The plastid‐localized lipoamide dehydrogenase 1 is crucial for redox homeostasis, tolerance to arsenic stress and fatty acid biosynthesis in rice

Summary Soil contamination with arsenic (As) can cause phytotoxicity and reduce crop yield. The mechanisms of As toxicity and tolerance are not fully understood. In this study, we used a forward genetics approach to isolate a rice mutant, ahs1, that exhibits hypersensitivity to both arsenate and ars...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 242; no. 6; pp. 2604 - 2619
Main Authors Chen, Ting‐Ting, Zhao, Peng, Wang, Yuan, Wang, Han‐Qing, Tang, Zhu, Hu, Han, Liu, Yu, Xu, Ji‐Ming, Mao, Chuan‐Zao, Zhao, Fang‐Jie, Wu, Zhong‐Chang
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Soil contamination with arsenic (As) can cause phytotoxicity and reduce crop yield. The mechanisms of As toxicity and tolerance are not fully understood. In this study, we used a forward genetics approach to isolate a rice mutant, ahs1, that exhibits hypersensitivity to both arsenate and arsenite. Through genomic resequencing and complementation tests, we identified OsLPD1 as the causal gene, which encodes a putative lipoamide dehydrogenase. OsLPD1 was expressed in the outer cell layer of roots, root meristem cells, and in the mesophyll and vascular tissues of leaves. Subcellular localization and immunoblot analysis demonstrated that OsLPD1 is localized in the stroma of plastids. In vitro assays showed that OsLPD1 exhibited lipoamide dehydrogenase (LPD) activity, which was strongly inhibited by arsenite, but not by arsenate. The ahs1 and OsLPD1 knockout mutants exhibited significantly reduced NADH/NAD+ and GSH/GSSG ratios, along with increased levels of reactive oxygen species and greater oxidative stress in the roots compared with wild‐type (WT) plants under As treatment. Additionally, loss‐of‐function of OsLPD1 also resulted in decreased fatty acid concentrations in rice grain. Taken together, our finding reveals that OsLPD1 plays an important role for maintaining redox homeostasis, conferring tolerance to arsenic stress, and regulating fatty acid biosynthesis in rice.
AbstractList Soil contamination with arsenic (As) can cause phytotoxicity and reduce crop yield. The mechanisms of As toxicity and tolerance are not fully understood. In this study, we used a forward genetics approach to isolate a rice mutant, ahs1, that exhibits hypersensitivity to both arsenate and arsenite. Through genomic resequencing and complementation tests, we identified OsLPD1 as the causal gene, which encodes a putative lipoamide dehydrogenase. OsLPD1 was expressed in the outer cell layer of roots, root meristem cells, and in the mesophyll and vascular tissues of leaves. Subcellular localization and immunoblot analysis demonstrated that OsLPD1 is localized in the stroma of plastids. In vitro assays showed that OsLPD1 exhibited lipoamide dehydrogenase (LPD) activity, which was strongly inhibited by arsenite, but not by arsenate. The ahs1 and OsLPD1 knockout mutants exhibited significantly reduced NADH/NAD+ and GSH/GSSG ratios, along with increased levels of reactive oxygen species and greater oxidative stress in the roots compared with wild‐type (WT) plants under As treatment. Additionally, loss‐of‐function of OsLPD1 also resulted in decreased fatty acid concentrations in rice grain. Taken together, our finding reveals that OsLPD1 plays an important role for maintaining redox homeostasis, conferring tolerance to arsenic stress, and regulating fatty acid biosynthesis in rice.
Summary Soil contamination with arsenic (As) can cause phytotoxicity and reduce crop yield. The mechanisms of As toxicity and tolerance are not fully understood. In this study, we used a forward genetics approach to isolate a rice mutant, ahs1, that exhibits hypersensitivity to both arsenate and arsenite. Through genomic resequencing and complementation tests, we identified OsLPD1 as the causal gene, which encodes a putative lipoamide dehydrogenase. OsLPD1 was expressed in the outer cell layer of roots, root meristem cells, and in the mesophyll and vascular tissues of leaves. Subcellular localization and immunoblot analysis demonstrated that OsLPD1 is localized in the stroma of plastids. In vitro assays showed that OsLPD1 exhibited lipoamide dehydrogenase (LPD) activity, which was strongly inhibited by arsenite, but not by arsenate. The ahs1 and OsLPD1 knockout mutants exhibited significantly reduced NADH/NAD+ and GSH/GSSG ratios, along with increased levels of reactive oxygen species and greater oxidative stress in the roots compared with wild‐type (WT) plants under As treatment. Additionally, loss‐of‐function of OsLPD1 also resulted in decreased fatty acid concentrations in rice grain. Taken together, our finding reveals that OsLPD1 plays an important role for maintaining redox homeostasis, conferring tolerance to arsenic stress, and regulating fatty acid biosynthesis in rice.
Soil contamination with arsenic (As) can cause phytotoxicity and reduce crop yield. The mechanisms of As toxicity and tolerance are not fully understood. In this study, we used a forward genetics approach to isolate a rice mutant, ahs1, that exhibits hypersensitivity to both arsenate and arsenite. Through genomic resequencing and complementation tests, we identified OsLPD1 as the causal gene, which encodes a putative lipoamide dehydrogenase. OsLPD1 was expressed in the outer cell layer of roots, root meristem cells, and in the mesophyll and vascular tissues of leaves. Subcellular localization and immunoblot analysis demonstrated that OsLPD1 is localized in the stroma of plastids. In vitro assays showed that OsLPD1 exhibited lipoamide dehydrogenase (LPD) activity, which was strongly inhibited by arsenite, but not by arsenate. The ahs1 and OsLPD1 knockout mutants exhibited significantly reduced NADH/NAD⁺ and GSH/GSSG ratios, along with increased levels of reactive oxygen species and greater oxidative stress in the roots compared with wild‐type (WT) plants under As treatment. Additionally, loss‐of‐function of OsLPD1 also resulted in decreased fatty acid concentrations in rice grain. Taken together, our finding reveals that OsLPD1 plays an important role for maintaining redox homeostasis, conferring tolerance to arsenic stress, and regulating fatty acid biosynthesis in rice.
Soil contamination with arsenic (As) can cause phytotoxicity and reduce crop yield. The mechanisms of As toxicity and tolerance are not fully understood. In this study, we used a forward genetics approach to isolate a rice mutant, ahs1, that exhibits hypersensitivity to both arsenate and arsenite. Through genomic resequencing and complementation tests, we identified OsLPD1 as the causal gene, which encodes a putative lipoamide dehydrogenase. OsLPD1 was expressed in the outer cell layer of roots, root meristem cells, and in the mesophyll and vascular tissues of leaves. Subcellular localization and immunoblot analysis demonstrated that OsLPD1 is localized in the stroma of plastids. In vitro assays showed that OsLPD1 exhibited lipoamide dehydrogenase (LPD) activity, which was strongly inhibited by arsenite, but not by arsenate. The ahs1 and OsLPD1 knockout mutants exhibited significantly reduced NADH/NAD and GSH/GSSG ratios, along with increased levels of reactive oxygen species and greater oxidative stress in the roots compared with wild-type (WT) plants under As treatment. Additionally, loss-of-function of OsLPD1 also resulted in decreased fatty acid concentrations in rice grain. Taken together, our finding reveals that OsLPD1 plays an important role for maintaining redox homeostasis, conferring tolerance to arsenic stress, and regulating fatty acid biosynthesis in rice.
Soil contamination with arsenic (As) can cause phytotoxicity and reduce crop yield. The mechanisms of As toxicity and tolerance are not fully understood. In this study, we used a forward genetics approach to isolate a rice mutant, ahs1, that exhibits hypersensitivity to both arsenate and arsenite. Through genomic resequencing and complementation tests, we identified OsLPD1 as the causal gene, which encodes a putative lipoamide dehydrogenase. OsLPD1 was expressed in the outer cell layer of roots, root meristem cells, and in the mesophyll and vascular tissues of leaves. Subcellular localization and immunoblot analysis demonstrated that OsLPD1 is localized in the stroma of plastids. In vitro assays showed that OsLPD1 exhibited lipoamide dehydrogenase (LPD) activity, which was strongly inhibited by arsenite, but not by arsenate. The ahs1 and OsLPD1 knockout mutants exhibited significantly reduced NADH/NAD+ and GSH/GSSG ratios, along with increased levels of reactive oxygen species and greater oxidative stress in the roots compared with wild-type (WT) plants under As treatment. Additionally, loss-of-function of OsLPD1 also resulted in decreased fatty acid concentrations in rice grain. Taken together, our finding reveals that OsLPD1 plays an important role for maintaining redox homeostasis, conferring tolerance to arsenic stress, and regulating fatty acid biosynthesis in rice.Soil contamination with arsenic (As) can cause phytotoxicity and reduce crop yield. The mechanisms of As toxicity and tolerance are not fully understood. In this study, we used a forward genetics approach to isolate a rice mutant, ahs1, that exhibits hypersensitivity to both arsenate and arsenite. Through genomic resequencing and complementation tests, we identified OsLPD1 as the causal gene, which encodes a putative lipoamide dehydrogenase. OsLPD1 was expressed in the outer cell layer of roots, root meristem cells, and in the mesophyll and vascular tissues of leaves. Subcellular localization and immunoblot analysis demonstrated that OsLPD1 is localized in the stroma of plastids. In vitro assays showed that OsLPD1 exhibited lipoamide dehydrogenase (LPD) activity, which was strongly inhibited by arsenite, but not by arsenate. The ahs1 and OsLPD1 knockout mutants exhibited significantly reduced NADH/NAD+ and GSH/GSSG ratios, along with increased levels of reactive oxygen species and greater oxidative stress in the roots compared with wild-type (WT) plants under As treatment. Additionally, loss-of-function of OsLPD1 also resulted in decreased fatty acid concentrations in rice grain. Taken together, our finding reveals that OsLPD1 plays an important role for maintaining redox homeostasis, conferring tolerance to arsenic stress, and regulating fatty acid biosynthesis in rice.
Author Xu, Ji‐Ming
Liu, Yu
Mao, Chuan‐Zao
Hu, Han
Zhao, Fang‐Jie
Wang, Yuan
Chen, Ting‐Ting
Wang, Han‐Qing
Wu, Zhong‐Chang
Zhao, Peng
Tang, Zhu
Author_xml – sequence: 1
  givenname: Ting‐Ting
  surname: Chen
  fullname: Chen, Ting‐Ting
  organization: Zhejiang University
– sequence: 2
  givenname: Peng
  surname: Zhao
  fullname: Zhao, Peng
  organization: Zhejiang University
– sequence: 3
  givenname: Yuan
  surname: Wang
  fullname: Wang, Yuan
  organization: Zhejiang University
– sequence: 4
  givenname: Han‐Qing
  surname: Wang
  fullname: Wang, Han‐Qing
  organization: Nanjing Agricultural University
– sequence: 5
  givenname: Zhu
  surname: Tang
  fullname: Tang, Zhu
  organization: Nanjing Agricultural University
– sequence: 6
  givenname: Han
  surname: Hu
  fullname: Hu, Han
  organization: Zhejiang University
– sequence: 7
  givenname: Yu
  surname: Liu
  fullname: Liu, Yu
  organization: Zhejiang University
– sequence: 8
  givenname: Ji‐Ming
  surname: Xu
  fullname: Xu, Ji‐Ming
  organization: Zhejiang University
– sequence: 9
  givenname: Chuan‐Zao
  orcidid: 0000-0001-5126-2180
  surname: Mao
  fullname: Mao, Chuan‐Zao
  organization: Zhejiang University
– sequence: 10
  givenname: Fang‐Jie
  orcidid: 0000-0002-0164-169X
  surname: Zhao
  fullname: Zhao, Fang‐Jie
  email: fangjie.zhao@njau.edu.cn
  organization: Nanjing Agricultural University
– sequence: 11
  givenname: Zhong‐Chang
  orcidid: 0000-0001-6383-3817
  surname: Wu
  fullname: Wu, Zhong‐Chang
  email: wzchang@zju.edu.cn
  organization: Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38563391$$D View this record in MEDLINE/PubMed
BookMark eNqF0cFqFTEUBuAgFXtbXfgCEnCj4LTJZDKZWUpRKxR1UcHdcCY546RkkmuSi44rH0HwDX0So7e6KKjZnCy-_8DhPyIHPngk5D5nJ7y8U7-dT3ivanWLbHjT9lXHhTogG8bqrmqb9t0hOUrpijHWy7a-Qw5FJ1sher4h3y5npFsHKVvz_ctXFzQ4-xkNdXYbYLEGqcF5NTG8Rw8JKac2UR132oKjU4g0ogmf6BwWDClDsukJzcFhBK-x_CjEhN5qmnLElCh4QyfIeaWgraGjDWn1ecYSpNbTaDXeJbcncAnvXc9j8vb5s8uz8-ri9YuXZ08vKi26VlXtpNp6lBLBSGik0Uo3Gvk4qWniqDsl1ciEbLSW0PUca1CqzHoUODaCj-KYPNrv3cbwYYcpD4tNGp0Dj2GXBsFliauetf-nTHAuJGOy0Ic36FXYRV8OKUp2ohOiZkU9uFa7cUEzbKNdIK7D72YKeLwHOoaUIk5_CGfDz9aH0vrwq_ViT29YbTNkG3yOYN2_Eh-tw_Xvq4dXb873iR-6QMCK
CitedBy_id crossref_primary_10_1007_s44154_024_00185_7
crossref_primary_10_1016_j_plantsci_2024_112240
Cites_doi 10.1016/j.tibs.2004.01.007
10.1111/tpj.13612
10.1093/aob/mcf118
10.1111/j.1365-3040.2005.01476.x
10.1146/annurev.arplant.53.100301.135251
10.1371/journal.pbio.1002009
10.1104/pp.110.163741
10.1104/pp.16.01332
10.1111/j.1469-8137.2004.01087.x
10.1105/tpc.105.033589
10.1016/j.tplants.2004.08.009
10.1111/nph.13908
10.1007/s40415-020-00694-5
10.1104/pp.110.167569
10.1042/bj3430327
10.1021/acs.est.7b03028
10.1111/tpj.12126
10.1111/j.1469-8137.2007.02195.x
10.1073/pnas.1414968111
10.1104/pp.109.150862
10.1046/j.0016-8025.2001.00721.x
10.3389/fphys.2012.00182
10.1007/978-1-4020-4061-0_17
10.1093/pcp/pcx114
10.1038/nbt.2095
10.1111/j.1469-8137.2005.01519.x
10.1105/tpc.11.6.1153
10.1021/es101962d
10.1104/pp.122.4.1171
10.1016/j.molp.2021.09.016
10.1021/acs.est.7b01487
10.1007/s12298-017-0422-2
10.1016/S0014-5793(00)02116-5
10.1104/pp.123.2.497
10.1111/jipb.13440
10.1146/annurev-arplant-042809-112152
10.1104/pp.59.5.842
10.1104/pp.110.153452
10.1093/jxb/47.12.1889
10.1111/nph.14572
10.1021/es802612a
10.1038/ncomms5617
10.1021/cr300015c
10.1016/j.bbagen.2007.12.007
10.1104/pp.103.021741
10.1104/pp.94.2.833
10.1002/pld3.34
10.1104/pp.122.3.793
10.1105/tpc.105.039750
10.1073/pnas.1013964107
10.1104/pp.111.178921
10.1104/pp.111.181669
10.1104/pp.65.2.314
10.1007/BF00208309
10.1021/es070627i
10.1021/es0259842
10.1042/bj3340571
10.1104/pp.113.224303
10.1080/00380768.2013.804390
10.1093/jxb/erw362
10.1023/A:1025076805902
10.1073/pnas.0802361105
ContentType Journal Article
Copyright 2024 The Authors © 2024 New Phytologist Foundation
2024 The Authors New Phytologist © 2024 New Phytologist Foundation.
Copyright © 2024 New Phytologist Trust
Copyright_xml – notice: 2024 The Authors © 2024 New Phytologist Foundation
– notice: 2024 The Authors New Phytologist © 2024 New Phytologist Foundation.
– notice: Copyright © 2024 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.19727
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

AGRICOLA
MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 2619
ExternalDocumentID 38563391
10_1111_nph_19727
NPH19727
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31770281; 41930758
– fundername: National Key Research and Development Program of China
  funderid: 2021YFF1000404
– fundername: National Natural Science Foundation of China
  grantid: 31770281
– fundername: National Key Research and Development Program of China
  grantid: 2021YFF1000404
– fundername: National Natural Science Foundation of China
  grantid: 41930758
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPNFZ
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
ABGDZ
ABSQW
ADXHL
AEFGJ
AEYWJ
AGHNM
AGUYK
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c3867-6f762b55ead5a45dc7c4ce1bf7ff1ec8757b0354cc5a891e2a778912b3eb431b3
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:32:28 EDT 2025
Thu Jul 10 22:23:27 EDT 2025
Sat Aug 23 13:32:29 EDT 2025
Mon Jul 21 05:33:27 EDT 2025
Wed Aug 13 23:52:59 EDT 2025
Thu Apr 24 22:51:23 EDT 2025
Wed Jan 22 17:20:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Redox
LPD1
NADH
arsenic
ROS
Language English
License 2024 The Authors New Phytologist © 2024 New Phytologist Foundation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3867-6f762b55ead5a45dc7c4ce1bf7ff1ec8757b0354cc5a891e2a778912b3eb431b3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6383-3817
0000-0001-5126-2180
0000-0002-0164-169X
PMID 38563391
PQID 3058383320
PQPubID 2026848
PageCount 16
ParticipantIDs proquest_miscellaneous_3153547906
proquest_miscellaneous_3031135005
proquest_journals_3058383320
pubmed_primary_38563391
crossref_primary_10_1111_nph_19727
crossref_citationtrail_10_1111_nph_19727
wiley_primary_10_1111_nph_19727_NPH19727
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
2024-Jun
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 157
2009; 43
2004; 29
2010; 107
2002; 53
2004; 163
2004; 9
2008; 105
2013; 163
2003; 52
2011; 155
2010; 61
2023; 65
2013; 59
2014; 5
2018; 2
2003; 91
2007; 176
2010; 154
1999; 11
2010; 152
2006; 29
2010; 153
2013; 113
2000; 484
2000; 122
2000; 123
2014; 12
1990; 94
2021; 44
2017; 23
1980; 65
2007
2003; 37
2006; 18
1998; 334
1993
1999; 343
2014; 111
2001; 24
1996; 200
2003; 132
2017; 215
2012; 30
2017; 51
2010; 44
2008; 1780
2017; 91
2012; 3
1977; 59
2017; 58
2005; 168
2013; 74
2016; 211
2022; 15
2007; 41
1996; 47
2005; 17
2016; 67
2016; 172
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Ohlrogge JB (e_1_2_9_38_1) 1993
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 17
  start-page: 1866
  year: 2005
  end-page: 1875
  article-title: Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses
  publication-title: Plant Cell
– volume: 29
  start-page: 111
  year: 2004
  end-page: 118
  article-title: The new life of a centenarian: signalling functions of NAD(P)
  publication-title: Trends in Biochemical Sciences
– volume: 153
  start-page: 1385
  year: 2010
  end-page: 1397
  article-title: Disruption of ptLPD1 or ptLPD2, genes that encode isoforms of the plastidial lipoamide dehydrogenase, confers arsenate hypersensitivity in Arabidopsis
  publication-title: Plant Physiology
– volume: 107
  start-page: 21187
  year: 2010
  end-page: 21192
  article-title: Arsenic tolerance in Arabidopsis is mediated by two ABCC‐type phytochelatin transporters
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 163
  start-page: 1396
  year: 2013
  end-page: 1408
  article-title: Speciation and distribution of arsenic in the nonhyperaccumulator macrophyte
  publication-title: Plant Physiology
– volume: 59
  start-page: 842
  year: 1977
  end-page: 848
  article-title: Pyruvate dehydrogenase complex from higher plant mitochondria and proplastids
  publication-title: Plant Physiology
– volume: 51
  start-page: 12131
  year: 2017
  end-page: 12138
  article-title: Knocking out OsPT4 gene decreases arsenate uptake by rice plants and inorganic arsenic accumulation in rice grains
  publication-title: Environmental Science & Technology
– volume: 44
  start-page: 8842
  year: 2010
  end-page: 8848
  article-title: Arsenic in soil and irrigation water affects arsenic uptake by rice: complementary insights from field and pot studies
  publication-title: Environmental Science & Technology
– volume: 163
  start-page: 31
  year: 2004
  end-page: 44
  article-title: NAD – new roles in signalling and gene regulation in plants
  publication-title: New Phytologist
– volume: 132
  start-page: 1600
  year: 2003
  end-page: 1609
  article-title: The distribution of arsenate and arsenite in shoots and roots of is influenced by arsenic tolerance and arsenate and phosphate supply
  publication-title: Plant Physiology
– volume: 157
  start-page: 269
  year: 2011
  end-page: 278
  article-title: OsPHF1 regulates the plasma membrane location of low‐ and high‐affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in rice
  publication-title: Plant Physiology
– volume: 215
  start-page: 1090
  year: 2017
  end-page: 1101
  article-title: OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice
  publication-title: New Phytologist
– volume: 3
  start-page: 182
  year: 2012
  article-title: Arsenic toxicity: the effects on plant metabolism
  publication-title: Frontiers in Physiology
– volume: 168
  start-page: 551
  year: 2005
  end-page: 558
  article-title: Uptake, translocation and transformation of arsenate and arsenite in sunflower ( ): formation of arsenic–phytochelatin complexes during exposure to high arsenic concentrations
  publication-title: New Phytologist
– volume: 5
  start-page: 4617
  year: 2014
  article-title: Natural variation in arsenate tolerance identifies an arsenate reductase in
  publication-title: Nature Communications
– volume: 123
  start-page: 497
  year: 2000
  end-page: 508
  article-title: The role of pyruvate dehydrogenase and acetyl‐coenzyme A synthetase in fatty acid synthesis in developing Arabidopsis seeds
  publication-title: Plant Physiology
– volume: 30
  start-page: 174
  year: 2012
  end-page: 178
  article-title: Genome sequencing reveals agronomically important loci in rice using M M
  publication-title: Nature Biotechnology
– volume: 211
  start-page: 658
  year: 2016
  end-page: 670
  article-title: OsCLT1, a CRT‐like transporter 1, is required for glutathione homeostasis and arsenic tolerance in rice
  publication-title: New Phytologist
– volume: 67
  start-page: 6051
  year: 2016
  end-page: 6059
  article-title: The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice
  publication-title: Journal of Experimental Botany
– volume: 23
  start-page: 249
  year: 2017
  end-page: 268
  article-title: Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance
  publication-title: Physiology and Molecular Biology of Plants
– volume: 44
  start-page: 1
  year: 2021
  end-page: 10
  article-title: Arsenic contamination, speciation, toxicity and defense strategies in plants
  publication-title: Brazilian Journal of Botany
– volume: 154
  start-page: 1304
  year: 2010
  end-page: 1318
  article-title: Characterization of the beta‐carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice
  publication-title: Plant Physiology
– volume: 74
  start-page: 339
  year: 2013
  end-page: 350
  article-title: OsORC3 is required for lateral root development in rice
  publication-title: The Plant Journal
– volume: 24
  start-page: 713
  year: 2001
  end-page: 722
  article-title: Copper‐ and arsenate‐induced oxidative stress in L. Cloned with differential sensitivity
  publication-title: Plant, Cell & Environment
– volume: 41
  start-page: 6854
  year: 2007
  end-page: 6859
  article-title: Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley
  publication-title: Environmental Science & Technology
– volume: 152
  start-page: 2211
  year: 2010
  end-page: 2221
  article-title: Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis
  publication-title: Plant Physiology
– volume: 334
  start-page: 571
  year: 1998
  end-page: 576
  article-title: Plant mitochondrial pyruvate dehydrogenase complex: purification and identification of catalytic components in potato
  publication-title: Biochemical Journal
– volume: 1780
  start-page: 1249
  year: 2008
  end-page: 1260
  article-title: Redox based anti‐oxidant systems in plants: biochemical and structural analyses
  publication-title: Biochimica et Biophysica Acta‐General Subjects
– volume: 61
  start-page: 535
  year: 2010
  end-page: 559
  article-title: Arsenic as a food‐chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies
  publication-title: Annual Review Plant Biology
– volume: 43
  start-page: 1612
  year: 2009
  end-page: 1617
  article-title: Geographical variation in total and inorganic arsenic content of polished (white) rice
  publication-title: Environmental Science & Technology
– volume: 94
  start-page: 833
  year: 1990
  end-page: 839
  article-title: Interaction between the component enzymes of the glycine decarboxylase multienzyme complex
  publication-title: Plant Physiology
– start-page: 335
  year: 2007
  end-page: 353
– volume: 29
  start-page: 409
  year: 2006
  end-page: 425
  article-title: Metabolic signalling in defence and stress: the central roles of soluble redox couples
  publication-title: Plant, Cell & Environment
– volume: 47
  start-page: 1889
  year: 1996
  end-page: 1896
  article-title: Pyruvate dehydrogenase complex and acetyl‐CoA carboxylase in pea root plastids: their characterization and role in modulating glycolytic carbon flow to fatty acid biosynthesis
  publication-title: Journal of Experimental Botany
– volume: 18
  start-page: 422
  year: 2006
  end-page: 441
  article-title: Involvement of a glycerol‐3‐phosphate dehydrogenase in modulating the NADH/NAD ratio provides evidence of a mitochondrial glycerol‐3‐phosphate shuttle in Arabidopsis
  publication-title: Plant Cell
– volume: 155
  start-page: 2
  year: 2011
  end-page: 18
  article-title: Ascorbate and glutathione: the heart of the redox hub
  publication-title: Plant Physiology
– volume: 12
  year: 2014
  article-title: Genome‐wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants
  publication-title: PLoS Biology
– volume: 15
  start-page: 27
  year: 2022
  end-page: 44
  article-title: Toxic metals and metalloids: uptake, transport, detoxification, phytoremediation, and crop improvement for safer food
  publication-title: Molecular Plant
– volume: 59
  start-page: 580
  year: 2013
  end-page: 590
  article-title: Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice
  publication-title: Soil Science and Plant Nutrition
– volume: 9
  start-page: 490
  year: 2004
  end-page: 498
  article-title: Reactive oxygen gene network of plants
  publication-title: Trends in Plant Science
– volume: 113
  start-page: 7769
  year: 2013
  end-page: 7792
  article-title: Arsenic binding to proteins
  publication-title: Chemica Reviews
– start-page: 3
  year: 1993
  end-page: 32
– volume: 157
  start-page: 498
  year: 2011
  end-page: 508
  article-title: Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice
  publication-title: Plant Physiology
– volume: 65
  start-page: 570
  year: 2023
  end-page: 593
  article-title: Molecular mechanisms underlying the toxicity and detoxification of trace metals and metalloids in plants
  publication-title: Journal of Integrative Plant Biology
– volume: 105
  start-page: 9931
  year: 2008
  end-page: 9935
  article-title: Transporters of arsenite in rice and their role in arsenic accumulation in rice grain
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 65
  start-page: 314
  year: 1980
  end-page: 318
  article-title: Pyruvate dehydrogenase complex from germinating castor bean endosperm
  publication-title: Plant Physiology
– volume: 91
  start-page: 840
  year: 2017
  end-page: 848
  article-title: Phytochelatin synthase OsPCS1 plays a crucial role in reducing arsenic levels in rice grains
  publication-title: The Plant Journal
– volume: 52
  start-page: 865
  year: 2003
  end-page: 872
  article-title: Disruption of plE2, the gene for the E2 subunit of the plastid pyruvate dehydrogenase complex, in Arabidopsis causes an early embryo lethal phenotype
  publication-title: Plant Molecular Biology
– volume: 58
  start-page: 1730
  year: 2017
  end-page: 1742
  article-title: Phytochelatin synthase has contrasting effects on cadmium and arsenic accumulation in rice grains
  publication-title: Plant and Cell Physiology
– volume: 11
  start-page: 1153
  year: 1999
  end-page: 1163
  article-title: Phytochelatin synthase genes from arabidopsis and the yeast
  publication-title: Plant Cell
– volume: 176
  start-page: 590
  year: 2007
  end-page: 599
  article-title: Rapid reduction of arsenate in the medium mediated by plant roots
  publication-title: New Phytologist
– volume: 91
  start-page: 179
  year: 2003
  end-page: 194
  article-title: Antioxidants, oxidative damage and oxygen deprivation stress: a review
  publication-title: Annals of Botany
– volume: 172
  start-page: 1708
  year: 2016
  end-page: 1719
  article-title: OsHAC1;1 and OsHAC1;2 function as arsenate reductases and regulate arsenic accumulation
  publication-title: Plant Physiology
– volume: 122
  start-page: 1171
  year: 2000
  end-page: 1177
  article-title: Reduction and coordination of arsenic in Indian mustard
  publication-title: Plant Physiology
– volume: 122
  start-page: 793
  year: 2000
  end-page: 801
  article-title: Detoxification of arsenic by phytochelatins in plants
  publication-title: Plant Physiology
– volume: 484
  start-page: 12
  year: 2000
  end-page: 16
  article-title: Molecular evidence of a unique lipoamide dehydrogenase in plastids: analysis of plastidic lipoamide dehydrogenase from
  publication-title: FEBS Letters
– volume: 200
  start-page: 195
  year: 1996
  end-page: 202
  article-title: Identification and purification of a distinct dihydrolipoamide dehydrogenase from pea chloroplasts
  publication-title: Planta
– volume: 53
  start-page: 357
  year: 2002
  end-page: 375
  article-title: The complex fate of alpha‐ketoacids
  publication-title: Annual Review of Plant Biology
– volume: 111
  start-page: 15699
  year: 2014
  end-page: 15704
  article-title: A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 2
  year: 2018
  article-title: Rice phytochelatin synthases OsPCS1 and OsPCS2 make different contributions to cadmium and arsenic tolerance
  publication-title: Plant Direct
– volume: 37
  start-page: 229
  year: 2003
  end-page: 234
  article-title: Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption
  publication-title: Environmental Science & Technology
– volume: 51
  start-page: 11553
  year: 2017
  end-page: 11560
  article-title: Field study of rice yield diminished by soil arsenic in Bangladesh
  publication-title: Environmental Science & Technology
– volume: 343
  start-page: 327
  year: 1999
  end-page: 334
  article-title: Plant mitochondrial 2‐oxoglutarate dehydrogenase complex: purification and characterization in potato
  publication-title: Biochemical Journal
– ident: e_1_2_9_3_1
  doi: 10.1016/j.tibs.2004.01.007
– ident: e_1_2_9_20_1
  doi: 10.1111/tpj.13612
– ident: e_1_2_9_4_1
  doi: 10.1093/aob/mcf118
– ident: e_1_2_9_37_1
  doi: 10.1111/j.1365-3040.2005.01476.x
– ident: e_1_2_9_36_1
  doi: 10.1146/annurev.arplant.53.100301.135251
– ident: e_1_2_9_6_1
  doi: 10.1371/journal.pbio.1002009
– ident: e_1_2_9_13_1
  doi: 10.1104/pp.110.163741
– ident: e_1_2_9_51_1
  doi: 10.1104/pp.16.01332
– ident: e_1_2_9_22_1
  doi: 10.1111/j.1469-8137.2004.01087.x
– ident: e_1_2_9_15_1
  doi: 10.1105/tpc.105.033589
– ident: e_1_2_9_35_1
  doi: 10.1016/j.tplants.2004.08.009
– ident: e_1_2_9_62_1
  doi: 10.1111/nph.13908
– ident: e_1_2_9_33_1
  doi: 10.1007/s40415-020-00694-5
– ident: e_1_2_9_16_1
  doi: 10.1104/pp.110.167569
– ident: e_1_2_9_31_1
  doi: 10.1042/bj3430327
– ident: e_1_2_9_5_1
  doi: 10.1021/acs.est.7b03028
– ident: e_1_2_9_9_1
  doi: 10.1111/tpj.12126
– ident: e_1_2_9_60_1
  doi: 10.1111/j.1469-8137.2007.02195.x
– ident: e_1_2_9_53_1
  doi: 10.1073/pnas.1414968111
– ident: e_1_2_9_26_1
  doi: 10.1104/pp.109.150862
– ident: e_1_2_9_18_1
  doi: 10.1046/j.0016-8025.2001.00721.x
– ident: e_1_2_9_14_1
  doi: 10.3389/fphys.2012.00182
– ident: e_1_2_9_12_1
  doi: 10.1007/978-1-4020-4061-0_17
– ident: e_1_2_9_55_1
  doi: 10.1093/pcp/pcx114
– ident: e_1_2_9_2_1
  doi: 10.1038/nbt.2095
– ident: e_1_2_9_43_1
  doi: 10.1111/j.1469-8137.2005.01519.x
– ident: e_1_2_9_17_1
  doi: 10.1105/tpc.11.6.1153
– ident: e_1_2_9_11_1
  doi: 10.1021/es101962d
– ident: e_1_2_9_40_1
  doi: 10.1104/pp.122.4.1171
– ident: e_1_2_9_64_1
  doi: 10.1016/j.molp.2021.09.016
– ident: e_1_2_9_21_1
  doi: 10.1021/acs.est.7b01487
– ident: e_1_2_9_19_1
  doi: 10.1007/s12298-017-0422-2
– ident: e_1_2_9_27_1
  doi: 10.1016/S0014-5793(00)02116-5
– ident: e_1_2_9_24_1
  doi: 10.1104/pp.123.2.497
– ident: e_1_2_9_54_1
  doi: 10.1111/jipb.13440
– ident: e_1_2_9_63_1
  doi: 10.1146/annurev-arplant-042809-112152
– ident: e_1_2_9_45_1
  doi: 10.1104/pp.59.5.842
– ident: e_1_2_9_8_1
  doi: 10.1104/pp.110.153452
– ident: e_1_2_9_41_1
  doi: 10.1093/jxb/47.12.1889
– ident: e_1_2_9_59_1
  doi: 10.1111/nph.14572
– ident: e_1_2_9_30_1
  doi: 10.1021/es802612a
– ident: e_1_2_9_47_1
  doi: 10.1038/ncomms5617
– ident: e_1_2_9_49_1
  doi: 10.1021/cr300015c
– ident: e_1_2_9_46_1
  doi: 10.1016/j.bbagen.2007.12.007
– start-page: 3
  volume-title: Lipid metabolism in plants
  year: 1993
  ident: e_1_2_9_38_1
– ident: e_1_2_9_42_1
  doi: 10.1104/pp.103.021741
– ident: e_1_2_9_39_1
  doi: 10.1104/pp.94.2.833
– ident: e_1_2_9_61_1
  doi: 10.1002/pld3.34
– ident: e_1_2_9_48_1
  doi: 10.1104/pp.122.3.793
– ident: e_1_2_9_50_1
  doi: 10.1105/tpc.105.039750
– ident: e_1_2_9_52_1
  doi: 10.1073/pnas.1013964107
– ident: e_1_2_9_58_1
  doi: 10.1104/pp.111.178921
– ident: e_1_2_9_7_1
  doi: 10.1104/pp.111.181669
– ident: e_1_2_9_44_1
  doi: 10.1104/pp.65.2.314
– ident: e_1_2_9_10_1
  doi: 10.1007/BF00208309
– ident: e_1_2_9_57_1
  doi: 10.1021/es070627i
– ident: e_1_2_9_29_1
  doi: 10.1021/es0259842
– ident: e_1_2_9_32_1
  doi: 10.1042/bj3340571
– ident: e_1_2_9_34_1
  doi: 10.1104/pp.113.224303
– ident: e_1_2_9_23_1
  doi: 10.1080/00380768.2013.804390
– ident: e_1_2_9_56_1
  doi: 10.1093/jxb/erw362
– ident: e_1_2_9_25_1
  doi: 10.1023/A:1025076805902
– ident: e_1_2_9_28_1
  doi: 10.1073/pnas.0802361105
SSID ssj0009562
Score 2.4513214
Snippet Summary Soil contamination with arsenic (As) can cause phytotoxicity and reduce crop yield. The mechanisms of As toxicity and tolerance are not fully...
Soil contamination with arsenic (As) can cause phytotoxicity and reduce crop yield. The mechanisms of As toxicity and tolerance are not fully understood. In...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2604
SubjectTerms Adaptation, Physiological - drug effects
Adaptation, Physiological - genetics
Arsenates
Arsenic
Arsenic - toxicity
Arsenite
arsenites
Arsenites - toxicity
Biological stress
Biosynthesis
Complementation
Contamination
Crop yield
Dehydrogenase
Dehydrogenases
Dihydrolipoamide Dehydrogenase - genetics
Dihydrolipoamide Dehydrogenase - metabolism
Fatty acids
Fatty Acids - biosynthesis
Gene Expression Regulation, Plant - drug effects
genes
Genetics
genomics
Homeostasis
Hypersensitivity
Localization
loss-of-function mutation
LPD1
Meristems
Mesophyll
Mutants
Mutation - genetics
NADH
Nicotinamide adenine dinucleotide
Oryza - drug effects
Oryza - genetics
Oryza - metabolism
Oxidation-Reduction - drug effects
Oxidative stress
Oxidative Stress - drug effects
oxidoreductases
Phytotoxicity
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Roots - drug effects
Plant Roots - metabolism
Plant tissues
Plastids
Plastids - drug effects
Plastids - metabolism
Reactive oxygen species
Reactive Oxygen Species - metabolism
Redox
Rice
root meristems
Roots
ROS
Soil contamination
Soil pollution
Stress, Physiological - drug effects
Stress, Physiological - genetics
Stroma
Toxicity
Toxicity tolerance
Vascular tissue
Title The plastid‐localized lipoamide dehydrogenase 1 is crucial for redox homeostasis, tolerance to arsenic stress and fatty acid biosynthesis in rice
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.19727
https://www.ncbi.nlm.nih.gov/pubmed/38563391
https://www.proquest.com/docview/3058383320
https://www.proquest.com/docview/3031135005
https://www.proquest.com/docview/3153547906
Volume 242
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LixNBEG6WxYMXXd_RXSnFgwcTpqen54EnV1yC4CLiQg7C0K8hjdnusDOBzZ78CYL_0F9i9bzY9YV4ykBqkp7JV1VfTbq-IuRZKmSusyibJqrAAgWr2mkRmnNSzfOccp1k7azDd8fp_CR5u-CLHfJy6IXp9CHGB27BM9p4HRxcyPqSk7v1chZmZoVO8rBXKxCiD_Elwd00HhSY0yRd9KpCYRfPeObVXPQLwbzKV9uEc3STfBqW2u0z-TzbNHKmLn5ScfzPa9kjN3oiCq865NwiO8bdJtcOPZLF7R3yDeEDa2TWjdXfv3xtM569MBpWdu3FqdUGtFlu9ZlHAGIiBAq2BoVAQTwDEmEIQqTnsPSnxiMBrW39Ahq_MmGOh8EjwILaOKuga1YB4TRUomm2IJTVIK2vtw7JKZ4I1kGQPrpLTo7efHw9n_bzG6aK5Rh_0wojreQcwcpFwrXKVKIMlVVWVdSoIKUvI8YTpbjIC2pikWX4GktmJPIaye6RXeedeRA6y2mmTRGUFCNEVSQqJoPSGn5-pLAIm5Dnwy9Zql7cPMzYWJVDkYO3uGxv8YQ8HU3XnaLH74z2BziUvVPXJYbGHAt6FuPXPRnfRncM_7EIZ_wm2DBKGcfY9hcbzDI8yYoonZD7HdTGlbCcp4wVFC-oBcyfl1gev5-3Bw__3fQRuR4jKeu2uu2T3eZsYw6QVDXyces9PwAERR9L
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VggQX3o9AgQFx4EAir9frtSUugKgCtBFCrZQLsvZlZUVqR7UjkZ74CUj8Q34Js36p5SXEyZY8TtbONzPfbHa_IeRJLFViRCDGkU6xQMGqdpz6zTmx4UlCuYlE0-twfxZPD6O3cz7fIs_7vTCtPsQw4eY9o4nX3sH9hPQpLy9Wi4lvmiXOkfO-o3dTUH0IT0nuxmGvwRxH8bzTFfLreIZbz2ajXyjmWcbapJzdK-RjP9h2pcmnybpWE33yk47j_z7NVXK546LwogXPNbJli-vkwssS-eLmBvmGCIIVkuvame9fvjZJz51YA0u3KuWRMxaMXWzMcYkYxFwIFFwFGrGCkAbkwuC1SD_DojyyJXLQylXPoC6X1rfysHgGWFPbwmlo96uALAzksq43ILUzoFxZbQrkp3gjuAK8-tFNcrj7-uDVdNy1cBhrlmAIjnMMtopzxCuXETda6EhbqnKR59Rqr6avAsYjrblMUmpDKQQeQ8WsQmqj2C2yXZSFveM3l1NhbOrFFAMEViBzprzYGn5-oLEOG5Gn_U-Z6U7f3LfZWGZ9nYOvOGte8Yg8HkxXrajH74x2ejxknV9XGUbHBGt6FuLXPRouo0f6v1lkYcu1t2GUMo7h7S82mGh4JNIgHpHbLdaGkbCEx4ylFB-oQcyfh5jN3k-bk7v_bvqQXJwe7O9le29m7-6RSyFytHbl2w7Zro_X9j5yrFo9aFzpB9YCI2Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VghCX8qaBAgviwIFEtvdlixNQovCKKkSlHJCsfVlZkdpW7UikJ34CEv-QX8KsX2p5CXGyJY-TXeebmW-c3W8QesSlio0IxJjqBAoUqGrHid-cww2L45AZKppeh-_mfHZIXy_YYgs97ffCtPoQwws37xlNvPYOXprslJPn5XLie2aJc-g85UHsIb3_PjqluMujXoKZU77oZIX8Mp7h1rPJ6BeGeZawNhlnehl97MfaLjT5NFnXaqJPfpJx_M_JXEE7HRPFz1roXEVbNr-GLjwvgC1urqNvgB9cArWunfn-5WuT8tyJNXjlykIeOWOxscuNOS4AgZAJcYhdhTUgBQCNgQljr0T6GS-LI1sAA61c9QTXxcr6Rh4WzjBU1DZ3Gre7VbDMDc5kXW-w1M5g5YpqkwM7hRuxy7HXPrqBDqcvP7yYjbsGDmNNYgjAPINQqxgDtDJJmdFCU21DlYksC632WvoqIIxqzWSchDaSQsAxUsQqIDaK3ETbeZHbXb-1PBTGJl5KMQBYBTIjykutwecHGqqwEXrc_5Kp7tTNfZONVdpXOfCI0-YRj9DDwbRsJT1-Z7TXwyHtvLpKITbGUNGTCL7uwXAZ_NH_ySJzW6y9DQlDwiC4_cUG0gyjIgn4CN1qoTaMhMSME5KEMKEGMH8eYjo_mDUnt__d9D66eLA_Td--mr-5gy5FQNDaZW97aLs-Xtu7QLBqda9xpB94eiIe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+plastid-localized+lipoamide+dehydrogenase+1+is+crucial+for+redox+homeostasis%2C+tolerance+to+arsenic+stress+and+fatty+acid+biosynthesis+in+rice&rft.jtitle=The+New+phytologist&rft.au=Chen%2C+Ting-Ting&rft.au=Zhao%2C+Peng&rft.au=Wang%2C+Yuan&rft.au=Wang%2C+Han-Qing&rft.date=2024-06-01&rft.issn=1469-8137&rft.eissn=1469-8137&rft.volume=242&rft.issue=6&rft.spage=2604&rft_id=info:doi/10.1111%2Fnph.19727&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon