Multidate, multisensor remote sensing reveals high density of carbon‐rich mountain peatlands in the páramo of Ecuador

Tropical peatlands store a significant portion of the global soil carbon (C) pool. However, tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global C estimates. This lack of data hinders our ability to inform policy and apply sustainable management p...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 23; no. 12; pp. 5412 - 5425
Main Authors Hribljan, John A., Suarez, Esteban, Bourgeau‐Chavez, Laura, Endres, Sarah, Lilleskov, Erik A., Chimbolema, Segundo, Wayson, Craig, Serocki, Eleanor, Chimner, Rodney A.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tropical peatlands store a significant portion of the global soil carbon (C) pool. However, tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global C estimates. This lack of data hinders our ability to inform policy and apply sustainable management practices to these peatlands that are experiencing unprecedented high rates of land use and land cover change. Rapid large‐scale mapping activities are urgently needed to quantify tropical wetland extent and rate of degradation. We tested a combination of multidate, multisensor radar and optical imagery (Landsat TM/PALSAR/RADARSAT‐1/TPI image stack) for detecting peatlands in a 2715 km2 area in the high elevation mountains of the Ecuadorian páramo. The map was combined with an extensive soil coring data set to produce the first estimate of regional peatland soil C storage in the páramo. Our map displayed a high coverage of peatlands (614 km2) containing an estimated 128.2 ± 9.1 Tg of peatland belowground soil C within the mapping area. Scaling‐up to the country level, páramo peatlands likely represent less than 1% of the total land area of Ecuador but could contain as much as ~23% of the above‐ and belowground vegetation C stocks in Ecuadorian forests. These mapping approaches provide an essential methodological improvement applicable to mountain peatlands across the globe, facilitating mapping efforts in support of effective policy and sustainable management, including national and global C accounting and C management efforts. Tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global carbon estimates. Our map displayed a high coverage of peatlands containing large belowground soil carbon storage within the Ecuadorian Andes. These mapping approaches provide an essential methodological improvement applicable to mountain peatlands across the globe, facilitating mapping efforts in support of effective policy and sustainable management, including national and global carbon accounting and C management efforts.
AbstractList Tropical peatlands store a significant portion of the global soil carbon (C) pool. However, tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global C estimates. This lack of data hinders our ability to inform policy and apply sustainable management practices to these peatlands that are experiencing unprecedented high rates of land use and land cover change. Rapid large‐scale mapping activities are urgently needed to quantify tropical wetland extent and rate of degradation. We tested a combination of multidate, multisensor radar and optical imagery (Landsat TM / PALSAR / RADARSAT ‐1/ TPI image stack) for detecting peatlands in a 2715 km 2 area in the high elevation mountains of the Ecuadorian páramo. The map was combined with an extensive soil coring data set to produce the first estimate of regional peatland soil C storage in the páramo. Our map displayed a high coverage of peatlands (614 km 2 ) containing an estimated 128.2 ± 9.1 Tg of peatland belowground soil C within the mapping area. Scaling‐up to the country level, páramo peatlands likely represent less than 1% of the total land area of Ecuador but could contain as much as ~23% of the above‐ and belowground vegetation C stocks in Ecuadorian forests. These mapping approaches provide an essential methodological improvement applicable to mountain peatlands across the globe, facilitating mapping efforts in support of effective policy and sustainable management, including national and global C accounting and C management efforts.
Tropical peatlands store a significant portion of the global soil carbon (C) pool. However, tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global C estimates. This lack of data hinders our ability to inform policy and apply sustainable management practices to these peatlands that are experiencing unprecedented high rates of land use and land cover change. Rapid large‐scale mapping activities are urgently needed to quantify tropical wetland extent and rate of degradation. We tested a combination of multidate, multisensor radar and optical imagery (Landsat TM/PALSAR/RADARSAT‐1/TPI image stack) for detecting peatlands in a 2715 km2 area in the high elevation mountains of the Ecuadorian páramo. The map was combined with an extensive soil coring data set to produce the first estimate of regional peatland soil C storage in the páramo. Our map displayed a high coverage of peatlands (614 km2) containing an estimated 128.2 ± 9.1 Tg of peatland belowground soil C within the mapping area. Scaling‐up to the country level, páramo peatlands likely represent less than 1% of the total land area of Ecuador but could contain as much as ~23% of the above‐ and belowground vegetation C stocks in Ecuadorian forests. These mapping approaches provide an essential methodological improvement applicable to mountain peatlands across the globe, facilitating mapping efforts in support of effective policy and sustainable management, including national and global C accounting and C management efforts. Tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global carbon estimates. Our map displayed a high coverage of peatlands containing large belowground soil carbon storage within the Ecuadorian Andes. These mapping approaches provide an essential methodological improvement applicable to mountain peatlands across the globe, facilitating mapping efforts in support of effective policy and sustainable management, including national and global carbon accounting and C management efforts.
Tropical peatlands store a significant portion of the global soil carbon (C) pool. However, tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global C estimates. This lack of data hinders our ability to inform policy and apply sustainable management practices to these peatlands that are experiencing unprecedented high rates of land use and land cover change. Rapid large-scale mapping activities are urgently needed to quantify tropical wetland extent and rate of degradation. We tested a combination of multidate, multisensor radar and optical imagery (Landsat TM/PALSAR/RADARSAT-1/TPI image stack) for detecting peatlands in a 2715 km2 area in the high elevation mountains of the Ecuadorian páramo. The map was combined with an extensive soil coring data set to produce the first estimate of regional peatland soil C storage in the páramo. Our map displayed a high coverage of peatlands (614 km2) containing an estimated 128.2 ± 9.1 Tg of peatland belowground soil C within the mapping area. Scaling-up to the country level, páramo peatlands likely represent less than 1% of the total land area of Ecuador but could contain as much as ~23% of the above- and belowground vegetation C stocks in Ecuadorian forests. These mapping approaches provide an essential methodological improvement applicable to mountain peatlands across the globe, facilitating mapping efforts in support of effective policy and sustainable management, including national and global C accounting and C management efforts.
Tropical peatlands store a significant portion of the global soil carbon (C) pool. However, tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global C estimates. This lack of data hinders our ability to inform policy and apply sustainable management practices to these peatlands that are experiencing unprecedented high rates of land use and land cover change. Rapid large‐scale mapping activities are urgently needed to quantify tropical wetland extent and rate of degradation. We tested a combination of multidate, multisensor radar and optical imagery (Landsat TM/PALSAR/RADARSAT‐1/TPI image stack) for detecting peatlands in a 2715 km² area in the high elevation mountains of the Ecuadorian páramo. The map was combined with an extensive soil coring data set to produce the first estimate of regional peatland soil C storage in the páramo. Our map displayed a high coverage of peatlands (614 km²) containing an estimated 128.2 ± 9.1 Tg of peatland belowground soil C within the mapping area. Scaling‐up to the country level, páramo peatlands likely represent less than 1% of the total land area of Ecuador but could contain as much as ~23% of the above‐ and belowground vegetation C stocks in Ecuadorian forests. These mapping approaches provide an essential methodological improvement applicable to mountain peatlands across the globe, facilitating mapping efforts in support of effective policy and sustainable management, including national and global C accounting and C management efforts.
Tropical peatlands store a significant portion of the global soil carbon (C) pool. However, tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global C estimates. This lack of data hinders our ability to inform policy and apply sustainable management practices to these peatlands that are experiencing unprecedented high rates of land use and land cover change. Rapid large-scale mapping activities are urgently needed to quantify tropical wetland extent and rate of degradation. We tested a combination of multidate, multisensor radar and optical imagery (Landsat TM/PALSAR/RADARSAT-1/TPI image stack) for detecting peatlands in a 2715 km area in the high elevation mountains of the Ecuadorian páramo. The map was combined with an extensive soil coring data set to produce the first estimate of regional peatland soil C storage in the páramo. Our map displayed a high coverage of peatlands (614 km ) containing an estimated 128.2 ± 9.1 Tg of peatland belowground soil C within the mapping area. Scaling-up to the country level, páramo peatlands likely represent less than 1% of the total land area of Ecuador but could contain as much as ~23% of the above- and belowground vegetation C stocks in Ecuadorian forests. These mapping approaches provide an essential methodological improvement applicable to mountain peatlands across the globe, facilitating mapping efforts in support of effective policy and sustainable management, including national and global C accounting and C management efforts.
Tropical peatlands store a significant portion of the global soil carbon (C) pool. However, tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global C estimates. This lack of data hinders our ability to inform policy and apply sustainable management practices to these peatlands that are experiencing unprecedented high rates of land use and land cover change. Rapid large-scale mapping activities are urgently needed to quantify tropical wetland extent and rate of degradation. We tested a combination of multidate, multisensor radar and optical imagery (Landsat TM/PALSAR/RADARSAT-1/TPI image stack) for detecting peatlands in a 2715 km2 area in the high elevation mountains of the Ecuadorian páramo. The map was combined with an extensive soil coring data set to produce the first estimate of regional peatland soil C storage in the páramo. Our map displayed a high coverage of peatlands (614 km2 ) containing an estimated 128.2 ± 9.1 Tg of peatland belowground soil C within the mapping area. Scaling-up to the country level, páramo peatlands likely represent less than 1% of the total land area of Ecuador but could contain as much as ~23% of the above- and belowground vegetation C stocks in Ecuadorian forests. These mapping approaches provide an essential methodological improvement applicable to mountain peatlands across the globe, facilitating mapping efforts in support of effective policy and sustainable management, including national and global C accounting and C management efforts.Tropical peatlands store a significant portion of the global soil carbon (C) pool. However, tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global C estimates. This lack of data hinders our ability to inform policy and apply sustainable management practices to these peatlands that are experiencing unprecedented high rates of land use and land cover change. Rapid large-scale mapping activities are urgently needed to quantify tropical wetland extent and rate of degradation. We tested a combination of multidate, multisensor radar and optical imagery (Landsat TM/PALSAR/RADARSAT-1/TPI image stack) for detecting peatlands in a 2715 km2 area in the high elevation mountains of the Ecuadorian páramo. The map was combined with an extensive soil coring data set to produce the first estimate of regional peatland soil C storage in the páramo. Our map displayed a high coverage of peatlands (614 km2 ) containing an estimated 128.2 ± 9.1 Tg of peatland belowground soil C within the mapping area. Scaling-up to the country level, páramo peatlands likely represent less than 1% of the total land area of Ecuador but could contain as much as ~23% of the above- and belowground vegetation C stocks in Ecuadorian forests. These mapping approaches provide an essential methodological improvement applicable to mountain peatlands across the globe, facilitating mapping efforts in support of effective policy and sustainable management, including national and global C accounting and C management efforts.
Author Endres, Sarah
Chimbolema, Segundo
Wayson, Craig
Suarez, Esteban
Hribljan, John A.
Chimner, Rodney A.
Lilleskov, Erik A.
Bourgeau‐Chavez, Laura
Serocki, Eleanor
Author_xml – sequence: 1
  givenname: John A.
  orcidid: 0000-0003-4116-7125
  surname: Hribljan
  fullname: Hribljan, John A.
  email: jahriblj@mtu.edu
  organization: School of Forest Resources and Environmental Science
– sequence: 2
  givenname: Esteban
  surname: Suarez
  fullname: Suarez, Esteban
  organization: Universidad San Francisco de Quito
– sequence: 3
  givenname: Laura
  surname: Bourgeau‐Chavez
  fullname: Bourgeau‐Chavez, Laura
  organization: Michigan Technological University
– sequence: 4
  givenname: Sarah
  surname: Endres
  fullname: Endres, Sarah
  organization: Michigan Technological University
– sequence: 5
  givenname: Erik A.
  surname: Lilleskov
  fullname: Lilleskov, Erik A.
  organization: Climate, Fire and Carbon Cycle Sciences Unit
– sequence: 6
  givenname: Segundo
  surname: Chimbolema
  fullname: Chimbolema, Segundo
  organization: Universidad San Francisco de Quito
– sequence: 7
  givenname: Craig
  surname: Wayson
  fullname: Wayson, Craig
  organization: SilvaCarbon
– sequence: 8
  givenname: Eleanor
  surname: Serocki
  fullname: Serocki, Eleanor
  organization: Michigan Technological University
– sequence: 9
  givenname: Rodney A.
  surname: Chimner
  fullname: Chimner, Rodney A.
  organization: School of Forest Resources and Environmental Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28675672$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1uFDEQhS0URH5gwQWQJTYg0Yn_u3sJoxCQgtjAuuW2q2ccdduD7QZmlyPkCpyFm3AS3ExgEQnwxvWsr57K9Y7RgQ8eEHpMySkt52xt-lPKG1LfQ0eUK1kx0aiDpZaiooTyQ3Sc0hUhhDOiHqBD1qhaqpodoa_v5jE7qzO8wNNSJvApRBxhChnwopxfF_kZ9Jjwxq032C6PeYfDgI2OffA_rm-iMxs8hdln7Tzegs6j9jbhIvIG8Pb7t6insLScm1nbEB-i-0NxhEe39wn6-Pr8w-pNdfn-4u3q5WVleBmyso3UommFZNL0UlnSE6spWClkAwMZaiWsECC0IszIXvK6retWWmhACNpIfoKe7X23MXyaIeVucsnAWMaDMKeOkbKgVtWU_RelLZVNwynhBX16B70Kc_TlI4VSnIiWMVKoJ7fU3E9gu210k4677vf6C_B8D5gYUoow_EEo6ZZouxJt9yvawp7dYY3LOrvgc9Ru_FfHFzfC7u_W3cXq1b7jJ5G_tUA
CitedBy_id crossref_primary_10_1016_j_geoderma_2024_117009
crossref_primary_10_1017_S0376892923000267
crossref_primary_10_1007_s13157_019_01134_1
crossref_primary_10_1080_07038992_2019_1605500
crossref_primary_10_3389_fpls_2023_1338577
crossref_primary_10_1016_j_isprsjprs_2022_03_010
crossref_primary_10_1002_hyp_14940
crossref_primary_10_1080_17550874_2022_2143731
crossref_primary_10_1016_j_earscirev_2019_05_014
crossref_primary_10_1088_1742_6596_2726_1_012010
crossref_primary_10_5194_gmd_15_4709_2022
crossref_primary_10_1007_s11629_018_5110_3
crossref_primary_10_3390_land11010024
crossref_primary_10_3389_fevo_2021_615006
crossref_primary_10_3390_rs11243004
crossref_primary_10_3390_rs15133303
crossref_primary_10_1080_01431161_2024_2387133
crossref_primary_10_1111_gcb_15454
crossref_primary_10_1007_s11258_023_01356_8
crossref_primary_10_1016_j_gecco_2023_e02639
crossref_primary_10_1109_JSTARS_2023_3236117
crossref_primary_10_1002_ecm_1614
crossref_primary_10_1371_journal_pone_0281869
crossref_primary_10_3389_fclim_2024_1334159
crossref_primary_10_1002_ecs2_3647
crossref_primary_10_1016_j_geoderma_2019_03_017
crossref_primary_10_1088_1748_9326_ac4d4d
crossref_primary_10_3389_fpls_2023_1048609
crossref_primary_10_1007_s11027_022_10006_9
crossref_primary_10_1080_17550874_2019_1655108
crossref_primary_10_1002_hyp_13904
crossref_primary_10_1016_j_jenvman_2025_124915
crossref_primary_10_1007_s11027_023_10089_y
crossref_primary_10_3389_feart_2023_1078830
crossref_primary_10_3390_land12112051
crossref_primary_10_14358_PERS_21_00029R2
crossref_primary_10_3389_feart_2021_676748
crossref_primary_10_1016_j_scitotenv_2023_164365
crossref_primary_10_3389_fpls_2023_1102340
crossref_primary_10_1016_j_scitotenv_2018_11_109
crossref_primary_10_1080_17550874_2023_2196966
crossref_primary_10_1016_j_rse_2019_111217
crossref_primary_10_1007_s11027_018_9809_9
crossref_primary_10_1029_2020JG005844
crossref_primary_10_2139_ssrn_4132989
crossref_primary_10_1002_hyp_13163
crossref_primary_10_1016_j_rsase_2022_100893
crossref_primary_10_1080_24694452_2020_1804822
Cites_doi 10.1073/pnas.1004875107
10.5589/m07-048
10.1016/j.palaeo.2006.12.016
10.3390/rs71215833
10.1016/j.rse.2009.04.006
10.1038/nature21048
10.1016/j.rse.2009.01.007
10.1080/01431169308904301
10.1088/1748-9326/9/12/124017
10.1109/JSTARS.2013.2289936
10.1016/j.catena.2014.10.010
10.1007/s11273-016-9482-2
10.1657/1523-0430(2003)035[0008:RSITHA]2.0.CO;2
10.1007/s13157-014-0574-6
10.1111/j.1365-2486.2011.02593.x
10.1029/2011WR011755
10.1016/j.rse.2012.10.031
10.1016/j.earscirev.2006.06.002
10.5194/isprsarchives-XL-7-W3-375-2015
10.1007/s13157-010-0039-5
10.5589/m08-080
10.5589/m07-047
10.1080/014311698215342
10.1046/j.1365-2745.2000.00455.x
10.1029/2008JD011021
10.1023/A:1010933404324
10.1111/j.1529-8817.2003.00774.x
10.1029/2010GL043584
10.1111/j.1442-9993.2009.02003.x
10.1002/2016JG003550
10.1109/JSTARS.2010.2070060
10.1126/science.1128087
10.1111/j.1365-2486.2010.02279.x
10.1080/01431161.2013.796096
10.1111/j.1365-2486.2009.02146.x
10.3390/rs70708655
10.1139/cjfr-2016-0192
ContentType Journal Article
Copyright Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Copyright © 2017 John Wiley & Sons Ltd
Copyright_xml – notice: Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
– notice: Copyright © 2017 John Wiley & Sons Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
DOI 10.1111/gcb.13807
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 5425
ExternalDocumentID 28675672
10_1111_gcb_13807
GCB13807
Genre article
Journal Article
GeographicLocations Ecuador
GeographicLocations_xml – name: Ecuador
GrantInformation_xml – fundername: Universidad San Francisco de Quito
– fundername: Sustainable Wetlands Adaptation and Mitigation Program (SWAMP)
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
ID FETCH-LOGICAL-c3867-d85a4894525cb56d0b0da1ed5458ef0f764d44e4a602c5b53797795de8e441853
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Fri Jul 11 18:29:00 EDT 2025
Fri Jul 11 10:56:23 EDT 2025
Fri Jul 25 19:51:20 EDT 2025
Mon Jul 21 05:48:17 EDT 2025
Tue Jul 01 03:52:57 EDT 2025
Thu Apr 24 23:00:56 EDT 2025
Wed Jan 22 16:41:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords mountain
multidate SAR
páramo
carbon
tropics
peatland
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3867-d85a4894525cb56d0b0da1ed5458ef0f764d44e4a602c5b53797795de8e441853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4116-7125
PMID 28675672
PQID 1963049220
PQPubID 30327
PageCount 14
ParticipantIDs proquest_miscellaneous_2010196712
proquest_miscellaneous_1915883103
proquest_journals_1963049220
pubmed_primary_28675672
crossref_primary_10_1111_gcb_13807
crossref_citationtrail_10_1111_gcb_13807
wiley_primary_10_1111_gcb_13807_GCB13807
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2017
2017-12-00
2017-Dec
20171201
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: December 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2017
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2010; 16
2015; 38
2006; 79
2000; 88
2013; 129
1974
2009; 113
2012; 18
2008; 3
2015b
2011; 17
2001; 45
2007; 33
2007; 34
2009; 114
2010; 21
1998; 19
2015a; 7
2015; 40
2014; 15
2017; 122
2014; 9
2010; 3
2010; 2
2014; 7
2016; 47
2010; 30
2012; 21
2015; 15
2001; 200
2010; 37
2010; 35
2012
2015; 125
2009
2003; 35
2003
1992
2015; 7
2011; 7
2006; 312
2004; 10
1993; 14
2009; 35
2013; 34
2008; 259
2016
2015
2014
2013
2012; 48
2017; 542
2014; 34
2016; 24
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
Soil Survey Staff (e_1_2_6_52_1) 2014
Wang J. (e_1_2_6_55_1) 2010
Hofstede R. (e_1_2_6_34_1) 2003
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
Chambers F. M. (e_1_2_6_18_1) 2011; 7
Cuesta F. (e_1_2_6_25_1) 2012
Chimner R. A. (e_1_2_6_20_1) 2008; 3
e_1_2_6_41_1
e_1_2_6_60_1
Clewley D. (e_1_2_6_23_1) 2015
e_1_2_6_9_1
e_1_2_6_5_1
Hribljan J. A. (e_1_2_6_35_1) 2015; 15
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
Benavides J. C. (e_1_2_6_8_1) 2014; 15
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_54_1
e_1_2_6_10_1
Li W. (e_1_2_6_40_1) 2007; 34
e_1_2_6_50_1
Bourgeau‐Chavez L. L. (e_1_2_6_11_1) 2015
Luteyn J. L. (e_1_2_6_42_1) 1992
MAE (e_1_2_6_43_1) 2015
Sklenar P. (e_1_2_6_51_1) 2015
Wertz‐Kanounnikoff S. (e_1_2_6_57_1) 2016
e_1_2_6_14_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_21_1
Beltrán K. (e_1_2_6_7_1) 2009
e_1_2_6_4_1
e_1_2_6_6_1
Gumbricht T. (e_1_2_6_33_1) 2012
e_1_2_6_48_1
Garavito N. T. (e_1_2_6_31_1) 2012; 21
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
Rouse J. W. (e_1_2_6_49_1) 1974
References_xml – start-page: 180
  year: 2012
– start-page: 299
  year: 2003
– year: 2009
– volume: 18
  start-page: 1239
  year: 2012
  end-page: 1252
  article-title: Interactions between climate and habitat loss effects on biodiversity: A systematic review and meta‐analysis
  publication-title: Global Change Biology
– volume: 114
  start-page: D2
  year: 2009
  article-title: Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 38
  start-page: 67
  year: 2015
  end-page: 78
– volume: 88
  start-page: 187
  year: 2000
  end-page: 203
  article-title: Ecological gradients, subdivisions and terminology of north‐west European mires
  publication-title: Journal of ecology
– volume: 21
  start-page: 148
  year: 2012
  end-page: 166
  article-title: Evaluación del estado de conservación de los bosques montanos en los Andes tropicales
  publication-title: Revista Ecosistemas
– volume: 113
  start-page: 893
  year: 2009
  end-page: 903
  article-title: Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO‐1 ALI sensors
  publication-title: Remote Sensing of Environment
– volume: 113
  start-page: 1868
  year: 2009
  end-page: 1873
  article-title: Effects of soil moisture and water depth on ERS SAR backscatter measurements from an Alaskan wetland complex
  publication-title: Remote Sensing of Environment
– volume: 129
  start-page: 122
  year: 2013
  end-page: 131
  article-title: Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation
  publication-title: Remote Sensing of Environment
– volume: 3
  start-page: 1
  year: 2008
  end-page: 10
  article-title: Long‐term carbon accumulation in two tropical mountain peatlands, Andes Mountains, Ecuador
  publication-title: Mires and Peat
– volume: 200
  year: 2001
– year: 2014
– volume: 33
  start-page: S56
  issue: Supp. 1
  year: 2007
  end-page: S67
  article-title: Wetland characterization using polarimetric RADARSAT‐2 capability
  publication-title: Canadian Journal of Remote Sensing.
– volume: 35
  start-page: 54
  issue: 1
  year: 2009
  end-page: 72
  article-title: Mapping vegetated wetlands of Alaska using L‐band radar satellite imagery
  publication-title: Canadian Journal of Remote Sensing
– volume: 7
  start-page: 3262
  year: 2014
  end-page: 3273
  article-title: Impact of topographic correction on estimation of aboveground boreal biomass using multi‐temporal, L‐band backscatter
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 16
  start-page: 2971
  year: 2010
  end-page: 2989
  article-title: Estimating carbon carrying capacity in natural forest ecosystems across heterogeneous landscapes: Addressing sources of error
  publication-title: Global Change Biology
– volume: 542
  start-page: 86
  year: 2017
  end-page: 90
  article-title: Age, extent and carbon storage of the central Congo Basin peatland complex
  publication-title: Nature
– volume: 2
  start-page: 5
  year: 2010
  end-page: 9
– volume: 9
  start-page: 1
  year: 2014
  end-page: 12
  article-title: The distribution and amount of carbon in the largest peatland complex in Amazonia
  publication-title: Environmental Research Letters
– volume: 37
  start-page: L13402
  year: 2010
  article-title: Global peatland dynamics since the Last Glacial Maximum
  publication-title: Geophysical Research Letters
– volume: 7
  start-page: 16274
  year: 2015
  end-page: 16292
  article-title: Land cover mapping of a tropical region by integrating multi‐year data into an annual time series
  publication-title: Remote Sensing
– volume: 15
  start-page: 1
  year: 2015
  end-page: 14
  article-title: Carbon storage and long‐term rate of accumulation in high‐altitude Andean peatlands of Bolivia
  publication-title: Mires and Peat
– volume: 3
  start-page: 554
  year: 2010
  end-page: 559
  article-title: Eco‐hydrological characterization of inland wetlands in Africa using L‐band SAR
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 45
  start-page: 5
  year: 2001
  article-title: Random forests
  publication-title: Machine Learning
– volume: 19
  start-page: 1545
  year: 1998
  end-page: 1560
  article-title: Wetland classification using optical and radar data and neural network classification
  publication-title: International Journal of Remote Sensing
– volume: 312
  start-page: 1755
  year: 2006
  end-page: 1756
  article-title: Threats to water supplies in the tropical Andes
  publication-title: Science
– start-page: 47
  year: 2012
– volume: 35
  start-page: 1
  year: 2010
  end-page: 12
  article-title: Patterns and gradients of diversity in South Patagonian ombrotrophic peat bogs
  publication-title: Austral Ecology
– year: 2015
– volume: 34
  start-page: 1241
  year: 2014
  end-page: 1246
  article-title: Developing and evaluating rapid field methods to estimate peat carbon
  publication-title: Wetlands
– volume: 24
  start-page: 113
  year: 2016
  end-page: 127
  article-title: Peatland carbon stocks and accumulation rates in the Ecuadorian páramo
  publication-title: Wetlands Ecology and Management
– start-page: 315–345
  year: 2015b
– volume: 21
  start-page: 16738
  year: 2010
  end-page: 16742
  article-title: High‐resolution forest carbon stocks and emissions in the Amazon
  publication-title: Proceedings of the National Academy of Sciences
– start-page: 120
  year: 2013
– volume: 7
  start-page: 8655
  year: 2015a
  end-page: 8682
  article-title: Development of a bi‐national Great Lakes coastal wetland and land use map using three season PALSAR and Landsat imagery
  publication-title: Remote Sensing
– start-page: 1
  year: 1992
  end-page: 14
– volume: 17
  start-page: 798
  year: 2011
  end-page: 818
  article-title: Global and regional importance of the tropical peatland carbon pool
  publication-title: Global Change Biology
– volume: 7
  start-page: 1
  year: 2011
  end-page: 10
  article-title: Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics
  publication-title: Mires and Peat
– volume: 10
  start-page: 731
  year: 2004
  end-page: 744
  article-title: A land cover map of South America
  publication-title: Global Change Biology
– volume: 35
  start-page: 8
  year: 2003
  end-page: 17
  article-title: Rain‐shadow in the high Andes of Ecuador evidenced by paramo vegetation
  publication-title: Arctic, Antarctic, and Alpine Research
– volume: 34
  start-page: 1
  year: 2007
  end-page: 6
  article-title: Future precipitation changes and their implications for tropical peatlands
  publication-title: Geophysical Research Letters
– volume: 48
  start-page: 1
  year: 2012
  end-page: 13
  article-title: Water for cities: The impact of climate change and demographic growth in the tropical Andes
  publication-title: Water Resources Research
– volume: 14
  start-page: 2677
  year: 1993
  end-page: 2694
  article-title: Synergistic effects of combined Landsat‐TM and SIR‐B data for forest resources assessment
  publication-title: International Journal of Remote Sensing
– year: 2016
– volume: 30
  start-page: 763
  year: 2010
  end-page: 771
  article-title: Mountain fen distribution, types and restoration priorities, San Juan Mountains, Colorado, USA
  publication-title: Wetlands
– volume: 79
  start-page: 53
  year: 2006
  end-page: 72
  article-title: Human impact on the hydrology of the Andean páramos
  publication-title: Earth‐Science Reviews
– volume: 15
  start-page: 1
  year: 2014
  end-page: 15
  article-title: The effect of drainage on organic matter accumulation and plant communities of high‐altitude peatlands in the Colombian tropical Andes
  publication-title: Mires and Peat
– volume: 125
  start-page: 120
  year: 2015
  end-page: 128
  article-title: Runoff from tropical alpine grasslands increases with areal extent of wetlands
  publication-title: Catena
– volume: 122
  start-page: 370
  year: 2017
  end-page: 386
  article-title: Estimating belowground carbon stocks in peatlands of the Ecuadorian páramo using ground penetrating radar (GPR)
  publication-title: Journal of Geophysical Research, Biogeosciences
– start-page: 369
  year: 2015
  end-page: 398
– year: 1974
– volume: 33
  start-page: 528
  year: 2007
  end-page: 545
  article-title: An object‐based method to map wetland using RADARSAT‐1 and Landsat ETM images: Test case on two sites in Quebec, Canada
  publication-title: Canadian Journal of Remote Sensing
– volume: 34
  start-page: 5709
  year: 2013
  end-page: 5730
  article-title: Assessment of polarimetric SAR data for discrimination between wet versus dry soil moisture conditions
  publication-title: International Journal of Remote Sensing
– volume: 40
  start-page: 375
  year: 2015
  article-title: Detection and characterizacion of Colombian wetlands using Alos Palsar and MODIS imagery
  publication-title: The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences
– volume: 47
  start-page: 545
  year: 2016
  end-page: 549
  article-title: Mapping boreal peatland ecosystem types from multi‐temporal radar and optical satellite imagery
  publication-title: Canadian Journal of Forest Research
– volume: 259
  start-page: 17
  year: 2008
  end-page: 34
  article-title: The Holocene treeline in the northern Andes (Ecuador): First evidence from soil charcoal
  publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology
– ident: e_1_2_6_4_1
  doi: 10.1073/pnas.1004875107
– ident: e_1_2_6_32_1
  doi: 10.5589/m07-048
– ident: e_1_2_6_27_1
  doi: 10.1016/j.palaeo.2006.12.016
– ident: e_1_2_6_2_1
  doi: 10.3390/rs71215833
– start-page: 180
  volume-title: Biodiversidad y cambio climático en los Andes tropicales. Coformacion de un red de investigación para monitorear sus impactos y delinear acciones de adaptación
  year: 2012
  ident: e_1_2_6_25_1
– start-page: 369
  volume-title: Chapter 17 in remote sensing of wetlands: Applications and advances
  year: 2015
  ident: e_1_2_6_23_1
– volume: 15
  start-page: 1
  year: 2015
  ident: e_1_2_6_35_1
  article-title: Carbon storage and long‐term rate of accumulation in high‐altitude Andean peatlands of Bolivia
  publication-title: Mires and Peat
– volume: 7
  start-page: 1
  year: 2011
  ident: e_1_2_6_18_1
  article-title: Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics
  publication-title: Mires and Peat
– ident: e_1_2_6_37_1
  doi: 10.1016/j.rse.2009.04.006
– ident: e_1_2_6_26_1
  doi: 10.1038/nature21048
– ident: e_1_2_6_19_1
  doi: 10.1016/j.rse.2009.01.007
– start-page: 299
  volume-title: Los páramos del mundo
  year: 2003
  ident: e_1_2_6_34_1
– ident: e_1_2_6_41_1
  doi: 10.1080/01431169308904301
– ident: e_1_2_6_28_1
  doi: 10.1088/1748-9326/9/12/124017
– volume: 15
  start-page: 1
  year: 2014
  ident: e_1_2_6_8_1
  article-title: The effect of drainage on organic matter accumulation and plant communities of high‐altitude peatlands in the Colombian tropical Andes
  publication-title: Mires and Peat
– ident: e_1_2_6_5_1
  doi: 10.1109/JSTARS.2013.2289936
– ident: e_1_2_6_45_1
  doi: 10.1016/j.catena.2014.10.010
– ident: e_1_2_6_36_1
  doi: 10.1007/s11273-016-9482-2
– ident: e_1_2_6_50_1
  doi: 10.1657/1523-0430(2003)035[0008:RSITHA]2.0.CO;2
– ident: e_1_2_6_22_1
  doi: 10.1007/s13157-014-0574-6
– start-page: 5
  volume-title: Proceedings of the 2010 international conference on environmental
  year: 2010
  ident: e_1_2_6_55_1
– ident: e_1_2_6_44_1
  doi: 10.1111/j.1365-2486.2011.02593.x
– volume: 21
  start-page: 148
  year: 2012
  ident: e_1_2_6_31_1
  article-title: Evaluación del estado de conservación de los bosques montanos en los Andes tropicales
  publication-title: Revista Ecosistemas
– ident: e_1_2_6_17_1
  doi: 10.1029/2011WR011755
– volume: 34
  start-page: 1
  year: 2007
  ident: e_1_2_6_40_1
  article-title: Future precipitation changes and their implications for tropical peatlands
  publication-title: Geophysical Research Letters
– ident: e_1_2_6_3_1
– ident: e_1_2_6_46_1
  doi: 10.1016/j.rse.2012.10.031
– ident: e_1_2_6_16_1
  doi: 10.1016/j.earscirev.2006.06.002
– ident: e_1_2_6_29_1
  doi: 10.5194/isprsarchives-XL-7-W3-375-2015
– volume-title: Estadísticas de patrimonio Natural. Datos de bosques, ecosistemas, especies, carbono y deforestación del Ecuador Continental
  year: 2015
  ident: e_1_2_6_43_1
– ident: e_1_2_6_21_1
  doi: 10.1007/s13157-010-0039-5
– ident: e_1_2_6_59_1
  doi: 10.5589/m08-080
– ident: e_1_2_6_53_1
  doi: 10.5589/m07-047
– start-page: 315–345
  volume-title: Chapter 15 in “Remote sensing of wetlands: Applications and advances
  year: 2015
  ident: e_1_2_6_11_1
– ident: e_1_2_6_6_1
  doi: 10.1080/014311698215342
– start-page: 1
  volume-title: Páramo: An andean ecosystem under human influence
  year: 1992
  ident: e_1_2_6_42_1
– start-page: 47
  volume-title: Mapping global tropical wetlands from earth observing satellite imagery (No. CIFOR Working Paper no. 103)
  year: 2012
  ident: e_1_2_6_33_1
– ident: e_1_2_6_58_1
  doi: 10.1046/j.1365-2745.2000.00455.x
– ident: e_1_2_6_54_1
  doi: 10.1029/2008JD011021
– volume-title: Reducing forest emissions in the Amazon basin: A review of drivers of land‐use change and how payments for environmental services (PES) schemes can affect them
  year: 2016
  ident: e_1_2_6_57_1
– ident: e_1_2_6_15_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_6_30_1
  doi: 10.1111/j.1529-8817.2003.00774.x
– volume-title: Monitoring vegetation systems in the Great Plains with ERTS
  year: 1974
  ident: e_1_2_6_49_1
– ident: e_1_2_6_56_1
– ident: e_1_2_6_60_1
  doi: 10.1029/2010GL043584
– volume-title: Keys to soil taxonomy
  year: 2014
  ident: e_1_2_6_52_1
– ident: e_1_2_6_39_1
  doi: 10.1111/j.1442-9993.2009.02003.x
– ident: e_1_2_6_24_1
  doi: 10.1002/2016JG003550
– volume-title: Distribución espacial, sistemas ecológicos y caracterización florística de los páramos en el Ecuador
  year: 2009
  ident: e_1_2_6_7_1
– ident: e_1_2_6_48_1
  doi: 10.1109/JSTARS.2010.2070060
– ident: e_1_2_6_14_1
  doi: 10.1126/science.1128087
– ident: e_1_2_6_47_1
  doi: 10.1111/j.1365-2486.2010.02279.x
– ident: e_1_2_6_12_1
  doi: 10.1080/01431161.2013.796096
– ident: e_1_2_6_13_1
– volume: 3
  start-page: 1
  year: 2008
  ident: e_1_2_6_20_1
  article-title: Long‐term carbon accumulation in two tropical mountain peatlands, Andes Mountains, Ecuador
  publication-title: Mires and Peat
– ident: e_1_2_6_38_1
  doi: 10.1111/j.1365-2486.2009.02146.x
– start-page: 67
  volume-title: Temporal variation of climate in the high‐elevation paramo of Antisana, Ecuador
  year: 2015
  ident: e_1_2_6_51_1
– ident: e_1_2_6_9_1
  doi: 10.3390/rs70708655
– ident: e_1_2_6_10_1
  doi: 10.1139/cjfr-2016-0192
SSID ssj0003206
Score 2.481127
Snippet Tropical peatlands store a significant portion of the global soil carbon (C) pool. However, tropical mountain peatlands contain extensive peat soils that have...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5412
SubjectTerms accounting
altitude
Area
carbon
Carbon - chemistry
carbon sequestration
Core sampling
Coring
data collection
Ecuador
Environmental Monitoring
Forests
Image detection
Imagery
issues and policy
Land cover
Land use
land use and land cover maps
Landsat
Landsat satellites
Management
Mapping
mountain
Mountains
multidate SAR
Peat
Peat soils
peatland
Peatlands
Policies
páramo
Radar
Radar imaging
Radarsat
Remote sensing
Remote Sensing Technology
Satellite imagery
Scaling
Soil
Soil - chemistry
Soil mapping
Soils
Stocks
Storage
Sustainability management
Sustainable practices
Time Factors
Tropical climate
tropics
Wetlands
Title Multidate, multisensor remote sensing reveals high density of carbon‐rich mountain peatlands in the páramo of Ecuador
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.13807
https://www.ncbi.nlm.nih.gov/pubmed/28675672
https://www.proquest.com/docview/1963049220
https://www.proquest.com/docview/1915883103
https://www.proquest.com/docview/2010196712
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3datRAFB5KQeiN1a21q1XGIuKFWZLJzGQWr3TZWgr1Qiz0QgjzFy22yZLdhbZXPoKv4LP4Jj6J50x-aq0F6d3O5mSZzJ6fbzLnfIeQ555ZyZW0kc0Mi7gz40hpxSMjpZIuhYDmsN754L3cO-T7R-JohbzuamEafoj-hRtaRvDXaODazP8w8s_WjBKkSwf_i7laCIg-XFJHpSz01UxSwcHVJGnLKoRZPP2dV2PRNYB5Fa-GgLO7Tj51U23yTL6Olgszshd_sTje8lnukbstEKVvGs25T1Z8OSB3mtaU5wOyOb2sgAOx1gXMB2R4ADC7qoMYfUEnJ8eAecNog5yFcl58h_CKhkzFOWySq5rWHhTCUxxBpKTIGgVaT5EqmTr8cnFOq4JaXZuq_PXtO_jmL_QUu1jo45LOIFyEimQKA8CrdPbzR61PK7xlapfaVfUDcrg7_TjZi9rWDpFNFbhmp4TmaoyHqtYI6WITO514h8d4voiLTHLHuedaxswKI9IMcOpYOK88R7qddJOsllXpt7DoPJaFT4tMSw26BvjLiKSQVpkkU8KxIXnZ_cm5bXnPsf3GSd7tf2D187D6Q7LTi84aso9_CW13mpK39j7P0Y_BXouxeEie9ZfBUvH4RZe-WqJMIlTo63azDOYmwG9lCUz7YaOF_UwYLJyQGT5Q0KWbp5i_m7wNHx79v-hjssYQsYRMnW2yuqiX_gngrYV5GgzrN7LtKDo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxELZKEYILP4FCoIBBgDiw0a7X9m4OHCBNSWnTA2ql3hb_LVS0u9EmEYQTj8ArcOctOPMSPAkz3k1KgUpceuAWJ5OV154Zf7ZnviHkgWNG8lSawCSaBdzqbpCqlAdaylTaGBY0i_nOw2052OUv98TeEvk6z4Wp-SEWB25oGd5fo4HjgfQvVv7G6E6EfOlNSOWmm72HDdv46cYazO5Dxtb7O71B0NQUCEycgk-wqVA87eJtntFC2lCHVkXO4v2Ry8M8kdxy7riSITNCizgBgNQV1qWOI89LDM89Q85iBXFk6l97dURWFTNfyTOKBQfnFsUNjxHGDS26enz1-wPSHkfIfolbv0S-zwenjmx515lOdMd8_I038n8ZvcvkYoO16bPaOK6QJVe0yLm6-uasRVb6R0l-INZ4uXGLtIewkygrL0Yf0d7BPsB637pKPviMZTwmeUJ9MObYFeOyopUDnXcUWwAGKBJjgWFTZIOmFr-czGiZU6MqXRY_Pn2G5ectPcRCHWq_oCNYEX3SNYUGQHI6-valUocl_qVvpsqW1TWyeypjtUKWi7JwNzCvPpS5i_NESQXmBBBTiyiXJtVRkgrL2uTxXKsy01C7Y4WRg2y-xYPZzvxst8n9heio5jP5m9DqXDWzxqWNM3TVsJ1kLGyTe4ufwRnhDZMqXDlFmUikvnTdyTIYfgHPSiLo9vVa7Rc9YTBwQib4Ql55T-5i9qL33H-4-e-id8n5wc5wK9va2N68RS4wBGg-MGmVLE-qqbsN8HKi73irpuT1aRvCT1EXhCQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKEYgLPwuFhQIGAeqBrBLHdrwHDrA_tJRWCFGptxD_BCraZJXdFSwnHoFX4MxjcOUpeBJmnOyWApW49MBtvZlEjj0z_hzPfEPIPceM5EqawCSaBdzqbqAyxQMtpZI2hgXNYr7z1rZc3-HPdsXuEvk6z4Wp-SEWH9zQMry_RgMf2fwXI39jdCdCuvQmonLTzd7Dfm38aKMPk3ufseHgVW89aEoKBCZW4BKsEhlXXTzMM1pIG-rQZpGzeHzk8jBPJLecO57JkBmhRZwAPuoK65TjSPMSw3NPkdNchl2sE9F_echVFTNfyDOKBQffFsUNjRGGDS26enTx-wPRHgXIfoUbXiDf52NTB7a860wnumM-_kYb-Z8M3kVyvkHa9HFtGpfIkita5Exde3PWIiuDwxQ_EGt83LhF2luwjygrL0Yf0N7-HoB637pMPvh8ZfxI8pD6UMyxK8ZlRSsHGu8otgAKUKTFArOmyAVNLf45mdEypyardFn8-PQZFp-39ADLdGR7BR3BeuhTrik0AJDT0bcvVXZQ4i0DM81sWV0hOycyVitkuSgLdw2z6kOZuzhPMpmBMQHA1CLKpVE6SpSwrE3W5kqVmobYHeuL7KfzDR7Mdupnu03uLkRHNZvJ34RW55qZNg5tnKKjhs0kY2Gb3FlcBleE50tZ4copykRC-cJ1x8tg8AU8K4mg21drrV_0hMHACZngC3ndPb6L6dPeE__j-r-L3iZnX_SH6fON7c0b5BxDdOajklbJ8qSaupuALSf6lrdpSl6ftB38BC9hgtM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multidate%2C+multisensor+remote+sensing+reveals+high+density+of+carbon-rich+mountain+peatlands+in+the+p%C3%A1ramo+of+Ecuador&rft.jtitle=Global+change+biology&rft.au=Hribljan%2C+John+A&rft.au=Suarez%2C+Esteban&rft.au=Bourgeau-Chavez%2C+Laura&rft.au=Endres%2C+Sarah&rft.date=2017-12-01&rft.eissn=1365-2486&rft.volume=23&rft.issue=12&rft.spage=5412&rft_id=info:doi/10.1111%2Fgcb.13807&rft_id=info%3Apmid%2F28675672&rft.externalDocID=28675672
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon