Evolution of Human Immunodeficiency Virus Type 1 Cytotoxic T-Lymphocyte Epitopes: Fitness-Balanced Escape

Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from...

Full description

Saved in:
Bibliographic Details
Published inJournal of Virology Vol. 81; no. 22; pp. 12179 - 12188
Main Authors Liu, Yi, McNevin, John, Zhao, Hong, Tebit, Denis M., Troyer, Ryan M., McSweyn, Matthew, Ghosh, Ananta K., Shriner, Daniel, Arts, Eric J., McElrath, M. Juliana, Mullins, James I.
Format Journal Article
LanguageEnglish
Published Washington, DC American Society for Microbiology 01.11.2007
American Society for Microbiology (ASM)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JVI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0022-538X Online ISSN: 1098-5514 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JVI .asm.org, visit: JVI       
AbstractList Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JVI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0022-538X Online ISSN: 1098-5514 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JVI .asm.org, visit: JVI       
CD8 + cytotoxic T lymphocytes (CTL) are strong mediators of human immunodeficiency virus type 1 (HIV-1) control, yet HIV-1 frequently mutates to escape CTL recognition. In an analysis of sequences in the Los Alamos HIV-1 database, we show that emerging CTL escape mutations were more often present at lower frequencies than the amino acid(s) that they replaced. Furthermore, epitopes that underwent escape contained amino acid sites of high variability, whereas epitopes persisting at high frequencies lacked highly variable sites. We therefore infer that escape mutations are likely to be associated with weak functional constraints on the viral protein. This was supported by an extensive analysis of one subject for whom all escape mutations within defined CTL epitopes were studied and by an analysis of all reported escape mutations of defined CTL epitopes in the HIV Immunology Database. In one of these defined epitopes, escape mutations involving the substitution of amino acids with lower database frequencies occurred, and the epitope soon reverted back to the sensitive form. We further show that this escape mutation substantially diminished viral fitness in in vitro competition assays. Coincident with the reversion in vivo, we observed the fixation of a mutation 3 amino acids C terminal to the epitope, coincident with the ablation of the corresponding CTL response. The C-terminal mutation did not restore replication fitness reduced by the escape mutation in the epitope and by itself had little effect on replication fitness. Therefore, this C-terminal mutation presumably impaired the processing and presentation of the epitope. Finally, for one persistent epitope, CTL cross-reactivity to a mutant form may have suppressed the mutant to undetected levels, whereas for two other persistent epitopes, each of two mutants showed poor cross-reactivity and appeared in the subject at later time points. Thus, a viral dynamic exists between the advantage of immune escape, peptide cross-reactivity, and the disadvantage of lost replication fitness, with the balance playing an important role in determining whether a CTL epitope will persist or decline during infection.
CD8(+) cytotoxic T lymphocytes (CTL) are strong mediators of human immunodeficiency virus type 1 (HIV-1) control, yet HIV-1 frequently mutates to escape CTL recognition. In an analysis of sequences in the Los Alamos HIV-1 database, we show that emerging CTL escape mutations were more often present at lower frequencies than the amino acid(s) that they replaced. Furthermore, epitopes that underwent escape contained amino acid sites of high variability, whereas epitopes persisting at high frequencies lacked highly variable sites. We therefore infer that escape mutations are likely to be associated with weak functional constraints on the viral protein. This was supported by an extensive analysis of one subject for whom all escape mutations within defined CTL epitopes were studied and by an analysis of all reported escape mutations of defined CTL epitopes in the HIV Immunology Database. In one of these defined epitopes, escape mutations involving the substitution of amino acids with lower database frequencies occurred, and the epitope soon reverted back to the sensitive form. We further show that this escape mutation substantially diminished viral fitness in in vitro competition assays. Coincident with the reversion in vivo, we observed the fixation of a mutation 3 amino acids C terminal to the epitope, coincident with the ablation of the corresponding CTL response. The C-terminal mutation did not restore replication fitness reduced by the escape mutation in the epitope and by itself had little effect on replication fitness. Therefore, this C-terminal mutation presumably impaired the processing and presentation of the epitope. Finally, for one persistent epitope, CTL cross-reactivity to a mutant form may have suppressed the mutant to undetected levels, whereas for two other persistent epitopes, each of two mutants showed poor cross-reactivity and appeared in the subject at later time points. Thus, a viral dynamic exists between the advantage of immune escape, peptide cross-reactivity, and the disadvantage of lost replication fitness, with the balance playing an important role in determining whether a CTL epitope will persist or decline during infection.
CD8(+) cytotoxic T lymphocytes (CTL) are strong mediators of human immunodeficiency virus type 1 (HIV-1) control, yet HIV-1 frequently mutates to escape CTL recognition. In an analysis of sequences in the Los Alamos HIV-1 database, we show that emerging CTL escape mutations were more often present at lower frequencies than the amino acid(s) that they replaced. Furthermore, epitopes that underwent escape contained amino acid sites of high variability, whereas epitopes persisting at high frequencies lacked highly variable sites. We therefore infer that escape mutations are likely to be associated with weak functional constraints on the viral protein. This was supported by an extensive analysis of one subject for whom all escape mutations within defined CTL epitopes were studied and by an analysis of all reported escape mutations of defined CTL epitopes in the HIV Immunology Database. In one of these defined epitopes, escape mutations involving the substitution of amino acids with lower database frequencies occurred, and the epitope soon reverted back to the sensitive form. We further show that this escape mutation substantially diminished viral fitness in in vitro competition assays. Coincident with the reversion in vivo, we observed the fixation of a mutation 3 amino acids C terminal to the epitope, coincident with the ablation of the corresponding CTL response. The C-terminal mutation did not restore replication fitness reduced by the escape mutation in the epitope and by itself had little effect on replication fitness. Therefore, this C-terminal mutation presumably impaired the processing and presentation of the epitope. Finally, for one persistent epitope, CTL cross-reactivity to a mutant form may have suppressed the mutant to undetected levels, whereas for two other persistent epitopes, each of two mutants showed poor cross-reactivity and appeared in the subject at later time points. Thus, a viral dynamic exists between the advantage of immune escape, peptide cross-reactivity, and the disadvantage of lost replication fitness, with the balance playing an important role in determining whether a CTL epitope will persist or decline during infection.CD8(+) cytotoxic T lymphocytes (CTL) are strong mediators of human immunodeficiency virus type 1 (HIV-1) control, yet HIV-1 frequently mutates to escape CTL recognition. In an analysis of sequences in the Los Alamos HIV-1 database, we show that emerging CTL escape mutations were more often present at lower frequencies than the amino acid(s) that they replaced. Furthermore, epitopes that underwent escape contained amino acid sites of high variability, whereas epitopes persisting at high frequencies lacked highly variable sites. We therefore infer that escape mutations are likely to be associated with weak functional constraints on the viral protein. This was supported by an extensive analysis of one subject for whom all escape mutations within defined CTL epitopes were studied and by an analysis of all reported escape mutations of defined CTL epitopes in the HIV Immunology Database. In one of these defined epitopes, escape mutations involving the substitution of amino acids with lower database frequencies occurred, and the epitope soon reverted back to the sensitive form. We further show that this escape mutation substantially diminished viral fitness in in vitro competition assays. Coincident with the reversion in vivo, we observed the fixation of a mutation 3 amino acids C terminal to the epitope, coincident with the ablation of the corresponding CTL response. The C-terminal mutation did not restore replication fitness reduced by the escape mutation in the epitope and by itself had little effect on replication fitness. Therefore, this C-terminal mutation presumably impaired the processing and presentation of the epitope. Finally, for one persistent epitope, CTL cross-reactivity to a mutant form may have suppressed the mutant to undetected levels, whereas for two other persistent epitopes, each of two mutants showed poor cross-reactivity and appeared in the subject at later time points. Thus, a viral dynamic exists between the advantage of immune escape, peptide cross-reactivity, and the disadvantage of lost replication fitness, with the balance playing an important role in determining whether a CTL epitope will persist or decline during infection.
CD8 super(+) cytotoxic T lymphocytes (CTL) are strong mediators of human immunodeficiency virus type 1 (HIV-1) control, yet HIV-1 frequently mutates to escape CTL recognition. In an analysis of sequences in the Los Alamos HIV-1 database, we show that emerging CTL escape mutations were more often present at lower frequencies than the amino acid(s) that they replaced. Furthermore, epitopes that underwent escape contained amino acid sites of high variability, whereas epitopes persisting at high frequencies lacked highly variable sites. We therefore infer that escape mutations are likely to be associated with weak functional constraints on the viral protein. This was supported by an extensive analysis of one subject for whom all escape mutations within defined CTL epitopes were studied and by an analysis of all reported escape mutations of defined CTL epitopes in the HIV Immunology Database. In one of these defined epitopes, escape mutations involving the substitution of amino acids with lower database frequencies occurred, and the epitope soon reverted back to the sensitive form. We further show that this escape mutation substantially diminished viral fitness in in vitro competition assays. Coincident with the reversion in vivo, we observed the fixation of a mutation 3 amino acids C terminal to the epitope, coincident with the ablation of the corresponding CTL response. The C-terminal mutation did not restore replication fitness reduced by the escape mutation in the epitope and by itself had little effect on replication fitness. Therefore, this C-terminal mutation presumably impaired the processing and presentation of the epitope. Finally, for one persistent epitope, CTL cross-reactivity to a mutant form may have suppressed the mutant to undetected levels, whereas for two other persistent epitopes, each of two mutants showed poor cross-reactivity and appeared in the subject at later time points. Thus, a viral dynamic exists between the advantage of immune escape, peptide cross-reactivity, and the disadvantage of lost replication fitness, with the balance playing an important role in determining whether a CTL epitope will persist or decline during infection.
Author Matthew McSweyn
Eric J. Arts
M. Juliana McElrath
Hong Zhao
Ananta K. Ghosh
Ryan M. Troyer
John McNevin
James I. Mullins
Denis M. Tebit
Daniel Shriner
Yi Liu
AuthorAffiliation Departments of Microbiology, 1 Medicine, 2 Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington 98195, 3 Program in Infectious Diseases, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, 4 Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106 5
AuthorAffiliation_xml – name: Departments of Microbiology, 1 Medicine, 2 Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington 98195, 3 Program in Infectious Diseases, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, 4 Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106 5
Author_xml – sequence: 1
  givenname: Yi
  surname: Liu
  fullname: Liu, Yi
  organization: Departments of Microbiology
– sequence: 2
  givenname: John
  surname: McNevin
  fullname: McNevin, John
  organization: Program in Infectious Diseases, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
– sequence: 3
  givenname: Hong
  surname: Zhao
  fullname: Zhao, Hong
  organization: Departments of Microbiology
– sequence: 4
  givenname: Denis M.
  surname: Tebit
  fullname: Tebit, Denis M.
  organization: Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
– sequence: 5
  givenname: Ryan M.
  surname: Troyer
  fullname: Troyer, Ryan M.
  organization: Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
– sequence: 6
  givenname: Matthew
  surname: McSweyn
  fullname: McSweyn, Matthew
  organization: Program in Infectious Diseases, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
– sequence: 7
  givenname: Ananta K.
  surname: Ghosh
  fullname: Ghosh, Ananta K.
  organization: Departments of Microbiology
– sequence: 8
  givenname: Daniel
  surname: Shriner
  fullname: Shriner, Daniel
  organization: Departments of Microbiology
– sequence: 9
  givenname: Eric J.
  surname: Arts
  fullname: Arts, Eric J.
  organization: Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
– sequence: 10
  givenname: M. Juliana
  surname: McElrath
  fullname: McElrath, M. Juliana
  organization: Medicine, Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington 98195, Program in Infectious Diseases, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
– sequence: 11
  givenname: James I.
  surname: Mullins
  fullname: Mullins, James I.
  organization: Departments of Microbiology, Medicine, Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington 98195
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19219684$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17728222$$D View this record in MEDLINE/PubMed
BookMark eNqFks1v1DAQxS1URLeFG2dkCcGJFH8ljjkgwWpLF63EZam4WV5n0nWV2GmcLOS_x8suFJAQJx_mN-N5894ZOvHBA0JPKbmglJWvP14vLwhlUmZEPkAzSlSZ5TkVJ2hGCGNZzssvp-gsxltCqBCFeIROqZSsZIzNkFvsQjMOLngcanw1tsbjZduOPlRQO-vA2wlfu36MeD11gCmeT0MYwjdn8TpbTW23DXYaAC86N4QO4ht86QYPMWbvTWO8hQovojUdPEYPa9NEeHJ8z9Hny8V6fpWtPn1Yzt-tMsvLQma5MZbxmhdCVmW1yZmgUm2kqCuQqlY2L4ArKAQlfEOqUihKGC-qmieEFsLwc_T2MLcbNy1UFvzQm0Z3vWtNP-lgnP6z4t1W34SdZrRQhMo04OVxQB_uRoiDbl200CQ1EMaoi1IIrij_L8hIWkoqkcBnv6_0a5efNiTgxREw6VZN3afDuXjPKUZV-jZxrw6c7UOMPdT3CNH7NOiUBv0jDZrslbC_cOsGszc7CXfNv5qeH5q27mb71fWgTWz17c7pkmrGNGXJEP4dJy3DQg
CitedBy_id crossref_primary_10_1016_j_vaccine_2008_06_097
crossref_primary_10_1016_j_mehy_2019_109267
crossref_primary_10_1016_j_imu_2021_100768
crossref_primary_10_1007_s41403_020_00132_8
crossref_primary_10_1371_journal_pcbi_1000214
crossref_primary_10_1093_infdis_jiq143
crossref_primary_10_3390_genes13020170
crossref_primary_10_3390_vaccines2030515
crossref_primary_10_1371_journal_pone_0023603
crossref_primary_10_1099_vir_0_83195_0
crossref_primary_10_1089_apc_2016_0239
crossref_primary_10_1371_journal_pone_0318523
crossref_primary_10_2217_fvl_11_68
crossref_primary_10_1093_jac_dkx508
crossref_primary_10_1016_j_molliq_2020_114706
crossref_primary_10_1016_j_pharma_2014_11_002
crossref_primary_10_1126_scitranslmed_3002694
crossref_primary_10_1016_j_biopha_2018_04_025
crossref_primary_10_1111_jmp_12176
crossref_primary_10_1089_hum_2015_059
crossref_primary_10_1016_j_micinf_2008_01_013
crossref_primary_10_1128_JVI_01472_10
crossref_primary_10_1128_JVI_05201_11
crossref_primary_10_1016_j_jviromet_2012_10_016
crossref_primary_10_1016_j_vaccine_2011_07_132
crossref_primary_10_1186_s12865_022_00491_7
crossref_primary_10_1097_QAI_0b013e3181c4b885
crossref_primary_10_1111_mec_15730
crossref_primary_10_1128_JVI_01096_07
crossref_primary_10_3389_fmicb_2017_00080
crossref_primary_10_1186_1742_4690_6_72
crossref_primary_10_1016_j_virol_2009_10_002
crossref_primary_10_1371_journal_ppat_1000365
crossref_primary_10_3389_fimmu_2022_945706
crossref_primary_10_1016_j_vaccine_2018_04_086
crossref_primary_10_1128_JVI_00117_10
crossref_primary_10_1089_biores_2014_0054
crossref_primary_10_1016_j_jmb_2012_10_009
crossref_primary_10_1016_j_virol_2011_09_020
crossref_primary_10_1128_JVI_00599_09
crossref_primary_10_1016_j_virol_2009_03_003
crossref_primary_10_1371_journal_pbio_1001523
crossref_primary_10_1371_journal_pone_0094240
crossref_primary_10_1016_j_meegid_2010_12_011
crossref_primary_10_1038_s41467_019_10724_w
crossref_primary_10_1128_JVI_01061_08
crossref_primary_10_1038_s41598_020_73975_4
crossref_primary_10_1128_JVI_02697_10
crossref_primary_10_1371_journal_pone_0015639
crossref_primary_10_1371_journal_pone_0060245
crossref_primary_10_1097_COH_0b013e32832c0672
crossref_primary_10_1016_j_virol_2013_10_015
crossref_primary_10_1099_jgv_0_001205
crossref_primary_10_1128_JVI_01876_15
crossref_primary_10_1172_jci_insight_180819
crossref_primary_10_1371_journal_pone_0016052
crossref_primary_10_4049_jimmunol_1300373
crossref_primary_10_1016_j_gene_2019_03_056
crossref_primary_10_1128_JVI_02017_08
Cites_doi 10.1126/science.1069660
10.1128/JVI.76.17.8757-8768.2002
10.1128/JVI.77.12.6867-6878.2003
10.1128/JVI.77.23.12430-12440.2003
10.1128/JVI.74.19.9222-9233.2000
10.1038/nm0297-205
10.1126/science.272.5261.537
10.1093/intimm/8.5.641
10.1038/nature03113
10.1128/JVI.02739-06
10.1128/JVI.79.20.12952-12960.2005
10.4049/jimmunol.165.11.6214
10.1038/nm998
10.1126/science.1131528
10.4049/jimmunol.171.10.5372
10.1128/JVI.00575-06
10.1128/JVI.77.3.2081-2092.2003
10.4049/jimmunol.171.7.3837
10.1038/nm821
10.1172/JCI2405
10.1038/nm0297-212
10.1038/nm893
10.1084/jem.20022138
10.1084/jem.20040511
10.1128/JVI.00465-07
10.1128/JVI.80.7.3617-3623.2006
10.4049/jimmunol.166.3.1690
10.1128/JVI.79.13.8171-8181.2005
10.1038/ni1281
10.4049/jimmunol.177.7.4699
10.1002/1521-4141(200103)31:3<677::AID-IMMU677>3.0.CO;2-M
10.1128/jvi.68.7.4650-4655.1994
10.1128/jvi.68.9.6103-6110.1994
10.1084/jem.20041455
10.1128/JVI.79.21.13239-13249.2005
10.1128/JVI.79.9.5721-5731.2005
10.4049/jimmunol.154.5.2189
10.1126/science.279.5359.2103
10.1128/JVI.78.2.630-641.2004
10.1073/pnas.94.5.1890
10.1016/S0065-2776(08)60600-8
10.1128/JVI.78.3.1324-1332.2004
10.1128/JVI.79.16.10218-10225.2005
10.1038/nm0502-493
10.1128/JVI.77.13.7682-7688.2003
10.1038/nm992
10.1086/345482
10.1084/jem.179.2.463
10.1128/JVI.02362-06
10.1084/jem.20031982
10.1128/jvi.68.10.6672-6683.1994
10.1128/JVI.78.13.7069-7078.2004
10.1128/JVI.73.7.5509-5519.1999
10.1128/JVI.80.6.3122-3125.2006
10.1002/eji.1830211051
10.1016/j.virol.2005.11.036
10.1128/JVI.01912-06
10.4049/jimmunol.171.7.3718
10.1534/genetics.106.062885
ContentType Journal Article
Copyright 2007 INIST-CNRS
Copyright © 2007, American Society for Microbiology
Copyright_xml – notice: 2007 INIST-CNRS
– notice: Copyright © 2007, American Society for Microbiology
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7U9
H94
7X8
5PM
DOI 10.1128/JVI.01277-07
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Virology and AIDS Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1098-5514
EndPage 12188
ExternalDocumentID PMC2169017
17728222
19219684
10_1128_JVI_01277_07
jvi_81_22_12179
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: P01 AI057005
– fundername: NIAID NIH HHS
  grantid: R37 AI047734
– fundername: NIAID NIH HHS
  grantid: R01 AI049170
– fundername: NCRR NIH HHS
  grantid: M01 RR00037
– fundername: NCRR NIH HHS
  grantid: M01 RR000037
– fundername: NIAID NIH HHS
  grantid: R37 AI47734
– fundername: NIAID NIH HHS
  grantid: AI57005
– fundername: NIAID NIH HHS
  grantid: AI27757
– fundername: NIAID NIH HHS
  grantid: P30 AI027757
GroupedDBID ---
-~X
0R~
18M
29L
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAGFI
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
AENEX
AFFNX
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
MVM
N9A
O9-
OHT
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
W2D
W8F
WH7
WOQ
YQT
~02
~KM
.55
.GJ
41~
6TJ
AAYJJ
ADXHL
AI.
D0S
IQODW
VH1
X7M
Y6R
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RHF
UCJ
7T5
7U9
H94
7X8
5PM
ID FETCH-LOGICAL-c3867-5aac23f3647d8db524179b74fde79f9c56e39e64103b0d84910236df374f164a3
ISSN 0022-538X
IngestDate Thu Aug 21 14:14:20 EDT 2025
Fri Jul 11 02:42:18 EDT 2025
Fri Jul 11 09:20:32 EDT 2025
Wed Feb 19 02:32:51 EST 2025
Mon Jul 21 09:12:42 EDT 2025
Thu Apr 24 23:01:30 EDT 2025
Tue Jul 01 00:57:17 EDT 2025
Wed May 18 15:25:36 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords Immunopathology
Antigenic determinant
HIV-1 virus
Retroviridae
AIDS
Immune deficiency
Lentivirus
Virology
Infection
Virus
Viral disease
Human immunodeficiency virus
Cytotoxic T lymphocyte
Fitness
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3867-5aac23f3647d8db524179b74fde79f9c56e39e64103b0d84910236df374f164a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Corresponding author. Mailing address: Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195-8070. Phone: (206) 732-6163. Fax: (206) 732-6167. E-mail: jmullins@u.washington.edu
Present address: Biotechnology Centre, Kharagpur-721302, Midnapore, West Bengal, India.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2169017
PMID 17728222
PQID 20374794
PQPubID 23462
PageCount 10
ParticipantIDs pascalfrancis_primary_19219684
proquest_miscellaneous_68443913
highwire_asm_jvi_81_22_12179
crossref_citationtrail_10_1128_JVI_01277_07
crossref_primary_10_1128_JVI_01277_07
proquest_miscellaneous_20374794
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2169017
pubmed_primary_17728222
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-11-00
PublicationDateYYYYMMDD 2007-11-01
PublicationDate_xml – month: 11
  year: 2007
  text: 2007-11-00
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Journal of Virology
PublicationTitleAlternate J Virol
PublicationYear 2007
Publisher American Society for Microbiology
American Society for Microbiology (ASM)
Publisher_xml – name: American Society for Microbiology
– name: American Society for Microbiology (ASM)
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
(e_1_3_2_52_2) 1997; 276
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
(e_1_3_2_51_2) 2005; 304
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
(e_1_3_2_25_2) 2003; 5
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
(e_1_3_2_53_2) 1995; 154
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
(e_1_3_2_33_2) 2006; 13
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_61_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
References_xml – ident: e_1_3_2_50_2
  doi: 10.1126/science.1069660
– ident: e_1_3_2_66_2
  doi: 10.1128/JVI.76.17.8757-8768.2002
– ident: e_1_3_2_13_2
  doi: 10.1128/JVI.77.12.6867-6878.2003
– ident: e_1_3_2_26_2
  doi: 10.1128/JVI.77.23.12430-12440.2003
– ident: e_1_3_2_57_2
  doi: 10.1128/JVI.74.19.9222-9233.2000
– ident: e_1_3_2_10_2
  doi: 10.1038/nm0297-205
– ident: e_1_3_2_61_2
  doi: 10.1126/science.272.5261.537
– ident: e_1_3_2_3_2
  doi: 10.1093/intimm/8.5.641
– ident: e_1_3_2_32_2
  doi: 10.1038/nature03113
– ident: e_1_3_2_46_2
  doi: 10.1128/JVI.02739-06
– ident: e_1_3_2_6_2
  doi: 10.1128/JVI.79.20.12952-12960.2005
– ident: e_1_3_2_43_2
  doi: 10.4049/jimmunol.165.11.6214
– ident: e_1_3_2_24_2
  doi: 10.1038/nm998
– ident: e_1_3_2_8_2
  doi: 10.1126/science.1131528
– ident: e_1_3_2_29_2
  doi: 10.4049/jimmunol.171.10.5372
– ident: e_1_3_2_44_2
  doi: 10.1128/JVI.00575-06
– ident: e_1_3_2_2_2
  doi: 10.1128/JVI.77.3.2081-2092.2003
– ident: e_1_3_2_14_2
  doi: 10.4049/jimmunol.171.7.3837
– ident: e_1_3_2_59_2
  doi: 10.1038/nm821
– ident: e_1_3_2_11_2
  doi: 10.1172/JCI2405
– volume: 5
  start-page: 131
  year: 2003
  ident: e_1_3_2_25_2
  publication-title: AIDS Rev.
– ident: e_1_3_2_27_2
  doi: 10.1038/nm0297-212
– ident: e_1_3_2_60_2
  doi: 10.1038/nm893
– ident: e_1_3_2_62_2
  doi: 10.1084/jem.20022138
– ident: e_1_3_2_31_2
  doi: 10.1084/jem.20040511
– ident: e_1_3_2_15_2
  doi: 10.1128/JVI.00465-07
– ident: e_1_3_2_48_2
  doi: 10.1128/JVI.80.7.3617-3623.2006
– ident: e_1_3_2_18_2
  doi: 10.4049/jimmunol.166.3.1690
– ident: e_1_3_2_34_2
  doi: 10.1128/JVI.79.13.8171-8181.2005
– ident: e_1_3_2_23_2
  doi: 10.1038/ni1281
– ident: e_1_3_2_39_2
– ident: e_1_3_2_41_2
  doi: 10.4049/jimmunol.177.7.4699
– ident: e_1_3_2_36_2
  doi: 10.1002/1521-4141(200103)31:3<677::AID-IMMU677>3.0.CO;2-M
– ident: e_1_3_2_37_2
  doi: 10.1128/jvi.68.7.4650-4655.1994
– ident: e_1_3_2_9_2
  doi: 10.1128/jvi.68.9.6103-6110.1994
– ident: e_1_3_2_40_2
  doi: 10.1084/jem.20041455
– ident: e_1_3_2_4_2
  doi: 10.1128/JVI.79.21.13239-13249.2005
– ident: e_1_3_2_21_2
  doi: 10.1128/JVI.79.9.5721-5731.2005
– volume: 154
  start-page: 2189
  year: 1995
  ident: e_1_3_2_53_2
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.154.5.2189
– ident: e_1_3_2_55_2
  doi: 10.1126/science.279.5359.2103
– ident: e_1_3_2_20_2
  doi: 10.1128/JVI.78.2.630-641.2004
– ident: e_1_3_2_38_2
– ident: e_1_3_2_56_2
  doi: 10.1073/pnas.94.5.1890
– ident: e_1_3_2_64_2
  doi: 10.1016/S0065-2776(08)60600-8
– volume: 13
  start-page: 46
  year: 2006
  ident: e_1_3_2_33_2
  publication-title: Nat. Med.
– ident: e_1_3_2_65_2
  doi: 10.1128/JVI.78.3.1324-1332.2004
– ident: e_1_3_2_22_2
  doi: 10.1128/JVI.79.16.10218-10225.2005
– ident: e_1_3_2_54_2
  doi: 10.1038/nm0502-493
– ident: e_1_3_2_30_2
  doi: 10.1128/JVI.77.13.7682-7688.2003
– volume: 276
  start-page: 1955
  year: 1997
  ident: e_1_3_2_52_2
  publication-title: Science
– ident: e_1_3_2_42_2
  doi: 10.1038/nm992
– ident: e_1_3_2_12_2
  doi: 10.1086/345482
– ident: e_1_3_2_58_2
  doi: 10.1084/jem.179.2.463
– ident: e_1_3_2_7_2
  doi: 10.1128/JVI.02362-06
– ident: e_1_3_2_19_2
  doi: 10.1084/jem.20031982
– ident: e_1_3_2_17_2
  doi: 10.1128/jvi.68.10.6672-6683.1994
– ident: e_1_3_2_5_2
  doi: 10.1128/JVI.78.13.7069-7078.2004
– ident: e_1_3_2_28_2
  doi: 10.1128/JVI.73.7.5509-5519.1999
– ident: e_1_3_2_67_2
  doi: 10.1128/JVI.80.6.3122-3125.2006
– ident: e_1_3_2_49_2
  doi: 10.1002/eji.1830211051
– ident: e_1_3_2_45_2
  doi: 10.1016/j.virol.2005.11.036
– ident: e_1_3_2_47_2
  doi: 10.1128/JVI.01912-06
– ident: e_1_3_2_35_2
– volume: 304
  start-page: 369
  year: 2005
  ident: e_1_3_2_51_2
  publication-title: Methods Mol. Biol.
– ident: e_1_3_2_63_2
  doi: 10.4049/jimmunol.171.7.3718
– ident: e_1_3_2_16_2
  doi: 10.1534/genetics.106.062885
SSID ssj0014464
Score 2.1767294
Snippet Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley...
CD8 + cytotoxic T lymphocytes (CTL) are strong mediators of human immunodeficiency virus type 1 (HIV-1) control, yet HIV-1 frequently mutates to escape CTL...
CD8(+) cytotoxic T lymphocytes (CTL) are strong mediators of human immunodeficiency virus type 1 (HIV-1) control, yet HIV-1 frequently mutates to escape CTL...
CD8 super(+) cytotoxic T lymphocytes (CTL) are strong mediators of human immunodeficiency virus type 1 (HIV-1) control, yet HIV-1 frequently mutates to escape...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12179
SubjectTerms Amino Acid Sequence
Antigenic Variation - genetics
Biological and medical sciences
Epitopes, T-Lymphocyte - genetics
Evolution, Molecular
Fundamental and applied biological sciences. Psychology
HIV-1 - genetics
HIV-1 - immunology
Human immunodeficiency virus 1
Humans
Microbiology
Miscellaneous
Molecular Sequence Data
Mutation
Pathogenesis and Immunity
T-Lymphocytes, Cytotoxic - immunology
Virology
Title Evolution of Human Immunodeficiency Virus Type 1 Cytotoxic T-Lymphocyte Epitopes: Fitness-Balanced Escape
URI http://jvi.asm.org/content/81/22/12179.abstract
https://www.ncbi.nlm.nih.gov/pubmed/17728222
https://www.proquest.com/docview/20374794
https://www.proquest.com/docview/68443913
https://pubmed.ncbi.nlm.nih.gov/PMC2169017
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BERIXxBvTUvYAp8glu3b84IZQUaigpxRVXFbeh9WtUjtqnIj01zOzfsSJEgm4WJG9mUT-vp3dmZ0HIe9hLqvYxAy7l8V-GCrupzLIfW1YokKuWe6y3n-cR-OL8OxydLmVXVLJE3W3M6_kf1CFe4ArZsn-A7KdULgBnwFfuALCcP0rjE-XjXi35XPueIv5HqU2WBjCZVUu7e1iXnta2UCtqrIqf1s1mPjTFQBZwh0zMDOY17M6Oi63FWo_X2LMIwYHmDnGSO3ZxGKWXN8v_90unFK3a3_fOSy9xXbU76-rzPlox2WzcrrwZmmrWgcWdt64aVuHRNxk5vWULNq3gesY3CnZhPXIVGciNyqTgVGU7lbmHBMUzn5-O8HzcfSo9ofBK5ndOGAZWAi4z1kvaV2gYfvoPnkAEjhv3TnNMRPYwmFbTh7_cZsZwZOP_Z_FyrKNoM3tS1tSGiNqM0BjmtfdUHaZK9tRt71tzOQJedxARz_XZHpK7pniGXlYdyRdPSe2oxQtc-ooRbcpRR2lKFKKMtpRivYpRVtKfaLbhKI1oV6Qi6-nky9jv-nG4asggdV0lGWKBzn2G9CJliOOvetkHObaxGmeqlFkgtREIRsGcqiTMMWiIJHOAxgCNnkWvCQHRVmY14SOQAcwFUmtZR6mXEvNMx4aMFVMpBRLPTJoX7JQTal67JgyFc5k5YkAdIRDRwxjj3zoRs_qEi17xh21eIlsfiOul1YkTHAuHAU9cryB4VpWCqt6lIQeedeCKkAH48FaVphyMRccizjBwrZ_BHwdU9wDj7yqSbCW3hDLI_EGPboBWP9980lhr1wdeI5H3Cx-s1fmIXm0nqBH5KC6XZi3sIeu5LGbB38A2jvIdw
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+human+immunodeficiency+virus+type+1+cytotoxic+T-lymphocyte+epitopes%3A+fitness-balanced+escape&rft.jtitle=Journal+of+virology&rft.au=Liu%2C+Yi&rft.au=McNevin%2C+John&rft.au=Zhao%2C+Hong&rft.au=Tebit%2C+Denis+M&rft.date=2007-11-01&rft.issn=0022-538X&rft.volume=81&rft.issue=22&rft.spage=12179&rft_id=info:doi/10.1128%2FJVI.01277-07&rft_id=info%3Apmid%2F17728222&rft.externalDocID=17728222
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon