Color variation in young and senescent leaves of Formosan sweet gum (Liquidambar formosana) by the gene regulation of anthocyanidin biosynthesis
In certain plants, leaf coloration occurs in young and senescent leaves; however, it is unclear whether these two developmental stages are controlled by the same regulatory mechanisms. Formosan sweet gum (Liquidambar formosana Hance) is a subtropical deciduous tree species that possesses attractive...
Saved in:
Published in | Physiologia plantarum Vol. 172; no. 3; pp. 1750 - 1763 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.07.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In certain plants, leaf coloration occurs in young and senescent leaves; however, it is unclear whether these two developmental stages are controlled by the same regulatory mechanisms. Formosan sweet gum (Liquidambar formosana Hance) is a subtropical deciduous tree species that possesses attractive autumnal leaf coloration. The color of young leaves is closer to purplish red, while senescent leaves are more orange‐red to dark red. It was confirmed that delphinidin and cyanidin are the two anthocyanidins that contribute to the color of Formosan sweet gum leaves, and the content of different anthocyanins influences the appearance of color. To elucidate the regulation of anthocyanidin biosynthesis, recombinant DIHYDROFLAVONOL‐4‐REDUCTASEs (LfDFR1 and LfDFR2) (EC 1.1.1.234) were produced, and their substrate acceptability was investigated both in vitro and in planta. The functions of flavanones and dihydroflavonols modification by FLAVONOID 3′ HYDROXYLASE (LfF3′H1) (EC 1.14.14.82) and FLAVONOID 3′5′ HYDROXYLASE (LfF3′5′H) (EC 1.14.14.81) were verified using a transient overexpression experiment in Nicotiana benthamiana. The results showed that LfMYB5 induced LfF3′5′H and LfMYB123 induced both LfF3′H1 and LfDFR1 in spring when the leaves were expanding, whereas LfMYB113 induced LfF3′H1, LfDFR1, and LfDFR2 in late autumn to winter when the leaves were undergoing leaf senescence. In conclusion, the color variation of Formosan sweet gum in young and senescent leaves was attributed to the composition of anthocyanidins through the transcriptional regulation of LfF3′H1 and LfF3′5′H by LfMYB5, LfMYB113, and LfMYB123. |
---|---|
AbstractList | In certain plants, leaf coloration occurs in young and senescent leaves; however, it is unclear whether these two developmental stages are controlled by the same regulatory mechanisms. Formosan sweet gum (Liquidambar formosana Hance) is a subtropical deciduous tree species that possesses attractive autumnal leaf coloration. The color of young leaves is closer to purplish red, while senescent leaves are more orange-red to dark red. It was confirmed that delphinidin and cyanidin are the two anthocyanidins that contribute to the color of Formosan sweet gum leaves, and the content of different anthocyanins influences the appearance of color. To elucidate the regulation of anthocyanidin biosynthesis, recombinant DIHYDROFLAVONOL-4-REDUCTASEs (LfDFR1 and LfDFR2) (EC 1.1.1.234) were produced, and their substrate acceptability was investigated both in vitro and in planta. The functions of flavanones and dihydroflavonols modification by FLAVONOID 3' HYDROXYLASE (LfF3'H1) (EC 1.14.14.82) and FLAVONOID 3'5' HYDROXYLASE (LfF3'5'H) (EC 1.14.14.81) were verified using a transient overexpression experiment in Nicotiana benthamiana. The results showed that LfMYB5 induced LfF3'5'H and LfMYB123 induced both LfF3'H1 and LfDFR1 in spring when the leaves were expanding, whereas LfMYB113 induced LfF3'H1, LfDFR1, and LfDFR2 in late autumn to winter when the leaves were undergoing leaf senescence. In conclusion, the color variation of Formosan sweet gum in young and senescent leaves was attributed to the composition of anthocyanidins through the transcriptional regulation of LfF3'H1 and LfF3'5'H by LfMYB5, LfMYB113, and LfMYB123.In certain plants, leaf coloration occurs in young and senescent leaves; however, it is unclear whether these two developmental stages are controlled by the same regulatory mechanisms. Formosan sweet gum (Liquidambar formosana Hance) is a subtropical deciduous tree species that possesses attractive autumnal leaf coloration. The color of young leaves is closer to purplish red, while senescent leaves are more orange-red to dark red. It was confirmed that delphinidin and cyanidin are the two anthocyanidins that contribute to the color of Formosan sweet gum leaves, and the content of different anthocyanins influences the appearance of color. To elucidate the regulation of anthocyanidin biosynthesis, recombinant DIHYDROFLAVONOL-4-REDUCTASEs (LfDFR1 and LfDFR2) (EC 1.1.1.234) were produced, and their substrate acceptability was investigated both in vitro and in planta. The functions of flavanones and dihydroflavonols modification by FLAVONOID 3' HYDROXYLASE (LfF3'H1) (EC 1.14.14.82) and FLAVONOID 3'5' HYDROXYLASE (LfF3'5'H) (EC 1.14.14.81) were verified using a transient overexpression experiment in Nicotiana benthamiana. The results showed that LfMYB5 induced LfF3'5'H and LfMYB123 induced both LfF3'H1 and LfDFR1 in spring when the leaves were expanding, whereas LfMYB113 induced LfF3'H1, LfDFR1, and LfDFR2 in late autumn to winter when the leaves were undergoing leaf senescence. In conclusion, the color variation of Formosan sweet gum in young and senescent leaves was attributed to the composition of anthocyanidins through the transcriptional regulation of LfF3'H1 and LfF3'5'H by LfMYB5, LfMYB113, and LfMYB123. In certain plants, leaf coloration occurs in young and senescent leaves; however, it is unclear whether these two developmental stages are controlled by the same regulatory mechanisms. Formosan sweet gum ( Liquidambar formosana Hance) is a subtropical deciduous tree species that possesses attractive autumnal leaf coloration. The color of young leaves is closer to purplish red, while senescent leaves are more orange‐red to dark red. It was confirmed that delphinidin and cyanidin are the two anthocyanidins that contribute to the color of Formosan sweet gum leaves, and the content of different anthocyanins influences the appearance of color. To elucidate the regulation of anthocyanidin biosynthesis, recombinant DIHYDROFLAVONOL‐4‐REDUCTASEs (LfDFR1 and LfDFR2) (EC 1.1.1.234) were produced, and their substrate acceptability was investigated both in vitro and in planta . The functions of flavanones and dihydroflavonols modification by FLAVONOID 3′ HYDROXYLASE (LfF3′H1) (EC 1.14.14.82) and FLAVONOID 3′5′ HYDROXYLASE (LfF3′5′H) (EC 1.14.14.81) were verified using a transient overexpression experiment in Nicotiana benthamiana . The results showed that LfMYB5 induced LfF3′5′H and LfMYB123 induced both LfF3′H1 and LfDFR1 in spring when the leaves were expanding, whereas LfMYB113 induced LfF3′H1 , LfDFR1 , and LfDFR2 in late autumn to winter when the leaves were undergoing leaf senescence. In conclusion, the color variation of Formosan sweet gum in young and senescent leaves was attributed to the composition of anthocyanidins through the transcriptional regulation of LfF3′H1 and LfF3′5′H by LfMYB5, LfMYB113, and LfMYB123. In certain plants, leaf coloration occurs in young and senescent leaves; however, it is unclear whether these two developmental stages are controlled by the same regulatory mechanisms. Formosan sweet gum (Liquidambar formosana Hance) is a subtropical deciduous tree species that possesses attractive autumnal leaf coloration. The color of young leaves is closer to purplish red, while senescent leaves are more orange‐red to dark red. It was confirmed that delphinidin and cyanidin are the two anthocyanidins that contribute to the color of Formosan sweet gum leaves, and the content of different anthocyanins influences the appearance of color. To elucidate the regulation of anthocyanidin biosynthesis, recombinant DIHYDROFLAVONOL‐4‐REDUCTASEs (LfDFR1 and LfDFR2) (EC 1.1.1.234) were produced, and their substrate acceptability was investigated both in vitro and in planta. The functions of flavanones and dihydroflavonols modification by FLAVONOID 3′ HYDROXYLASE (LfF3′H1) (EC 1.14.14.82) and FLAVONOID 3′5′ HYDROXYLASE (LfF3′5′H) (EC 1.14.14.81) were verified using a transient overexpression experiment in Nicotiana benthamiana. The results showed that LfMYB5 induced LfF3′5′H and LfMYB123 induced both LfF3′H1 and LfDFR1 in spring when the leaves were expanding, whereas LfMYB113 induced LfF3′H1, LfDFR1, and LfDFR2 in late autumn to winter when the leaves were undergoing leaf senescence. In conclusion, the color variation of Formosan sweet gum in young and senescent leaves was attributed to the composition of anthocyanidins through the transcriptional regulation of LfF3′H1 and LfF3′5′H by LfMYB5, LfMYB113, and LfMYB123. |
Author | Wen, Chi‐Hsiang Chu, Fang‐Hua Tsao, Nai‐Wen Wang, Sheng‐Yang |
Author_xml | – sequence: 1 givenname: Chi‐Hsiang surname: Wen fullname: Wen, Chi‐Hsiang organization: National Taiwan University – sequence: 2 givenname: Nai‐Wen surname: Tsao fullname: Tsao, Nai‐Wen organization: National Chung‐Hsing University – sequence: 3 givenname: Sheng‐Yang surname: Wang fullname: Wang, Sheng‐Yang organization: National Chung‐Hsing University – sequence: 4 givenname: Fang‐Hua orcidid: 0000-0003-2299-5013 surname: Chu fullname: Chu, Fang‐Hua email: fhchu@ntu.edu.tw organization: National Taiwan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33675234$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuFDEURC0URCYDC34AWWKTLDrxq19LNCKANBJZwNry43riqNue2N2J-i_4ZExmsolAeGPJPlVXt-oMnYQYAKH3lFzScq72--GSct7Vr9CK8r6vOKnFCVoRwmnVc9qeorOc7wihTUPZG3TKedPWjIsV-rWJQ0z4QSWvJh8D9gEvcQ47rILFGQJkA2HCA6gHyDg6fB3TGLMKOD8CTHg3j_h86-9nb9WoVcLu-K8usF7wdAt4V1xwgt08HEYUExWm22gWFbwtA7WPeSkvkH1-i147NWR4d7zX6Of15x-br9X2-5dvm0_byvCuqSvteuG45qA0Mdo40hHQloCtHdPWGNq0gmprhW17xV3PjempbRjrHGuY7vganR989ynez5AnOfqy6jCoAHHOkpWoCKkbIf6Pir4THW1L3Gv08QV6F-cUyiKS1aLuGCMl9zX6cKRmPYKV--RHlRb5XEsBrg6ASTHnBE4aPz2FNyXlB0mJ_FO8LMXLp-KL4uKF4tn0b-zR_dEPsPwblDc324PiN9eSvy8 |
CitedBy_id | crossref_primary_10_3390_ijms25042057 crossref_primary_10_3390_ijms222312824 crossref_primary_10_1016_j_ijbiomac_2023_127825 crossref_primary_10_3390_genes12071086 crossref_primary_10_7717_peerj_16792 crossref_primary_10_1080_10408398_2022_2157372 crossref_primary_10_3390_ijms242417368 crossref_primary_10_3390_biology13050329 crossref_primary_10_3390_genes14030559 crossref_primary_10_1186_s12870_024_04737_x crossref_primary_10_1038_s41598_022_21517_5 crossref_primary_10_1111_nph_18814 crossref_primary_10_1186_s43897_023_00071_2 |
Cites_doi | 10.1271/bbb.100358 10.1016/j.tree.2008.10.006 10.1111/j.1365-313X.2007.03373.x 10.1111/j.1365-313X.2005.02510.x 10.1111/j.1365-313X.2006.02655.x 10.1105/tpc.111.095232 10.1007/BF02670468 10.1105/tpc.113.122069 10.1046/j.1365-313X.1999.00502.x 10.1126/science.aac7202 10.1046/j.1365-313x.2001.00962.x 10.1071/FP12195 10.1104/pp.105.067231 10.1104/pp.108.118919 10.1093/jexbot/51.347.1107 10.2307/3870058 10.1105/tpc.12.12.2383 10.1371/journal.pone.0072017 10.1046/j.1365-313X.2001.01154.x 10.1186/1471-2229-10-50 10.1104/pp.103.030221 10.1111/j.1440-1703.2003.00588.x 10.1104/pp.114.241877 10.1016/S0070-2153(05)66004-8 10.1093/molbev/mst197 10.1105/tpc.13.9.2099 10.1002/j.1460-2075.1987.tb02684.x 10.1104/pp.126.2.485 10.1021/acs.jafc.5b01195 10.1104/pp.112.206771 10.3389/fpls.2018.01935 10.1126/science.1095011 10.1007/BF02490176 10.1093/pcp/pcu029 10.1073/pnas.83.24.9631 10.1093/pcp/pcu160 10.1016/j.tplants.2007.11.012 10.1371/journal.pone.0112707 10.1007/s00468-008-0217-8 10.1016/S0031-9422(00)88535-0 10.1016/j.plantsci.2011.05.009 |
ContentType | Journal Article |
Copyright | 2021 Scandinavian Plant Physiology Society 2021 Scandinavian Plant Physiology Society. |
Copyright_xml | – notice: 2021 Scandinavian Plant Physiology Society – notice: 2021 Scandinavian Plant Physiology Society. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7ST 8FD C1K FR3 P64 RC3 SOI 7X8 7S9 L.6 |
DOI | 10.1111/ppl.13385 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Engineering Research Database Ecology Abstracts Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Genetics Abstracts AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1399-3054 |
EndPage | 1763 |
ExternalDocumentID | 33675234 10_1111_ppl_13385 PPL13385 |
Genre | article Journal Article |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29O 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBTR ACBWZ ACCFJ ACCZN ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ H~9 IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OHT OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 TWZ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT ZCG ZZTAW ~02 ~IA ~KM ~WT AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SN 7ST 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 RC3 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3865-bf94f3b3eab0cbcf080ebd0ed5f2bdcc16741bdd4d79a3f93cc91d6228f262b83 |
IEDL.DBID | DR2 |
ISSN | 0031-9317 1399-3054 |
IngestDate | Fri Jul 11 18:23:43 EDT 2025 Fri Jul 11 08:46:10 EDT 2025 Fri Jul 25 12:04:08 EDT 2025 Thu Apr 03 07:05:51 EDT 2025 Thu Apr 24 23:09:24 EDT 2025 Tue Jul 01 03:00:51 EDT 2025 Wed Jan 22 16:28:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | 2021 Scandinavian Plant Physiology Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3865-bf94f3b3eab0cbcf080ebd0ed5f2bdcc16741bdd4d79a3f93cc91d6228f262b83 |
Notes | Edited by E. Pesquet ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2299-5013 |
PMID | 33675234 |
PQID | 2545822052 |
PQPubID | 1096353 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2661005644 proquest_miscellaneous_2498481700 proquest_journals_2545822052 pubmed_primary_33675234 crossref_citationtrail_10_1111_ppl_13385 crossref_primary_10_1111_ppl_13385 wiley_primary_10_1111_ppl_13385_PPL13385 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Denmark – name: Malden |
PublicationTitle | Physiologia plantarum |
PublicationTitleAlternate | Physiol Plant |
PublicationYear | 2021 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | 2015; 56 2010; 10 2009; 24 2019; 9 1987; 6 2014; 26 2000; 51 2008; 13 2012; 39 2003; 18 2001; 28 2008; 147 2015; 349 1972; 85 2008; 53 2013; 8 2013; 161 2001; 25 2004; 304 2005; 66 2005; 44 2001; 126 2003; 11 1995; 7 2004; 134 1986; 83 2006; 45 2017; 58 2000; 12 1999; 19 1993; 11 2015; 63 2013; 30 2006; 140 2011; 181 2008; 22 2014; 165 2014; 9 1996; 4 2012; 24 2001; 13 1972; 11 2010; 74 2014; 55 e_1_2_10_23_1 Wen C.‐H. (e_1_2_10_40_1) 2017; 58 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_21_1 e_1_2_10_44_1 Chen P.‐Y. (e_1_2_10_10_1) 2003; 11 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_42_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_29_1 Nicholas K.B. (e_1_2_10_31_1) 1996; 4 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 26 start-page: 962 year: 2014 end-page: 980 article-title: A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots publication-title: Plant Cell – volume: 51 start-page: 1107 year: 2000 end-page: 1115 article-title: Functional role of anthocyanins in the leaves of Quintinia serrata Cunn. A publication-title: Journal of Experimental Botany – volume: 13 start-page: 2099 year: 2001 end-page: 2114 article-title: The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed publication-title: Plant Cell – volume: 63 start-page: 5417 year: 2015 end-page: 5427 article-title: Identification of Ellagitannins and flavonoids from Eugenia brasilienses lam. (Grumixama) by HPLC‐ESI‐MS/MS. publication-title: Journal of Agricultural and Food Chemistry – volume: 11 start-page: 2555 year: 1972 end-page: 2558 article-title: Anthocyanin and other phenolics in autumn leaves publication-title: Phytochemistry – volume: 13 start-page: 99 year: 2008 end-page: 102 article-title: MYB transcription factors that colour our fruit publication-title: Trends in Plant Science – volume: 161 start-page: 225 year: 2013 end-page: 239 article-title: An ancient duplication of apple MYB transcription factors is responsible for novel red fruit‐flesh phenotypes publication-title: Plant Physiology – volume: 24 start-page: 1242 year: 2012 end-page: 1255 article-title: Retrotransposons control fruit‐specific, cold‐dependent accumulation of anthocyanins in blood oranges publication-title: Plant Cell – volume: 18 start-page: 677 year: 2003 end-page: 694 article-title: Pigment dynamics and autumn leaf senescence in a New England deciduous forest, eastern USA publication-title: Ecological Research – volume: 165 start-page: 1424 year: 2014 end-page: 1439 article-title: MYB5 and MYB14 play pivotal roles in seed coat polymer biosynthesis in publication-title: Plant Physiology – volume: 8 start-page: 1 year: 2013 end-page: 16 article-title: Molecular cloning and characterization of three genes encoding dihydroflavonol‐4‐reductase from in anthocyanin biosynthetic pathway publication-title: PLoS One – volume: 30 start-page: 2725 year: 2013 end-page: 2729 article-title: MEGA6: molecular evolutionary genetics analysis version 6.0 publication-title: Molecular Biology and Evolution – volume: 58 start-page: 508 year: 2017 end-page: 521 article-title: A R2R3‐MYB gene LfMYB113 is responsible for autumn leaf coloration in formosan sweet gum (Liquidambar formosana Hance) publication-title: Plant and Cell Physiology – volume: 24 start-page: 166 year: 2009 end-page: 173 article-title: Unravelling the evolution of autumn colours: an interdisciplinary approach publication-title: Trends in Ecology and Evolution – volume: 39 start-page: 619 year: 2012 end-page: 638 article-title: From landing lights to mimicry: the molecular regulation of flower colouration and mechanisms for pigmentation patterning publication-title: Functional Plant Biology – volume: 53 start-page: 814 year: 2008 end-page: 827 article-title: Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings publication-title: The Plant Journal – volume: 83 start-page: 9631 year: 1986 end-page: 9635 article-title: Molecular analysis of the maize anthocyanin regulatory locus C1 publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 134 start-page: 979 year: 2004 end-page: 994 article-title: Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol‐4‐reductase from publication-title: Plant Physiology – volume: 44 start-page: 62 year: 2005 end-page: 75 article-title: Metabolic engineering of proanthocyanidins by ectopic expression of transcription factors in publication-title: The Plant Journal – volume: 19 start-page: 81 year: 1999 end-page: 85 article-title: Cymbidium hybrida dihydroflavonol 4‐reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidin‐type anthocyanins publication-title: The Plant Journal – volume: 74 start-page: 1760 year: 2010 end-page: 1769 article-title: Flower color modification by engineering of the flavonoid biosynthetic pathway: practical perspectives publication-title: Bioscience, Biotechnology, and Biochemistry – volume: 9 start-page: 1 year: 2019 end-page: 15 article-title: The R2R3‐MYB factor FhMYB5 from Freesia hybrida contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis publication-title: Frontiers in Plant Science – volume: 55 start-page: 942 year: 2014 end-page: 957 article-title: High‐throughput transcriptome analysis of the leafy flower transition of induced by peanut witches ’ ‐broom phytoplasma infection publication-title: Plant and Cell Physiology – volume: 349 start-page: 1224 year: 2015 end-page: 1228 article-title: Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone publication-title: Science – volume: 66 start-page: 135 year: 2005 end-page: 160 article-title: The colors of autumn leaves as symptoms of cellular recycling and defenses against environmental stresses publication-title: Current Topics in Developmental Biology – volume: 6 start-page: 3553 year: 1987 end-page: 3558 article-title: The regulatory c1 locus of encodes a protein with homology to myb proto‐oncogene products and with structural similarities to transcriptional activators publication-title: The EMBO Journal – volume: 28 start-page: 319 year: 2001 end-page: 332 article-title: The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco publication-title: The Plant Journal – volume: 126 start-page: 485 year: 2001 end-page: 493 article-title: Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology publication-title: Plant Physiology – volume: 7 start-page: 1071 year: 1995 end-page: 1083 article-title: Genetics and biochemistry of anthocyanin biosynthesis publication-title: Plant Cell – volume: 11 start-page: 113 year: 1993 end-page: 116 article-title: A simple and efficient method for isolating RNA from pine trees publication-title: Plant Molecular Biology Reporter – volume: 11 start-page: 287 year: 2003 end-page: 293 article-title: Complete sequence of the binary vector pBI121 and its application in cloning T‐DNA insertion from transgenic plants publication-title: CEUR Workshop Proceedings – volume: 22 start-page: 573 year: 2008 end-page: 578 article-title: Association of red coloration with senescence of sugar maple leaves in autumn publication-title: Trees – volume: 10 start-page: 50 year: 2010 article-title: An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae publication-title: BMC Plant Biology – volume: 56 start-page: 163 year: 2015 end-page: 174 article-title: Transcriptome analysis of a subtropical deciduous tree: autumn leaf senescence gene expression profile of Formosan gum publication-title: Plant and Cell Physiology – volume: 4 start-page: 14 year: 1996 article-title: GeneDoc: analysis and visualization of genetic variation publication-title: EMBNEW – volume: 85 start-page: 303 year: 1972 end-page: 306 article-title: A survey of anthocyanins in sprouting leaves of some Japanese angiosperms studies on anthocyanins, LXV publication-title: Botanical Magazine – volume: 181 start-page: 219 year: 2011 end-page: 229 article-title: Recent advances on the regulation of anthocyanin synthesis in reproductive organs publication-title: Plant Science – volume: 9 issue: 11 year: 2014 article-title: Dihydroflavonol 4‐reductase genes encode enzymes with contrasting substrate specificity and show divergent gene expression profiles in Fragaria species publication-title: PLoS One – volume: 140 start-page: 499 year: 2006 end-page: 511 article-title: Characterization of a grapevine R2R3‐MYB transcription factor that regulates the phenylpropanoid pathway publication-title: Plant Physiology – volume: 147 start-page: 2041 year: 2008 end-page: 2053 article-title: The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries publication-title: Plant Physiology – volume: 12 start-page: 2383 year: 2000 end-page: 2394 article-title: Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis publication-title: Plant Cell – volume: 25 start-page: 325 year: 2001 end-page: 333 article-title: Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4‐reductase publication-title: The Plant Journal – volume: 304 start-page: 982 year: 2004 article-title: Retrotransposon‐induced mutations in grape skin color publication-title: Science – volume: 45 start-page: 895 year: 2006 end-page: 907 article-title: Metabolic engineering of proanthocyanidins through co‐expression of anthocyanidin reductase and the PAP1 MYB transcription factor publication-title: The Plant Journal – ident: e_1_2_10_38_1 doi: 10.1271/bbb.100358 – ident: e_1_2_10_5_1 doi: 10.1016/j.tree.2008.10.006 – volume: 4 start-page: 14 year: 1996 ident: e_1_2_10_31_1 article-title: GeneDoc: analysis and visualization of genetic variation publication-title: EMBNEW – ident: e_1_2_10_15_1 doi: 10.1111/j.1365-313X.2007.03373.x – ident: e_1_2_10_36_1 doi: 10.1111/j.1365-313X.2005.02510.x – ident: e_1_2_10_44_1 doi: 10.1111/j.1365-313X.2006.02655.x – ident: e_1_2_10_7_1 doi: 10.1105/tpc.111.095232 – ident: e_1_2_10_9_1 doi: 10.1007/BF02670468 – ident: e_1_2_10_3_1 doi: 10.1105/tpc.113.122069 – ident: e_1_2_10_21_1 doi: 10.1046/j.1365-313X.1999.00502.x – ident: e_1_2_10_23_1 doi: 10.1126/science.aac7202 – ident: e_1_2_10_20_1 doi: 10.1046/j.1365-313x.2001.00962.x – ident: e_1_2_10_12_1 doi: 10.1071/FP12195 – ident: e_1_2_10_13_1 doi: 10.1104/pp.105.067231 – volume: 11 start-page: 287 year: 2003 ident: e_1_2_10_10_1 article-title: Complete sequence of the binary vector pBI121 and its application in cloning T‐DNA insertion from transgenic plants publication-title: CEUR Workshop Proceedings – ident: e_1_2_10_14_1 doi: 10.1104/pp.108.118919 – ident: e_1_2_10_16_1 doi: 10.1093/jexbot/51.347.1107 – ident: e_1_2_10_17_1 doi: 10.2307/3870058 – ident: e_1_2_10_6_1 doi: 10.1105/tpc.12.12.2383 – ident: e_1_2_10_18_1 doi: 10.1371/journal.pone.0072017 – ident: e_1_2_10_2_1 doi: 10.1046/j.1365-313X.2001.01154.x – ident: e_1_2_10_26_1 doi: 10.1186/1471-2229-10-50 – ident: e_1_2_10_43_1 doi: 10.1104/pp.103.030221 – ident: e_1_2_10_24_1 doi: 10.1111/j.1440-1703.2003.00588.x – ident: e_1_2_10_27_1 doi: 10.1104/pp.114.241877 – ident: e_1_2_10_32_1 doi: 10.1016/S0070-2153(05)66004-8 – ident: e_1_2_10_37_1 doi: 10.1093/molbev/mst197 – ident: e_1_2_10_30_1 doi: 10.1105/tpc.13.9.2099 – ident: e_1_2_10_33_1 doi: 10.1002/j.1460-2075.1987.tb02684.x – volume: 58 start-page: 508 year: 2017 ident: e_1_2_10_40_1 article-title: A R2R3‐MYB gene LfMYB113 is responsible for autumn leaf coloration in formosan sweet gum (Liquidambar formosana Hance) publication-title: Plant and Cell Physiology – ident: e_1_2_10_42_1 doi: 10.1104/pp.126.2.485 – ident: e_1_2_10_39_1 doi: 10.1021/acs.jafc.5b01195 – ident: e_1_2_10_8_1 doi: 10.1104/pp.112.206771 – ident: e_1_2_10_25_1 doi: 10.3389/fpls.2018.01935 – ident: e_1_2_10_22_1 doi: 10.1126/science.1095011 – ident: e_1_2_10_45_1 doi: 10.1007/BF02490176 – ident: e_1_2_10_28_1 doi: 10.1093/pcp/pcu029 – ident: e_1_2_10_11_1 doi: 10.1073/pnas.83.24.9631 – ident: e_1_2_10_41_1 doi: 10.1093/pcp/pcu160 – ident: e_1_2_10_4_1 doi: 10.1016/j.tplants.2007.11.012 – ident: e_1_2_10_29_1 doi: 10.1371/journal.pone.0112707 – ident: e_1_2_10_35_1 doi: 10.1007/s00468-008-0217-8 – ident: e_1_2_10_19_1 doi: 10.1016/S0031-9422(00)88535-0 – ident: e_1_2_10_34_1 doi: 10.1016/j.plantsci.2011.05.009 |
SSID | ssj0016612 |
Score | 2.423264 |
Snippet | In certain plants, leaf coloration occurs in young and senescent leaves; however, it is unclear whether these two developmental stages are controlled by the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1750 |
SubjectTerms | Anthocyanins autumn Biosynthesis Color Coloration cyanidin Deciduous trees delphinidin Developmental stages flavanones Flavonoids Gene Expression Regulation, Plant Gene regulation genes Hydroxylase Leaves Liquidambar - metabolism Liquidambar formosana Liquidambar styraciflua Nicotiana - genetics Nicotiana - metabolism Nicotiana benthamiana Plant Leaves - genetics Plant Leaves - metabolism Plant Proteins - genetics Plant Proteins - metabolism Plant species Reductases Regulatory mechanisms (biology) Senescence spring Substrates Transcription transcription (genetics) trees |
Title | Color variation in young and senescent leaves of Formosan sweet gum (Liquidambar formosana) by the gene regulation of anthocyanidin biosynthesis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fppl.13385 https://www.ncbi.nlm.nih.gov/pubmed/33675234 https://www.proquest.com/docview/2545822052 https://www.proquest.com/docview/2498481700 https://www.proquest.com/docview/2661005644 |
Volume | 172 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9UwELaqigMXlrI9KJVBHB6HPCV2kibiRKs-VaigClGpB6TI46WK2ibw8lIUfgU_mRlnEWUT4hbF48hxZvkcj79h7IUOUw2ZU2jiGW0zhi5QaWKCBOLQQoKI31Pmv32XHp7Eb06T0w32ajwL0_NDTD_cyDK8vyYDV9D8YOQI0ha0wKID5pSrRYDo_UQdFWHc6ZnCZRTkGCQHViHK4pl6Xo9FvwDM63jVB5zlbfZxHGqfZ3K-aNew0F9_YnH8z3e5w24NQJS_7jXnLtuw1Ra7sVcjWOzusW_76BRX_ApX0v7T8bLiHTkGrirDG3KQlNbJL6y6sg2vHV8i-K0bVfHmi7VrftZe8vlR-bktjboEteJuaFcvOXQcYSdH1bV8Zc-GAmL0EEVUBrpTVYkhlUNZNx3esU3Z3Gcny4MP-4fBULwh0FRGNACXx06CtApCDdohMrVgQmsSJ8BoTacfIjAmNru5ki6XWueRSYXInEgFZPIB26zqyj5iXCrAHs7i01L064RoIcIeJg4zh5F3xubjZyz0wGxOBTYuinGFg_Nb-PmdseeT6KeezuN3QtujLhSDRTeF8DuMIkzEjD2bmtEWaYNFVbZuUSbOqTrBbhj-RQYVk_hX43jGHvZ6No1ESly-CYktc68tfx5icXx85C8e_7voE3ZTUEKOzzXeZpvrVWufIqJaw443ne94ZR9L |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKQYINb-hAAYNAGhYZJXaSJgsW0DKa0mlVoVbqLvhZRbRJSSatwlfwIfwK_8S9eYnyEpsu2EXxjWXZ93Fs35xLyHPlhkpGVoCJR3jN6FpHhIF2Aum7RgaA-BvK_O2dcLbvvzsIDpbI1_5fmJYfYjhwQ8to_DUaOB5I_2DlgNImuMPqUyq3TH0GG7by1eYGrO4LxqZv99ZnTldTwFFY3dKRNvYtl9wI6SqpLAAmI7VrdGCZ1EphUr4ntfb1Wiy4jblSsadDxiLLQiYjDv1eIpexgjgy9W-8H8iqPIh0LTc595wYwnLHY4R5Q8NQz0e_XyDteYTchLjpDfKtn5w2s-XjpFrIifr8E2_k_zJ7N8n1DmvT161x3CJLJrtNrrzJAQ_Xd8iXdfD7BT0VRaudNM1ojb6PikzTEmMAZq7SIyNOTUlzS6eA7_NSZLQ8M2ZBD6tjOp6nn6pUi2MpCmq7dvGSypoCsqZgnYYW5rCrkYadCGRrULXIUkANVKZ5WcMbU6blXbJ_IbNxjyxneWZWCOVCwhfWQG8hhC4E7dKDL7TvRhbAxYiMe71JVEfejjVEjpJ-EwfrmTTrOSLPBtGTlrHkd0KrvfIlndMqE9ZcojI3YCPydGgGd4N3SCIzeQUyfowFGNZc9y8yYAlIMev7I3K_VexhJJzDDpVxaBk36vnnISa7u_Pm4cG_iz4hV2d72_Nkvrmz9ZBcY5h_1KRWr5LlRVGZRwAgF_JxY7eUfLhoVf8OT8CA9g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBSEu7MtAAYNAGg4ZOc7S5MABOoxaOlQjRKXeUq9VRJuUZNIq_Ar-B3-FH8VzNlE2cemBWxQ_W5b9ls_xy_cAnkkaShEZjiYe2WtGahweBsoJhE-1CBDxN5T573bCzV3_7V6wtwJf-39hWn6I4YObtYzGX1sDP1bmByNHkDaxB6w-o3Jb16d4Xitfbk1xc58zNnvzYWPT6UoKONIWt3SEiX3jCU9zQaWQBvGSFopqFRgmlJQ2J98VSvlqPeaeiT0pY1eFjEWGhUxEHo57AS76IY1tnYjp-4GrysVA11KTe64TY1TuaIxs2tAw1bPB7xdEexYgNxFudg2-9WvTJrZ8nFRLMZGff6KN_E8W7zpc7ZA2edWaxg1Y0dlNuPQ6RzRc34IvG-j1C3LCi1Y3SZqR2no-wjNFShsBbN4qOdT8RJckN2SG6D4veUbKU62X5KA6IuN5-qlKFT8SvCCma-cviKgJ4mqCtqlJoQ-6Cml2EG65GmTNsxQxAxFpXtb4RpdpeRt2z2U17sBqlmf6HhCPC-xhNI4WYuCykF242EP5NDIILUYw7tUmkR11u60gcpj0Rzjcz6TZzxE8HUSPW76S3wmt9bqXdC6rTFhzhcpowEbwZGhGZ2NvkHim8wpl_NiWX1in9C8yaAiWYNb3R3C31ethJp6H51PmYcu40c4_TzFZLObNw_1_F30MlxfTWTLf2tl-AFeYTT5q8qrXYHVZVPohoseleNRYLYH989b0704wf6U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Color+variation+in+young+and+senescent+leaves+of+Formosan+sweet+gum+%28Liquidambar+formosana%29+by+the+gene+regulation+of+anthocyanidin+biosynthesis&rft.jtitle=Physiologia+plantarum&rft.au=Wen%2C+Chi%E2%80%90Hsiang&rft.au=Tsao%2C+Nai%E2%80%90Wen&rft.au=Wang%2C+Sheng%E2%80%90Yang&rft.au=Chu%2C+Fang%E2%80%90Hua&rft.date=2021-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0031-9317&rft.eissn=1399-3054&rft.volume=172&rft.issue=3&rft.spage=1750&rft.epage=1763&rft_id=info:doi/10.1111%2Fppl.13385&rft.externalDBID=10.1111%252Fppl.13385&rft.externalDocID=PPL13385 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9317&client=summon |