – reference: [21] H. O. Peitgen and D. Saupe, (Eds), The Science of Fractal Image, Springer-Verlag, 1988. – reference: [17] M. J. Harris, “Real-time Cloud Simulation and Rendering,” PhD thesis, University of North Carolina, 2003. – reference: [19] F. Neyret, “Qualitative simulation of convective cloud formation and evolution,” Proc. of Eurographics Computer Animation and Simulation Workshop 1997, pp. 113-124. – reference: [16] M. J. Harris, W. V. Baxter, T. Scheuermann and A. Lastra, “Simulation of cloud dynamics on graphics hardware,” Proc. of Eurographics on Graphics Hardware 2003, pp. 92-101. – reference: [27] D. Takeshita, T. Fujimoto, and N. Chiba, “Recursive particle generator for animating plume fluid,” International Workshop on Advanced Image Technology 2005, pp. 487-492. – reference: [10] T. Kikuchi, K. Muraoka, and N. Chiba, “Visual Simulation of Cumulonimbus Clouds,” The Journal of The Institute of Image Electronics Engineers of Japan, Vol. 27, No. 4, pp. 317-326, 1998, in Japanese. – reference: [24] J. Stam, “Stable fluids,” Proc. of SIGGRAPH 1999, pp. 121-128. – reference: [29] R. Voss, “Random Fractals: Self-affinity in Noise, Music, Mountains, and Clouds,” Physica D, Vol. 38, pp. 362-371, 1989. – reference: [26] A. Selle, N. Rasmussen, and R. Fedkiw, “A vortex particle method for smoke, water and explosions,” Proc. of SIGGRAPH 2005, pp. 910-914. – reference: [13] M. Muller, D. Charypar and M. Gross, “Particle-based fluid simulation for interactive applications ,” Proc. of SIGGRAPH/Eurographics symposium on Computer animation 2003, pp. 154-159. – reference: [25] B. Stevens, “Cloud Transitions and Decoupling in Shear-free Stratocumulus-topped Boundary Layers,” Geophysical Research Letters, Vol. 27, No. 16, pp. 2557-2560, 2000. – reference: [28] D. Takeshita, S. Ota, M. Tamura, T. Fujimoto, K. Muraoka, and N. Chiba, “Particle-based visual simulation of explosive flames,” Proc. of Pacific Graphics 2003, pp. 482-486. – reference: [30] NASA Education, “The importance of understanding clouds,” http://icp.giss.nasa.gov/education/cloudintro/ – reference: [15] M. J. Harris and A. Lastra, “Real-time cloud rendering,” Proc. of Eurographics 2001, pp. 76-84. – reference: [20] K. Perlin, “An image synthesizer,” Proc. of SIGGRAPH 1985, pp. 287-296. – reference: [11] S. Koshizuka and Y. Oka, “Moving-particle Semi-implicit Method for Fragmentation of Incompressible Fluid,” Nuclear Science Engineering, Vol. 123, pp. 421-434, 1996. – reference: [7] J. Kajiya and B. V. Herzen, “Ray tracing volume densities,” Proc. of SIGGRAPH 1984, pp. 165-174. – reference: [14] J. J. Monaghan, “Smoothed Particle Hydro-dynamics,” Annual Review of Astronomy and Astrophysics, Vol. 30, pp. 543-574, 1992. – ident: 6 doi: 10.1145/325165.325248 – ident: 25 doi: 10.1029/1999GL011257 – ident: 15 doi: 10.1111/1467-8659.00500 – ident: 26 doi: 10.1145/1073204.1073282 – ident: 18 doi: 10.1016/0378-4371(92)90018-L – ident: 23 doi: 10.1145/882262.882335 – ident: 2 doi: 10.1002/vis.4340050104 – ident: 4 doi: 10.1016/B978-155860848-1/50029-2 – ident: 16 – ident: 31 – ident: 29 doi: 10.1016/0167-2789(89)90220-0 – ident: 20 doi: 10.1145/325165.325247 – volume: 123 start-page: 421 issn: 0029-5639 issue: 3 year: 1996 ident: 11 doi: 10.13182/NSE96-A24205 – ident: 28 doi: 10.1109/PCCGA.2003.1238299 – ident: 8 doi: 10.1142/9789814368223_0001 – ident: 12 doi: 10.1109/PCCGA.2001.962893 – ident: 5 doi: 10.1145/383259.383260 – ident: 22 – ident: 24 doi: 10.1145/311535.311548 – ident: 17 – ident: 14 doi: 10.1146/annurev.astro.30.1.543 – ident: 3 doi: 10.1145/344779.344795 – ident: 13 – ident: 30 – volume: 27 start-page: 317 issn: 0285-9831 issue: 4 year: 1998 ident: 10 – ident: 1 doi: 10.1002/(SICI)1099-1778(199710/12)8:4<191::AID-VIS160>3.0.CO;2-1 – volume: 28 start-page: 140 issn: 0285-9831 issue: 2 year: 1999 ident: 9 – ident: 7 doi: 10.1145/964965.808594 – ident: 19 doi: 10.1007/978-3-7091-6874-5_8 – ident: 21 – ident: 27 |
SSID | ssj0069110 |
Score | 1.3720218 |
Snippet | We present an efficient method for creating large-scale animations of vertical developing cumulus-type cloud growth. The dynamics of cloud formation, growth,... |
SourceID | crossref jstage |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 179 |
SubjectTerms | Cloud Growth Hybrid Method Large-Scale Animation Natural Phenomena Particle |
Title | An Efficient Hybrid Method for Animating the Growth of Large-Scale Cumulus-Type Cloud |
URI | https://www.jstage.jst.go.jp/article/artsci/6/4/6_4_179/_article/-char/en |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | The Journal of the Society for Art and Science, 2007, Vol.6(4), pp.179-196 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbKwoE9rHiK5SUf4BSlJI5jp8eoAirQIiFatLfIThw2SzdFaXyAn8Sv3LGdpCkCqcChUeVM6srfp_F4Mg-EXpgyTkkUCn_GBPVpmBNfSMX8ApRloBhJCmVyh88-sMWKvjuPzyeTn6OoJd3Kaf7jt3kl_4IqjAGuJkv2L5AdfhQG4DvgC1dAGK4HYZzWpjNyZXMavcV3k3zlndmW0DZ6MK0rY492-VBv4cDdXrh3As0X5X8CdJQ311d6rbe-OY968_VG7zXu3CWOrftggnGYZ9q4-PROQey82zCtVTqy0F8F7JqjO1Vr-og5d3xdDfTRl4Y01m-7FIW4qJrNLvKgkqJ7x2Q8Zl30Uu-q4AOtlgf8PeUUcGQqRxDXoqPX0GxERDrStqHrQ9Nt3KFrjfvrnhDx2BZDblqwKaZsOjy0V2W7wzBzYhnLqP2AcNbfMmlwwLob6CbhPDTho-8_Dm-sGGwagUusMBO-Gk-3Z_LcugSrv48YtEbM8g466aDEqZvrLpqo-h46_lxttRvd3kertMYDqbAjFXakwrCoeCAVBjZgRyq8KfGIVHhMKmxJ9QCt3rxezhd-13vDz6OEzXyw8nkO5n4sE1IKVhAh4Wgry0gEsuBhGeeCcMlFyHkOgjxSMREsFLCPlzAqo4foqN7U6hHCJBdyRoWJOQhoJGgiiyBRRUxJSXM4QJwir1-eLO8K05v-KOsMDqhmMXegwGKeopeD9DdXkOUPcjO30oPU4RA__o9nn6Dbzv1vvHRP0VHbaPUM7NZWPreEuQb0Kqf_ |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Hybrid+Method+for+Animating+the+Growth+of+Large-Scale+Cumulus-Type+Cloud&rft.jtitle=The+Journal+of+the+Society+for+Art+and+Science&rft.au=Mamat%2C+Abdukadir&rft.au=Mamitimin%2C+Geni&rft.au=Fujimoto%2C+Tadahiro&rft.au=Chiba%2C+Norishige&rft.date=2007&rft.pub=The+Society+for+Art+and+Science&rft.eissn=1347-2267&rft.volume=6&rft.issue=4&rft.spage=179&rft.epage=196&rft_id=info:doi/10.3756%2Fartsci.6.179&rft.externalDocID=article_artsci_6_4_6_4_179_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-2267&client=summon |