Evolution of Human Immunodeficiency Virus Type 1 Cytotoxic T-Lymphocyte Epitopes: Fitness-Balanced Escape
Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from...
Saved in:
Published in | Journal of Virology Vol. 81; no. 22; pp. 12179 - 12188 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Society for Microbiology
01.11.2007
American Society for Microbiology (ASM) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Article Usage Stats
Services
JVI
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
Spotlights in the Current Issue
JVI
About
JVI
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
JVI
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0022-538X
Online ISSN:
1098-5514
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
JVI
.asm.org, visit:
JVI
|
---|---|
AbstractList | Article Usage Stats
Services
JVI
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
Spotlights in the Current Issue
JVI
About
JVI
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
JVI
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0022-538X
Online ISSN:
1098-5514
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
JVI
.asm.org, visit:
JVI
CD8 + cytotoxic T lymphocytes (CTL) are strong mediators of human immunodeficiency virus type 1 (HIV-1) control, yet HIV-1 frequently mutates to escape CTL recognition. In an analysis of sequences in the Los Alamos HIV-1 database, we show that emerging CTL escape mutations were more often present at lower frequencies than the amino acid(s) that they replaced. Furthermore, epitopes that underwent escape contained amino acid sites of high variability, whereas epitopes persisting at high frequencies lacked highly variable sites. We therefore infer that escape mutations are likely to be associated with weak functional constraints on the viral protein. This was supported by an extensive analysis of one subject for whom all escape mutations within defined CTL epitopes were studied and by an analysis of all reported escape mutations of defined CTL epitopes in the HIV Immunology Database. In one of these defined epitopes, escape mutations involving the substitution of amino acids with lower database frequencies occurred, and the epitope soon reverted back to the sensitive form. We further show that this escape mutation substantially diminished viral fitness in in vitro competition assays. Coincident with the reversion in vivo, we observed the fixation of a mutation 3 amino acids C terminal to the epitope, coincident with the ablation of the corresponding CTL response. The C-terminal mutation did not restore replication fitness reduced by the escape mutation in the epitope and by itself had little effect on replication fitness. Therefore, this C-terminal mutation presumably impaired the processing and presentation of the epitope. Finally, for one persistent epitope, CTL cross-reactivity to a mutant form may have suppressed the mutant to undetected levels, whereas for two other persistent epitopes, each of two mutants showed poor cross-reactivity and appeared in the subject at later time points. Thus, a viral dynamic exists between the advantage of immune escape, peptide cross-reactivity, and the disadvantage of lost replication fitness, with the balance playing an important role in determining whether a CTL epitope will persist or decline during infection. CD8(+) cytotoxic T lymphocytes (CTL) are strong mediators of human immunodeficiency virus type 1 (HIV-1) control, yet HIV-1 frequently mutates to escape CTL recognition. In an analysis of sequences in the Los Alamos HIV-1 database, we show that emerging CTL escape mutations were more often present at lower frequencies than the amino acid(s) that they replaced. Furthermore, epitopes that underwent escape contained amino acid sites of high variability, whereas epitopes persisting at high frequencies lacked highly variable sites. We therefore infer that escape mutations are likely to be associated with weak functional constraints on the viral protein. This was supported by an extensive analysis of one subject for whom all escape mutations within defined CTL epitopes were studied and by an analysis of all reported escape mutations of defined CTL epitopes in the HIV Immunology Database. In one of these defined epitopes, escape mutations involving the substitution of amino acids with lower database frequencies occurred, and the epitope soon reverted back to the sensitive form. We further show that this escape mutation substantially diminished viral fitness in in vitro competition assays. Coincident with the reversion in vivo, we observed the fixation of a mutation 3 amino acids C terminal to the epitope, coincident with the ablation of the corresponding CTL response. The C-terminal mutation did not restore replication fitness reduced by the escape mutation in the epitope and by itself had little effect on replication fitness. Therefore, this C-terminal mutation presumably impaired the processing and presentation of the epitope. Finally, for one persistent epitope, CTL cross-reactivity to a mutant form may have suppressed the mutant to undetected levels, whereas for two other persistent epitopes, each of two mutants showed poor cross-reactivity and appeared in the subject at later time points. Thus, a viral dynamic exists between the advantage of immune escape, peptide cross-reactivity, and the disadvantage of lost replication fitness, with the balance playing an important role in determining whether a CTL epitope will persist or decline during infection. CD8(+) cytotoxic T lymphocytes (CTL) are strong mediators of human immunodeficiency virus type 1 (HIV-1) control, yet HIV-1 frequently mutates to escape CTL recognition. In an analysis of sequences in the Los Alamos HIV-1 database, we show that emerging CTL escape mutations were more often present at lower frequencies than the amino acid(s) that they replaced. Furthermore, epitopes that underwent escape contained amino acid sites of high variability, whereas epitopes persisting at high frequencies lacked highly variable sites. We therefore infer that escape mutations are likely to be associated with weak functional constraints on the viral protein. This was supported by an extensive analysis of one subject for whom all escape mutations within defined CTL epitopes were studied and by an analysis of all reported escape mutations of defined CTL epitopes in the HIV Immunology Database. In one of these defined epitopes, escape mutations involving the substitution of amino acids with lower database frequencies occurred, and the epitope soon reverted back to the sensitive form. We further show that this escape mutation substantially diminished viral fitness in in vitro competition assays. Coincident with the reversion in vivo, we observed the fixation of a mutation 3 amino acids C terminal to the epitope, coincident with the ablation of the corresponding CTL response. The C-terminal mutation did not restore replication fitness reduced by the escape mutation in the epitope and by itself had little effect on replication fitness. Therefore, this C-terminal mutation presumably impaired the processing and presentation of the epitope. Finally, for one persistent epitope, CTL cross-reactivity to a mutant form may have suppressed the mutant to undetected levels, whereas for two other persistent epitopes, each of two mutants showed poor cross-reactivity and appeared in the subject at later time points. Thus, a viral dynamic exists between the advantage of immune escape, peptide cross-reactivity, and the disadvantage of lost replication fitness, with the balance playing an important role in determining whether a CTL epitope will persist or decline during infection.CD8(+) cytotoxic T lymphocytes (CTL) are strong mediators of human immunodeficiency virus type 1 (HIV-1) control, yet HIV-1 frequently mutates to escape CTL recognition. In an analysis of sequences in the Los Alamos HIV-1 database, we show that emerging CTL escape mutations were more often present at lower frequencies than the amino acid(s) that they replaced. Furthermore, epitopes that underwent escape contained amino acid sites of high variability, whereas epitopes persisting at high frequencies lacked highly variable sites. We therefore infer that escape mutations are likely to be associated with weak functional constraints on the viral protein. This was supported by an extensive analysis of one subject for whom all escape mutations within defined CTL epitopes were studied and by an analysis of all reported escape mutations of defined CTL epitopes in the HIV Immunology Database. In one of these defined epitopes, escape mutations involving the substitution of amino acids with lower database frequencies occurred, and the epitope soon reverted back to the sensitive form. We further show that this escape mutation substantially diminished viral fitness in in vitro competition assays. Coincident with the reversion in vivo, we observed the fixation of a mutation 3 amino acids C terminal to the epitope, coincident with the ablation of the corresponding CTL response. The C-terminal mutation did not restore replication fitness reduced by the escape mutation in the epitope and by itself had little effect on replication fitness. Therefore, this C-terminal mutation presumably impaired the processing and presentation of the epitope. Finally, for one persistent epitope, CTL cross-reactivity to a mutant form may have suppressed the mutant to undetected levels, whereas for two other persistent epitopes, each of two mutants showed poor cross-reactivity and appeared in the subject at later time points. Thus, a viral dynamic exists between the advantage of immune escape, peptide cross-reactivity, and the disadvantage of lost replication fitness, with the balance playing an important role in determining whether a CTL epitope will persist or decline during infection. CD8 super(+) cytotoxic T lymphocytes (CTL) are strong mediators of human immunodeficiency virus type 1 (HIV-1) control, yet HIV-1 frequently mutates to escape CTL recognition. In an analysis of sequences in the Los Alamos HIV-1 database, we show that emerging CTL escape mutations were more often present at lower frequencies than the amino acid(s) that they replaced. Furthermore, epitopes that underwent escape contained amino acid sites of high variability, whereas epitopes persisting at high frequencies lacked highly variable sites. We therefore infer that escape mutations are likely to be associated with weak functional constraints on the viral protein. This was supported by an extensive analysis of one subject for whom all escape mutations within defined CTL epitopes were studied and by an analysis of all reported escape mutations of defined CTL epitopes in the HIV Immunology Database. In one of these defined epitopes, escape mutations involving the substitution of amino acids with lower database frequencies occurred, and the epitope soon reverted back to the sensitive form. We further show that this escape mutation substantially diminished viral fitness in in vitro competition assays. Coincident with the reversion in vivo, we observed the fixation of a mutation 3 amino acids C terminal to the epitope, coincident with the ablation of the corresponding CTL response. The C-terminal mutation did not restore replication fitness reduced by the escape mutation in the epitope and by itself had little effect on replication fitness. Therefore, this C-terminal mutation presumably impaired the processing and presentation of the epitope. Finally, for one persistent epitope, CTL cross-reactivity to a mutant form may have suppressed the mutant to undetected levels, whereas for two other persistent epitopes, each of two mutants showed poor cross-reactivity and appeared in the subject at later time points. Thus, a viral dynamic exists between the advantage of immune escape, peptide cross-reactivity, and the disadvantage of lost replication fitness, with the balance playing an important role in determining whether a CTL epitope will persist or decline during infection. |
Author | Matthew McSweyn Eric J. Arts M. Juliana McElrath Hong Zhao Ananta K. Ghosh Ryan M. Troyer John McNevin James I. Mullins Denis M. Tebit Daniel Shriner Yi Liu |
AuthorAffiliation | Departments of Microbiology, 1 Medicine, 2 Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington 98195, 3 Program in Infectious Diseases, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, 4 Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106 5 |
AuthorAffiliation_xml | – name: Departments of Microbiology, 1 Medicine, 2 Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington 98195, 3 Program in Infectious Diseases, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, 4 Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106 5 |
Author_xml | – sequence: 1 givenname: Yi surname: Liu fullname: Liu, Yi organization: Departments of Microbiology – sequence: 2 givenname: John surname: McNevin fullname: McNevin, John organization: Program in Infectious Diseases, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109 – sequence: 3 givenname: Hong surname: Zhao fullname: Zhao, Hong organization: Departments of Microbiology – sequence: 4 givenname: Denis M. surname: Tebit fullname: Tebit, Denis M. organization: Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106 – sequence: 5 givenname: Ryan M. surname: Troyer fullname: Troyer, Ryan M. organization: Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106 – sequence: 6 givenname: Matthew surname: McSweyn fullname: McSweyn, Matthew organization: Program in Infectious Diseases, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109 – sequence: 7 givenname: Ananta K. surname: Ghosh fullname: Ghosh, Ananta K. organization: Departments of Microbiology – sequence: 8 givenname: Daniel surname: Shriner fullname: Shriner, Daniel organization: Departments of Microbiology – sequence: 9 givenname: Eric J. surname: Arts fullname: Arts, Eric J. organization: Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106 – sequence: 10 givenname: M. Juliana surname: McElrath fullname: McElrath, M. Juliana organization: Medicine, Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington 98195, Program in Infectious Diseases, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109 – sequence: 11 givenname: James I. surname: Mullins fullname: Mullins, James I. organization: Departments of Microbiology, Medicine, Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington 98195 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19219684$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17728222$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1v1DAQxS1URLeFG2dkCcGJFH8ljjkgwWpLF63EZam4WV5n0nWV2GmcLOS_x8suFJAQJx_mN-N5894ZOvHBA0JPKbmglJWvP14vLwhlUmZEPkAzSlSZ5TkVJ2hGCGNZzssvp-gsxltCqBCFeIROqZSsZIzNkFvsQjMOLngcanw1tsbjZduOPlRQO-vA2wlfu36MeD11gCmeT0MYwjdn8TpbTW23DXYaAC86N4QO4ht86QYPMWbvTWO8hQovojUdPEYPa9NEeHJ8z9Hny8V6fpWtPn1Yzt-tMsvLQma5MZbxmhdCVmW1yZmgUm2kqCuQqlY2L4ArKAQlfEOqUihKGC-qmieEFsLwc_T2MLcbNy1UFvzQm0Z3vWtNP-lgnP6z4t1W34SdZrRQhMo04OVxQB_uRoiDbl200CQ1EMaoi1IIrij_L8hIWkoqkcBnv6_0a5efNiTgxREw6VZN3afDuXjPKUZV-jZxrw6c7UOMPdT3CNH7NOiUBv0jDZrslbC_cOsGszc7CXfNv5qeH5q27mb71fWgTWz17c7pkmrGNGXJEP4dJy3DQg |
CitedBy_id | crossref_primary_10_1016_j_vaccine_2008_06_097 crossref_primary_10_1016_j_mehy_2019_109267 crossref_primary_10_1016_j_imu_2021_100768 crossref_primary_10_1007_s41403_020_00132_8 crossref_primary_10_1371_journal_pcbi_1000214 crossref_primary_10_1093_infdis_jiq143 crossref_primary_10_3390_genes13020170 crossref_primary_10_3390_vaccines2030515 crossref_primary_10_1371_journal_pone_0023603 crossref_primary_10_1099_vir_0_83195_0 crossref_primary_10_1089_apc_2016_0239 crossref_primary_10_1371_journal_pone_0318523 crossref_primary_10_2217_fvl_11_68 crossref_primary_10_1093_jac_dkx508 crossref_primary_10_1016_j_molliq_2020_114706 crossref_primary_10_1016_j_pharma_2014_11_002 crossref_primary_10_1126_scitranslmed_3002694 crossref_primary_10_1016_j_biopha_2018_04_025 crossref_primary_10_1111_jmp_12176 crossref_primary_10_1089_hum_2015_059 crossref_primary_10_1016_j_micinf_2008_01_013 crossref_primary_10_1128_JVI_01472_10 crossref_primary_10_1128_JVI_05201_11 crossref_primary_10_1016_j_jviromet_2012_10_016 crossref_primary_10_1016_j_vaccine_2011_07_132 crossref_primary_10_1186_s12865_022_00491_7 crossref_primary_10_1097_QAI_0b013e3181c4b885 crossref_primary_10_1111_mec_15730 crossref_primary_10_1128_JVI_01096_07 crossref_primary_10_3389_fmicb_2017_00080 crossref_primary_10_1186_1742_4690_6_72 crossref_primary_10_1016_j_virol_2009_10_002 crossref_primary_10_1371_journal_ppat_1000365 crossref_primary_10_3389_fimmu_2022_945706 crossref_primary_10_1016_j_vaccine_2018_04_086 crossref_primary_10_1128_JVI_00117_10 crossref_primary_10_1089_biores_2014_0054 crossref_primary_10_1016_j_jmb_2012_10_009 crossref_primary_10_1016_j_virol_2011_09_020 crossref_primary_10_1128_JVI_00599_09 crossref_primary_10_1016_j_virol_2009_03_003 crossref_primary_10_1371_journal_pbio_1001523 crossref_primary_10_1371_journal_pone_0094240 crossref_primary_10_1016_j_meegid_2010_12_011 crossref_primary_10_1038_s41467_019_10724_w crossref_primary_10_1128_JVI_01061_08 crossref_primary_10_1038_s41598_020_73975_4 crossref_primary_10_1128_JVI_02697_10 crossref_primary_10_1371_journal_pone_0015639 crossref_primary_10_1371_journal_pone_0060245 crossref_primary_10_1097_COH_0b013e32832c0672 crossref_primary_10_1016_j_virol_2013_10_015 crossref_primary_10_1099_jgv_0_001205 crossref_primary_10_1128_JVI_01876_15 crossref_primary_10_1172_jci_insight_180819 crossref_primary_10_1371_journal_pone_0016052 crossref_primary_10_4049_jimmunol_1300373 crossref_primary_10_1016_j_gene_2019_03_056 crossref_primary_10_1128_JVI_02017_08 |
Cites_doi | 10.1126/science.1069660 10.1128/JVI.76.17.8757-8768.2002 10.1128/JVI.77.12.6867-6878.2003 10.1128/JVI.77.23.12430-12440.2003 10.1128/JVI.74.19.9222-9233.2000 10.1038/nm0297-205 10.1126/science.272.5261.537 10.1093/intimm/8.5.641 10.1038/nature03113 10.1128/JVI.02739-06 10.1128/JVI.79.20.12952-12960.2005 10.4049/jimmunol.165.11.6214 10.1038/nm998 10.1126/science.1131528 10.4049/jimmunol.171.10.5372 10.1128/JVI.00575-06 10.1128/JVI.77.3.2081-2092.2003 10.4049/jimmunol.171.7.3837 10.1038/nm821 10.1172/JCI2405 10.1038/nm0297-212 10.1038/nm893 10.1084/jem.20022138 10.1084/jem.20040511 10.1128/JVI.00465-07 10.1128/JVI.80.7.3617-3623.2006 10.4049/jimmunol.166.3.1690 10.1128/JVI.79.13.8171-8181.2005 10.1038/ni1281 10.4049/jimmunol.177.7.4699 10.1002/1521-4141(200103)31:3<677::AID-IMMU677>3.0.CO;2-M 10.1128/jvi.68.7.4650-4655.1994 10.1128/jvi.68.9.6103-6110.1994 10.1084/jem.20041455 10.1128/JVI.79.21.13239-13249.2005 10.1128/JVI.79.9.5721-5731.2005 10.4049/jimmunol.154.5.2189 10.1126/science.279.5359.2103 10.1128/JVI.78.2.630-641.2004 10.1073/pnas.94.5.1890 10.1016/S0065-2776(08)60600-8 10.1128/JVI.78.3.1324-1332.2004 10.1128/JVI.79.16.10218-10225.2005 10.1038/nm0502-493 10.1128/JVI.77.13.7682-7688.2003 10.1038/nm992 10.1086/345482 10.1084/jem.179.2.463 10.1128/JVI.02362-06 10.1084/jem.20031982 10.1128/jvi.68.10.6672-6683.1994 10.1128/JVI.78.13.7069-7078.2004 10.1128/JVI.73.7.5509-5519.1999 10.1128/JVI.80.6.3122-3125.2006 10.1002/eji.1830211051 10.1016/j.virol.2005.11.036 10.1128/JVI.01912-06 10.4049/jimmunol.171.7.3718 10.1534/genetics.106.062885 |
ContentType | Journal Article |
Copyright | 2007 INIST-CNRS Copyright © 2007, American Society for Microbiology |
Copyright_xml | – notice: 2007 INIST-CNRS – notice: Copyright © 2007, American Society for Microbiology |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7T5 7U9 H94 7X8 5PM |
DOI | 10.1128/JVI.01277-07 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts Immunology Abstracts Virology and AIDS Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1098-5514 |
EndPage | 12188 |
ExternalDocumentID | PMC2169017 17728222 19219684 10_1128_JVI_01277_07 jvi_81_22_12179 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: P01 AI057005 – fundername: NIAID NIH HHS grantid: R37 AI047734 – fundername: NIAID NIH HHS grantid: R01 AI049170 – fundername: NCRR NIH HHS grantid: M01 RR00037 – fundername: NCRR NIH HHS grantid: M01 RR000037 – fundername: NIAID NIH HHS grantid: R37 AI47734 – fundername: NIAID NIH HHS grantid: AI57005 – fundername: NIAID NIH HHS grantid: AI27757 – fundername: NIAID NIH HHS grantid: P30 AI027757 |
GroupedDBID | --- -~X 0R~ 18M 29L 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAGFI AAYXX ABPPZ ACGFO ACNCT ADBBV AENEX AFFNX AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CITATION CS3 DIK E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 MVM N9A O9- OHT OK1 P2P RHI RNS RPM RSF TR2 UPT W2D W8F WH7 WOQ YQT ~02 ~KM .55 .GJ 41~ 6TJ AAYJJ ADXHL AI. D0S IQODW VH1 X7M Y6R ZGI ZXP CGR CUY CVF ECM EIF NPM PKN RHF UCJ 7T5 7U9 H94 7X8 5PM |
ID | FETCH-LOGICAL-c3867-5aac23f3647d8db524179b74fde79f9c56e39e64103b0d84910236df374f164a3 |
ISSN | 0022-538X |
IngestDate | Thu Aug 21 14:14:20 EDT 2025 Fri Jul 11 02:42:18 EDT 2025 Fri Jul 11 09:20:32 EDT 2025 Wed Feb 19 02:32:51 EST 2025 Mon Jul 21 09:12:42 EDT 2025 Thu Apr 24 23:01:30 EDT 2025 Tue Jul 01 00:57:17 EDT 2025 Wed May 18 15:25:36 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | Immunopathology Antigenic determinant HIV-1 virus Retroviridae AIDS Immune deficiency Lentivirus Virology Infection Virus Viral disease Human immunodeficiency virus Cytotoxic T lymphocyte Fitness |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3867-5aac23f3647d8db524179b74fde79f9c56e39e64103b0d84910236df374f164a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Corresponding author. Mailing address: Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195-8070. Phone: (206) 732-6163. Fax: (206) 732-6167. E-mail: jmullins@u.washington.edu Present address: Biotechnology Centre, Kharagpur-721302, Midnapore, West Bengal, India. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2169017 |
PMID | 17728222 |
PQID | 20374794 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | pascalfrancis_primary_19219684 proquest_miscellaneous_68443913 highwire_asm_jvi_81_22_12179 crossref_citationtrail_10_1128_JVI_01277_07 crossref_primary_10_1128_JVI_01277_07 proquest_miscellaneous_20374794 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2169017 pubmed_primary_17728222 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-11-00 |
PublicationDateYYYYMMDD | 2007-11-01 |
PublicationDate_xml | – month: 11 year: 2007 text: 2007-11-00 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Journal of Virology |
PublicationTitleAlternate | J Virol |
PublicationYear | 2007 |
Publisher | American Society for Microbiology American Society for Microbiology (ASM) |
Publisher_xml | – name: American Society for Microbiology – name: American Society for Microbiology (ASM) |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 (e_1_3_2_52_2) 1997; 276 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_20_2 e_1_3_2_43_2 (e_1_3_2_51_2) 2005; 304 e_1_3_2_62_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_60_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 (e_1_3_2_25_2) 2003; 5 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 (e_1_3_2_53_2) 1995; 154 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_23_2 e_1_3_2_44_2 (e_1_3_2_33_2) 2006; 13 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_61_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 |
References_xml | – ident: e_1_3_2_50_2 doi: 10.1126/science.1069660 – ident: e_1_3_2_66_2 doi: 10.1128/JVI.76.17.8757-8768.2002 – ident: e_1_3_2_13_2 doi: 10.1128/JVI.77.12.6867-6878.2003 – ident: e_1_3_2_26_2 doi: 10.1128/JVI.77.23.12430-12440.2003 – ident: e_1_3_2_57_2 doi: 10.1128/JVI.74.19.9222-9233.2000 – ident: e_1_3_2_10_2 doi: 10.1038/nm0297-205 – ident: e_1_3_2_61_2 doi: 10.1126/science.272.5261.537 – ident: e_1_3_2_3_2 doi: 10.1093/intimm/8.5.641 – ident: e_1_3_2_32_2 doi: 10.1038/nature03113 – ident: e_1_3_2_46_2 doi: 10.1128/JVI.02739-06 – ident: e_1_3_2_6_2 doi: 10.1128/JVI.79.20.12952-12960.2005 – ident: e_1_3_2_43_2 doi: 10.4049/jimmunol.165.11.6214 – ident: e_1_3_2_24_2 doi: 10.1038/nm998 – ident: e_1_3_2_8_2 doi: 10.1126/science.1131528 – ident: e_1_3_2_29_2 doi: 10.4049/jimmunol.171.10.5372 – ident: e_1_3_2_44_2 doi: 10.1128/JVI.00575-06 – ident: e_1_3_2_2_2 doi: 10.1128/JVI.77.3.2081-2092.2003 – ident: e_1_3_2_14_2 doi: 10.4049/jimmunol.171.7.3837 – ident: e_1_3_2_59_2 doi: 10.1038/nm821 – ident: e_1_3_2_11_2 doi: 10.1172/JCI2405 – volume: 5 start-page: 131 year: 2003 ident: e_1_3_2_25_2 publication-title: AIDS Rev. – ident: e_1_3_2_27_2 doi: 10.1038/nm0297-212 – ident: e_1_3_2_60_2 doi: 10.1038/nm893 – ident: e_1_3_2_62_2 doi: 10.1084/jem.20022138 – ident: e_1_3_2_31_2 doi: 10.1084/jem.20040511 – ident: e_1_3_2_15_2 doi: 10.1128/JVI.00465-07 – ident: e_1_3_2_48_2 doi: 10.1128/JVI.80.7.3617-3623.2006 – ident: e_1_3_2_18_2 doi: 10.4049/jimmunol.166.3.1690 – ident: e_1_3_2_34_2 doi: 10.1128/JVI.79.13.8171-8181.2005 – ident: e_1_3_2_23_2 doi: 10.1038/ni1281 – ident: e_1_3_2_39_2 – ident: e_1_3_2_41_2 doi: 10.4049/jimmunol.177.7.4699 – ident: e_1_3_2_36_2 doi: 10.1002/1521-4141(200103)31:3<677::AID-IMMU677>3.0.CO;2-M – ident: e_1_3_2_37_2 doi: 10.1128/jvi.68.7.4650-4655.1994 – ident: e_1_3_2_9_2 doi: 10.1128/jvi.68.9.6103-6110.1994 – ident: e_1_3_2_40_2 doi: 10.1084/jem.20041455 – ident: e_1_3_2_4_2 doi: 10.1128/JVI.79.21.13239-13249.2005 – ident: e_1_3_2_21_2 doi: 10.1128/JVI.79.9.5721-5731.2005 – volume: 154 start-page: 2189 year: 1995 ident: e_1_3_2_53_2 publication-title: J. Immunol. doi: 10.4049/jimmunol.154.5.2189 – ident: e_1_3_2_55_2 doi: 10.1126/science.279.5359.2103 – ident: e_1_3_2_20_2 doi: 10.1128/JVI.78.2.630-641.2004 – ident: e_1_3_2_38_2 – ident: e_1_3_2_56_2 doi: 10.1073/pnas.94.5.1890 – ident: e_1_3_2_64_2 doi: 10.1016/S0065-2776(08)60600-8 – volume: 13 start-page: 46 year: 2006 ident: e_1_3_2_33_2 publication-title: Nat. Med. – ident: e_1_3_2_65_2 doi: 10.1128/JVI.78.3.1324-1332.2004 – ident: e_1_3_2_22_2 doi: 10.1128/JVI.79.16.10218-10225.2005 – ident: e_1_3_2_54_2 doi: 10.1038/nm0502-493 – ident: e_1_3_2_30_2 doi: 10.1128/JVI.77.13.7682-7688.2003 – volume: 276 start-page: 1955 year: 1997 ident: e_1_3_2_52_2 publication-title: Science – ident: e_1_3_2_42_2 doi: 10.1038/nm992 – ident: e_1_3_2_12_2 doi: 10.1086/345482 – ident: e_1_3_2_58_2 doi: 10.1084/jem.179.2.463 – ident: e_1_3_2_7_2 doi: 10.1128/JVI.02362-06 – ident: e_1_3_2_19_2 doi: 10.1084/jem.20031982 – ident: e_1_3_2_17_2 doi: 10.1128/jvi.68.10.6672-6683.1994 – ident: e_1_3_2_5_2 doi: 10.1128/JVI.78.13.7069-7078.2004 – ident: e_1_3_2_28_2 doi: 10.1128/JVI.73.7.5509-5519.1999 – ident: e_1_3_2_67_2 doi: 10.1128/JVI.80.6.3122-3125.2006 – ident: e_1_3_2_49_2 doi: 10.1002/eji.1830211051 – ident: e_1_3_2_45_2 doi: 10.1016/j.virol.2005.11.036 – ident: e_1_3_2_47_2 doi: 10.1128/JVI.01912-06 – ident: e_1_3_2_35_2 – volume: 304 start-page: 369 year: 2005 ident: e_1_3_2_51_2 publication-title: Methods Mol. Biol. – ident: e_1_3_2_63_2 doi: 10.4049/jimmunol.171.7.3718 – ident: e_1_3_2_16_2 doi: 10.1534/genetics.106.062885 |
SSID | ssj0014464 |
Score | 2.1767294 |
Snippet | Article Usage Stats
Services
JVI
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley... CD8 + cytotoxic T lymphocytes (CTL) are strong mediators of human immunodeficiency virus type 1 (HIV-1) control, yet HIV-1 frequently mutates to escape CTL... CD8(+) cytotoxic T lymphocytes (CTL) are strong mediators of human immunodeficiency virus type 1 (HIV-1) control, yet HIV-1 frequently mutates to escape CTL... CD8 super(+) cytotoxic T lymphocytes (CTL) are strong mediators of human immunodeficiency virus type 1 (HIV-1) control, yet HIV-1 frequently mutates to escape... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12179 |
SubjectTerms | Amino Acid Sequence Antigenic Variation - genetics Biological and medical sciences Epitopes, T-Lymphocyte - genetics Evolution, Molecular Fundamental and applied biological sciences. Psychology HIV-1 - genetics HIV-1 - immunology Human immunodeficiency virus 1 Humans Microbiology Miscellaneous Molecular Sequence Data Mutation Pathogenesis and Immunity T-Lymphocytes, Cytotoxic - immunology Virology |
Title | Evolution of Human Immunodeficiency Virus Type 1 Cytotoxic T-Lymphocyte Epitopes: Fitness-Balanced Escape |
URI | http://jvi.asm.org/content/81/22/12179.abstract https://www.ncbi.nlm.nih.gov/pubmed/17728222 https://www.proquest.com/docview/20374794 https://www.proquest.com/docview/68443913 https://pubmed.ncbi.nlm.nih.gov/PMC2169017 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BERIXxBvTUvYAp8glu3b84IZQUaigpxRVXFbeh9WtUjtqnIj01zOzfsSJEgm4WJG9mUT-vp3dmZ0HIe9hLqvYxAy7l8V-GCrupzLIfW1YokKuWe6y3n-cR-OL8OxydLmVXVLJE3W3M6_kf1CFe4ArZsn-A7KdULgBnwFfuALCcP0rjE-XjXi35XPueIv5HqU2WBjCZVUu7e1iXnta2UCtqrIqf1s1mPjTFQBZwh0zMDOY17M6Oi63FWo_X2LMIwYHmDnGSO3ZxGKWXN8v_90unFK3a3_fOSy9xXbU76-rzPlox2WzcrrwZmmrWgcWdt64aVuHRNxk5vWULNq3gesY3CnZhPXIVGciNyqTgVGU7lbmHBMUzn5-O8HzcfSo9ofBK5ndOGAZWAi4z1kvaV2gYfvoPnkAEjhv3TnNMRPYwmFbTh7_cZsZwZOP_Z_FyrKNoM3tS1tSGiNqM0BjmtfdUHaZK9tRt71tzOQJedxARz_XZHpK7pniGXlYdyRdPSe2oxQtc-ooRbcpRR2lKFKKMtpRivYpRVtKfaLbhKI1oV6Qi6-nky9jv-nG4asggdV0lGWKBzn2G9CJliOOvetkHObaxGmeqlFkgtREIRsGcqiTMMWiIJHOAxgCNnkWvCQHRVmY14SOQAcwFUmtZR6mXEvNMx4aMFVMpBRLPTJoX7JQTal67JgyFc5k5YkAdIRDRwxjj3zoRs_qEi17xh21eIlsfiOul1YkTHAuHAU9cryB4VpWCqt6lIQeedeCKkAH48FaVphyMRccizjBwrZ_BHwdU9wDj7yqSbCW3hDLI_EGPboBWP9980lhr1wdeI5H3Cx-s1fmIXm0nqBH5KC6XZi3sIeu5LGbB38A2jvIdw |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+human+immunodeficiency+virus+type+1+cytotoxic+T-lymphocyte+epitopes%3A+fitness-balanced+escape&rft.jtitle=Journal+of+virology&rft.au=Liu%2C+Yi&rft.au=McNevin%2C+John&rft.au=Zhao%2C+Hong&rft.au=Tebit%2C+Denis+M&rft.date=2007-11-01&rft.issn=0022-538X&rft.volume=81&rft.issue=22&rft.spage=12179&rft_id=info:doi/10.1128%2FJVI.01277-07&rft_id=info%3Apmid%2F17728222&rft.externalDocID=17728222 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |