An Efficient Hybrid Method for Animating the Growth of Large-Scale Cumulus-Type Cloud

We present an efficient method for creating large-scale animations of vertical developing cumulus-type cloud growth. The dynamics of cloud formation, growth, and motion are complex phenomena, and depicting these dynamics remains a significant challenge in the area of simulation and animation of natu...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Society for Art and Science Vol. 6; no. 4; pp. 179 - 196
Main Authors Mamat, Abdukadir, Mamitimin, Geni, Fujimoto, Tadahiro, Chiba, Norishige
Format Journal Article
LanguageEnglish
Japanese
Published The Society for Art and Science 2007
Subjects
Online AccessGet full text
ISSN1347-2267
1347-2267
DOI10.3756/artsci.6.179

Cover

Abstract We present an efficient method for creating large-scale animations of vertical developing cumulus-type cloud growth. The dynamics of cloud formation, growth, and motion are complex phenomena, and depicting these dynamics remains a significant challenge in the area of simulation and animation of natural phenomena in computer graphics. A novel aspect of this paper is the combination of a physical simulation method and a stochastic simulation method for obtaining an animation of large-scale phenomena with effects that are more natural. The physical simulation method is used to accurately solve fluid dynamics on a relatively small scale and prepare a 3D primitive pattern of a realistic animation of cloud growth. The stochastic simulation method uses 1/fβ noise functions and performs a large-scale simulation of an air current caused by the rising and condensation of water vapor due to the thermal effect. Many copies of the 3D primitive pattern are recursively mapped into the air current to constitute a large-scale continuous cloud growth. This combination of the physical and stochastic simulation methods can animate large-scale phenomena efficiently without enormous computational time and memory. The physical and stochastic simulations are achieved by particle-based methods, and the mapping is applied on simulated particles. Experimental results show that the proposed method efficiently creates realistic animations of large-scale cumulus and cumulonimbus clouds.
AbstractList We present an efficient method for creating large-scale animations of vertical developing cumulus-type cloud growth. The dynamics of cloud formation, growth, and motion are complex phenomena, and depicting these dynamics remains a significant challenge in the area of simulation and animation of natural phenomena in computer graphics. A novel aspect of this paper is the combination of a physical simulation method and a stochastic simulation method for obtaining an animation of large-scale phenomena with effects that are more natural. The physical simulation method is used to accurately solve fluid dynamics on a relatively small scale and prepare a 3D primitive pattern of a realistic animation of cloud growth. The stochastic simulation method uses 1/fβ noise functions and performs a large-scale simulation of an air current caused by the rising and condensation of water vapor due to the thermal effect. Many copies of the 3D primitive pattern are recursively mapped into the air current to constitute a large-scale continuous cloud growth. This combination of the physical and stochastic simulation methods can animate large-scale phenomena efficiently without enormous computational time and memory. The physical and stochastic simulations are achieved by particle-based methods, and the mapping is applied on simulated particles. Experimental results show that the proposed method efficiently creates realistic animations of large-scale cumulus and cumulonimbus clouds.
Author Chiba, Norishige
Mamat, Abdukadir
Fujimoto, Tadahiro
Mamitimin, Geni
Author_xml – sequence: 1
  fullname: Mamat, Abdukadir
  organization: Iwate University
– sequence: 1
  fullname: Mamitimin, Geni
  organization: Xinjiang University
– sequence: 1
  fullname: Fujimoto, Tadahiro
  organization: Iwate University
– sequence: 1
  fullname: Chiba, Norishige
  organization: Iwate University
BookMark eNp1kMFOAjEQhhuDiYDefIA-gIvb7W4LNwlBMMF4EM6b2W7LliwtabsxvL1FDBoTD810Zr5_MvMPUM9YIxG6J-mI8oI9ggte6BEbET65Qn1Cc55kGeO9X_8bNPB-l6ZsQkjaR5upwXOltNDSBLw8Vk7X-FWGxtZYWYenRu8haLPFoZF44exHaLBVeAVuK5N3Aa3Es27ftZ1P1sdDTFrb1bfoWkHr5d13HKLN83w9Wyart8XLbLpKBB2zSVIwxkWaF0U1zhSwOoMqH_NKUUirmhNVCMh4xYFwLiLIqSwyYAQkCBWrFR2i7DxXOOu9k6oUOsR1rQkOdFuStDwZU56NKVkZjYmihz-ig4tHuuN_-NMZ3_kAW3mBI6RFK3_g_OtFyaUlGnClNPQT45OBZA
CitedBy_id crossref_primary_10_3756_artsci_15_55
Cites_doi 10.1145/325165.325248
10.1029/1999GL011257
10.1111/1467-8659.00500
10.1145/1073204.1073282
10.1016/0378-4371(92)90018-L
10.1145/882262.882335
10.1002/vis.4340050104
10.1016/B978-155860848-1/50029-2
10.1016/0167-2789(89)90220-0
10.1145/325165.325247
10.13182/NSE96-A24205
10.1109/PCCGA.2003.1238299
10.1142/9789814368223_0001
10.1109/PCCGA.2001.962893
10.1145/383259.383260
10.1145/311535.311548
10.1146/annurev.astro.30.1.543
10.1145/344779.344795
10.1002/(SICI)1099-1778(199710/12)8:4<191::AID-VIS160>3.0.CO;2-1
10.1145/964965.808594
10.1007/978-3-7091-6874-5_8
ContentType Journal Article
Copyright 2007 Mamat Abdukadir, Fujimoto, Tadahiro, Mamtimin Geni, and Chiba, Norishige
Copyright_xml – notice: 2007 Mamat Abdukadir, Fujimoto, Tadahiro, Mamtimin Geni, and Chiba, Norishige
DBID AAYXX
CITATION
DOI 10.3756/artsci.6.179
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1347-2267
EndPage 196
ExternalDocumentID 10_3756_artsci_6_179
article_artsci_6_4_6_4_179_article_char_en
GroupedDBID ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
RJT
AAYXX
CITATION
ID FETCH-LOGICAL-c3869-5667c0455b82fa6d2ab487bf3a0bd71f5ca27b7a177c7c073e52a61aeacf7a1b3
ISSN 1347-2267
IngestDate Tue Jul 01 03:27:39 EDT 2025
Thu Apr 24 22:58:56 EDT 2025
Wed Sep 03 06:29:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 4
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3869-5667c0455b82fa6d2ab487bf3a0bd71f5ca27b7a177c7c073e52a61aeacf7a1b3
OpenAccessLink https://www.jstage.jst.go.jp/article/artsci/6/4/6_4_179/_article/-char/en
PageCount 18
ParticipantIDs crossref_citationtrail_10_3756_artsci_6_179
crossref_primary_10_3756_artsci_6_179
jstage_primary_article_artsci_6_4_6_4_179_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20070000
PublicationDateYYYYMMDD 2007-01-01
PublicationDate_xml – year: 2007
  text: 20070000
PublicationDecade 2000
PublicationTitle Journal of the Society for Art and Science
PublicationTitleAlternate The Journal of the Society for Art and Science
PublicationYear 2007
Publisher The Society for Art and Science
Publisher_xml – name: The Society for Art and Science
References [6] G. Gardner, “Visual Simulation of Clouds,” Proc. of SIGGRAPH 1985, pp. 297-304.
[7] J. Kajiya and B. V. Herzen, “Ray tracing volume densities,” Proc. of SIGGRAPH 1984, pp. 165-174.
[28] D. Takeshita, S. Ota, M. Tamura, T. Fujimoto, K. Muraoka, and N. Chiba, “Particle-based visual simulation of explosive flames,” Proc. of Pacific Graphics 2003, pp. 482-486.
[29] R. Voss, “Random Fractals: Self-affinity in Noise, Music, Mountains, and Clouds,” Physica D, Vol. 38, pp. 362-371, 1989.
[27] D. Takeshita, T. Fujimoto, and N. Chiba, “Recursive particle generator for animating plume fluid,” International Workshop on Advanced Image Technology 2005, pp. 487-492.
[18] K. Nagel and E. Raschke, “Self-organizing Criticality in Cloud Formation,” Physica A, Vol. 182, pp. 519-531, 1992.
[10] T. Kikuchi, K. Muraoka, and N. Chiba, “Visual Simulation of Cumulonimbus Clouds,” The Journal of The Institute of Image Electronics Engineers of Japan, Vol. 27, No. 4, pp. 317-326, 1998, in Japanese.
[11] S. Koshizuka and Y. Oka, “Moving-particle Semi-implicit Method for Fragmentation of Incompressible Fluid,” Nuclear Science Engineering, Vol. 123, pp. 421-434, 1996.
[3] Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, and T. Nishita, “A simple, efficient method for realistic animation of clouds,” Proc. of SIGGRAPH 2000, pp. 19-28.
[4] D. Ebert, F. Musgrave, D. Peachey, K. Perlin, and S. Worley, Texturing &amp Modeling: A Procedural Approach, Morgan Kaufmann, 3rd Edition, 2002.
[21] H. O. Peitgen and D. Saupe, (Eds), The Science of Fractal Image, Springer-Verlag, 1988.
[9] T. Kikuchi, K. Muraoka, and N. Chiba, “Visual Simulation of Cumulus Type Clouds,” The Journal of The Institute of Image Electronics Engineers of Japan, Vol. 28, No. 2, pp. 140-151, 1999, in Japanese.
[5] R. Fedkiw, J. Stam and H. W. Jensen, “Visual simulation of smoke,” Proc. of SIGGRAPH 2001, pp. 15-22.
[26] A. Selle, N. Rasmussen, and R. Fedkiw, “A vortex particle method for smoke, water and explosions,” Proc. of SIGGRAPH 2005, pp. 910-914.
[31] WW2010, “Clouds and Precipitation,” http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/cld/home.rxml
[8] K. Kaneko, “Simulating physics with coupled map lattices-pattern dynamics, information flow, and thermodynamics of spatiotemporal chaos”, World Scientific, Singapore, Vol. 1, 1990.
[12] R. Miyazaki, S. Yoshida, Y. Dobashi, and T. Nishita, “A method for modeling clouds based on atmospheric fluid dynamics,” Proc. of Pacific Graphics 2001, pp. 363-372.
[17] M. J. Harris, “Real-time Cloud Simulation and Rendering,” PhD thesis, University of North Carolina, 2003.
[16] M. J. Harris, W. V. Baxter, T. Scheuermann and A. Lastra, “Simulation of cloud dynamics on graphics hardware,” Proc. of Eurographics on Graphics Hardware 2003, pp. 92-101.
[19] F. Neyret, “Qualitative simulation of convective cloud formation and evolution,” Proc. of Eurographics Computer Animation and Simulation Workshop 1997, pp. 113-124.
[24] J. Stam, “Stable fluids,” Proc. of SIGGRAPH 1999, pp. 121-128.
[2] N. Chiba, K. Muraoka, H. Takahashi and M. Miura, “Two-dimensional Visual Simulation of Flames, Smoke and the Spread of Fire,” The Journal of Visualization and Computer Animation, Vol. 5, pp. 37-53, 1994.
[23] N. Rasmussen, D. Q. Nguyen, W. Geiger, and R. Fedkiw, “Smoke simulation for large-scale phenomena,” Proc. of SIGGRAPH 2003, pp. 703-707.
[30] NASA Education, “The importance of understanding clouds,” http://icp.giss.nasa.gov/education/cloudintro
[15] M. J. Harris and A. Lastra, “Real-time cloud rendering,” Proc. of Eurographics 2001, pp. 76-84.
[22] W. Qiang, B. J. Jun, C. Chun, T. Fujimoto, and N. Chiba, “Surface reconstruction for animation of ocean waves,” Proc. of CAD/Graphics 2005, pp. 477-482.
[25] B. Stevens, “Cloud Transitions and Decoupling in Shear-free Stratocumulus-topped Boundary Layers,” Geophysical Research Letters, Vol. 27, No. 16, pp. 2557-2560, 2000.
[14] J. J. Monaghan, “Smoothed Particle Hydro-dynamics,” Annual Review of Astronomy and Astrophysics, Vol. 30, pp. 543-574, 1992.
[1] N. Chiba, K. Muraoka, A. Doi, and J. Hosokawa, “Rendering of Forest Scenery Using 3D Texture,” The Journal of Visualization and Computer Animation, Vol. 8, pp. 191-199, 1997.
[20] K. Perlin, “An image synthesizer,” Proc. of SIGGRAPH 1985, pp. 287-296.
[13] M. Muller, D. Charypar and M. Gross, “Particle-based fluid simulation for interactive applications ,” Proc. of SIGGRAPH/Eurographics symposium on Computer animation 2003, pp. 154-159.
22
23
24
25
26
27
28
29
KIKUCHI TSUKASA (9) 1999; 28
(11) 1996; 123
30
31
12
13
14
15
16
17
18
KIKUCHI TSUKASA (10) 1998; 27
19
1
2
3
4
5
6
7
8
20
21
References_xml – reference: [6] G. Gardner, “Visual Simulation of Clouds,” Proc. of SIGGRAPH 1985, pp. 297-304.
– reference: [3] Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, and T. Nishita, “A simple, efficient method for realistic animation of clouds,” Proc. of SIGGRAPH 2000, pp. 19-28.
– reference: [4] D. Ebert, F. Musgrave, D. Peachey, K. Perlin, and S. Worley, Texturing &amp Modeling: A Procedural Approach, Morgan Kaufmann, 3rd Edition, 2002.
– reference: [2] N. Chiba, K. Muraoka, H. Takahashi and M. Miura, “Two-dimensional Visual Simulation of Flames, Smoke and the Spread of Fire,” The Journal of Visualization and Computer Animation, Vol. 5, pp. 37-53, 1994.
– reference: [8] K. Kaneko, “Simulating physics with coupled map lattices-pattern dynamics, information flow, and thermodynamics of spatiotemporal chaos”, World Scientific, Singapore, Vol. 1, 1990.
– reference: [22] W. Qiang, B. J. Jun, C. Chun, T. Fujimoto, and N. Chiba, “Surface reconstruction for animation of ocean waves,” Proc. of CAD/Graphics 2005, pp. 477-482.
– reference: [1] N. Chiba, K. Muraoka, A. Doi, and J. Hosokawa, “Rendering of Forest Scenery Using 3D Texture,” The Journal of Visualization and Computer Animation, Vol. 8, pp. 191-199, 1997.
– reference: [12] R. Miyazaki, S. Yoshida, Y. Dobashi, and T. Nishita, “A method for modeling clouds based on atmospheric fluid dynamics,” Proc. of Pacific Graphics 2001, pp. 363-372.
– reference: [5] R. Fedkiw, J. Stam and H. W. Jensen, “Visual simulation of smoke,” Proc. of SIGGRAPH 2001, pp. 15-22.
– reference: [31] WW2010, “Clouds and Precipitation,” http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/cld/home.rxml
– reference: [18] K. Nagel and E. Raschke, “Self-organizing Criticality in Cloud Formation,” Physica A, Vol. 182, pp. 519-531, 1992.
– reference: [9] T. Kikuchi, K. Muraoka, and N. Chiba, “Visual Simulation of Cumulus Type Clouds,” The Journal of The Institute of Image Electronics Engineers of Japan, Vol. 28, No. 2, pp. 140-151, 1999, in Japanese.
– reference: [23] N. Rasmussen, D. Q. Nguyen, W. Geiger, and R. Fedkiw, “Smoke simulation for large-scale phenomena,” Proc. of SIGGRAPH 2003, pp. 703-707.
– reference: [21] H. O. Peitgen and D. Saupe, (Eds), The Science of Fractal Image, Springer-Verlag, 1988.
– reference: [17] M. J. Harris, “Real-time Cloud Simulation and Rendering,” PhD thesis, University of North Carolina, 2003.
– reference: [19] F. Neyret, “Qualitative simulation of convective cloud formation and evolution,” Proc. of Eurographics Computer Animation and Simulation Workshop 1997, pp. 113-124.
– reference: [16] M. J. Harris, W. V. Baxter, T. Scheuermann and A. Lastra, “Simulation of cloud dynamics on graphics hardware,” Proc. of Eurographics on Graphics Hardware 2003, pp. 92-101.
– reference: [27] D. Takeshita, T. Fujimoto, and N. Chiba, “Recursive particle generator for animating plume fluid,” International Workshop on Advanced Image Technology 2005, pp. 487-492.
– reference: [10] T. Kikuchi, K. Muraoka, and N. Chiba, “Visual Simulation of Cumulonimbus Clouds,” The Journal of The Institute of Image Electronics Engineers of Japan, Vol. 27, No. 4, pp. 317-326, 1998, in Japanese.
– reference: [24] J. Stam, “Stable fluids,” Proc. of SIGGRAPH 1999, pp. 121-128.
– reference: [29] R. Voss, “Random Fractals: Self-affinity in Noise, Music, Mountains, and Clouds,” Physica D, Vol. 38, pp. 362-371, 1989.
– reference: [26] A. Selle, N. Rasmussen, and R. Fedkiw, “A vortex particle method for smoke, water and explosions,” Proc. of SIGGRAPH 2005, pp. 910-914.
– reference: [13] M. Muller, D. Charypar and M. Gross, “Particle-based fluid simulation for interactive applications ,” Proc. of SIGGRAPH/Eurographics symposium on Computer animation 2003, pp. 154-159.
– reference: [25] B. Stevens, “Cloud Transitions and Decoupling in Shear-free Stratocumulus-topped Boundary Layers,” Geophysical Research Letters, Vol. 27, No. 16, pp. 2557-2560, 2000.
– reference: [28] D. Takeshita, S. Ota, M. Tamura, T. Fujimoto, K. Muraoka, and N. Chiba, “Particle-based visual simulation of explosive flames,” Proc. of Pacific Graphics 2003, pp. 482-486.
– reference: [30] NASA Education, “The importance of understanding clouds,” http://icp.giss.nasa.gov/education/cloudintro/
– reference: [15] M. J. Harris and A. Lastra, “Real-time cloud rendering,” Proc. of Eurographics 2001, pp. 76-84.
– reference: [20] K. Perlin, “An image synthesizer,” Proc. of SIGGRAPH 1985, pp. 287-296.
– reference: [11] S. Koshizuka and Y. Oka, “Moving-particle Semi-implicit Method for Fragmentation of Incompressible Fluid,” Nuclear Science Engineering, Vol. 123, pp. 421-434, 1996.
– reference: [7] J. Kajiya and B. V. Herzen, “Ray tracing volume densities,” Proc. of SIGGRAPH 1984, pp. 165-174.
– reference: [14] J. J. Monaghan, “Smoothed Particle Hydro-dynamics,” Annual Review of Astronomy and Astrophysics, Vol. 30, pp. 543-574, 1992.
– ident: 6
  doi: 10.1145/325165.325248
– ident: 25
  doi: 10.1029/1999GL011257
– ident: 15
  doi: 10.1111/1467-8659.00500
– ident: 26
  doi: 10.1145/1073204.1073282
– ident: 18
  doi: 10.1016/0378-4371(92)90018-L
– ident: 23
  doi: 10.1145/882262.882335
– ident: 2
  doi: 10.1002/vis.4340050104
– ident: 4
  doi: 10.1016/B978-155860848-1/50029-2
– ident: 16
– ident: 31
– ident: 29
  doi: 10.1016/0167-2789(89)90220-0
– ident: 20
  doi: 10.1145/325165.325247
– volume: 123
  start-page: 421
  issn: 0029-5639
  issue: 3
  year: 1996
  ident: 11
  doi: 10.13182/NSE96-A24205
– ident: 28
  doi: 10.1109/PCCGA.2003.1238299
– ident: 8
  doi: 10.1142/9789814368223_0001
– ident: 12
  doi: 10.1109/PCCGA.2001.962893
– ident: 5
  doi: 10.1145/383259.383260
– ident: 22
– ident: 24
  doi: 10.1145/311535.311548
– ident: 17
– ident: 14
  doi: 10.1146/annurev.astro.30.1.543
– ident: 3
  doi: 10.1145/344779.344795
– ident: 13
– ident: 30
– volume: 27
  start-page: 317
  issn: 0285-9831
  issue: 4
  year: 1998
  ident: 10
– ident: 1
  doi: 10.1002/(SICI)1099-1778(199710/12)8:4<191::AID-VIS160>3.0.CO;2-1
– volume: 28
  start-page: 140
  issn: 0285-9831
  issue: 2
  year: 1999
  ident: 9
– ident: 7
  doi: 10.1145/964965.808594
– ident: 19
  doi: 10.1007/978-3-7091-6874-5_8
– ident: 21
– ident: 27
SSID ssj0069110
Score 1.3720218
Snippet We present an efficient method for creating large-scale animations of vertical developing cumulus-type cloud growth. The dynamics of cloud formation, growth,...
SourceID crossref
jstage
SourceType Enrichment Source
Index Database
Publisher
StartPage 179
SubjectTerms Cloud Growth
Hybrid Method
Large-Scale Animation
Natural Phenomena
Particle
Title An Efficient Hybrid Method for Animating the Growth of Large-Scale Cumulus-Type Cloud
URI https://www.jstage.jst.go.jp/article/artsci/6/4/6_4_179/_article/-char/en
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX The Journal of the Society for Art and Science, 2007, Vol.6(4), pp.179-196
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbKwoE9rHiK5SUf4BSlJI5jp8eoAirQIiFatLfIThw2SzdFaXyAn8Sv3LGdpCkCqcChUeVM6srfp_F4Mg-EXpgyTkkUCn_GBPVpmBNfSMX8ApRloBhJCmVyh88-sMWKvjuPzyeTn6OoJd3Kaf7jt3kl_4IqjAGuJkv2L5AdfhQG4DvgC1dAGK4HYZzWpjNyZXMavcV3k3zlndmW0DZ6MK0rY492-VBv4cDdXrh3As0X5X8CdJQ311d6rbe-OY968_VG7zXu3CWOrftggnGYZ9q4-PROQey82zCtVTqy0F8F7JqjO1Vr-og5d3xdDfTRl4Y01m-7FIW4qJrNLvKgkqJ7x2Q8Zl30Uu-q4AOtlgf8PeUUcGQqRxDXoqPX0GxERDrStqHrQ9Nt3KFrjfvrnhDx2BZDblqwKaZsOjy0V2W7wzBzYhnLqP2AcNbfMmlwwLob6CbhPDTho-8_Dm-sGGwagUusMBO-Gk-3Z_LcugSrv48YtEbM8g466aDEqZvrLpqo-h46_lxttRvd3kertMYDqbAjFXakwrCoeCAVBjZgRyq8KfGIVHhMKmxJ9QCt3rxezhd-13vDz6OEzXyw8nkO5n4sE1IKVhAh4Wgry0gEsuBhGeeCcMlFyHkOgjxSMREsFLCPlzAqo4foqN7U6hHCJBdyRoWJOQhoJGgiiyBRRUxJSXM4QJwir1-eLO8K05v-KOsMDqhmMXegwGKeopeD9DdXkOUPcjO30oPU4RA__o9nn6Dbzv1vvHRP0VHbaPUM7NZWPreEuQb0Kqf_
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Hybrid+Method+for+Animating+the+Growth+of+Large-Scale+Cumulus-Type+Cloud&rft.jtitle=The+Journal+of+the+Society+for+Art+and+Science&rft.au=Mamat%2C+Abdukadir&rft.au=Mamitimin%2C+Geni&rft.au=Fujimoto%2C+Tadahiro&rft.au=Chiba%2C+Norishige&rft.date=2007&rft.pub=The+Society+for+Art+and+Science&rft.eissn=1347-2267&rft.volume=6&rft.issue=4&rft.spage=179&rft.epage=196&rft_id=info:doi/10.3756%2Fartsci.6.179&rft.externalDocID=article_artsci_6_4_6_4_179_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-2267&client=summon