Light grazing facilitates carbon accumulation in subsoil in Chinese grasslands: A meta‐analysis

Grazing by livestock greatly affects the soil carbon (C) cycle in grassland ecosystems. However, the effects of grazing at different intensities and durations on the dynamics of soil C in its subsoil layers are not clearly understood. Here, we compiled data from 78 sites (in total 122 published stud...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 26; no. 12; pp. 7186 - 7197
Main Authors Jiang, Zhi‐Yun, Hu, Zhong‐Min, Lai, Derrick Y. F., Han, Dao‐Rui, Wang, Mei, Liu, Min, Zhang, Meng, Guo, Ming‐Yan
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.12.2020
Subjects
Online AccessGet full text
ISSN1354-1013
1365-2486
1365-2486
DOI10.1111/gcb.15326

Cover

Loading…
Abstract Grazing by livestock greatly affects the soil carbon (C) cycle in grassland ecosystems. However, the effects of grazing at different intensities and durations on the dynamics of soil C in its subsoil layers are not clearly understood. Here, we compiled data from 78 sites (in total 122 published studies) to examine the effects of varying grazing intensities and durations on soil C content at different depths for grasslands in China. Our meta‐analysis revealed that grazing led to an overall decrease in soil C content and productivity of above‐ground vegetation (e.g., above‐ground biomass and litter) but an increase in below‐ground biomass. Specifically, the effects of grazing on soil C content became less negative or even positive with increasing soil depths. An increase of soil C content was consequently found under light grazing (LG), although soil C content still decreased under moderate and heavy grazing. The increase in soil C content under LG could be largely attributed to the increase of soil C content in subsoil layers (>20 cm), despite that soil C content in surface soil layer (0–20 cm) decreased. Moreover, the magnitude of increase in soil C content under LG in subsoil layers increased with grazing duration. A possible reason of the increase in soil C content in the subsoil layers was due to the increases in below‐ground biomass. Our study highlights that LG may modify the allocation of C input and promote its accumulation in subsoil layers, thus offsetting the negative impact of grazing on surface soil C content, a finding that has significant implications for C sequestration in grasslands. Light grazing (LG) increased the soil C content (SCC) owing to its positive effect on SCC in subsoil layers (>20 cm), although its effect in the surface soil layer (0–20 cm) was negative. A possible reason is that LG may promote the below‐ground biomass (BGB) in subsoil layers (>20 cm), offsetting the negative impact on above‐ground biomass (AGB) and litter. Blue downward pointing arrows represent decrease and red upward pointing arrows represent increase in the variables. SWC: soil water content.
AbstractList Grazing by livestock greatly affects the soil carbon (C) cycle in grassland ecosystems. However, the effects of grazing at different intensities and durations on the dynamics of soil C in its subsoil layers are not clearly understood. Here, we compiled data from 78 sites (in total 122 published studies) to examine the effects of varying grazing intensities and durations on soil C content at different depths for grasslands in China. Our meta-analysis revealed that grazing led to an overall decrease in soil C content and productivity of above-ground vegetation (e.g., above-ground biomass and litter) but an increase in below-ground biomass. Specifically, the effects of grazing on soil C content became less negative or even positive with increasing soil depths. An increase of soil C content was consequently found under light grazing (LG), although soil C content still decreased under moderate and heavy grazing. The increase in soil C content under LG could be largely attributed to the increase of soil C content in subsoil layers (>20 cm), despite that soil C content in surface soil layer (0-20 cm) decreased. Moreover, the magnitude of increase in soil C content under LG in subsoil layers increased with grazing duration. A possible reason of the increase in soil C content in the subsoil layers was due to the increases in below-ground biomass. Our study highlights that LG may modify the allocation of C input and promote its accumulation in subsoil layers, thus offsetting the negative impact of grazing on surface soil C content, a finding that has significant implications for C sequestration in grasslands.
Grazing by livestock greatly affects the soil carbon (C) cycle in grassland ecosystems. However, the effects of grazing at different intensities and durations on the dynamics of soil C in its subsoil layers are not clearly understood. Here, we compiled data from 78 sites (in total 122 published studies) to examine the effects of varying grazing intensities and durations on soil C content at different depths for grasslands in China. Our meta‐analysis revealed that grazing led to an overall decrease in soil C content and productivity of above‐ground vegetation (e.g., above‐ground biomass and litter) but an increase in below‐ground biomass. Specifically, the effects of grazing on soil C content became less negative or even positive with increasing soil depths. An increase of soil C content was consequently found under light grazing (LG), although soil C content still decreased under moderate and heavy grazing. The increase in soil C content under LG could be largely attributed to the increase of soil C content in subsoil layers (>20 cm), despite that soil C content in surface soil layer (0–20 cm) decreased. Moreover, the magnitude of increase in soil C content under LG in subsoil layers increased with grazing duration. A possible reason of the increase in soil C content in the subsoil layers was due to the increases in below‐ground biomass. Our study highlights that LG may modify the allocation of C input and promote its accumulation in subsoil layers, thus offsetting the negative impact of grazing on surface soil C content, a finding that has significant implications for C sequestration in grasslands.
Grazing by livestock greatly affects the soil carbon (C) cycle in grassland ecosystems. However, the effects of grazing at different intensities and durations on the dynamics of soil C in its subsoil layers are not clearly understood. Here, we compiled data from 78 sites (in total 122 published studies) to examine the effects of varying grazing intensities and durations on soil C content at different depths for grasslands in China. Our meta‐analysis revealed that grazing led to an overall decrease in soil C content and productivity of above‐ground vegetation (e.g., above‐ground biomass and litter) but an increase in below‐ground biomass. Specifically, the effects of grazing on soil C content became less negative or even positive with increasing soil depths. An increase of soil C content was consequently found under light grazing (LG), although soil C content still decreased under moderate and heavy grazing. The increase in soil C content under LG could be largely attributed to the increase of soil C content in subsoil layers (>20 cm), despite that soil C content in surface soil layer (0–20 cm) decreased. Moreover, the magnitude of increase in soil C content under LG in subsoil layers increased with grazing duration. A possible reason of the increase in soil C content in the subsoil layers was due to the increases in below‐ground biomass. Our study highlights that LG may modify the allocation of C input and promote its accumulation in subsoil layers, thus offsetting the negative impact of grazing on surface soil C content, a finding that has significant implications for C sequestration in grasslands. Light grazing (LG) increased the soil C content (SCC) owing to its positive effect on SCC in subsoil layers (>20 cm), although its effect in the surface soil layer (0–20 cm) was negative. A possible reason is that LG may promote the below‐ground biomass (BGB) in subsoil layers (>20 cm), offsetting the negative impact on above‐ground biomass (AGB) and litter. Blue downward pointing arrows represent decrease and red upward pointing arrows represent increase in the variables. SWC: soil water content.
Grazing by livestock greatly affects the soil carbon (C) cycle in grassland ecosystems. However, the effects of grazing at different intensities and durations on the dynamics of soil C in its subsoil layers are not clearly understood. Here, we compiled data from 78 sites (in total 122 published studies) to examine the effects of varying grazing intensities and durations on soil C content at different depths for grasslands in China. Our meta-analysis revealed that grazing led to an overall decrease in soil C content and productivity of above-ground vegetation (e.g., above-ground biomass and litter) but an increase in below-ground biomass. Specifically, the effects of grazing on soil C content became less negative or even positive with increasing soil depths. An increase of soil C content was consequently found under light grazing (LG), although soil C content still decreased under moderate and heavy grazing. The increase in soil C content under LG could be largely attributed to the increase of soil C content in subsoil layers (>20 cm), despite that soil C content in surface soil layer (0-20 cm) decreased. Moreover, the magnitude of increase in soil C content under LG in subsoil layers increased with grazing duration. A possible reason of the increase in soil C content in the subsoil layers was due to the increases in below-ground biomass. Our study highlights that LG may modify the allocation of C input and promote its accumulation in subsoil layers, thus offsetting the negative impact of grazing on surface soil C content, a finding that has significant implications for C sequestration in grasslands.Grazing by livestock greatly affects the soil carbon (C) cycle in grassland ecosystems. However, the effects of grazing at different intensities and durations on the dynamics of soil C in its subsoil layers are not clearly understood. Here, we compiled data from 78 sites (in total 122 published studies) to examine the effects of varying grazing intensities and durations on soil C content at different depths for grasslands in China. Our meta-analysis revealed that grazing led to an overall decrease in soil C content and productivity of above-ground vegetation (e.g., above-ground biomass and litter) but an increase in below-ground biomass. Specifically, the effects of grazing on soil C content became less negative or even positive with increasing soil depths. An increase of soil C content was consequently found under light grazing (LG), although soil C content still decreased under moderate and heavy grazing. The increase in soil C content under LG could be largely attributed to the increase of soil C content in subsoil layers (>20 cm), despite that soil C content in surface soil layer (0-20 cm) decreased. Moreover, the magnitude of increase in soil C content under LG in subsoil layers increased with grazing duration. A possible reason of the increase in soil C content in the subsoil layers was due to the increases in below-ground biomass. Our study highlights that LG may modify the allocation of C input and promote its accumulation in subsoil layers, thus offsetting the negative impact of grazing on surface soil C content, a finding that has significant implications for C sequestration in grasslands.
Author Hu, Zhong‐Min
Jiang, Zhi‐Yun
Wang, Mei
Zhang, Meng
Han, Dao‐Rui
Liu, Min
Guo, Ming‐Yan
Lai, Derrick Y. F.
Author_xml – sequence: 1
  givenname: Zhi‐Yun
  surname: Jiang
  fullname: Jiang, Zhi‐Yun
  organization: South China Normal University
– sequence: 2
  givenname: Zhong‐Min
  orcidid: 0000-0002-4801-5370
  surname: Hu
  fullname: Hu, Zhong‐Min
  email: huzm@m.scnu.edu.cn
  organization: Southern Marine Science and Engineering Guangdong Laboratory
– sequence: 3
  givenname: Derrick Y. F.
  orcidid: 0000-0002-1225-9904
  surname: Lai
  fullname: Lai, Derrick Y. F.
  organization: The Chinese University of Hong Kong
– sequence: 4
  givenname: Dao‐Rui
  orcidid: 0000-0002-1871-7056
  surname: Han
  fullname: Han, Dao‐Rui
  organization: South China Normal University
– sequence: 5
  givenname: Mei
  surname: Wang
  fullname: Wang, Mei
  organization: South China Normal University
– sequence: 6
  givenname: Min
  surname: Liu
  fullname: Liu, Min
  organization: Key Laboratory of Tourism and Resources Environment in Taishan University
– sequence: 7
  givenname: Meng
  surname: Zhang
  fullname: Zhang, Meng
  organization: Ministry of Ecology and Environment of the People's Republic of China
– sequence: 8
  givenname: Ming‐Yan
  surname: Guo
  fullname: Guo, Ming‐Yan
  organization: South China Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32870565$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9O3DAQxq1qUWFpD7wAisQFDln8J7EdbssKKNJKvbTnaOJ1FiMnWTyJ0HLqI_QZ-yR1WNrDSrRzmRnr943G803JpO1aS8gJozMW43JtqhnLBZcfyBETMk95puVkrPMsZZSJQzJFfKSUCk7lR3IouFY0l_kRgaVbP_TJOsCLa9dJDcZ510NvMTEQqq5NwJihGTz0LjauTXCosHN-LBcPrrVoRzWih3aFV8k8aWwPv378hBb8Fh1-Igc1eLSf3_Ix-X57823xJV1-vbtfzJepEVrK1KyslVVBNc-1Xtm4iOS6qpXiUjEwqtAqMxwKwWydUSmUEgYKqCol61rHh2Nyvpu7Cd3TYLEvG4fG-riX7QYseZ6zgkZZ8X80E4UUTPARPdtDH7shxK-NlORKyUKJSJ2-UUPV2FW5Ca6BsC3_3DkCFzvAhA4x2Povwmg5elhGD8tXDyN7ucea0ZF4_j6A8_9SPDtvt--PLu8W1zvFb04GrJs
CitedBy_id crossref_primary_10_1016_j_apsoil_2025_105886
crossref_primary_10_1016_j_ecolind_2021_108470
crossref_primary_10_1016_j_catena_2021_105507
crossref_primary_10_1016_j_scitotenv_2024_171288
crossref_primary_10_1038_s41558_024_01957_9
crossref_primary_10_1016_j_agee_2021_107851
crossref_primary_10_1111_oik_09809
crossref_primary_10_1016_j_agee_2025_109630
crossref_primary_10_1111_gcb_15816
crossref_primary_10_1002_ldr_5035
crossref_primary_10_1016_j_scitotenv_2024_175081
crossref_primary_10_1016_j_fcr_2023_109204
crossref_primary_10_3389_fpls_2023_1238077
crossref_primary_10_1016_j_catena_2024_108629
crossref_primary_10_1029_2024GL111652
crossref_primary_10_1016_j_scs_2024_105229
crossref_primary_10_1111_1365_2435_14533
crossref_primary_10_1016_j_catena_2023_107412
crossref_primary_10_1016_j_scitotenv_2024_171439
crossref_primary_10_1002_ldr_4819
crossref_primary_10_1016_j_scitotenv_2024_175417
crossref_primary_10_1073_pnas_2405758121
crossref_primary_10_3390_su16114538
crossref_primary_10_1016_j_catena_2021_105635
crossref_primary_10_3390_app14052061
crossref_primary_10_1016_j_catena_2024_108608
crossref_primary_10_1016_j_scitotenv_2024_171171
crossref_primary_10_1086_733661
crossref_primary_10_3390_agriculture13051084
crossref_primary_10_1111_geb_13664
crossref_primary_10_1002_ece3_9182
crossref_primary_10_1016_j_agee_2023_108825
crossref_primary_10_3389_fpls_2021_765070
crossref_primary_10_1080_27658511_2021_1895474
crossref_primary_10_1016_j_catena_2023_107709
crossref_primary_10_3390_agronomy14102370
crossref_primary_10_1016_j_agee_2023_108602
crossref_primary_10_1016_j_scitotenv_2021_151771
crossref_primary_10_3390_agronomy14081823
crossref_primary_10_1093_jpe_rtae016
crossref_primary_10_1079_cabireviews202217032
crossref_primary_10_1016_j_agee_2024_109296
crossref_primary_10_1007_s44246_023_00051_7
crossref_primary_10_1016_j_ecolind_2023_111509
crossref_primary_10_3389_fpls_2023_1076902
crossref_primary_10_3390_agronomy14122890
crossref_primary_10_1016_j_scitotenv_2025_178702
crossref_primary_10_1007_s11104_023_06392_x
crossref_primary_10_3390_f15081438
crossref_primary_10_3389_fevo_2022_865703
crossref_primary_10_1016_j_agee_2023_108771
crossref_primary_10_1016_j_ecoleng_2023_107160
crossref_primary_10_1016_j_jenvman_2023_119146
crossref_primary_10_1007_s11368_022_03333_6
crossref_primary_10_1016_j_ecolind_2022_109111
crossref_primary_10_1016_j_scitotenv_2024_169995
crossref_primary_10_1088_1755_1315_692_4_042056
crossref_primary_10_1016_j_jclepro_2021_127430
crossref_primary_10_1016_j_soilbio_2022_108629
crossref_primary_10_1177_03091333241280095
crossref_primary_10_1016_j_jclepro_2022_131918
crossref_primary_10_7717_peerj_12771
crossref_primary_10_1002_ldr_5289
crossref_primary_10_1016_j_scitotenv_2022_159758
Cites_doi 10.1016/j.scitotenv.2019.04.279
10.1007/s10021-009-9252-6
10.7717/peerj.233
10.1016/j.catena.2013.05.008
10.1002/ldr.2668
10.1007/s10584-007-9316-6
10.1002/ecs2.1656
10.1097/00010694-199910000-00002
10.1016/j.agee.2017.10.023
10.1186/s12870-015-0655-6
10.1007/978-3-319-46709-2_1
10.2111/08-255.1
10.1890/1051-0761(1999)009[0065:IOGMOT]2.0.CO;2
10.1890/14-1368.1
10.1007/978-94-007-4159-1_20
10.1111/j.1365-2664.2012.02205.x
10.1111/gcb.14823
10.1111/j.1442-9993.2004.01337.x
10.1890/11-2070.1
10.1111/gcb.14070
10.1111/geb.12235
10.1371/journal.pone.0215223
10.1007/s00374-005-0066-1
10.1016/j.apsoil.2018.03.008
10.1111/j.1461-0248.2010.01486.x
10.1111/j.1365-2745.2009.01549.x
10.1890/ES10-00017.1
10.1023/B:ENVI.0000003631.43271.6b
10.1111/1365-2435.13215
10.1007/s11430-007-0049-1
10.1016/j.agrformet.2019.107634
10.1126/science.247.4946.1043
10.1016/j.scitotenv.2007.11.013
10.1890/04-1724
10.1016/j.gloplacha.2008.12.011
10.1111/j.1365-2486.2011.02557.x
10.1093/forestscience/57.1.67
10.1016/j.agrformet.2019.02.022
10.1111/j.1461-0248.2011.01630.x
10.1016/j.soilbio.2011.05.011
10.1016/j.agee.2010.12.010
10.1111/gcb.13133
10.1002/eco.1831
10.1002/jsfa.7302
10.1007/s11104-005-2554-3
10.1016/j.actao.2013.12.006
10.1016/j.agrformet.2018.07.011
10.1111/j.1365-2389.2011.01393.x
10.1371/journal.pone.0081466
10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2
10.1016/j.earscirev.2017.08.008
10.1016/S0038-0717(01)00158-4
10.1111/gcb.12144
10.1002/ldr.2736
10.1016/j.gloenvcha.2012.10.001
10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
10.1111/1365-2664.13443
10.1079/9780851994529.0061
10.17221/7/2011-PSE
10.1071/AR9600902
10.1038/nclimate3426
10.1016/j.jaridenv.2004.10.001
10.1007/s11104-015-2528-z
10.1111/gcb.13431
10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2
10.1016/j.agee.2012.10.001
10.1016/j.scitotenv.2018.11.082
10.1111/1365-2664.13166
10.1046/j.1365-2486.1998.00151.x
ContentType Journal Article
Copyright 2020 John Wiley & Sons Ltd
2020 John Wiley & Sons Ltd.
Copyright © 2020 John Wiley & Sons Ltd
Copyright_xml – notice: 2020 John Wiley & Sons Ltd
– notice: 2020 John Wiley & Sons Ltd.
– notice: Copyright © 2020 John Wiley & Sons Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
DOI 10.1111/gcb.15326
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
CrossRef
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 7197
ExternalDocumentID 32870565
10_1111_gcb_15326
GCB15326
Genre article
Meta-Analysis
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Natural Science Foundation of Guangdong Province, China
  funderid: 2018A030310517
– fundername: China Postdoctoral Science Foundation
  funderid: 2018M643110
– fundername: National Natural Science Foundation of China
  funderid: 31922053 41901027
– fundername: The Second Tibetan Plateau Scientific Expedition and Research Program
  funderid: 2019QZKK0405
– fundername: National Key R & D Program of China
– fundername: State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment
  funderid: SKLLQG1910
– fundername: National Key R & D Program of China
  grantid: 2017YFA0604801
– fundername: National Natural Science Foundation of China
  grantid: 31922053
– fundername: National Natural Science Foundation of China
  grantid: 31922053 41901027
– fundername: China Postdoctoral Science Foundation
  grantid: 2018M643110
– fundername: The Second Tibetan Plateau Scientific Expedition and Research Program
  grantid: 2019QZKK0405
– fundername: State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment
  grantid: SKLLQG1910
– fundername: National Natural Science Foundation of China
  grantid: 41901027
– fundername: Natural Science Foundation of Guangdong Province, China
  grantid: 2018A030310517
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
H97
L.G
7X8
7S9
L.6
ID FETCH-LOGICAL-c3866-cdee6b9082588defac628bf772671ac79874c2a931ef4063773ca9abb76ff8063
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Fri Jul 11 18:26:54 EDT 2025
Fri Jul 11 03:05:12 EDT 2025
Fri Jul 25 11:00:33 EDT 2025
Wed Feb 19 02:27:51 EST 2025
Tue Jul 01 03:53:04 EDT 2025
Thu Apr 24 23:12:23 EDT 2025
Wed Jan 22 16:31:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords below-ground biomass
dynamics of soil carbon
grasslands
grazing intensity
grazing duration
deeper soil
Language English
License 2020 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3866-cdee6b9082588defac628bf772671ac79874c2a931ef4063773ca9abb76ff8063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1225-9904
0000-0002-1871-7056
0000-0002-4801-5370
PMID 32870565
PQID 2462776973
PQPubID 30327
PageCount 12
ParticipantIDs proquest_miscellaneous_2551907739
proquest_miscellaneous_2439631329
proquest_journals_2462776973
pubmed_primary_32870565
crossref_primary_10_1111_gcb_15326
crossref_citationtrail_10_1111_gcb_15326
wiley_primary_10_1111_gcb_15326_GCB15326
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
2020-Dec
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2017; 7
2017; 8
2010; 13
2004; 29
2013; 23
2018; 129
2019; 56
2011; 62
2019; 14
1999; 164
2004; 6
2012; 18
2011; 57
2011; 14
2005; 61
2013; 164
2013; 8
1999; 80
2010; 63
2009; 12
2013; 19
2018; 253
2009; 97
2014; 2
2000
2015; 85
2013; 94
2019; 25
2019; 675
2006; 280
2001; 11
2018; 32
2019; 276
2014; 55
2009; 67
2018; 262
2015; 15
1960; 11
2019; 269–270
2011; 2
1990; 247
2013; 109
2012
2017; 28
2002; 34
2017; 23
2008; 404
2016; 96
2017; 173
2007; 50
1999; 9
2018; 24
2015; 394
2015; 24
2001; 82
2006; 87
2006; 43
2017; 10
2019; 654
2017
2011; 43
2012; 49
2008; 86
2018; 55
2011; 140
1998; 4
2016; 22
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
Harrison R. B. (e_1_2_7_26_1) 2011; 57
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 15
  start-page: 278
  year: 2015
  article-title: The role of invertases in plant compensatory responses to simulated herbivory
  publication-title: BMC Plant Biology
– volume: 404
  start-page: 297
  year: 2008
  end-page: 307
  article-title: Molecular C dynamics downstream: The biochemical decomposition sequence and its impact on soil organic matter structure and function
  publication-title: Science of the Total Environment
– volume: 109
  start-page: 39
  year: 2013
  end-page: 48
  article-title: Shrub encroachment with increasing anthropogenic disturbance in the semiarid Inner Mongolian grasslands of China
  publication-title: Catena
– volume: 173
  start-page: 84
  year: 2017
  end-page: 95
  article-title: Effects of grazing exclusion on carbon sequestration in China’s grassland
  publication-title: Earth‐Science Reviews
– volume: 7
  start-page: 762
  year: 2017
  end-page: 763
  article-title: Soil carbon: Depth of understanding
  publication-title: Nature Climate Change
– volume: 164
  start-page: 718
  year: 1999
  end-page: 723
  article-title: Carbon storage after long‐term grass establishment on degraded soils
  publication-title: Soil Science
– volume: 34
  start-page: 139
  year: 2002
  end-page: 162
  article-title: The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter
  publication-title: Soil Biology & Biochemistry
– volume: 8
  issue: 12
  year: 2013
  article-title: Effects of different grazing intensities on grassland production in China: A meta‐analysis
  publication-title: PLoS One
– volume: 4
  start-page: 229
  year: 1998
  end-page: 233
  article-title: The global carbon sink: A grassland perspective
  publication-title: Global Change Biology
– volume: 2
  year: 2014
  article-title: Plant compensation to grazing and soil carbon dynamics in a tropical grassland
  publication-title: PeerJ
– volume: 22
  start-page: 1385
  year: 2016
  end-page: 1393
  article-title: A synthesis of the effect of grazing exclusion on carbon dynamics in grasslands in China
  publication-title: Global Change Biology
– volume: 49
  start-page: 1204
  year: 2012
  end-page: 1215
  article-title: Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient
  publication-title: Journal of Applied Ecology
– volume: 269–270
  start-page: 249
  year: 2019
  end-page: 256
  article-title: Grazing‐induced increases in soil moisture maintain higher productivity during droughts in alpine meadows on the Tibetan Plateau
  publication-title: Agricultural and Forest Meteorology
– volume: 86
  start-page: 375
  year: 2008
  end-page: 396
  article-title: Carbon storage in the grasslands of China based on field measurements of above‐ and belowground biomass
  publication-title: Climatic Change
– volume: 14
  issue: 4
  year: 2019
  article-title: Effects of grazing patterns on grassland biomass and soil environments in China: A meta‐analysis
  publication-title: PLoS One
– volume: 6
  start-page: 91
  year: 2004
  end-page: 109
  article-title: Is it possible to mitigate greenhouse gas emissions in pastoral ecosystems of the tropics?
  publication-title: Environment, Development and Sustainability
– volume: 247
  start-page: 1043
  year: 1990
  end-page: 1048
  article-title: Biological feedbacks in global desertification
  publication-title: Science
– volume: 57
  start-page: 271
  year: 2011
  end-page: 278
  article-title: Grazing depresses soil carbon storage through changing plant biomass and composition in a Tibetan alpine meadow
  publication-title: Plant, Soil and Environment
– volume: 28
  start-page: 1473
  year: 2017
  end-page: 1481
  article-title: Continental‐scale impacts of livestock grazing on ecosystem supporting and regulating services
  publication-title: Land Degradation & Development
– start-page: 445
  year: 2012
  end-page: 464
– volume: 23
  start-page: 1167
  year: 2017
  end-page: 1179
  article-title: Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: A meta‐analysis
  publication-title: Global Change Biology
– volume: 164
  start-page: 80
  year: 2013
  end-page: 99
  article-title: The knowns, known unknowns and unknowns of sequestration of soil organic carbon
  publication-title: Agriculture, Ecosystems and Environment
– start-page: 131
  year: 2017
  end-page: 168
– volume: 129
  start-page: 1
  year: 2018
  end-page: 12
  article-title: Comprehensive analysis of grazing intensity impacts soil organic carbon: A case study in typical steppe of Inner Mongolia, China
  publication-title: Applied Soil Ecology
– volume: 140
  start-page: 234
  year: 2011
  end-page: 244
  article-title: Minor stimulation of soil carbon storage by nitrogen addition: A meta‐analysis
  publication-title: Agriculture Ecosystems and Environment
– volume: 25
  start-page: 4383
  year: 2019
  end-page: 4393
  article-title: Climate warming alters subsoil but not topsoil carbon dynamics in alpine grassland
  publication-title: Global Change Biology
– volume: 19
  start-page: 1347
  year: 2013
  end-page: 1357
  article-title: Effects of grazing on grassland soil carbon: A global review
  publication-title: Global Change Biology
– start-page: 61
  year: 2000
  end-page: 84
– volume: 57
  start-page: 67
  year: 2011
  end-page: 76
  article-title: Deep soil horizons: Contribution and importance to soil carbon pools and in assessing whole‐ecosystem response to management and global change
  publication-title: Forest Science
– volume: 63
  start-page: 109
  year: 2010
  end-page: 119
  article-title: Pathways of grazing effects on soil organic carbon and nitrogen
  publication-title: Rangeland Ecology & Management
– volume: 23
  start-page: 240
  year: 2013
  end-page: 251
  article-title: What can ecological science tell us about opportunities for carbon sequestration on arid rangelands in the United States?
  publication-title: Global Environmental Change
– volume: 10
  year: 2017
  article-title: Microsite and grazing intensity drive infiltration in a semiarid woodland
  publication-title: Ecohydrology
– volume: 24
  start-page: 126
  year: 2015
  end-page: 138
  article-title: A global synthesis of below‐ground carbon responses to biotic disturbance: A meta‐analysis
  publication-title: Global Ecology and Biogeography
– volume: 55
  start-page: 86
  year: 2014
  end-page: 96
  article-title: Dynamic of grassland vegetation degradation and its quantitative assessment in the northwest China
  publication-title: Acta Oecologica
– volume: 97
  start-page: 876
  year: 2009
  end-page: 885
  article-title: Grazing triggers soil carbon loss by altering plant roots and their control on soil microbial community
  publication-title: Journal of Ecology
– volume: 56
  start-page: 2007
  year: 2019
  end-page: 2019
  article-title: Interactive effects of grazing and global change factors on soil and ecosystem respiration in grassland ecosystems: A global synthesis
  publication-title: Journal of Applied Ecology
– volume: 11
  start-page: 902
  year: 1960
  end-page: 926
  article-title: Soil fertility changes in the long term experimental plots at Kybybolite, South Australia. I. Changes in pH, total nitrogen, organic carbon and bulk density
  publication-title: Australian Journal of Agricultural Research
– volume: 9
  start-page: 65
  year: 1999
  end-page: 71
  article-title: Impact of grazing management on the carbon and nitrogen balance of a mixed‐grass rangeland
  publication-title: Ecological Applications
– volume: 62
  start-page: 822
  year: 2011
  end-page: 833
  article-title: Carbon storage in low‐alpine grassland soils: Effects of different grazing intensities of sheep
  publication-title: European Journal of Soil Science
– volume: 82
  start-page: 2397
  year: 2001
  end-page: 2402
  article-title: Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass
  publication-title: Ecology
– volume: 43
  start-page: 76
  year: 2006
  end-page: 82
  article-title: Soil microbial activity and litter turnover in native grazed and ungrazed rangelands in a semiarid ecosystem
  publication-title: Biology and Fertility of Soils
– volume: 94
  start-page: 106
  issue: 1
  year: 2013
  end-page: 116
  article-title: Nutrients and defoliation increase soil carbon inputs in grassland
  publication-title: Ecology
– volume: 654
  start-page: 1218
  year: 2019
  end-page: 1224
  article-title: Heavy grazing reduces grassland soil greenhouse gas fluxes: A global meta‐analysis
  publication-title: Science of the Total Environment
– volume: 276
  start-page: 107634
  year: 2019
  article-title: Patterns and drivers of soil carbon stock in southern China’s grasslands
  publication-title: Agricultural and Forest Meteorology
– volume: 280
  start-page: 77
  year: 2006
  end-page: 90
  article-title: Grazing and ecosystem carbon storage in the North American Great Plains
  publication-title: Plant and Soil
– volume: 80
  start-page: 1150
  year: 1999
  end-page: 1156
  article-title: The meta‐analysis of response ratios in experimental ecology
  publication-title: Ecology
– volume: 24
  start-page: 2997
  year: 2018
  end-page: 3009
  article-title: Grazing enhances belowground carbon allocation, microbial biomass, and soil carbon in a subtropical grassland
  publication-title: Global Change Biology
– volume: 28
  start-page: 2098
  issue: 7
  year: 2017
  end-page: 2108
  article-title: Contrasting effects of aridity and grazing intensity on multiple ecosystem functions and services in Australian woodlands
  publication-title: Land Degradation & Development
– volume: 394
  start-page: 239
  year: 2015
  end-page: 255
  article-title: How does soil particulate organic carbon respond to grazing intensity in permanent grasslands?
  publication-title: Plant and Soil
– volume: 8
  issue: 1
  year: 2017
  article-title: Effects of grazing on ecosystem structure and function of alpine grasslands in Qinghai‐Tibetan Plateau: A synthesis
  publication-title: Ecosphere
– volume: 14
  start-page: 709
  issue: 7
  year: 2011
  end-page: 722
  article-title: Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis
  publication-title: Ecology Letters
– volume: 50
  start-page: 1341
  year: 2007
  end-page: 1350
  article-title: Terrestrial vegetation carbon sinks in China, 1981–2000
  publication-title: Science in China Series D: Earth Sciences
– volume: 29
  start-page: 201
  year: 2004
  end-page: 208
  article-title: Below‐ground biomass and productivity of a grazed site and a neighbouring ungrazed exclosure in a grassland in central Argentina
  publication-title: Austral Ecology
– volume: 675
  start-page: 642
  year: 2019
  end-page: 650
  article-title: Effects and relationships of grazing intensity on multiple ecosystem services in the Inner Mongolian steppe
  publication-title: Science of the Total Environment
– volume: 18
  start-page: 528
  year: 2012
  end-page: 538
  article-title: Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by CO pulse labeling
  publication-title: Global Change Biology
– volume: 96
  start-page: 1945
  year: 2016
  end-page: 1952
  article-title: Long‐term impacts of grazing intensity on soil carbon sequestration and selected soil properties in the arid Eastern Cape, South Africa
  publication-title: Journal of the Science of the Food and Agriculture
– volume: 43
  start-page: 1902
  year: 2011
  end-page: 1907
  article-title: Interactive effects of warming, soil humidity and plant diversity on litter decomposition and microbial activity
  publication-title: Soil Biology & Biochemistry
– volume: 87
  start-page: 53
  year: 2006
  end-page: 63
  article-title: Elevated CO stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta‐analysis
  publication-title: Ecology
– volume: 67
  start-page: 20
  year: 2009
  end-page: 28
  article-title: Soil respiration and human effects on global grasslands
  publication-title: Global and Planetary Change
– volume: 11
  start-page: 343
  year: 2001
  end-page: 355
  article-title: Grassland management and conversion into grassland effects on soil carbon
  publication-title: Ecological Applications
– volume: 13
  start-page: 959
  year: 2010
  end-page: 968
  article-title: Introduced grazers can restrict potential soil carbon sequestration through impacts on plant community composition
  publication-title: Ecology Letters
– volume: 61
  start-page: 651
  issue: 4
  year: 2005
  end-page: 668
  article-title: Vegetation changes in the Jornada Basin from 1858 to 1998
  publication-title: Journal of Arid Environment
– volume: 85
  start-page: 269
  year: 2015
  end-page: 286
  article-title: Changes in plant, soil, and microbes in a typical steppe from simulated grazing: Explaining potential change in soil C
  publication-title: Ecological Monographs
– volume: 262
  start-page: 157
  year: 2018
  end-page: 165
  article-title: Grazing modulates soil temperature and moisture in a Eurasian steppe
  publication-title: Agricultural and Forest Meteorology
– volume: 2
  start-page: 304
  year: 2011
  end-page: 316
  article-title: Grazing intensity impacts soil carbon and nitrogen storage of continental steppe
  publication-title: Ecosphere
– volume: 253
  start-page: 62
  year: 2018
  end-page: 81
  article-title: Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands
  publication-title: Agriculture, Ecosystems and Environment
– volume: 32
  start-page: 2790
  year: 2018
  end-page: 2800
  article-title: Livestock grazing regulates ecosystem multifunctionality in semi‐arid grassland
  publication-title: Functional Ecology
– volume: 55
  start-page: 2517
  year: 2018
  end-page: 2526
  article-title: Grazer effects on soil carbon storage vary by herbivore assemblage in a semi‐arid grassland
  publication-title: Journal of Applied Ecology
– volume: 12
  start-page: 686
  year: 2009
  end-page: 697
  article-title: Sheep grazing decreases organic carbon and nitrogen pools in the Patagonian steppe: Combination of direct and indirect effects
  publication-title: Ecosystems
– ident: e_1_2_7_17_1
  doi: 10.1016/j.scitotenv.2019.04.279
– ident: e_1_2_7_21_1
  doi: 10.1007/s10021-009-9252-6
– ident: e_1_2_7_46_1
  doi: 10.7717/peerj.233
– ident: e_1_2_7_39_1
  doi: 10.1016/j.catena.2013.05.008
– ident: e_1_2_7_16_1
  doi: 10.1002/ldr.2668
– ident: e_1_2_7_18_1
  doi: 10.1007/s10584-007-9316-6
– ident: e_1_2_7_35_1
  doi: 10.1002/ecs2.1656
– ident: e_1_2_7_41_1
  doi: 10.1097/00010694-199910000-00002
– ident: e_1_2_7_2_1
  doi: 10.1016/j.agee.2017.10.023
– ident: e_1_2_7_52_1
  doi: 10.1186/s12870-015-0655-6
– ident: e_1_2_7_7_1
  doi: 10.1007/978-3-319-46709-2_1
– ident: e_1_2_7_40_1
  doi: 10.2111/08-255.1
– ident: e_1_2_7_50_1
  doi: 10.1890/1051-0761(1999)009[0065:IOGMOT]2.0.CO;2
– ident: e_1_2_7_33_1
  doi: 10.1890/14-1368.1
– ident: e_1_2_7_47_1
  doi: 10.1007/978-94-007-4159-1_20
– ident: e_1_2_7_5_1
  doi: 10.1111/j.1365-2664.2012.02205.x
– ident: e_1_2_7_30_1
  doi: 10.1111/gcb.14823
– ident: e_1_2_7_42_1
  doi: 10.1111/j.1442-9993.2004.01337.x
– ident: e_1_2_7_70_1
  doi: 10.1890/11-2070.1
– ident: e_1_2_7_61_1
  doi: 10.1111/gcb.14070
– ident: e_1_2_7_64_1
  doi: 10.1111/geb.12235
– ident: e_1_2_7_25_1
  doi: 10.1371/journal.pone.0215223
– ident: e_1_2_7_43_1
  doi: 10.1007/s00374-005-0066-1
– ident: e_1_2_7_65_1
  doi: 10.1016/j.apsoil.2018.03.008
– ident: e_1_2_7_4_1
  doi: 10.1111/j.1461-0248.2010.01486.x
– ident: e_1_2_7_31_1
  doi: 10.1111/j.1365-2745.2009.01549.x
– ident: e_1_2_7_27_1
  doi: 10.1890/ES10-00017.1
– ident: e_1_2_7_44_1
  doi: 10.1023/B:ENVI.0000003631.43271.6b
– ident: e_1_2_7_45_1
  doi: 10.1111/1365-2435.13215
– ident: e_1_2_7_19_1
  doi: 10.1007/s11430-007-0049-1
– ident: e_1_2_7_59_1
  doi: 10.1016/j.agrformet.2019.107634
– ident: e_1_2_7_49_1
  doi: 10.1126/science.247.4946.1043
– ident: e_1_2_7_22_1
  doi: 10.1016/j.scitotenv.2007.11.013
– ident: e_1_2_7_36_1
  doi: 10.1890/04-1724
– ident: e_1_2_7_60_1
  doi: 10.1016/j.gloplacha.2008.12.011
– ident: e_1_2_7_23_1
  doi: 10.1111/j.1365-2486.2011.02557.x
– volume: 57
  start-page: 67
  year: 2011
  ident: e_1_2_7_26_1
  article-title: Deep soil horizons: Contribution and importance to soil carbon pools and in assessing whole‐ecosystem response to management and global change
  publication-title: Forest Science
  doi: 10.1093/forestscience/57.1.67
– ident: e_1_2_7_66_1
  doi: 10.1016/j.agrformet.2019.02.022
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1461-0248.2011.01630.x
– ident: e_1_2_7_8_1
  doi: 10.1016/j.soilbio.2011.05.011
– ident: e_1_2_7_34_1
  doi: 10.1016/j.agee.2010.12.010
– ident: e_1_2_7_29_1
  doi: 10.1111/gcb.13133
– ident: e_1_2_7_58_1
  doi: 10.1002/eco.1831
– ident: e_1_2_7_55_1
  doi: 10.1002/jsfa.7302
– ident: e_1_2_7_14_1
  doi: 10.1007/s11104-005-2554-3
– ident: e_1_2_7_69_1
  doi: 10.1016/j.actao.2013.12.006
– ident: e_1_2_7_63_1
  doi: 10.1016/j.agrformet.2018.07.011
– ident: e_1_2_7_37_1
  doi: 10.1111/j.1365-2389.2011.01393.x
– ident: e_1_2_7_62_1
  doi: 10.1371/journal.pone.0081466
– ident: e_1_2_7_24_1
  doi: 10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2
– ident: e_1_2_7_13_1
  doi: 10.1016/j.earscirev.2017.08.008
– ident: e_1_2_7_32_1
  doi: 10.1016/S0038-0717(01)00158-4
– ident: e_1_2_7_38_1
  doi: 10.1111/gcb.12144
– ident: e_1_2_7_57_1
  doi: 10.1002/ldr.2736
– ident: e_1_2_7_6_1
  doi: 10.1016/j.gloenvcha.2012.10.001
– ident: e_1_2_7_28_1
  doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
– ident: e_1_2_7_67_1
  doi: 10.1111/1365-2664.13443
– ident: e_1_2_7_12_1
  doi: 10.1079/9780851994529.0061
– ident: e_1_2_7_54_1
  doi: 10.17221/7/2011-PSE
– ident: e_1_2_7_48_1
  doi: 10.1071/AR9600902
– ident: e_1_2_7_3_1
  doi: 10.1038/nclimate3426
– ident: e_1_2_7_20_1
  doi: 10.1016/j.jaridenv.2004.10.001
– ident: e_1_2_7_11_1
  doi: 10.1007/s11104-015-2528-z
– ident: e_1_2_7_68_1
  doi: 10.1111/gcb.13431
– ident: e_1_2_7_10_1
  doi: 10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2
– ident: e_1_2_7_53_1
  doi: 10.1016/j.agee.2012.10.001
– ident: e_1_2_7_56_1
  doi: 10.1016/j.scitotenv.2018.11.082
– ident: e_1_2_7_9_1
  doi: 10.1111/1365-2664.13166
– ident: e_1_2_7_51_1
  doi: 10.1046/j.1365-2486.1998.00151.x
SSID ssj0003206
Score 2.5937324
SecondaryResourceType review_article
Snippet Grazing by livestock greatly affects the soil carbon (C) cycle in grassland ecosystems. However, the effects of grazing at different intensities and durations...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7186
SubjectTerms aboveground biomass
Accumulation
Animals
belowground biomass
below‐ground biomass
Biomass
Carbon
Carbon - analysis
Carbon cycle
China
deeper soil
dynamics of soil carbon
Ecosystem
Ecosystem assessment
global change
Grassland
Grasslands
Grazing
grazing duration
Grazing intensity
Herbivory
Livestock
Meta-analysis
Soil
soil carbon
Soil depth
Soil dynamics
Soil layers
Soil surfaces
Soils
subsoil
Subsoils
Title Light grazing facilitates carbon accumulation in subsoil in Chinese grasslands: A meta‐analysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.15326
https://www.ncbi.nlm.nih.gov/pubmed/32870565
https://www.proquest.com/docview/2462776973
https://www.proquest.com/docview/2439631329
https://www.proquest.com/docview/2551907739
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VlZC4AF0oLBRkEEJcstrYie2UU1m1VIhyQFTqASmyvc5q1W2CNruH9tSfwG_sL2HGeZTyEuKWx1gZO57xZ3v8DcBLg4OAFSKODM9otcrHkXaxjFKbciwyFqKgA85HH-XhcfL-JD3ZgDfdWZiGH6JfcCPLCP6aDNzY-gcjnzk7QnPlRLdNsVoEiD5dU0cJHvJqxiJN0NXEomUVoiievuTNsegXgHkTr4YB5-AufOlUbeJMTkfrlR25i59YHP-zLvfgTgtE2V7Tc7Zgw5cDuNWkpjwfwPb-9Qk4FGtdQD2A4RHC7GoZxNgrNlnMEfOGu_tgPtBUn82WxFk9Y4VxDQe4r5kzS1uVzDi3PmszhrF5yWr0W9V8QZeUydvXnkoj-KUTyLtsj535lbm6_GZa7pQHcHyw_3lyGLU5HCIntJSRm3ovLeVVT7Weevyw5NoWiOmlio1TmVaJ4yYTsS8QWwilhDOZsVbJotD4YBs2y6r0j4Bx48V4yolfyCWmkCajIHYceZVDWKb1EF53fzN3LcE55dlY5N1EB5s5D808hBe96NeG1eN3Qjtdl8hbw65znkiulEQdhvC8f40mSfsspvTVmmQEujWc5md_kUGkmo2xtijzsOluvSaCNp8RaGOFQqf5s4r5u8nbcPH430WfwG1OawYhJGcHNlfLtX-KwGplnwUL-g4xJR5I
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgguPBZKlxYwCCEuWW3sxEkQl7JtWWC3B9RKvVSR7XVWq24TtNk9wImf0N_IL2HGeZTyEuKWx1gZO57x57H9DcBzhYOAFsL3FE8oWmV9Lza-9EIdcizSFyKjA87jQzk8Dt6fhCdr8Lo5C1PxQ7QBN7IM56_JwCkg_YOVT43uob1yeQ02KKM3meXex0vyKMFdZk1fhAE6G1_UvEK0j6ctenU0-gViXkWsbsg5uA2njbLVTpOz3mqpe-bLTzyO_1ubO3CrxqJst-o8d2HN5h24XmWn_NyBzf3LQ3AoVnuBsgPdMSLtYuHE2As2mM8Q9rq7e6BGNNtn0wXRVk9ZpkxFA25LZtRCFzlTxqzO66RhbJazEl1XMZvTJSXztqWl0oh_6RDyK7bLzu1Sfft6oWr6lPtwfLB_NBh6dRoHz4hYSs9MrJWaUquHcTyx-GHJY50hrJeRr0yUxFFguEqEbzOEFyKKhFGJ0jqSWRbjg01Yz4vcbgHjyor-hBPFkAlUJlVC-9hx8I0MIrM47sLL5nempuY4p1Qb87SZ62Azp66Zu_CsFf1UEXv8Tmin6RNpbdtlygPJo0iiDl142r5Gq6SlFpXbYkUyAj0bzvSTv8ggWE36WFuUeVD1t1YTQevPiLWxQq7X_FnF9O3gjbt4-O-iT-DG8Gg8SkfvDj9sw01OIQS3Q2cH1peLlX2EOGupHztz-g728yJh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIhAXHguFhQIGIcQlq42dOA6cyrZLgbZCiEo9VIpsr7NasU2qze4BTvwEfiO_hBnnUcpLiFseY8V2Zsaf7fE3AE80DgJGiDDQPKXVKhcGyoYyiE3MschQiJwOOO8fyN3D6M1RfLQGL9qzMDU_RLfgRpbh_TUZ-Okk_8HIp9YM0Fy5vAAXIzlUNPPafn_GHSW4T6wZijhCXxOKhlaIwni6oucHo18Q5nnA6kec8TU4butaB5p8HKyWZmA__0Tj-J-NuQ5XGyTKtmrVuQFrrujBpTo35acebOycHYFDscYHVD3o7yPOLhdejD1lo_kMQa-_uwl6j-b6bLog0uopy7WtScBdxaxemLJg2trVSZMyjM0KVqHjKmdzuqRU3q5yVBrRLx1Bfs622Ilb6m9fvuqGPOUWHI53Pox2gyaJQ2CFkjKwE-ekocTqsVIThx-WXJkcQb1MQm2TVCWR5ToVocsRXIgkEVan2phE5rnCBxuwXpSFuwOMayeGE04EQzbSudQpRbHj0JtYxGVK9eFZ-zcz2zCcU6KNedbOdLCbM9_NfXjciZ7WtB6_E9psVSJrLLvKeCR5kkisQx8eda_RJmmjRReuXJGMQL-G8_z0LzIIVdMhthZlbtfq1tVE0O4zIm1skFeaP1cxezV66S_u_rvoQ7j8bnuc7b0-eHsPrnBaP_DhOZuwvlys3H0EWUvzwBvTd5WeIRk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light+grazing+facilitates+carbon+accumulation+in+subsoil+in+Chinese+grasslands%3A+A+meta%E2%80%90analysis&rft.jtitle=Global+change+biology&rft.au=Zhi%E2%80%90Yun+Jiang&rft.au=Zhong%E2%80%90Min+Hu&rft.au=Lai%2C+Derrick+Y+F&rft.au=Dao%E2%80%90Rui+Han&rft.date=2020-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=26&rft.issue=12&rft.spage=7186&rft.epage=7197&rft_id=info:doi/10.1111%2Fgcb.15326&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon