Light grazing facilitates carbon accumulation in subsoil in Chinese grasslands: A meta‐analysis
Grazing by livestock greatly affects the soil carbon (C) cycle in grassland ecosystems. However, the effects of grazing at different intensities and durations on the dynamics of soil C in its subsoil layers are not clearly understood. Here, we compiled data from 78 sites (in total 122 published stud...
Saved in:
Published in | Global change biology Vol. 26; no. 12; pp. 7186 - 7197 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1354-1013 1365-2486 1365-2486 |
DOI | 10.1111/gcb.15326 |
Cover
Loading…
Abstract | Grazing by livestock greatly affects the soil carbon (C) cycle in grassland ecosystems. However, the effects of grazing at different intensities and durations on the dynamics of soil C in its subsoil layers are not clearly understood. Here, we compiled data from 78 sites (in total 122 published studies) to examine the effects of varying grazing intensities and durations on soil C content at different depths for grasslands in China. Our meta‐analysis revealed that grazing led to an overall decrease in soil C content and productivity of above‐ground vegetation (e.g., above‐ground biomass and litter) but an increase in below‐ground biomass. Specifically, the effects of grazing on soil C content became less negative or even positive with increasing soil depths. An increase of soil C content was consequently found under light grazing (LG), although soil C content still decreased under moderate and heavy grazing. The increase in soil C content under LG could be largely attributed to the increase of soil C content in subsoil layers (>20 cm), despite that soil C content in surface soil layer (0–20 cm) decreased. Moreover, the magnitude of increase in soil C content under LG in subsoil layers increased with grazing duration. A possible reason of the increase in soil C content in the subsoil layers was due to the increases in below‐ground biomass. Our study highlights that LG may modify the allocation of C input and promote its accumulation in subsoil layers, thus offsetting the negative impact of grazing on surface soil C content, a finding that has significant implications for C sequestration in grasslands.
Light grazing (LG) increased the soil C content (SCC) owing to its positive effect on SCC in subsoil layers (>20 cm), although its effect in the surface soil layer (0–20 cm) was negative. A possible reason is that LG may promote the below‐ground biomass (BGB) in subsoil layers (>20 cm), offsetting the negative impact on above‐ground biomass (AGB) and litter. Blue downward pointing arrows represent decrease and red upward pointing arrows represent increase in the variables. SWC: soil water content. |
---|---|
AbstractList | Grazing by livestock greatly affects the soil carbon (C) cycle in grassland ecosystems. However, the effects of grazing at different intensities and durations on the dynamics of soil C in its subsoil layers are not clearly understood. Here, we compiled data from 78 sites (in total 122 published studies) to examine the effects of varying grazing intensities and durations on soil C content at different depths for grasslands in China. Our meta-analysis revealed that grazing led to an overall decrease in soil C content and productivity of above-ground vegetation (e.g., above-ground biomass and litter) but an increase in below-ground biomass. Specifically, the effects of grazing on soil C content became less negative or even positive with increasing soil depths. An increase of soil C content was consequently found under light grazing (LG), although soil C content still decreased under moderate and heavy grazing. The increase in soil C content under LG could be largely attributed to the increase of soil C content in subsoil layers (>20 cm), despite that soil C content in surface soil layer (0-20 cm) decreased. Moreover, the magnitude of increase in soil C content under LG in subsoil layers increased with grazing duration. A possible reason of the increase in soil C content in the subsoil layers was due to the increases in below-ground biomass. Our study highlights that LG may modify the allocation of C input and promote its accumulation in subsoil layers, thus offsetting the negative impact of grazing on surface soil C content, a finding that has significant implications for C sequestration in grasslands. Grazing by livestock greatly affects the soil carbon (C) cycle in grassland ecosystems. However, the effects of grazing at different intensities and durations on the dynamics of soil C in its subsoil layers are not clearly understood. Here, we compiled data from 78 sites (in total 122 published studies) to examine the effects of varying grazing intensities and durations on soil C content at different depths for grasslands in China. Our meta‐analysis revealed that grazing led to an overall decrease in soil C content and productivity of above‐ground vegetation (e.g., above‐ground biomass and litter) but an increase in below‐ground biomass. Specifically, the effects of grazing on soil C content became less negative or even positive with increasing soil depths. An increase of soil C content was consequently found under light grazing (LG), although soil C content still decreased under moderate and heavy grazing. The increase in soil C content under LG could be largely attributed to the increase of soil C content in subsoil layers (>20 cm), despite that soil C content in surface soil layer (0–20 cm) decreased. Moreover, the magnitude of increase in soil C content under LG in subsoil layers increased with grazing duration. A possible reason of the increase in soil C content in the subsoil layers was due to the increases in below‐ground biomass. Our study highlights that LG may modify the allocation of C input and promote its accumulation in subsoil layers, thus offsetting the negative impact of grazing on surface soil C content, a finding that has significant implications for C sequestration in grasslands. Grazing by livestock greatly affects the soil carbon (C) cycle in grassland ecosystems. However, the effects of grazing at different intensities and durations on the dynamics of soil C in its subsoil layers are not clearly understood. Here, we compiled data from 78 sites (in total 122 published studies) to examine the effects of varying grazing intensities and durations on soil C content at different depths for grasslands in China. Our meta‐analysis revealed that grazing led to an overall decrease in soil C content and productivity of above‐ground vegetation (e.g., above‐ground biomass and litter) but an increase in below‐ground biomass. Specifically, the effects of grazing on soil C content became less negative or even positive with increasing soil depths. An increase of soil C content was consequently found under light grazing (LG), although soil C content still decreased under moderate and heavy grazing. The increase in soil C content under LG could be largely attributed to the increase of soil C content in subsoil layers (>20 cm), despite that soil C content in surface soil layer (0–20 cm) decreased. Moreover, the magnitude of increase in soil C content under LG in subsoil layers increased with grazing duration. A possible reason of the increase in soil C content in the subsoil layers was due to the increases in below‐ground biomass. Our study highlights that LG may modify the allocation of C input and promote its accumulation in subsoil layers, thus offsetting the negative impact of grazing on surface soil C content, a finding that has significant implications for C sequestration in grasslands. Light grazing (LG) increased the soil C content (SCC) owing to its positive effect on SCC in subsoil layers (>20 cm), although its effect in the surface soil layer (0–20 cm) was negative. A possible reason is that LG may promote the below‐ground biomass (BGB) in subsoil layers (>20 cm), offsetting the negative impact on above‐ground biomass (AGB) and litter. Blue downward pointing arrows represent decrease and red upward pointing arrows represent increase in the variables. SWC: soil water content. Grazing by livestock greatly affects the soil carbon (C) cycle in grassland ecosystems. However, the effects of grazing at different intensities and durations on the dynamics of soil C in its subsoil layers are not clearly understood. Here, we compiled data from 78 sites (in total 122 published studies) to examine the effects of varying grazing intensities and durations on soil C content at different depths for grasslands in China. Our meta-analysis revealed that grazing led to an overall decrease in soil C content and productivity of above-ground vegetation (e.g., above-ground biomass and litter) but an increase in below-ground biomass. Specifically, the effects of grazing on soil C content became less negative or even positive with increasing soil depths. An increase of soil C content was consequently found under light grazing (LG), although soil C content still decreased under moderate and heavy grazing. The increase in soil C content under LG could be largely attributed to the increase of soil C content in subsoil layers (>20 cm), despite that soil C content in surface soil layer (0-20 cm) decreased. Moreover, the magnitude of increase in soil C content under LG in subsoil layers increased with grazing duration. A possible reason of the increase in soil C content in the subsoil layers was due to the increases in below-ground biomass. Our study highlights that LG may modify the allocation of C input and promote its accumulation in subsoil layers, thus offsetting the negative impact of grazing on surface soil C content, a finding that has significant implications for C sequestration in grasslands.Grazing by livestock greatly affects the soil carbon (C) cycle in grassland ecosystems. However, the effects of grazing at different intensities and durations on the dynamics of soil C in its subsoil layers are not clearly understood. Here, we compiled data from 78 sites (in total 122 published studies) to examine the effects of varying grazing intensities and durations on soil C content at different depths for grasslands in China. Our meta-analysis revealed that grazing led to an overall decrease in soil C content and productivity of above-ground vegetation (e.g., above-ground biomass and litter) but an increase in below-ground biomass. Specifically, the effects of grazing on soil C content became less negative or even positive with increasing soil depths. An increase of soil C content was consequently found under light grazing (LG), although soil C content still decreased under moderate and heavy grazing. The increase in soil C content under LG could be largely attributed to the increase of soil C content in subsoil layers (>20 cm), despite that soil C content in surface soil layer (0-20 cm) decreased. Moreover, the magnitude of increase in soil C content under LG in subsoil layers increased with grazing duration. A possible reason of the increase in soil C content in the subsoil layers was due to the increases in below-ground biomass. Our study highlights that LG may modify the allocation of C input and promote its accumulation in subsoil layers, thus offsetting the negative impact of grazing on surface soil C content, a finding that has significant implications for C sequestration in grasslands. |
Author | Hu, Zhong‐Min Jiang, Zhi‐Yun Wang, Mei Zhang, Meng Han, Dao‐Rui Liu, Min Guo, Ming‐Yan Lai, Derrick Y. F. |
Author_xml | – sequence: 1 givenname: Zhi‐Yun surname: Jiang fullname: Jiang, Zhi‐Yun organization: South China Normal University – sequence: 2 givenname: Zhong‐Min orcidid: 0000-0002-4801-5370 surname: Hu fullname: Hu, Zhong‐Min email: huzm@m.scnu.edu.cn organization: Southern Marine Science and Engineering Guangdong Laboratory – sequence: 3 givenname: Derrick Y. F. orcidid: 0000-0002-1225-9904 surname: Lai fullname: Lai, Derrick Y. F. organization: The Chinese University of Hong Kong – sequence: 4 givenname: Dao‐Rui orcidid: 0000-0002-1871-7056 surname: Han fullname: Han, Dao‐Rui organization: South China Normal University – sequence: 5 givenname: Mei surname: Wang fullname: Wang, Mei organization: South China Normal University – sequence: 6 givenname: Min surname: Liu fullname: Liu, Min organization: Key Laboratory of Tourism and Resources Environment in Taishan University – sequence: 7 givenname: Meng surname: Zhang fullname: Zhang, Meng organization: Ministry of Ecology and Environment of the People's Republic of China – sequence: 8 givenname: Ming‐Yan surname: Guo fullname: Guo, Ming‐Yan organization: South China Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32870565$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9O3DAQxq1qUWFpD7wAisQFDln8J7EdbssKKNJKvbTnaOJ1FiMnWTyJ0HLqI_QZ-yR1WNrDSrRzmRnr943G803JpO1aS8gJozMW43JtqhnLBZcfyBETMk95puVkrPMsZZSJQzJFfKSUCk7lR3IouFY0l_kRgaVbP_TJOsCLa9dJDcZ510NvMTEQqq5NwJihGTz0LjauTXCosHN-LBcPrrVoRzWih3aFV8k8aWwPv378hBb8Fh1-Igc1eLSf3_Ix-X57823xJV1-vbtfzJepEVrK1KyslVVBNc-1Xtm4iOS6qpXiUjEwqtAqMxwKwWydUSmUEgYKqCol61rHh2Nyvpu7Cd3TYLEvG4fG-riX7QYseZ6zgkZZ8X80E4UUTPARPdtDH7shxK-NlORKyUKJSJ2-UUPV2FW5Ca6BsC3_3DkCFzvAhA4x2Povwmg5elhGD8tXDyN7ucea0ZF4_j6A8_9SPDtvt--PLu8W1zvFb04GrJs |
CitedBy_id | crossref_primary_10_1016_j_apsoil_2025_105886 crossref_primary_10_1016_j_ecolind_2021_108470 crossref_primary_10_1016_j_catena_2021_105507 crossref_primary_10_1016_j_scitotenv_2024_171288 crossref_primary_10_1038_s41558_024_01957_9 crossref_primary_10_1016_j_agee_2021_107851 crossref_primary_10_1111_oik_09809 crossref_primary_10_1016_j_agee_2025_109630 crossref_primary_10_1111_gcb_15816 crossref_primary_10_1002_ldr_5035 crossref_primary_10_1016_j_scitotenv_2024_175081 crossref_primary_10_1016_j_fcr_2023_109204 crossref_primary_10_3389_fpls_2023_1238077 crossref_primary_10_1016_j_catena_2024_108629 crossref_primary_10_1029_2024GL111652 crossref_primary_10_1016_j_scs_2024_105229 crossref_primary_10_1111_1365_2435_14533 crossref_primary_10_1016_j_catena_2023_107412 crossref_primary_10_1016_j_scitotenv_2024_171439 crossref_primary_10_1002_ldr_4819 crossref_primary_10_1016_j_scitotenv_2024_175417 crossref_primary_10_1073_pnas_2405758121 crossref_primary_10_3390_su16114538 crossref_primary_10_1016_j_catena_2021_105635 crossref_primary_10_3390_app14052061 crossref_primary_10_1016_j_catena_2024_108608 crossref_primary_10_1016_j_scitotenv_2024_171171 crossref_primary_10_1086_733661 crossref_primary_10_3390_agriculture13051084 crossref_primary_10_1111_geb_13664 crossref_primary_10_1002_ece3_9182 crossref_primary_10_1016_j_agee_2023_108825 crossref_primary_10_3389_fpls_2021_765070 crossref_primary_10_1080_27658511_2021_1895474 crossref_primary_10_1016_j_catena_2023_107709 crossref_primary_10_3390_agronomy14102370 crossref_primary_10_1016_j_agee_2023_108602 crossref_primary_10_1016_j_scitotenv_2021_151771 crossref_primary_10_3390_agronomy14081823 crossref_primary_10_1093_jpe_rtae016 crossref_primary_10_1079_cabireviews202217032 crossref_primary_10_1016_j_agee_2024_109296 crossref_primary_10_1007_s44246_023_00051_7 crossref_primary_10_1016_j_ecolind_2023_111509 crossref_primary_10_3389_fpls_2023_1076902 crossref_primary_10_3390_agronomy14122890 crossref_primary_10_1016_j_scitotenv_2025_178702 crossref_primary_10_1007_s11104_023_06392_x crossref_primary_10_3390_f15081438 crossref_primary_10_3389_fevo_2022_865703 crossref_primary_10_1016_j_agee_2023_108771 crossref_primary_10_1016_j_ecoleng_2023_107160 crossref_primary_10_1016_j_jenvman_2023_119146 crossref_primary_10_1007_s11368_022_03333_6 crossref_primary_10_1016_j_ecolind_2022_109111 crossref_primary_10_1016_j_scitotenv_2024_169995 crossref_primary_10_1088_1755_1315_692_4_042056 crossref_primary_10_1016_j_jclepro_2021_127430 crossref_primary_10_1016_j_soilbio_2022_108629 crossref_primary_10_1177_03091333241280095 crossref_primary_10_1016_j_jclepro_2022_131918 crossref_primary_10_7717_peerj_12771 crossref_primary_10_1002_ldr_5289 crossref_primary_10_1016_j_scitotenv_2022_159758 |
Cites_doi | 10.1016/j.scitotenv.2019.04.279 10.1007/s10021-009-9252-6 10.7717/peerj.233 10.1016/j.catena.2013.05.008 10.1002/ldr.2668 10.1007/s10584-007-9316-6 10.1002/ecs2.1656 10.1097/00010694-199910000-00002 10.1016/j.agee.2017.10.023 10.1186/s12870-015-0655-6 10.1007/978-3-319-46709-2_1 10.2111/08-255.1 10.1890/1051-0761(1999)009[0065:IOGMOT]2.0.CO;2 10.1890/14-1368.1 10.1007/978-94-007-4159-1_20 10.1111/j.1365-2664.2012.02205.x 10.1111/gcb.14823 10.1111/j.1442-9993.2004.01337.x 10.1890/11-2070.1 10.1111/gcb.14070 10.1111/geb.12235 10.1371/journal.pone.0215223 10.1007/s00374-005-0066-1 10.1016/j.apsoil.2018.03.008 10.1111/j.1461-0248.2010.01486.x 10.1111/j.1365-2745.2009.01549.x 10.1890/ES10-00017.1 10.1023/B:ENVI.0000003631.43271.6b 10.1111/1365-2435.13215 10.1007/s11430-007-0049-1 10.1016/j.agrformet.2019.107634 10.1126/science.247.4946.1043 10.1016/j.scitotenv.2007.11.013 10.1890/04-1724 10.1016/j.gloplacha.2008.12.011 10.1111/j.1365-2486.2011.02557.x 10.1093/forestscience/57.1.67 10.1016/j.agrformet.2019.02.022 10.1111/j.1461-0248.2011.01630.x 10.1016/j.soilbio.2011.05.011 10.1016/j.agee.2010.12.010 10.1111/gcb.13133 10.1002/eco.1831 10.1002/jsfa.7302 10.1007/s11104-005-2554-3 10.1016/j.actao.2013.12.006 10.1016/j.agrformet.2018.07.011 10.1111/j.1365-2389.2011.01393.x 10.1371/journal.pone.0081466 10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2 10.1016/j.earscirev.2017.08.008 10.1016/S0038-0717(01)00158-4 10.1111/gcb.12144 10.1002/ldr.2736 10.1016/j.gloenvcha.2012.10.001 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 10.1111/1365-2664.13443 10.1079/9780851994529.0061 10.17221/7/2011-PSE 10.1071/AR9600902 10.1038/nclimate3426 10.1016/j.jaridenv.2004.10.001 10.1007/s11104-015-2528-z 10.1111/gcb.13431 10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2 10.1016/j.agee.2012.10.001 10.1016/j.scitotenv.2018.11.082 10.1111/1365-2664.13166 10.1046/j.1365-2486.1998.00151.x |
ContentType | Journal Article |
Copyright | 2020 John Wiley & Sons Ltd 2020 John Wiley & Sons Ltd. Copyright © 2020 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2020 John Wiley & Sons Ltd – notice: 2020 John Wiley & Sons Ltd. – notice: Copyright © 2020 John Wiley & Sons Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 |
DOI | 10.1111/gcb.15326 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE CrossRef AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
EISSN | 1365-2486 |
EndPage | 7197 |
ExternalDocumentID | 32870565 10_1111_gcb_15326 GCB15326 |
Genre | article Meta-Analysis Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Natural Science Foundation of Guangdong Province, China funderid: 2018A030310517 – fundername: China Postdoctoral Science Foundation funderid: 2018M643110 – fundername: National Natural Science Foundation of China funderid: 31922053 41901027 – fundername: The Second Tibetan Plateau Scientific Expedition and Research Program funderid: 2019QZKK0405 – fundername: National Key R & D Program of China – fundername: State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment funderid: SKLLQG1910 – fundername: National Key R & D Program of China grantid: 2017YFA0604801 – fundername: National Natural Science Foundation of China grantid: 31922053 – fundername: National Natural Science Foundation of China grantid: 31922053 41901027 – fundername: China Postdoctoral Science Foundation grantid: 2018M643110 – fundername: The Second Tibetan Plateau Scientific Expedition and Research Program grantid: 2019QZKK0405 – fundername: State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment grantid: SKLLQG1910 – fundername: National Natural Science Foundation of China grantid: 41901027 – fundername: Natural Science Foundation of Guangdong Province, China grantid: 2018A030310517 |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W H97 L.G 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3866-cdee6b9082588defac628bf772671ac79874c2a931ef4063773ca9abb76ff8063 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 1365-2486 |
IngestDate | Fri Jul 11 18:26:54 EDT 2025 Fri Jul 11 03:05:12 EDT 2025 Fri Jul 25 11:00:33 EDT 2025 Wed Feb 19 02:27:51 EST 2025 Tue Jul 01 03:53:04 EDT 2025 Thu Apr 24 23:12:23 EDT 2025 Wed Jan 22 16:31:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | below-ground biomass dynamics of soil carbon grasslands grazing intensity grazing duration deeper soil |
Language | English |
License | 2020 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3866-cdee6b9082588defac628bf772671ac79874c2a931ef4063773ca9abb76ff8063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1225-9904 0000-0002-1871-7056 0000-0002-4801-5370 |
PMID | 32870565 |
PQID | 2462776973 |
PQPubID | 30327 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2551907739 proquest_miscellaneous_2439631329 proquest_journals_2462776973 pubmed_primary_32870565 crossref_primary_10_1111_gcb_15326 crossref_citationtrail_10_1111_gcb_15326 wiley_primary_10_1111_gcb_15326_GCB15326 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 2020-Dec 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Chang Biol |
PublicationYear | 2020 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2017; 7 2017; 8 2010; 13 2004; 29 2013; 23 2018; 129 2019; 56 2011; 62 2019; 14 1999; 164 2004; 6 2012; 18 2011; 57 2011; 14 2005; 61 2013; 164 2013; 8 1999; 80 2010; 63 2009; 12 2013; 19 2018; 253 2009; 97 2014; 2 2000 2015; 85 2013; 94 2019; 25 2019; 675 2006; 280 2001; 11 2018; 32 2019; 276 2014; 55 2009; 67 2018; 262 2015; 15 1960; 11 2019; 269–270 2011; 2 1990; 247 2013; 109 2012 2017; 28 2002; 34 2017; 23 2008; 404 2016; 96 2017; 173 2007; 50 1999; 9 2018; 24 2015; 394 2015; 24 2001; 82 2006; 87 2006; 43 2017; 10 2019; 654 2017 2011; 43 2012; 49 2008; 86 2018; 55 2011; 140 1998; 4 2016; 22 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 Harrison R. B. (e_1_2_7_26_1) 2011; 57 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 15 start-page: 278 year: 2015 article-title: The role of invertases in plant compensatory responses to simulated herbivory publication-title: BMC Plant Biology – volume: 404 start-page: 297 year: 2008 end-page: 307 article-title: Molecular C dynamics downstream: The biochemical decomposition sequence and its impact on soil organic matter structure and function publication-title: Science of the Total Environment – volume: 109 start-page: 39 year: 2013 end-page: 48 article-title: Shrub encroachment with increasing anthropogenic disturbance in the semiarid Inner Mongolian grasslands of China publication-title: Catena – volume: 173 start-page: 84 year: 2017 end-page: 95 article-title: Effects of grazing exclusion on carbon sequestration in China’s grassland publication-title: Earth‐Science Reviews – volume: 7 start-page: 762 year: 2017 end-page: 763 article-title: Soil carbon: Depth of understanding publication-title: Nature Climate Change – volume: 164 start-page: 718 year: 1999 end-page: 723 article-title: Carbon storage after long‐term grass establishment on degraded soils publication-title: Soil Science – volume: 34 start-page: 139 year: 2002 end-page: 162 article-title: The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter publication-title: Soil Biology & Biochemistry – volume: 8 issue: 12 year: 2013 article-title: Effects of different grazing intensities on grassland production in China: A meta‐analysis publication-title: PLoS One – volume: 4 start-page: 229 year: 1998 end-page: 233 article-title: The global carbon sink: A grassland perspective publication-title: Global Change Biology – volume: 2 year: 2014 article-title: Plant compensation to grazing and soil carbon dynamics in a tropical grassland publication-title: PeerJ – volume: 22 start-page: 1385 year: 2016 end-page: 1393 article-title: A synthesis of the effect of grazing exclusion on carbon dynamics in grasslands in China publication-title: Global Change Biology – volume: 49 start-page: 1204 year: 2012 end-page: 1215 article-title: Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient publication-title: Journal of Applied Ecology – volume: 269–270 start-page: 249 year: 2019 end-page: 256 article-title: Grazing‐induced increases in soil moisture maintain higher productivity during droughts in alpine meadows on the Tibetan Plateau publication-title: Agricultural and Forest Meteorology – volume: 86 start-page: 375 year: 2008 end-page: 396 article-title: Carbon storage in the grasslands of China based on field measurements of above‐ and belowground biomass publication-title: Climatic Change – volume: 14 issue: 4 year: 2019 article-title: Effects of grazing patterns on grassland biomass and soil environments in China: A meta‐analysis publication-title: PLoS One – volume: 6 start-page: 91 year: 2004 end-page: 109 article-title: Is it possible to mitigate greenhouse gas emissions in pastoral ecosystems of the tropics? publication-title: Environment, Development and Sustainability – volume: 247 start-page: 1043 year: 1990 end-page: 1048 article-title: Biological feedbacks in global desertification publication-title: Science – volume: 57 start-page: 271 year: 2011 end-page: 278 article-title: Grazing depresses soil carbon storage through changing plant biomass and composition in a Tibetan alpine meadow publication-title: Plant, Soil and Environment – volume: 28 start-page: 1473 year: 2017 end-page: 1481 article-title: Continental‐scale impacts of livestock grazing on ecosystem supporting and regulating services publication-title: Land Degradation & Development – start-page: 445 year: 2012 end-page: 464 – volume: 23 start-page: 1167 year: 2017 end-page: 1179 article-title: Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: A meta‐analysis publication-title: Global Change Biology – volume: 164 start-page: 80 year: 2013 end-page: 99 article-title: The knowns, known unknowns and unknowns of sequestration of soil organic carbon publication-title: Agriculture, Ecosystems and Environment – start-page: 131 year: 2017 end-page: 168 – volume: 129 start-page: 1 year: 2018 end-page: 12 article-title: Comprehensive analysis of grazing intensity impacts soil organic carbon: A case study in typical steppe of Inner Mongolia, China publication-title: Applied Soil Ecology – volume: 140 start-page: 234 year: 2011 end-page: 244 article-title: Minor stimulation of soil carbon storage by nitrogen addition: A meta‐analysis publication-title: Agriculture Ecosystems and Environment – volume: 25 start-page: 4383 year: 2019 end-page: 4393 article-title: Climate warming alters subsoil but not topsoil carbon dynamics in alpine grassland publication-title: Global Change Biology – volume: 19 start-page: 1347 year: 2013 end-page: 1357 article-title: Effects of grazing on grassland soil carbon: A global review publication-title: Global Change Biology – start-page: 61 year: 2000 end-page: 84 – volume: 57 start-page: 67 year: 2011 end-page: 76 article-title: Deep soil horizons: Contribution and importance to soil carbon pools and in assessing whole‐ecosystem response to management and global change publication-title: Forest Science – volume: 63 start-page: 109 year: 2010 end-page: 119 article-title: Pathways of grazing effects on soil organic carbon and nitrogen publication-title: Rangeland Ecology & Management – volume: 23 start-page: 240 year: 2013 end-page: 251 article-title: What can ecological science tell us about opportunities for carbon sequestration on arid rangelands in the United States? publication-title: Global Environmental Change – volume: 10 year: 2017 article-title: Microsite and grazing intensity drive infiltration in a semiarid woodland publication-title: Ecohydrology – volume: 24 start-page: 126 year: 2015 end-page: 138 article-title: A global synthesis of below‐ground carbon responses to biotic disturbance: A meta‐analysis publication-title: Global Ecology and Biogeography – volume: 55 start-page: 86 year: 2014 end-page: 96 article-title: Dynamic of grassland vegetation degradation and its quantitative assessment in the northwest China publication-title: Acta Oecologica – volume: 97 start-page: 876 year: 2009 end-page: 885 article-title: Grazing triggers soil carbon loss by altering plant roots and their control on soil microbial community publication-title: Journal of Ecology – volume: 56 start-page: 2007 year: 2019 end-page: 2019 article-title: Interactive effects of grazing and global change factors on soil and ecosystem respiration in grassland ecosystems: A global synthesis publication-title: Journal of Applied Ecology – volume: 11 start-page: 902 year: 1960 end-page: 926 article-title: Soil fertility changes in the long term experimental plots at Kybybolite, South Australia. I. Changes in pH, total nitrogen, organic carbon and bulk density publication-title: Australian Journal of Agricultural Research – volume: 9 start-page: 65 year: 1999 end-page: 71 article-title: Impact of grazing management on the carbon and nitrogen balance of a mixed‐grass rangeland publication-title: Ecological Applications – volume: 62 start-page: 822 year: 2011 end-page: 833 article-title: Carbon storage in low‐alpine grassland soils: Effects of different grazing intensities of sheep publication-title: European Journal of Soil Science – volume: 82 start-page: 2397 year: 2001 end-page: 2402 article-title: Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass publication-title: Ecology – volume: 43 start-page: 76 year: 2006 end-page: 82 article-title: Soil microbial activity and litter turnover in native grazed and ungrazed rangelands in a semiarid ecosystem publication-title: Biology and Fertility of Soils – volume: 94 start-page: 106 issue: 1 year: 2013 end-page: 116 article-title: Nutrients and defoliation increase soil carbon inputs in grassland publication-title: Ecology – volume: 654 start-page: 1218 year: 2019 end-page: 1224 article-title: Heavy grazing reduces grassland soil greenhouse gas fluxes: A global meta‐analysis publication-title: Science of the Total Environment – volume: 276 start-page: 107634 year: 2019 article-title: Patterns and drivers of soil carbon stock in southern China’s grasslands publication-title: Agricultural and Forest Meteorology – volume: 280 start-page: 77 year: 2006 end-page: 90 article-title: Grazing and ecosystem carbon storage in the North American Great Plains publication-title: Plant and Soil – volume: 80 start-page: 1150 year: 1999 end-page: 1156 article-title: The meta‐analysis of response ratios in experimental ecology publication-title: Ecology – volume: 24 start-page: 2997 year: 2018 end-page: 3009 article-title: Grazing enhances belowground carbon allocation, microbial biomass, and soil carbon in a subtropical grassland publication-title: Global Change Biology – volume: 28 start-page: 2098 issue: 7 year: 2017 end-page: 2108 article-title: Contrasting effects of aridity and grazing intensity on multiple ecosystem functions and services in Australian woodlands publication-title: Land Degradation & Development – volume: 394 start-page: 239 year: 2015 end-page: 255 article-title: How does soil particulate organic carbon respond to grazing intensity in permanent grasslands? publication-title: Plant and Soil – volume: 8 issue: 1 year: 2017 article-title: Effects of grazing on ecosystem structure and function of alpine grasslands in Qinghai‐Tibetan Plateau: A synthesis publication-title: Ecosphere – volume: 14 start-page: 709 issue: 7 year: 2011 end-page: 722 article-title: Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis publication-title: Ecology Letters – volume: 50 start-page: 1341 year: 2007 end-page: 1350 article-title: Terrestrial vegetation carbon sinks in China, 1981–2000 publication-title: Science in China Series D: Earth Sciences – volume: 29 start-page: 201 year: 2004 end-page: 208 article-title: Below‐ground biomass and productivity of a grazed site and a neighbouring ungrazed exclosure in a grassland in central Argentina publication-title: Austral Ecology – volume: 675 start-page: 642 year: 2019 end-page: 650 article-title: Effects and relationships of grazing intensity on multiple ecosystem services in the Inner Mongolian steppe publication-title: Science of the Total Environment – volume: 18 start-page: 528 year: 2012 end-page: 538 article-title: Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by CO pulse labeling publication-title: Global Change Biology – volume: 96 start-page: 1945 year: 2016 end-page: 1952 article-title: Long‐term impacts of grazing intensity on soil carbon sequestration and selected soil properties in the arid Eastern Cape, South Africa publication-title: Journal of the Science of the Food and Agriculture – volume: 43 start-page: 1902 year: 2011 end-page: 1907 article-title: Interactive effects of warming, soil humidity and plant diversity on litter decomposition and microbial activity publication-title: Soil Biology & Biochemistry – volume: 87 start-page: 53 year: 2006 end-page: 63 article-title: Elevated CO stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta‐analysis publication-title: Ecology – volume: 67 start-page: 20 year: 2009 end-page: 28 article-title: Soil respiration and human effects on global grasslands publication-title: Global and Planetary Change – volume: 11 start-page: 343 year: 2001 end-page: 355 article-title: Grassland management and conversion into grassland effects on soil carbon publication-title: Ecological Applications – volume: 13 start-page: 959 year: 2010 end-page: 968 article-title: Introduced grazers can restrict potential soil carbon sequestration through impacts on plant community composition publication-title: Ecology Letters – volume: 61 start-page: 651 issue: 4 year: 2005 end-page: 668 article-title: Vegetation changes in the Jornada Basin from 1858 to 1998 publication-title: Journal of Arid Environment – volume: 85 start-page: 269 year: 2015 end-page: 286 article-title: Changes in plant, soil, and microbes in a typical steppe from simulated grazing: Explaining potential change in soil C publication-title: Ecological Monographs – volume: 262 start-page: 157 year: 2018 end-page: 165 article-title: Grazing modulates soil temperature and moisture in a Eurasian steppe publication-title: Agricultural and Forest Meteorology – volume: 2 start-page: 304 year: 2011 end-page: 316 article-title: Grazing intensity impacts soil carbon and nitrogen storage of continental steppe publication-title: Ecosphere – volume: 253 start-page: 62 year: 2018 end-page: 81 article-title: Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands publication-title: Agriculture, Ecosystems and Environment – volume: 32 start-page: 2790 year: 2018 end-page: 2800 article-title: Livestock grazing regulates ecosystem multifunctionality in semi‐arid grassland publication-title: Functional Ecology – volume: 55 start-page: 2517 year: 2018 end-page: 2526 article-title: Grazer effects on soil carbon storage vary by herbivore assemblage in a semi‐arid grassland publication-title: Journal of Applied Ecology – volume: 12 start-page: 686 year: 2009 end-page: 697 article-title: Sheep grazing decreases organic carbon and nitrogen pools in the Patagonian steppe: Combination of direct and indirect effects publication-title: Ecosystems – ident: e_1_2_7_17_1 doi: 10.1016/j.scitotenv.2019.04.279 – ident: e_1_2_7_21_1 doi: 10.1007/s10021-009-9252-6 – ident: e_1_2_7_46_1 doi: 10.7717/peerj.233 – ident: e_1_2_7_39_1 doi: 10.1016/j.catena.2013.05.008 – ident: e_1_2_7_16_1 doi: 10.1002/ldr.2668 – ident: e_1_2_7_18_1 doi: 10.1007/s10584-007-9316-6 – ident: e_1_2_7_35_1 doi: 10.1002/ecs2.1656 – ident: e_1_2_7_41_1 doi: 10.1097/00010694-199910000-00002 – ident: e_1_2_7_2_1 doi: 10.1016/j.agee.2017.10.023 – ident: e_1_2_7_52_1 doi: 10.1186/s12870-015-0655-6 – ident: e_1_2_7_7_1 doi: 10.1007/978-3-319-46709-2_1 – ident: e_1_2_7_40_1 doi: 10.2111/08-255.1 – ident: e_1_2_7_50_1 doi: 10.1890/1051-0761(1999)009[0065:IOGMOT]2.0.CO;2 – ident: e_1_2_7_33_1 doi: 10.1890/14-1368.1 – ident: e_1_2_7_47_1 doi: 10.1007/978-94-007-4159-1_20 – ident: e_1_2_7_5_1 doi: 10.1111/j.1365-2664.2012.02205.x – ident: e_1_2_7_30_1 doi: 10.1111/gcb.14823 – ident: e_1_2_7_42_1 doi: 10.1111/j.1442-9993.2004.01337.x – ident: e_1_2_7_70_1 doi: 10.1890/11-2070.1 – ident: e_1_2_7_61_1 doi: 10.1111/gcb.14070 – ident: e_1_2_7_64_1 doi: 10.1111/geb.12235 – ident: e_1_2_7_25_1 doi: 10.1371/journal.pone.0215223 – ident: e_1_2_7_43_1 doi: 10.1007/s00374-005-0066-1 – ident: e_1_2_7_65_1 doi: 10.1016/j.apsoil.2018.03.008 – ident: e_1_2_7_4_1 doi: 10.1111/j.1461-0248.2010.01486.x – ident: e_1_2_7_31_1 doi: 10.1111/j.1365-2745.2009.01549.x – ident: e_1_2_7_27_1 doi: 10.1890/ES10-00017.1 – ident: e_1_2_7_44_1 doi: 10.1023/B:ENVI.0000003631.43271.6b – ident: e_1_2_7_45_1 doi: 10.1111/1365-2435.13215 – ident: e_1_2_7_19_1 doi: 10.1007/s11430-007-0049-1 – ident: e_1_2_7_59_1 doi: 10.1016/j.agrformet.2019.107634 – ident: e_1_2_7_49_1 doi: 10.1126/science.247.4946.1043 – ident: e_1_2_7_22_1 doi: 10.1016/j.scitotenv.2007.11.013 – ident: e_1_2_7_36_1 doi: 10.1890/04-1724 – ident: e_1_2_7_60_1 doi: 10.1016/j.gloplacha.2008.12.011 – ident: e_1_2_7_23_1 doi: 10.1111/j.1365-2486.2011.02557.x – volume: 57 start-page: 67 year: 2011 ident: e_1_2_7_26_1 article-title: Deep soil horizons: Contribution and importance to soil carbon pools and in assessing whole‐ecosystem response to management and global change publication-title: Forest Science doi: 10.1093/forestscience/57.1.67 – ident: e_1_2_7_66_1 doi: 10.1016/j.agrformet.2019.02.022 – ident: e_1_2_7_15_1 doi: 10.1111/j.1461-0248.2011.01630.x – ident: e_1_2_7_8_1 doi: 10.1016/j.soilbio.2011.05.011 – ident: e_1_2_7_34_1 doi: 10.1016/j.agee.2010.12.010 – ident: e_1_2_7_29_1 doi: 10.1111/gcb.13133 – ident: e_1_2_7_58_1 doi: 10.1002/eco.1831 – ident: e_1_2_7_55_1 doi: 10.1002/jsfa.7302 – ident: e_1_2_7_14_1 doi: 10.1007/s11104-005-2554-3 – ident: e_1_2_7_69_1 doi: 10.1016/j.actao.2013.12.006 – ident: e_1_2_7_63_1 doi: 10.1016/j.agrformet.2018.07.011 – ident: e_1_2_7_37_1 doi: 10.1111/j.1365-2389.2011.01393.x – ident: e_1_2_7_62_1 doi: 10.1371/journal.pone.0081466 – ident: e_1_2_7_24_1 doi: 10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2 – ident: e_1_2_7_13_1 doi: 10.1016/j.earscirev.2017.08.008 – ident: e_1_2_7_32_1 doi: 10.1016/S0038-0717(01)00158-4 – ident: e_1_2_7_38_1 doi: 10.1111/gcb.12144 – ident: e_1_2_7_57_1 doi: 10.1002/ldr.2736 – ident: e_1_2_7_6_1 doi: 10.1016/j.gloenvcha.2012.10.001 – ident: e_1_2_7_28_1 doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 – ident: e_1_2_7_67_1 doi: 10.1111/1365-2664.13443 – ident: e_1_2_7_12_1 doi: 10.1079/9780851994529.0061 – ident: e_1_2_7_54_1 doi: 10.17221/7/2011-PSE – ident: e_1_2_7_48_1 doi: 10.1071/AR9600902 – ident: e_1_2_7_3_1 doi: 10.1038/nclimate3426 – ident: e_1_2_7_20_1 doi: 10.1016/j.jaridenv.2004.10.001 – ident: e_1_2_7_11_1 doi: 10.1007/s11104-015-2528-z – ident: e_1_2_7_68_1 doi: 10.1111/gcb.13431 – ident: e_1_2_7_10_1 doi: 10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2 – ident: e_1_2_7_53_1 doi: 10.1016/j.agee.2012.10.001 – ident: e_1_2_7_56_1 doi: 10.1016/j.scitotenv.2018.11.082 – ident: e_1_2_7_9_1 doi: 10.1111/1365-2664.13166 – ident: e_1_2_7_51_1 doi: 10.1046/j.1365-2486.1998.00151.x |
SSID | ssj0003206 |
Score | 2.5937324 |
SecondaryResourceType | review_article |
Snippet | Grazing by livestock greatly affects the soil carbon (C) cycle in grassland ecosystems. However, the effects of grazing at different intensities and durations... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7186 |
SubjectTerms | aboveground biomass Accumulation Animals belowground biomass below‐ground biomass Biomass Carbon Carbon - analysis Carbon cycle China deeper soil dynamics of soil carbon Ecosystem Ecosystem assessment global change Grassland Grasslands Grazing grazing duration Grazing intensity Herbivory Livestock Meta-analysis Soil soil carbon Soil depth Soil dynamics Soil layers Soil surfaces Soils subsoil Subsoils |
Title | Light grazing facilitates carbon accumulation in subsoil in Chinese grasslands: A meta‐analysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.15326 https://www.ncbi.nlm.nih.gov/pubmed/32870565 https://www.proquest.com/docview/2462776973 https://www.proquest.com/docview/2439631329 https://www.proquest.com/docview/2551907739 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VlZC4AF0oLBRkEEJcstrYie2UU1m1VIhyQFTqASmyvc5q1W2CNruH9tSfwG_sL2HGeZTyEuKWx1gZO57xZ3v8DcBLg4OAFSKODM9otcrHkXaxjFKbciwyFqKgA85HH-XhcfL-JD3ZgDfdWZiGH6JfcCPLCP6aDNzY-gcjnzk7QnPlRLdNsVoEiD5dU0cJHvJqxiJN0NXEomUVoiievuTNsegXgHkTr4YB5-AufOlUbeJMTkfrlR25i59YHP-zLvfgTgtE2V7Tc7Zgw5cDuNWkpjwfwPb-9Qk4FGtdQD2A4RHC7GoZxNgrNlnMEfOGu_tgPtBUn82WxFk9Y4VxDQe4r5kzS1uVzDi3PmszhrF5yWr0W9V8QZeUydvXnkoj-KUTyLtsj535lbm6_GZa7pQHcHyw_3lyGLU5HCIntJSRm3ovLeVVT7Weevyw5NoWiOmlio1TmVaJ4yYTsS8QWwilhDOZsVbJotD4YBs2y6r0j4Bx48V4yolfyCWmkCajIHYceZVDWKb1EF53fzN3LcE55dlY5N1EB5s5D808hBe96NeG1eN3Qjtdl8hbw65znkiulEQdhvC8f40mSfsspvTVmmQEujWc5md_kUGkmo2xtijzsOluvSaCNp8RaGOFQqf5s4r5u8nbcPH430WfwG1OawYhJGcHNlfLtX-KwGplnwUL-g4xJR5I |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgguPBZKlxYwCCEuWW3sxEkQl7JtWWC3B9RKvVSR7XVWq24TtNk9wImf0N_IL2HGeZTyEuKWx1gZO57x57H9DcBzhYOAFsL3FE8oWmV9Lza-9EIdcizSFyKjA87jQzk8Dt6fhCdr8Lo5C1PxQ7QBN7IM56_JwCkg_YOVT43uob1yeQ02KKM3meXex0vyKMFdZk1fhAE6G1_UvEK0j6ctenU0-gViXkWsbsg5uA2njbLVTpOz3mqpe-bLTzyO_1ubO3CrxqJst-o8d2HN5h24XmWn_NyBzf3LQ3AoVnuBsgPdMSLtYuHE2As2mM8Q9rq7e6BGNNtn0wXRVk9ZpkxFA25LZtRCFzlTxqzO66RhbJazEl1XMZvTJSXztqWl0oh_6RDyK7bLzu1Sfft6oWr6lPtwfLB_NBh6dRoHz4hYSs9MrJWaUquHcTyx-GHJY50hrJeRr0yUxFFguEqEbzOEFyKKhFGJ0jqSWRbjg01Yz4vcbgHjyor-hBPFkAlUJlVC-9hx8I0MIrM47sLL5nempuY4p1Qb87SZ62Azp66Zu_CsFf1UEXv8Tmin6RNpbdtlygPJo0iiDl142r5Gq6SlFpXbYkUyAj0bzvSTv8ggWE36WFuUeVD1t1YTQevPiLWxQq7X_FnF9O3gjbt4-O-iT-DG8Gg8SkfvDj9sw01OIQS3Q2cH1peLlX2EOGupHztz-g728yJh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIhAXHguFhQIGIcQlq42dOA6cyrZLgbZCiEo9VIpsr7NasU2qze4BTvwEfiO_hBnnUcpLiFseY8V2Zsaf7fE3AE80DgJGiDDQPKXVKhcGyoYyiE3MschQiJwOOO8fyN3D6M1RfLQGL9qzMDU_RLfgRpbh_TUZ-Okk_8HIp9YM0Fy5vAAXIzlUNPPafn_GHSW4T6wZijhCXxOKhlaIwni6oucHo18Q5nnA6kec8TU4butaB5p8HKyWZmA__0Tj-J-NuQ5XGyTKtmrVuQFrrujBpTo35acebOycHYFDscYHVD3o7yPOLhdejD1lo_kMQa-_uwl6j-b6bLog0uopy7WtScBdxaxemLJg2trVSZMyjM0KVqHjKmdzuqRU3q5yVBrRLx1Bfs622Ilb6m9fvuqGPOUWHI53Pox2gyaJQ2CFkjKwE-ekocTqsVIThx-WXJkcQb1MQm2TVCWR5ToVocsRXIgkEVan2phE5rnCBxuwXpSFuwOMayeGE04EQzbSudQpRbHj0JtYxGVK9eFZ-zcz2zCcU6KNedbOdLCbM9_NfXjciZ7WtB6_E9psVSJrLLvKeCR5kkisQx8eda_RJmmjRReuXJGMQL-G8_z0LzIIVdMhthZlbtfq1tVE0O4zIm1skFeaP1cxezV66S_u_rvoQ7j8bnuc7b0-eHsPrnBaP_DhOZuwvlys3H0EWUvzwBvTd5WeIRk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light+grazing+facilitates+carbon+accumulation+in+subsoil+in+Chinese+grasslands%3A+A+meta%E2%80%90analysis&rft.jtitle=Global+change+biology&rft.au=Zhi%E2%80%90Yun+Jiang&rft.au=Zhong%E2%80%90Min+Hu&rft.au=Lai%2C+Derrick+Y+F&rft.au=Dao%E2%80%90Rui+Han&rft.date=2020-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=26&rft.issue=12&rft.spage=7186&rft.epage=7197&rft_id=info:doi/10.1111%2Fgcb.15326&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |