Multidate, multisensor remote sensing reveals high density of carbon‐rich mountain peatlands in the páramo of Ecuador
Tropical peatlands store a significant portion of the global soil carbon (C) pool. However, tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global C estimates. This lack of data hinders our ability to inform policy and apply sustainable management p...
Saved in:
Published in | Global change biology Vol. 23; no. 12; pp. 5412 - 5425 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tropical peatlands store a significant portion of the global soil carbon (C) pool. However, tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global C estimates. This lack of data hinders our ability to inform policy and apply sustainable management practices to these peatlands that are experiencing unprecedented high rates of land use and land cover change. Rapid large‐scale mapping activities are urgently needed to quantify tropical wetland extent and rate of degradation. We tested a combination of multidate, multisensor radar and optical imagery (Landsat TM/PALSAR/RADARSAT‐1/TPI image stack) for detecting peatlands in a 2715 km2 area in the high elevation mountains of the Ecuadorian páramo. The map was combined with an extensive soil coring data set to produce the first estimate of regional peatland soil C storage in the páramo. Our map displayed a high coverage of peatlands (614 km2) containing an estimated 128.2 ± 9.1 Tg of peatland belowground soil C within the mapping area. Scaling‐up to the country level, páramo peatlands likely represent less than 1% of the total land area of Ecuador but could contain as much as ~23% of the above‐ and belowground vegetation C stocks in Ecuadorian forests. These mapping approaches provide an essential methodological improvement applicable to mountain peatlands across the globe, facilitating mapping efforts in support of effective policy and sustainable management, including national and global C accounting and C management efforts.
Tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global carbon estimates. Our map displayed a high coverage of peatlands containing large belowground soil carbon storage within the Ecuadorian Andes. These mapping approaches provide an essential methodological improvement applicable to mountain peatlands across the globe, facilitating mapping efforts in support of effective policy and sustainable management, including national and global carbon accounting and C management efforts. |
---|---|
AbstractList | Tropical peatlands store a significant portion of the global soil carbon (C) pool. However, tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global C estimates. This lack of data hinders our ability to inform policy and apply sustainable management practices to these peatlands that are experiencing unprecedented high rates of land use and land cover change. Rapid large‐scale mapping activities are urgently needed to quantify tropical wetland extent and rate of degradation. We tested a combination of multidate, multisensor radar and optical imagery (Landsat
TM
/
PALSAR
/
RADARSAT
‐1/
TPI
image stack) for detecting peatlands in a 2715 km
2
area in the high elevation mountains of the Ecuadorian páramo. The map was combined with an extensive soil coring data set to produce the first estimate of regional peatland soil C storage in the páramo. Our map displayed a high coverage of peatlands (614 km
2
) containing an estimated 128.2 ± 9.1 Tg of peatland belowground soil C within the mapping area. Scaling‐up to the country level, páramo peatlands likely represent less than 1% of the total land area of Ecuador but could contain as much as ~23% of the above‐ and belowground vegetation C stocks in Ecuadorian forests. These mapping approaches provide an essential methodological improvement applicable to mountain peatlands across the globe, facilitating mapping efforts in support of effective policy and sustainable management, including national and global C accounting and C management efforts. Tropical peatlands store a significant portion of the global soil carbon (C) pool. However, tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global C estimates. This lack of data hinders our ability to inform policy and apply sustainable management practices to these peatlands that are experiencing unprecedented high rates of land use and land cover change. Rapid large‐scale mapping activities are urgently needed to quantify tropical wetland extent and rate of degradation. We tested a combination of multidate, multisensor radar and optical imagery (Landsat TM/PALSAR/RADARSAT‐1/TPI image stack) for detecting peatlands in a 2715 km2 area in the high elevation mountains of the Ecuadorian páramo. The map was combined with an extensive soil coring data set to produce the first estimate of regional peatland soil C storage in the páramo. Our map displayed a high coverage of peatlands (614 km2) containing an estimated 128.2 ± 9.1 Tg of peatland belowground soil C within the mapping area. Scaling‐up to the country level, páramo peatlands likely represent less than 1% of the total land area of Ecuador but could contain as much as ~23% of the above‐ and belowground vegetation C stocks in Ecuadorian forests. These mapping approaches provide an essential methodological improvement applicable to mountain peatlands across the globe, facilitating mapping efforts in support of effective policy and sustainable management, including national and global C accounting and C management efforts. Tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global carbon estimates. Our map displayed a high coverage of peatlands containing large belowground soil carbon storage within the Ecuadorian Andes. These mapping approaches provide an essential methodological improvement applicable to mountain peatlands across the globe, facilitating mapping efforts in support of effective policy and sustainable management, including national and global carbon accounting and C management efforts. Tropical peatlands store a significant portion of the global soil carbon (C) pool. However, tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global C estimates. This lack of data hinders our ability to inform policy and apply sustainable management practices to these peatlands that are experiencing unprecedented high rates of land use and land cover change. Rapid large-scale mapping activities are urgently needed to quantify tropical wetland extent and rate of degradation. We tested a combination of multidate, multisensor radar and optical imagery (Landsat TM/PALSAR/RADARSAT-1/TPI image stack) for detecting peatlands in a 2715 km2 area in the high elevation mountains of the Ecuadorian páramo. The map was combined with an extensive soil coring data set to produce the first estimate of regional peatland soil C storage in the páramo. Our map displayed a high coverage of peatlands (614 km2) containing an estimated 128.2 ± 9.1 Tg of peatland belowground soil C within the mapping area. Scaling-up to the country level, páramo peatlands likely represent less than 1% of the total land area of Ecuador but could contain as much as ~23% of the above- and belowground vegetation C stocks in Ecuadorian forests. These mapping approaches provide an essential methodological improvement applicable to mountain peatlands across the globe, facilitating mapping efforts in support of effective policy and sustainable management, including national and global C accounting and C management efforts. Tropical peatlands store a significant portion of the global soil carbon (C) pool. However, tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global C estimates. This lack of data hinders our ability to inform policy and apply sustainable management practices to these peatlands that are experiencing unprecedented high rates of land use and land cover change. Rapid large‐scale mapping activities are urgently needed to quantify tropical wetland extent and rate of degradation. We tested a combination of multidate, multisensor radar and optical imagery (Landsat TM/PALSAR/RADARSAT‐1/TPI image stack) for detecting peatlands in a 2715 km² area in the high elevation mountains of the Ecuadorian páramo. The map was combined with an extensive soil coring data set to produce the first estimate of regional peatland soil C storage in the páramo. Our map displayed a high coverage of peatlands (614 km²) containing an estimated 128.2 ± 9.1 Tg of peatland belowground soil C within the mapping area. Scaling‐up to the country level, páramo peatlands likely represent less than 1% of the total land area of Ecuador but could contain as much as ~23% of the above‐ and belowground vegetation C stocks in Ecuadorian forests. These mapping approaches provide an essential methodological improvement applicable to mountain peatlands across the globe, facilitating mapping efforts in support of effective policy and sustainable management, including national and global C accounting and C management efforts. Tropical peatlands store a significant portion of the global soil carbon (C) pool. However, tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global C estimates. This lack of data hinders our ability to inform policy and apply sustainable management practices to these peatlands that are experiencing unprecedented high rates of land use and land cover change. Rapid large-scale mapping activities are urgently needed to quantify tropical wetland extent and rate of degradation. We tested a combination of multidate, multisensor radar and optical imagery (Landsat TM/PALSAR/RADARSAT-1/TPI image stack) for detecting peatlands in a 2715 km area in the high elevation mountains of the Ecuadorian páramo. The map was combined with an extensive soil coring data set to produce the first estimate of regional peatland soil C storage in the páramo. Our map displayed a high coverage of peatlands (614 km ) containing an estimated 128.2 ± 9.1 Tg of peatland belowground soil C within the mapping area. Scaling-up to the country level, páramo peatlands likely represent less than 1% of the total land area of Ecuador but could contain as much as ~23% of the above- and belowground vegetation C stocks in Ecuadorian forests. These mapping approaches provide an essential methodological improvement applicable to mountain peatlands across the globe, facilitating mapping efforts in support of effective policy and sustainable management, including national and global C accounting and C management efforts. Tropical peatlands store a significant portion of the global soil carbon (C) pool. However, tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global C estimates. This lack of data hinders our ability to inform policy and apply sustainable management practices to these peatlands that are experiencing unprecedented high rates of land use and land cover change. Rapid large-scale mapping activities are urgently needed to quantify tropical wetland extent and rate of degradation. We tested a combination of multidate, multisensor radar and optical imagery (Landsat TM/PALSAR/RADARSAT-1/TPI image stack) for detecting peatlands in a 2715 km2 area in the high elevation mountains of the Ecuadorian páramo. The map was combined with an extensive soil coring data set to produce the first estimate of regional peatland soil C storage in the páramo. Our map displayed a high coverage of peatlands (614 km2 ) containing an estimated 128.2 ± 9.1 Tg of peatland belowground soil C within the mapping area. Scaling-up to the country level, páramo peatlands likely represent less than 1% of the total land area of Ecuador but could contain as much as ~23% of the above- and belowground vegetation C stocks in Ecuadorian forests. These mapping approaches provide an essential methodological improvement applicable to mountain peatlands across the globe, facilitating mapping efforts in support of effective policy and sustainable management, including national and global C accounting and C management efforts.Tropical peatlands store a significant portion of the global soil carbon (C) pool. However, tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global C estimates. This lack of data hinders our ability to inform policy and apply sustainable management practices to these peatlands that are experiencing unprecedented high rates of land use and land cover change. Rapid large-scale mapping activities are urgently needed to quantify tropical wetland extent and rate of degradation. We tested a combination of multidate, multisensor radar and optical imagery (Landsat TM/PALSAR/RADARSAT-1/TPI image stack) for detecting peatlands in a 2715 km2 area in the high elevation mountains of the Ecuadorian páramo. The map was combined with an extensive soil coring data set to produce the first estimate of regional peatland soil C storage in the páramo. Our map displayed a high coverage of peatlands (614 km2 ) containing an estimated 128.2 ± 9.1 Tg of peatland belowground soil C within the mapping area. Scaling-up to the country level, páramo peatlands likely represent less than 1% of the total land area of Ecuador but could contain as much as ~23% of the above- and belowground vegetation C stocks in Ecuadorian forests. These mapping approaches provide an essential methodological improvement applicable to mountain peatlands across the globe, facilitating mapping efforts in support of effective policy and sustainable management, including national and global C accounting and C management efforts. |
Author | Endres, Sarah Chimbolema, Segundo Wayson, Craig Suarez, Esteban Hribljan, John A. Chimner, Rodney A. Lilleskov, Erik A. Bourgeau‐Chavez, Laura Serocki, Eleanor |
Author_xml | – sequence: 1 givenname: John A. orcidid: 0000-0003-4116-7125 surname: Hribljan fullname: Hribljan, John A. email: jahriblj@mtu.edu organization: School of Forest Resources and Environmental Science – sequence: 2 givenname: Esteban surname: Suarez fullname: Suarez, Esteban organization: Universidad San Francisco de Quito – sequence: 3 givenname: Laura surname: Bourgeau‐Chavez fullname: Bourgeau‐Chavez, Laura organization: Michigan Technological University – sequence: 4 givenname: Sarah surname: Endres fullname: Endres, Sarah organization: Michigan Technological University – sequence: 5 givenname: Erik A. surname: Lilleskov fullname: Lilleskov, Erik A. organization: Climate, Fire and Carbon Cycle Sciences Unit – sequence: 6 givenname: Segundo surname: Chimbolema fullname: Chimbolema, Segundo organization: Universidad San Francisco de Quito – sequence: 7 givenname: Craig surname: Wayson fullname: Wayson, Craig organization: SilvaCarbon – sequence: 8 givenname: Eleanor surname: Serocki fullname: Serocki, Eleanor organization: Michigan Technological University – sequence: 9 givenname: Rodney A. surname: Chimner fullname: Chimner, Rodney A. organization: School of Forest Resources and Environmental Science |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28675672$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1uFDEQhS0URH5gwQWQJTYg0Yn_u3sJoxCQgtjAuuW2q2ccdduD7QZmlyPkCpyFm3AS3ExgEQnwxvWsr57K9Y7RgQ8eEHpMySkt52xt-lPKG1LfQ0eUK1kx0aiDpZaiooTyQ3Sc0hUhhDOiHqBD1qhaqpodoa_v5jE7qzO8wNNSJvApRBxhChnwopxfF_kZ9Jjwxq032C6PeYfDgI2OffA_rm-iMxs8hdln7Tzegs6j9jbhIvIG8Pb7t6insLScm1nbEB-i-0NxhEe39wn6-Pr8w-pNdfn-4u3q5WVleBmyso3UommFZNL0UlnSE6spWClkAwMZaiWsECC0IszIXvK6retWWmhACNpIfoKe7X23MXyaIeVucsnAWMaDMKeOkbKgVtWU_RelLZVNwynhBX16B70Kc_TlI4VSnIiWMVKoJ7fU3E9gu210k4677vf6C_B8D5gYUoow_EEo6ZZouxJt9yvawp7dYY3LOrvgc9Ru_FfHFzfC7u_W3cXq1b7jJ5G_tUA |
CitedBy_id | crossref_primary_10_1016_j_geoderma_2024_117009 crossref_primary_10_1017_S0376892923000267 crossref_primary_10_1007_s13157_019_01134_1 crossref_primary_10_1080_07038992_2019_1605500 crossref_primary_10_3389_fpls_2023_1338577 crossref_primary_10_1016_j_isprsjprs_2022_03_010 crossref_primary_10_1002_hyp_14940 crossref_primary_10_1080_17550874_2022_2143731 crossref_primary_10_1016_j_earscirev_2019_05_014 crossref_primary_10_1088_1742_6596_2726_1_012010 crossref_primary_10_5194_gmd_15_4709_2022 crossref_primary_10_1007_s11629_018_5110_3 crossref_primary_10_3390_land11010024 crossref_primary_10_3389_fevo_2021_615006 crossref_primary_10_3390_rs11243004 crossref_primary_10_3390_rs15133303 crossref_primary_10_1080_01431161_2024_2387133 crossref_primary_10_1111_gcb_15454 crossref_primary_10_1007_s11258_023_01356_8 crossref_primary_10_1016_j_gecco_2023_e02639 crossref_primary_10_1109_JSTARS_2023_3236117 crossref_primary_10_1002_ecm_1614 crossref_primary_10_1371_journal_pone_0281869 crossref_primary_10_3389_fclim_2024_1334159 crossref_primary_10_1002_ecs2_3647 crossref_primary_10_1016_j_geoderma_2019_03_017 crossref_primary_10_1088_1748_9326_ac4d4d crossref_primary_10_3389_fpls_2023_1048609 crossref_primary_10_1007_s11027_022_10006_9 crossref_primary_10_1080_17550874_2019_1655108 crossref_primary_10_1002_hyp_13904 crossref_primary_10_1016_j_jenvman_2025_124915 crossref_primary_10_1007_s11027_023_10089_y crossref_primary_10_3389_feart_2023_1078830 crossref_primary_10_3390_land12112051 crossref_primary_10_14358_PERS_21_00029R2 crossref_primary_10_3389_feart_2021_676748 crossref_primary_10_1016_j_scitotenv_2023_164365 crossref_primary_10_3389_fpls_2023_1102340 crossref_primary_10_1016_j_scitotenv_2018_11_109 crossref_primary_10_1080_17550874_2023_2196966 crossref_primary_10_1016_j_rse_2019_111217 crossref_primary_10_1007_s11027_018_9809_9 crossref_primary_10_1029_2020JG005844 crossref_primary_10_2139_ssrn_4132989 crossref_primary_10_1002_hyp_13163 crossref_primary_10_1016_j_rsase_2022_100893 crossref_primary_10_1080_24694452_2020_1804822 |
Cites_doi | 10.1073/pnas.1004875107 10.5589/m07-048 10.1016/j.palaeo.2006.12.016 10.3390/rs71215833 10.1016/j.rse.2009.04.006 10.1038/nature21048 10.1016/j.rse.2009.01.007 10.1080/01431169308904301 10.1088/1748-9326/9/12/124017 10.1109/JSTARS.2013.2289936 10.1016/j.catena.2014.10.010 10.1007/s11273-016-9482-2 10.1657/1523-0430(2003)035[0008:RSITHA]2.0.CO;2 10.1007/s13157-014-0574-6 10.1111/j.1365-2486.2011.02593.x 10.1029/2011WR011755 10.1016/j.rse.2012.10.031 10.1016/j.earscirev.2006.06.002 10.5194/isprsarchives-XL-7-W3-375-2015 10.1007/s13157-010-0039-5 10.5589/m08-080 10.5589/m07-047 10.1080/014311698215342 10.1046/j.1365-2745.2000.00455.x 10.1029/2008JD011021 10.1023/A:1010933404324 10.1111/j.1529-8817.2003.00774.x 10.1029/2010GL043584 10.1111/j.1442-9993.2009.02003.x 10.1002/2016JG003550 10.1109/JSTARS.2010.2070060 10.1126/science.1128087 10.1111/j.1365-2486.2010.02279.x 10.1080/01431161.2013.796096 10.1111/j.1365-2486.2009.02146.x 10.3390/rs70708655 10.1139/cjfr-2016-0192 |
ContentType | Journal Article |
Copyright | Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Copyright © 2017 John Wiley & Sons Ltd |
Copyright_xml | – notice: Published 2017. This article is a U.S. Government work and is in the public domain in the USA. – notice: Copyright © 2017 John Wiley & Sons Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 |
DOI | 10.1111/gcb.13807 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
EISSN | 1365-2486 |
EndPage | 5425 |
ExternalDocumentID | 28675672 10_1111_gcb_13807 GCB13807 |
Genre | article Journal Article |
GeographicLocations | Ecuador |
GeographicLocations_xml | – name: Ecuador |
GrantInformation_xml | – fundername: Universidad San Francisco de Quito – fundername: Sustainable Wetlands Adaptation and Mitigation Program (SWAMP) |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3867-d85a4894525cb56d0b0da1ed5458ef0f764d44e4a602c5b53797795de8e441853 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 1365-2486 |
IngestDate | Fri Jul 11 18:29:00 EDT 2025 Fri Jul 11 10:56:23 EDT 2025 Fri Jul 25 19:51:20 EDT 2025 Mon Jul 21 05:48:17 EDT 2025 Tue Jul 01 03:52:57 EDT 2025 Thu Apr 24 23:00:56 EDT 2025 Wed Jan 22 16:41:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | mountain multidate SAR páramo carbon tropics peatland |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Published 2017. This article is a U.S. Government work and is in the public domain in the USA. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3867-d85a4894525cb56d0b0da1ed5458ef0f764d44e4a602c5b53797795de8e441853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4116-7125 |
PMID | 28675672 |
PQID | 1963049220 |
PQPubID | 30327 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2010196712 proquest_miscellaneous_1915883103 proquest_journals_1963049220 pubmed_primary_28675672 crossref_primary_10_1111_gcb_13807 crossref_citationtrail_10_1111_gcb_13807 wiley_primary_10_1111_gcb_13807_GCB13807 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2017 2017-12-00 2017-Dec 20171201 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: December 2017 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Chang Biol |
PublicationYear | 2017 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2010; 16 2015; 38 2006; 79 2000; 88 2013; 129 1974 2009; 113 2012; 18 2008; 3 2015b 2011; 17 2001; 45 2007; 33 2007; 34 2009; 114 2010; 21 1998; 19 2015a; 7 2015; 40 2014; 15 2017; 122 2014; 9 2010; 3 2010; 2 2014; 7 2016; 47 2010; 30 2012; 21 2015; 15 2001; 200 2010; 37 2010; 35 2012 2015; 125 2009 2003; 35 2003 1992 2015; 7 2011; 7 2006; 312 2004; 10 1993; 14 2009; 35 2013; 34 2008; 259 2016 2015 2014 2013 2012; 48 2017; 542 2014; 34 2016; 24 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 Soil Survey Staff (e_1_2_6_52_1) 2014 Wang J. (e_1_2_6_55_1) 2010 Hofstede R. (e_1_2_6_34_1) 2003 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 Chambers F. M. (e_1_2_6_18_1) 2011; 7 Cuesta F. (e_1_2_6_25_1) 2012 Chimner R. A. (e_1_2_6_20_1) 2008; 3 e_1_2_6_41_1 e_1_2_6_60_1 Clewley D. (e_1_2_6_23_1) 2015 e_1_2_6_9_1 e_1_2_6_5_1 Hribljan J. A. (e_1_2_6_35_1) 2015; 15 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 Benavides J. C. (e_1_2_6_8_1) 2014; 15 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_54_1 e_1_2_6_10_1 Li W. (e_1_2_6_40_1) 2007; 34 e_1_2_6_50_1 Bourgeau‐Chavez L. L. (e_1_2_6_11_1) 2015 Luteyn J. L. (e_1_2_6_42_1) 1992 MAE (e_1_2_6_43_1) 2015 Sklenar P. (e_1_2_6_51_1) 2015 Wertz‐Kanounnikoff S. (e_1_2_6_57_1) 2016 e_1_2_6_14_1 e_1_2_6_12_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_21_1 Beltrán K. (e_1_2_6_7_1) 2009 e_1_2_6_4_1 e_1_2_6_6_1 Gumbricht T. (e_1_2_6_33_1) 2012 e_1_2_6_48_1 Garavito N. T. (e_1_2_6_31_1) 2012; 21 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 Rouse J. W. (e_1_2_6_49_1) 1974 |
References_xml | – start-page: 180 year: 2012 – start-page: 299 year: 2003 – year: 2009 – volume: 18 start-page: 1239 year: 2012 end-page: 1252 article-title: Interactions between climate and habitat loss effects on biodiversity: A systematic review and meta‐analysis publication-title: Global Change Biology – volume: 114 start-page: D2 year: 2009 article-title: Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century publication-title: Journal of Geophysical Research: Atmospheres – volume: 38 start-page: 67 year: 2015 end-page: 78 – volume: 88 start-page: 187 year: 2000 end-page: 203 article-title: Ecological gradients, subdivisions and terminology of north‐west European mires publication-title: Journal of ecology – volume: 21 start-page: 148 year: 2012 end-page: 166 article-title: Evaluación del estado de conservación de los bosques montanos en los Andes tropicales publication-title: Revista Ecosistemas – volume: 113 start-page: 893 year: 2009 end-page: 903 article-title: Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO‐1 ALI sensors publication-title: Remote Sensing of Environment – volume: 113 start-page: 1868 year: 2009 end-page: 1873 article-title: Effects of soil moisture and water depth on ERS SAR backscatter measurements from an Alaskan wetland complex publication-title: Remote Sensing of Environment – volume: 129 start-page: 122 year: 2013 end-page: 131 article-title: Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation publication-title: Remote Sensing of Environment – volume: 3 start-page: 1 year: 2008 end-page: 10 article-title: Long‐term carbon accumulation in two tropical mountain peatlands, Andes Mountains, Ecuador publication-title: Mires and Peat – volume: 200 year: 2001 – year: 2014 – volume: 33 start-page: S56 issue: Supp. 1 year: 2007 end-page: S67 article-title: Wetland characterization using polarimetric RADARSAT‐2 capability publication-title: Canadian Journal of Remote Sensing. – volume: 35 start-page: 54 issue: 1 year: 2009 end-page: 72 article-title: Mapping vegetated wetlands of Alaska using L‐band radar satellite imagery publication-title: Canadian Journal of Remote Sensing – volume: 7 start-page: 3262 year: 2014 end-page: 3273 article-title: Impact of topographic correction on estimation of aboveground boreal biomass using multi‐temporal, L‐band backscatter publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 16 start-page: 2971 year: 2010 end-page: 2989 article-title: Estimating carbon carrying capacity in natural forest ecosystems across heterogeneous landscapes: Addressing sources of error publication-title: Global Change Biology – volume: 542 start-page: 86 year: 2017 end-page: 90 article-title: Age, extent and carbon storage of the central Congo Basin peatland complex publication-title: Nature – volume: 2 start-page: 5 year: 2010 end-page: 9 – volume: 9 start-page: 1 year: 2014 end-page: 12 article-title: The distribution and amount of carbon in the largest peatland complex in Amazonia publication-title: Environmental Research Letters – volume: 37 start-page: L13402 year: 2010 article-title: Global peatland dynamics since the Last Glacial Maximum publication-title: Geophysical Research Letters – volume: 7 start-page: 16274 year: 2015 end-page: 16292 article-title: Land cover mapping of a tropical region by integrating multi‐year data into an annual time series publication-title: Remote Sensing – volume: 15 start-page: 1 year: 2015 end-page: 14 article-title: Carbon storage and long‐term rate of accumulation in high‐altitude Andean peatlands of Bolivia publication-title: Mires and Peat – volume: 3 start-page: 554 year: 2010 end-page: 559 article-title: Eco‐hydrological characterization of inland wetlands in Africa using L‐band SAR publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 45 start-page: 5 year: 2001 article-title: Random forests publication-title: Machine Learning – volume: 19 start-page: 1545 year: 1998 end-page: 1560 article-title: Wetland classification using optical and radar data and neural network classification publication-title: International Journal of Remote Sensing – volume: 312 start-page: 1755 year: 2006 end-page: 1756 article-title: Threats to water supplies in the tropical Andes publication-title: Science – start-page: 47 year: 2012 – volume: 35 start-page: 1 year: 2010 end-page: 12 article-title: Patterns and gradients of diversity in South Patagonian ombrotrophic peat bogs publication-title: Austral Ecology – year: 2015 – volume: 34 start-page: 1241 year: 2014 end-page: 1246 article-title: Developing and evaluating rapid field methods to estimate peat carbon publication-title: Wetlands – volume: 24 start-page: 113 year: 2016 end-page: 127 article-title: Peatland carbon stocks and accumulation rates in the Ecuadorian páramo publication-title: Wetlands Ecology and Management – start-page: 315–345 year: 2015b – volume: 21 start-page: 16738 year: 2010 end-page: 16742 article-title: High‐resolution forest carbon stocks and emissions in the Amazon publication-title: Proceedings of the National Academy of Sciences – start-page: 120 year: 2013 – volume: 7 start-page: 8655 year: 2015a end-page: 8682 article-title: Development of a bi‐national Great Lakes coastal wetland and land use map using three season PALSAR and Landsat imagery publication-title: Remote Sensing – start-page: 1 year: 1992 end-page: 14 – volume: 17 start-page: 798 year: 2011 end-page: 818 article-title: Global and regional importance of the tropical peatland carbon pool publication-title: Global Change Biology – volume: 7 start-page: 1 year: 2011 end-page: 10 article-title: Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics publication-title: Mires and Peat – volume: 10 start-page: 731 year: 2004 end-page: 744 article-title: A land cover map of South America publication-title: Global Change Biology – volume: 35 start-page: 8 year: 2003 end-page: 17 article-title: Rain‐shadow in the high Andes of Ecuador evidenced by paramo vegetation publication-title: Arctic, Antarctic, and Alpine Research – volume: 34 start-page: 1 year: 2007 end-page: 6 article-title: Future precipitation changes and their implications for tropical peatlands publication-title: Geophysical Research Letters – volume: 48 start-page: 1 year: 2012 end-page: 13 article-title: Water for cities: The impact of climate change and demographic growth in the tropical Andes publication-title: Water Resources Research – volume: 14 start-page: 2677 year: 1993 end-page: 2694 article-title: Synergistic effects of combined Landsat‐TM and SIR‐B data for forest resources assessment publication-title: International Journal of Remote Sensing – year: 2016 – volume: 30 start-page: 763 year: 2010 end-page: 771 article-title: Mountain fen distribution, types and restoration priorities, San Juan Mountains, Colorado, USA publication-title: Wetlands – volume: 79 start-page: 53 year: 2006 end-page: 72 article-title: Human impact on the hydrology of the Andean páramos publication-title: Earth‐Science Reviews – volume: 15 start-page: 1 year: 2014 end-page: 15 article-title: The effect of drainage on organic matter accumulation and plant communities of high‐altitude peatlands in the Colombian tropical Andes publication-title: Mires and Peat – volume: 125 start-page: 120 year: 2015 end-page: 128 article-title: Runoff from tropical alpine grasslands increases with areal extent of wetlands publication-title: Catena – volume: 122 start-page: 370 year: 2017 end-page: 386 article-title: Estimating belowground carbon stocks in peatlands of the Ecuadorian páramo using ground penetrating radar (GPR) publication-title: Journal of Geophysical Research, Biogeosciences – start-page: 369 year: 2015 end-page: 398 – year: 1974 – volume: 33 start-page: 528 year: 2007 end-page: 545 article-title: An object‐based method to map wetland using RADARSAT‐1 and Landsat ETM images: Test case on two sites in Quebec, Canada publication-title: Canadian Journal of Remote Sensing – volume: 34 start-page: 5709 year: 2013 end-page: 5730 article-title: Assessment of polarimetric SAR data for discrimination between wet versus dry soil moisture conditions publication-title: International Journal of Remote Sensing – volume: 40 start-page: 375 year: 2015 article-title: Detection and characterizacion of Colombian wetlands using Alos Palsar and MODIS imagery publication-title: The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences – volume: 47 start-page: 545 year: 2016 end-page: 549 article-title: Mapping boreal peatland ecosystem types from multi‐temporal radar and optical satellite imagery publication-title: Canadian Journal of Forest Research – volume: 259 start-page: 17 year: 2008 end-page: 34 article-title: The Holocene treeline in the northern Andes (Ecuador): First evidence from soil charcoal publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology – ident: e_1_2_6_4_1 doi: 10.1073/pnas.1004875107 – ident: e_1_2_6_32_1 doi: 10.5589/m07-048 – ident: e_1_2_6_27_1 doi: 10.1016/j.palaeo.2006.12.016 – ident: e_1_2_6_2_1 doi: 10.3390/rs71215833 – start-page: 180 volume-title: Biodiversidad y cambio climático en los Andes tropicales. Coformacion de un red de investigación para monitorear sus impactos y delinear acciones de adaptación year: 2012 ident: e_1_2_6_25_1 – start-page: 369 volume-title: Chapter 17 in remote sensing of wetlands: Applications and advances year: 2015 ident: e_1_2_6_23_1 – volume: 15 start-page: 1 year: 2015 ident: e_1_2_6_35_1 article-title: Carbon storage and long‐term rate of accumulation in high‐altitude Andean peatlands of Bolivia publication-title: Mires and Peat – volume: 7 start-page: 1 year: 2011 ident: e_1_2_6_18_1 article-title: Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics publication-title: Mires and Peat – ident: e_1_2_6_37_1 doi: 10.1016/j.rse.2009.04.006 – ident: e_1_2_6_26_1 doi: 10.1038/nature21048 – ident: e_1_2_6_19_1 doi: 10.1016/j.rse.2009.01.007 – start-page: 299 volume-title: Los páramos del mundo year: 2003 ident: e_1_2_6_34_1 – ident: e_1_2_6_41_1 doi: 10.1080/01431169308904301 – ident: e_1_2_6_28_1 doi: 10.1088/1748-9326/9/12/124017 – volume: 15 start-page: 1 year: 2014 ident: e_1_2_6_8_1 article-title: The effect of drainage on organic matter accumulation and plant communities of high‐altitude peatlands in the Colombian tropical Andes publication-title: Mires and Peat – ident: e_1_2_6_5_1 doi: 10.1109/JSTARS.2013.2289936 – ident: e_1_2_6_45_1 doi: 10.1016/j.catena.2014.10.010 – ident: e_1_2_6_36_1 doi: 10.1007/s11273-016-9482-2 – ident: e_1_2_6_50_1 doi: 10.1657/1523-0430(2003)035[0008:RSITHA]2.0.CO;2 – ident: e_1_2_6_22_1 doi: 10.1007/s13157-014-0574-6 – start-page: 5 volume-title: Proceedings of the 2010 international conference on environmental year: 2010 ident: e_1_2_6_55_1 – ident: e_1_2_6_44_1 doi: 10.1111/j.1365-2486.2011.02593.x – volume: 21 start-page: 148 year: 2012 ident: e_1_2_6_31_1 article-title: Evaluación del estado de conservación de los bosques montanos en los Andes tropicales publication-title: Revista Ecosistemas – ident: e_1_2_6_17_1 doi: 10.1029/2011WR011755 – volume: 34 start-page: 1 year: 2007 ident: e_1_2_6_40_1 article-title: Future precipitation changes and their implications for tropical peatlands publication-title: Geophysical Research Letters – ident: e_1_2_6_3_1 – ident: e_1_2_6_46_1 doi: 10.1016/j.rse.2012.10.031 – ident: e_1_2_6_16_1 doi: 10.1016/j.earscirev.2006.06.002 – ident: e_1_2_6_29_1 doi: 10.5194/isprsarchives-XL-7-W3-375-2015 – volume-title: Estadísticas de patrimonio Natural. Datos de bosques, ecosistemas, especies, carbono y deforestación del Ecuador Continental year: 2015 ident: e_1_2_6_43_1 – ident: e_1_2_6_21_1 doi: 10.1007/s13157-010-0039-5 – ident: e_1_2_6_59_1 doi: 10.5589/m08-080 – ident: e_1_2_6_53_1 doi: 10.5589/m07-047 – start-page: 315–345 volume-title: Chapter 15 in “Remote sensing of wetlands: Applications and advances year: 2015 ident: e_1_2_6_11_1 – ident: e_1_2_6_6_1 doi: 10.1080/014311698215342 – start-page: 1 volume-title: Páramo: An andean ecosystem under human influence year: 1992 ident: e_1_2_6_42_1 – start-page: 47 volume-title: Mapping global tropical wetlands from earth observing satellite imagery (No. CIFOR Working Paper no. 103) year: 2012 ident: e_1_2_6_33_1 – ident: e_1_2_6_58_1 doi: 10.1046/j.1365-2745.2000.00455.x – ident: e_1_2_6_54_1 doi: 10.1029/2008JD011021 – volume-title: Reducing forest emissions in the Amazon basin: A review of drivers of land‐use change and how payments for environmental services (PES) schemes can affect them year: 2016 ident: e_1_2_6_57_1 – ident: e_1_2_6_15_1 doi: 10.1023/A:1010933404324 – ident: e_1_2_6_30_1 doi: 10.1111/j.1529-8817.2003.00774.x – volume-title: Monitoring vegetation systems in the Great Plains with ERTS year: 1974 ident: e_1_2_6_49_1 – ident: e_1_2_6_56_1 – ident: e_1_2_6_60_1 doi: 10.1029/2010GL043584 – volume-title: Keys to soil taxonomy year: 2014 ident: e_1_2_6_52_1 – ident: e_1_2_6_39_1 doi: 10.1111/j.1442-9993.2009.02003.x – ident: e_1_2_6_24_1 doi: 10.1002/2016JG003550 – volume-title: Distribución espacial, sistemas ecológicos y caracterización florística de los páramos en el Ecuador year: 2009 ident: e_1_2_6_7_1 – ident: e_1_2_6_48_1 doi: 10.1109/JSTARS.2010.2070060 – ident: e_1_2_6_14_1 doi: 10.1126/science.1128087 – ident: e_1_2_6_47_1 doi: 10.1111/j.1365-2486.2010.02279.x – ident: e_1_2_6_12_1 doi: 10.1080/01431161.2013.796096 – ident: e_1_2_6_13_1 – volume: 3 start-page: 1 year: 2008 ident: e_1_2_6_20_1 article-title: Long‐term carbon accumulation in two tropical mountain peatlands, Andes Mountains, Ecuador publication-title: Mires and Peat – ident: e_1_2_6_38_1 doi: 10.1111/j.1365-2486.2009.02146.x – start-page: 67 volume-title: Temporal variation of climate in the high‐elevation paramo of Antisana, Ecuador year: 2015 ident: e_1_2_6_51_1 – ident: e_1_2_6_9_1 doi: 10.3390/rs70708655 – ident: e_1_2_6_10_1 doi: 10.1139/cjfr-2016-0192 |
SSID | ssj0003206 |
Score | 2.481127 |
Snippet | Tropical peatlands store a significant portion of the global soil carbon (C) pool. However, tropical mountain peatlands contain extensive peat soils that have... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5412 |
SubjectTerms | accounting altitude Area carbon Carbon - chemistry carbon sequestration Core sampling Coring data collection Ecuador Environmental Monitoring Forests Image detection Imagery issues and policy Land cover Land use land use and land cover maps Landsat Landsat satellites Management Mapping mountain Mountains multidate SAR Peat Peat soils peatland Peatlands Policies páramo Radar Radar imaging Radarsat Remote sensing Remote Sensing Technology Satellite imagery Scaling Soil Soil - chemistry Soil mapping Soils Stocks Storage Sustainability management Sustainable practices Time Factors Tropical climate tropics Wetlands |
Title | Multidate, multisensor remote sensing reveals high density of carbon‐rich mountain peatlands in the páramo of Ecuador |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.13807 https://www.ncbi.nlm.nih.gov/pubmed/28675672 https://www.proquest.com/docview/1963049220 https://www.proquest.com/docview/1915883103 https://www.proquest.com/docview/2010196712 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3datRAFB5KQeiN1a21q1XGIuKFWZLJzGQWr3TZWgr1Qiz0QgjzFy22yZLdhbZXPoKv4LP4Jj6J50x-aq0F6d3O5mSZzJ6fbzLnfIeQ555ZyZW0kc0Mi7gz40hpxSMjpZIuhYDmsN754L3cO-T7R-JohbzuamEafoj-hRtaRvDXaODazP8w8s_WjBKkSwf_i7laCIg-XFJHpSz01UxSwcHVJGnLKoRZPP2dV2PRNYB5Fa-GgLO7Tj51U23yTL6Olgszshd_sTje8lnukbstEKVvGs25T1Z8OSB3mtaU5wOyOb2sgAOx1gXMB2R4ADC7qoMYfUEnJ8eAecNog5yFcl58h_CKhkzFOWySq5rWHhTCUxxBpKTIGgVaT5EqmTr8cnFOq4JaXZuq_PXtO_jmL_QUu1jo45LOIFyEimQKA8CrdPbzR61PK7xlapfaVfUDcrg7_TjZi9rWDpFNFbhmp4TmaoyHqtYI6WITO514h8d4voiLTHLHuedaxswKI9IMcOpYOK88R7qddJOsllXpt7DoPJaFT4tMSw26BvjLiKSQVpkkU8KxIXnZ_cm5bXnPsf3GSd7tf2D187D6Q7LTi84aso9_CW13mpK39j7P0Y_BXouxeEie9ZfBUvH4RZe-WqJMIlTo63azDOYmwG9lCUz7YaOF_UwYLJyQGT5Q0KWbp5i_m7wNHx79v-hjssYQsYRMnW2yuqiX_gngrYV5GgzrN7LtKDo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxELZKEYILP4FCoIBBgDiw0a7X9m4OHCBNSWnTA2ql3hb_LVS0u9EmEYQTj8ArcOctOPMSPAkz3k1KgUpceuAWJ5OV154Zf7ZnviHkgWNG8lSawCSaBdzqbpCqlAdaylTaGBY0i_nOw2052OUv98TeEvk6z4Wp-SEWB25oGd5fo4HjgfQvVv7G6E6EfOlNSOWmm72HDdv46cYazO5Dxtb7O71B0NQUCEycgk-wqVA87eJtntFC2lCHVkXO4v2Ry8M8kdxy7riSITNCizgBgNQV1qWOI89LDM89Q85iBXFk6l97dURWFTNfyTOKBQfnFsUNjxHGDS26enz1-wPSHkfIfolbv0S-zwenjmx515lOdMd8_I038n8ZvcvkYoO16bPaOK6QJVe0yLm6-uasRVb6R0l-INZ4uXGLtIewkygrL0Yf0d7BPsB637pKPviMZTwmeUJ9MObYFeOyopUDnXcUWwAGKBJjgWFTZIOmFr-czGiZU6MqXRY_Pn2G5ectPcRCHWq_oCNYEX3SNYUGQHI6-valUocl_qVvpsqW1TWyeypjtUKWi7JwNzCvPpS5i_NESQXmBBBTiyiXJtVRkgrL2uTxXKsy01C7Y4WRg2y-xYPZzvxst8n9heio5jP5m9DqXDWzxqWNM3TVsJ1kLGyTe4ufwRnhDZMqXDlFmUikvnTdyTIYfgHPSiLo9vVa7Rc9YTBwQib4Ql55T-5i9qL33H-4-e-id8n5wc5wK9va2N68RS4wBGg-MGmVLE-qqbsN8HKi73irpuT1aRvCT1EXhCQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKEYgLPwuFhQIGAeqBrBLHdrwHDrA_tJRWCFGptxD_BCraZJXdFSwnHoFX4MxjcOUpeBJmnOyWApW49MBtvZlEjj0z_hzPfEPIPceM5EqawCSaBdzqbqAyxQMtpZI2hgXNYr7z1rZc3-HPdsXuEvk6z4Wp-SEWH9zQMry_RgMf2fwXI39jdCdCuvQmonLTzd7Dfm38aKMPk3ufseHgVW89aEoKBCZW4BKsEhlXXTzMM1pIG-rQZpGzeHzk8jBPJLecO57JkBmhRZwAPuoK65TjSPMSw3NPkdNchl2sE9F_echVFTNfyDOKBQffFsUNjRGGDS26enTx-wPRHgXIfoUbXiDf52NTB7a860wnumM-_kYb-Z8M3kVyvkHa9HFtGpfIkita5Exde3PWIiuDwxQ_EGt83LhF2luwjygrL0Yf0N7-HoB637pMPvh8ZfxI8pD6UMyxK8ZlRSsHGu8otgAKUKTFArOmyAVNLf45mdEypyardFn8-PQZFp-39ADLdGR7BR3BeuhTrik0AJDT0bcvVXZQ4i0DM81sWV0hOycyVitkuSgLdw2z6kOZuzhPMpmBMQHA1CLKpVE6SpSwrE3W5kqVmobYHeuL7KfzDR7Mdupnu03uLkRHNZvJ34RW55qZNg5tnKKjhs0kY2Gb3FlcBleE50tZ4copykRC-cJ1x8tg8AU8K4mg21drrV_0hMHACZngC3ndPb6L6dPeE__j-r-L3iZnX_SH6fON7c0b5BxDdOajklbJ8qSaupuALSf6lrdpSl6ftB38BC9hgtM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multidate%2C+multisensor+remote+sensing+reveals+high+density+of+carbon-rich+mountain+peatlands+in+the+p%C3%A1ramo+of+Ecuador&rft.jtitle=Global+change+biology&rft.au=Hribljan%2C+John+A&rft.au=Suarez%2C+Esteban&rft.au=Bourgeau-Chavez%2C+Laura&rft.au=Endres%2C+Sarah&rft.date=2017-12-01&rft.eissn=1365-2486&rft.volume=23&rft.issue=12&rft.spage=5412&rft_id=info:doi/10.1111%2Fgcb.13807&rft_id=info%3Apmid%2F28675672&rft.externalDocID=28675672 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |