Microplastic pollution promotes soil respiration: A global‐scale meta‐analysis

Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta‐analysis to determine the effects of MP pollution on the soil microbiome and CO2 emission. We found that MP pol...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 30; no. 7; pp. e17415 - n/a
Main Authors Zhao, Shuling, Rillig, Matthias C., Bing, Haijian, Cui, Qingliang, Qiu, Tianyi, Cui, Yongxing, Penuelas, Josep, Liu, Baiyan, Bian, Shiqi, Monikh, Fazel Abdolahpur, Chen, Jing, Fang, Linchuan
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta‐analysis to determine the effects of MP pollution on the soil microbiome and CO2 emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO2 emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi, Cyanobacteria). This study reveals that MP pollution can increase soil CO2 emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks. Microplastic (MP) pollution is a significant global environmental challenge with the potential to impact soil carbon dynamics, necessitating a systematic assessment of its effects on soil respiration. We provide evidence that MPs increased the soil C pool (in part very likely because plastic‐carbon was captured as soil C) and microbial biomass thereby promoting soil CO2 emission. This study enhances our understanding of how MPs influence soil CO2 emissions by regulating the soil microbiome and underscores potential feedback mechanisms related to climate impacts at the Earth system level, thereby providing guidance for future research and policy development.
AbstractList Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta‐analysis to determine the effects of MP pollution on the soil microbiome and CO2 emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO2 emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi, Cyanobacteria). This study reveals that MP pollution can increase soil CO2 emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks.
Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta-analysis to determine the effects of MP pollution on the soil microbiome and CO emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi, Cyanobacteria). This study reveals that MP pollution can increase soil CO emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks.
Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta-analysis to determine the effects of MP pollution on the soil microbiome and CO2 emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO2 emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi, Cyanobacteria). This study reveals that MP pollution can increase soil CO2 emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks.Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta-analysis to determine the effects of MP pollution on the soil microbiome and CO2 emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO2 emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi, Cyanobacteria). This study reveals that MP pollution can increase soil CO2 emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks.
Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta‐analysis to determine the effects of MP pollution on the soil microbiome and CO₂ emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO₂ emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi, Cyanobacteria). This study reveals that MP pollution can increase soil CO₂ emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks.
Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta‐analysis to determine the effects of MP pollution on the soil microbiome and CO 2 emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO 2 emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi , Cyanobacteria ). This study reveals that MP pollution can increase soil CO 2 emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks.
Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta‐analysis to determine the effects of MP pollution on the soil microbiome and CO2 emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO2 emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi, Cyanobacteria). This study reveals that MP pollution can increase soil CO2 emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks. Microplastic (MP) pollution is a significant global environmental challenge with the potential to impact soil carbon dynamics, necessitating a systematic assessment of its effects on soil respiration. We provide evidence that MPs increased the soil C pool (in part very likely because plastic‐carbon was captured as soil C) and microbial biomass thereby promoting soil CO2 emission. This study enhances our understanding of how MPs influence soil CO2 emissions by regulating the soil microbiome and underscores potential feedback mechanisms related to climate impacts at the Earth system level, thereby providing guidance for future research and policy development.
Author Bian, Shiqi
Zhao, Shuling
Rillig, Matthias C.
Monikh, Fazel Abdolahpur
Fang, Linchuan
Bing, Haijian
Liu, Baiyan
Qiu, Tianyi
Cui, Qingliang
Cui, Yongxing
Penuelas, Josep
Chen, Jing
Author_xml – sequence: 1
  givenname: Shuling
  orcidid: 0009-0007-3134-6222
  surname: Zhao
  fullname: Zhao, Shuling
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Matthias C.
  orcidid: 0000-0003-3541-7853
  surname: Rillig
  fullname: Rillig, Matthias C.
  organization: Institute of Biology, Freie Universität Berlin
– sequence: 3
  givenname: Haijian
  orcidid: 0000-0002-9813-6939
  surname: Bing
  fullname: Bing, Haijian
  organization: Institute of Mountain Hazards and Environment, Chinese Academy of Sciences
– sequence: 4
  givenname: Qingliang
  orcidid: 0000-0002-2216-4925
  surname: Cui
  fullname: Cui, Qingliang
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Tianyi
  orcidid: 0000-0002-5778-0592
  surname: Qiu
  fullname: Qiu, Tianyi
  organization: College of Natural Resources and Environment, Northwest A&F University
– sequence: 6
  givenname: Yongxing
  orcidid: 0000-0002-8624-2785
  surname: Cui
  fullname: Cui, Yongxing
  organization: Institute of Biology, Freie Universität Berlin
– sequence: 7
  givenname: Josep
  orcidid: 0000-0002-7215-0150
  surname: Penuelas
  fullname: Penuelas, Josep
  organization: CREAF
– sequence: 8
  givenname: Baiyan
  surname: Liu
  fullname: Liu, Baiyan
  organization: University of Chinese Academy of Sciences
– sequence: 9
  givenname: Shiqi
  surname: Bian
  fullname: Bian, Shiqi
  organization: College of Natural Resources and Environment, Northwest A&F University
– sequence: 10
  givenname: Fazel Abdolahpur
  orcidid: 0000-0001-9500-5303
  surname: Monikh
  fullname: Monikh, Fazel Abdolahpur
  organization: Institute for Nanomaterials, Advanced Technologies, and Innovation, Technical University of Liberec Bendlova 1409/7
– sequence: 11
  givenname: Jing
  orcidid: 0000-0002-4037-7158
  surname: Chen
  fullname: Chen, Jing
  organization: Renmin Hospital of Wuhan University
– sequence: 12
  givenname: Linchuan
  orcidid: 0000-0003-1923-7908
  surname: Fang
  fullname: Fang, Linchuan
  email: flinc629@hotmail.com
  organization: Wuhan University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39005227$$D View this record in MEDLINE/PubMed
BookMark eNqFkctKAzEUhoNU7EUXvoAMuNFF21wnM-5q0SpUBNH1kKaZkpKZjMkM0p2P4DP6JKYXXRTUbJJwvv9wzv93Qau0pQLgFMEBCme4kLMB4hSxA9BBJGZ9TJO4tX4z2kcQkTboer-EEBIM4yPQJimEDGPeAU8PWjpbGeFrLaPKGtPU2pZR5Wxha-Ujb7WJnPKVdmJduYpG0cLYmTCf7x9eCqOiQtUifEQpzMprfwwOc2G8OtndPfBye_M8vutPHyf349G0L0kSZkwQo3k6pxjllOZznPI0QRRzDlGOpOKEKqywDHVGJBOSQBk2oVSmLEYxUaQHLrZ9w6yvjfJ1VmgvlTGiVLbxGQlCDlnC-f8oTGBMGKYwoOd76NI2Lqy2oViMEY_TQJ3tqGZWqHlWOV0It8q-jQ3A5RYI7nrvVP6DIJitQ8tCaNkmtMAO91ip643ZtRPa_KV400atfm-dTcbXW8UXB3Sm0w
CitedBy_id crossref_primary_10_1016_j_jhazmat_2025_137591
crossref_primary_10_1016_j_apsoil_2025_106007
crossref_primary_10_3390_plants14020256
crossref_primary_10_1016_j_scitotenv_2024_177875
crossref_primary_10_1016_j_scitotenv_2024_178100
crossref_primary_10_1016_j_jece_2025_115624
crossref_primary_10_1016_j_jhazmat_2025_138033
crossref_primary_10_1016_j_scitotenv_2025_178462
crossref_primary_10_1016_j_jhazmat_2024_135758
crossref_primary_10_1016_j_cej_2024_156676
crossref_primary_10_1016_j_pedsph_2025_03_010
crossref_primary_10_1016_j_tplants_2024_11_018
crossref_primary_10_3390_f16020363
Cites_doi 10.1016/j.jhazmat.2021.127282
10.13232/j.cnki.jnju.2021.03.006
10.1016/j.jhazmat.2021.125954
10.1021/acs.est.9b01339
10.1016/j.apsoil.2022.104694
10.1023/A:1010933404324
10.1016/j.envpol.2019.112983
10.1016/j.chemosphere.2021.130998
10.1021/acs.est.0c04849
10.1016/j.progpolymsci.2004.10.001
10.1016/S0038‐0717(01)00158‐4
10.1016/j.envint.2022.107244
10.1021/acs.est.2c09491
10.1016/j.jhazmat.2021.127944
10.1186/s43591‐021‐00004‐0
10.1016/j.apsoil.2022.104794
10.1126/science.abb5979
10.1016/j.envpol.2021.117733
10.1111/1462‐2920.16549
10.1021/acs.est.6b04140
10.1016/j.scitotenv.2021.151768
10.1021/acs.est.1c02695
10.1093/ismejo/wrad017
10.1016/j.envpol.2022.120603
10.1016/j.scitotenv.2023.164589
10.1016/j.scitotenv.2021.150516
10.1016/j.soilbio.2023.108940
10.1371/journal.pbio.3001130
10.1016/j.catena.2019.104177
10.1016/j.impact.2023.100460
10.1016/j.soilbio.2023.108989
10.1038/nmicrobiol.2017.105
10.1016/j.jhazmat.2023.130825
10.13227/j.hjkx.202102042
10.1021/acs.est.3c02133
10.1016/j.apsoil.2022.104773
10.1016/j.jhazmat.2020.124701
10.1016/j.chemosphere.2022.137155
10.1016/j.scitotenv.2021.145640
10.1016/j.envres.2021.111938
10.1016/j.soilbio.2023.109006
10.1016/j.apsoil.2022.104486
10.1002/etc.4916
10.1016/j.jhazmat.2023.131445
10.1016/j.jhazmat.2023.131950
10.1016/j.scitotenv.2022.153358
10.1016/j.chemosphere.2021.132984
10.1016/j.soilbio.2005.06.020
10.1016/j.scitotenv.2022.156471
10.1016/j.chemosphere.2022.135836
10.1016/j.jhazmat.2022.129057
10.1111/gcb.16734
10.1016/j.envpol.2020.115468
10.1016/j.jhazmat.2021.127531
10.1080/00380768.2021.2022437
10.1021/es401288x
10.13930/j.cnki.cjea.200677
10.1016/j.scitotenv.2023.162885
10.1016/j.ecoenv.2021.113045
10.1016/j.jhazmat.2022.130288
10.1016/j.envres.2023.115891
10.1038/ncomms2224
10.1016/j.jhazmat.2022.128721
10.1016/j.chemosphere.2023.138737
10.1021/acssuschemeng.1c07749
10.1016/j.envpol.2022.120433
10.1016/j.chemosphere.2023.139082
10.1016/j.jenvman.2023.118013
10.1039/c7cs00149e
10.1016/j.jhazmat.2021.126671
10.1016/j.jhazmat.2022.128589
10.1016/j.soilbio.2010.02.003
10.2307/177062
10.1111/sum.12991
10.1111/sum.13055
10.1016/j.envpol.2020.115544
10.1021/acsestengg.3c00401
10.3390/w16020348
10.1038/s41467‐018‐03798‐5
10.1016/j.jhazmat.2022.129610
10.1016/j.soilbio.2021.108211
10.1021/acs.est.2c06258
10.3390/pr10102128
10.1016/j.jhazmat.2022.128353
10.1007/s11356‐023‐30550‐4
10.1016/j.envint.2021.106398
10.1016/j.envpol.2022.119374
10.1016/j.scitotenv.2021.148087
10.1007/s41742‐023‐00558‐2
10.1016/j.envpol.2022.119046
10.1016/j.envpol.2024.123791
10.1016/j.jhazmat.2021.125286
10.1016/j.ese.2021.100121
10.1016/j.scitotenv.2023.168961
10.1016/j.envint.2019.105263
10.1038/s41467‐020‐20616‐z
10.1016/j.jhazmat.2022.129509
10.1016/j.envpol.2021.118386
10.1016/j.jclepro.2022.135558
10.1016/j.jhazmat.2021.127364
10.1016/j.soilbio.2018.10.006
10.1111/2041‐210X.12472
10.1016/j.scitotenv.2022.157886
10.1016/j.jhazmat.2023.131391
10.1016/j.ecoenv.2023.114618
10.1016/j.jhazmat.2022.130102
10.1016/j.ejsobi.2009.05.002
10.1016/j.chemosphere.2023.138504
10.1016/j.jenvman.2021.114193
10.1016/j.envpol.2023.121960
10.1016/j.envpol.2020.114689
10.1073/pnas.1606615113
10.1016/j.scitotenv.2023.162967
10.1016/j.jhazmat.2021.127258
10.1016/j.jhazmat.2022.130045
10.1016/j.envint.2021.106708
10.1016/j.xinn.2023.100543
10.1016/j.biortech.2021.125133
10.1038/s41561‐023‐01345‐6
10.1016/j.jhazmat.2020.124357
10.1016/j.chemosphere.2021.132460
10.1038/s41467‐022‐33064‐8
10.1126/science.abb0354
10.1002/ep.670120108
10.1016/j.chemosphere.2019.125271
10.1016/j.jhazmat.2023.131857
10.1016/j.envpol.2023.121810
10.1016/j.apsoil.2022.104714
10.1016/j.jhazmat.2021.126455
10.1038/s41579‐023‐00967‐2
10.1007/s11356‐023‐26159‐2
10.1038/s41467‐020‐16235‐3
10.1007/s11356‐022‐19373‐x
10.1016/j.scitotenv.2021.150714
10.1016/S0043‐1354(02)00387‐1
10.1016/j.jhazmat.2023.131076
10.1016/j.jhazmat.2023.131152
10.1016/j.jhazmat.2023.131989
10.1016/j.chemosphere.2023.138188
10.3390/agronomy13010075
10.1016/j.apsoil.2022.104716
10.1016/j.polymdegradstab.2013.07.004
10.1021/acssuschemeng.9b06635
10.1016/j.chemosphere.2022.135941
10.1016/j.scitotenv.2021.151435
10.1038/s41467‐022‐31691‐9
10.1016/j.chemosphere.2018.01.166
10.1016/j.apsoil.2022.104650
10.1016/j.oneear.2024.04.002
10.1021/acs.est.3c02976
10.1111/sum.12808
10.3390/plants11040536
10.1016/j.apsoil.2022.104623
10.4014/jmb.1709.09027
10.1007/s40009‐023‐01246‐7
10.1016/j.scitotenv.2019.135634
10.1038/ngeo689
10.1016/j.jhazmat.2021.128196
10.1016/j.scitotenv.2018.11.438
10.1016/j.envpol.2023.122095
10.1021/acs.est.8b02338
10.1126/sciadv.1700782
10.1126/science.1094559
10.1016/j.soilbio.2015.07.021
10.1021/acs.est.6b00816
10.1016/j.jhazmat.2022.129547
10.1016/j.eti.2023.103174
10.1016/j.scitotenv.2023.161642
10.1038/s41579‐019‐0308‐0
10.1016/j.scitotenv.2020.140463
10.1016/j.envpol.2019.113347
10.1016/j.envpol.2022.119094
10.1016/j.jhazmat.2020.124606
10.18637/jss.v036.i03
10.1016/j.jenvman.2023.119616
10.1038/s41558‐023‐01627‐2
10.1016/j.scitotenv.2021.151960
10.3390/agronomy13010149
10.1016/j.envpol.2015.12.035
10.1016/j.jhazmat.2022.128826
10.1016/j.jhazmat.2022.130712
10.1016/j.jhazmat.2021.126831
10.1007/s11104‐021‐04869‐1
10.1016/j.jhazmat.2023.130762
10.1016/j.envres.2022.113728
10.1007/s11368‐022‐03387‐6
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
Copyright © 2024 John Wiley & Sons Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: Copyright © 2024 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
DOI 10.1111/gcb.17415
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
MEDLINE - Academic
AGRICOLA
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage n/a
ExternalDocumentID 39005227
10_1111_gcb_17415
GCB17415
Genre researchArticle
Meta-Analysis
Journal Article
GrantInformation_xml – fundername: The Catalan Government
  funderid: AGAUR2023 CLIMA 00118; SGR 2021‐1333
– fundername: The Fundación Ramón Areces
  funderid: CIVP20A6621
– fundername: The Strategic Priority Research Program of Chinese Academy of Sciences
  funderid: XDB40020202
– fundername: The Joint Key Funds of the National Natural Science Foundation of China
  funderid: U21A20237
– fundername: MCIN
  funderid: TED2021‐132627 B‐I00
– fundername: The Spanish Government
  funderid: PID2022‐140808NB‐I00
– fundername: The Spanish Government
  grantid: PID2022-140808NB-I00
– fundername: The Strategic Priority Research Program of Chinese Academy of Sciences
  grantid: XDB40020202
– fundername: The Fundación Ramón Areces
  grantid: CIVP20A6621
– fundername: MCIN
  grantid: TED2021-132627 B-I00
– fundername: The Catalan Government
  grantid: SGR 2021-1333
– fundername: The Catalan Government
  grantid: AGAUR2023 CLIMA 00118
– fundername: The Joint Key Funds of the National Natural Science Foundation of China
  grantid: U21A20237
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
AEUQT
AFPWT
CGR
CUY
CVF
ECM
EIF
ESX
NPM
WRC
WUP
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
ID FETCH-LOGICAL-c3865-8154f9d421f44fd297981427701f1ce734e2e2c42153c5ac30c01344c956163e3
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Fri Jul 11 18:36:57 EDT 2025
Fri Jul 11 06:20:04 EDT 2025
Fri Jul 25 19:35:23 EDT 2025
Wed Feb 19 02:01:28 EST 2025
Thu Apr 24 22:58:40 EDT 2025
Tue Jul 01 05:13:52 EDT 2025
Sun Jul 06 04:45:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords soil enzyme activities
soil microorganisms
soil CO2 emission
global climate change
microplastics
soil organic C
Language English
License 2024 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3865-8154f9d421f44fd297981427701f1ce734e2e2c42153c5ac30c01344c956163e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5778-0592
0000-0001-9500-5303
0000-0002-8624-2785
0000-0003-3541-7853
0000-0003-1923-7908
0009-0007-3134-6222
0000-0002-9813-6939
0000-0002-2216-4925
0000-0002-7215-0150
0000-0002-4037-7158
PMID 39005227
PQID 3085621769
PQPubID 30327
PageCount 17
ParticipantIDs proquest_miscellaneous_3153705877
proquest_miscellaneous_3080635240
proquest_journals_3085621769
pubmed_primary_39005227
crossref_primary_10_1111_gcb_17415
crossref_citationtrail_10_1111_gcb_17415
wiley_primary_10_1111_gcb_17415_GCB17415
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
2024-Jul
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References e_1_2_10_2_4_1
e_1_2_10_2_110_1
e_1_2_10_1_29_1
e_1_2_10_1_67_1
e_1_2_10_2_51_1
e_1_2_10_2_74_1
e_1_2_10_1_21_1
e_1_2_10_1_44_1
e_1_2_10_2_13_1
e_1_2_10_2_36_1
e_1_2_10_2_59_1
e_1_2_10_2_97_1
e_1_2_10_2_118_1
e_1_2_10_2_122_1
e_1_2_10_1_7_1
e_1_2_10_1_18_1
e_1_2_10_1_56_1
e_1_2_10_2_40_1
e_1_2_10_2_63_1
e_1_2_10_1_10_1
e_1_2_10_1_33_1
e_1_2_10_1_71_1
e_1_2_10_2_25_1
e_1_2_10_2_48_1
e_1_2_10_2_86_1
e_1_2_10_2_107_1
e_1_2_10_2_3_1
e_1_2_10_2_111_1
e_1_2_10_1_45_1
e_1_2_10_1_68_1
e_1_2_10_2_96_1
e_1_2_10_2_73_1
e_1_2_10_1_22_1
e_1_2_10_2_50_1
e_1_2_10_1_60_1
e_1_2_10_2_12_1
e_1_2_10_2_35_1
e_1_2_10_2_119_1
e_1_2_10_2_58_1
e_1_2_10_2_123_1
e_1_2_10_2_100_1
e_1_2_10_1_8_1
e_1_2_10_1_19_1
e_1_2_10_1_34_1
e_1_2_10_1_57_1
e_1_2_10_2_85_1
e_1_2_10_2_62_1
e_1_2_10_1_11_1
e_1_2_10_1_72_1
e_1_2_10_2_24_1
e_1_2_10_2_47_1
e_1_2_10_2_108_1
e_1_2_10_2_112_1
e_1_2_10_2_19_1
e_1_2_10_2_2_1
e_1_2_10_1_27_1
e_1_2_10_2_95_1
e_1_2_10_1_42_1
e_1_2_10_1_65_1
e_1_2_10_2_72_1
e_1_2_10_2_11_1
e_1_2_10_2_34_1
e_1_2_10_2_57_1
e_1_2_10_2_101_1
e_1_2_10_2_124_1
e_1_2_10_1_9_1
e_1_2_10_1_16_1
e_1_2_10_1_39_1
e_1_2_10_2_84_1
e_1_2_10_1_31_1
e_1_2_10_2_61_1
e_1_2_10_1_54_1
e_1_2_10_2_109_1
e_1_2_10_2_23_1
e_1_2_10_2_46_1
e_1_2_10_2_69_1
e_1_2_10_2_18_1
e_1_2_10_2_113_1
Bracken M. B. (e_1_2_10_1_5_1) 1992
e_1_2_10_1_28_1
e_1_2_10_2_94_1
e_1_2_10_1_20_1
e_1_2_10_1_66_1
e_1_2_10_1_43_1
e_1_2_10_2_71_1
e_1_2_10_2_10_1
e_1_2_10_2_56_1
e_1_2_10_2_9_1
e_1_2_10_2_33_1
e_1_2_10_2_79_1
e_1_2_10_2_102_1
e_1_2_10_2_125_1
e_1_2_10_1_17_1
e_1_2_10_1_2_1
e_1_2_10_2_83_1
e_1_2_10_1_55_1
e_1_2_10_1_32_1
e_1_2_10_2_60_1
e_1_2_10_2_45_1
e_1_2_10_1_70_1
e_1_2_10_2_22_1
e_1_2_10_2_68_1
e_1_2_10_2_17_1
e_1_2_10_2_114_1
e_1_2_10_2_70_1
e_1_2_10_2_93_1
e_1_2_10_1_25_1
e_1_2_10_1_48_1
e_1_2_10_1_63_1
e_1_2_10_2_32_1
e_1_2_10_2_55_1
e_1_2_10_2_78_1
e_1_2_10_1_40_1
e_1_2_10_2_8_1
e_1_2_10_2_29_1
e_1_2_10_2_103_1
e_1_2_10_2_126_1
e_1_2_10_2_82_1
e_1_2_10_1_14_1
e_1_2_10_1_37_1
e_1_2_10_1_52_1
e_1_2_10_1_3_1
e_1_2_10_1_75_1
e_1_2_10_2_21_1
e_1_2_10_2_44_1
e_1_2_10_2_67_1
e_1_2_10_2_39_1
e_1_2_10_2_115_1
e_1_2_10_1_49_1
e_1_2_10_1_26_1
e_1_2_10_1_41_1
e_1_2_10_1_64_1
e_1_2_10_2_92_1
e_1_2_10_2_7_1
e_1_2_10_2_31_1
e_1_2_10_2_77_1
e_1_2_10_2_54_1
e_1_2_10_2_16_1
e_1_2_10_2_28_1
e_1_2_10_2_104_1
e_1_2_10_1_38_1
e_1_2_10_1_15_1
e_1_2_10_1_53_1
e_1_2_10_1_76_1
e_1_2_10_1_30_1
e_1_2_10_1_4_1
e_1_2_10_2_81_1
e_1_2_10_2_20_1
e_1_2_10_2_66_1
e_1_2_10_2_43_1
e_1_2_10_2_89_1
e_1_2_10_1_23_1
e_1_2_10_1_46_1
e_1_2_10_1_69_1
e_1_2_10_2_30_1
e_1_2_10_2_91_1
e_1_2_10_1_61_1
e_1_2_10_2_6_1
e_1_2_10_2_53_1
e_1_2_10_2_76_1
e_1_2_10_2_116_1
e_1_2_10_2_38_1
e_1_2_10_2_99_1
e_1_2_10_2_15_1
e_1_2_10_2_120_1
e_1_2_10_1_12_1
e_1_2_10_1_35_1
e_1_2_10_1_58_1
e_1_2_10_2_80_1
e_1_2_10_1_73_1
e_1_2_10_2_42_1
e_1_2_10_2_65_1
e_1_2_10_1_50_1
e_1_2_10_2_105_1
e_1_2_10_2_27_1
e_1_2_10_2_88_1
e_1_2_10_2_5_1
e_1_2_10_1_24_1
e_1_2_10_1_47_1
e_1_2_10_2_52_1
e_1_2_10_2_90_1
e_1_2_10_1_62_1
e_1_2_10_2_75_1
e_1_2_10_2_14_1
e_1_2_10_2_117_1
e_1_2_10_2_98_1
e_1_2_10_2_37_1
e_1_2_10_2_121_1
e_1_2_10_1_13_1
e_1_2_10_1_59_1
e_1_2_10_1_36_1
e_1_2_10_1_6_1
e_1_2_10_2_41_1
e_1_2_10_1_74_1
e_1_2_10_1_51_1
e_1_2_10_2_64_1
e_1_2_10_2_49_1
e_1_2_10_2_87_1
e_1_2_10_2_106_1
e_1_2_10_2_26_1
References_xml – ident: e_1_2_10_2_90_1
  doi: 10.1016/j.jhazmat.2021.127282
– ident: e_1_2_10_2_65_1
  doi: 10.13232/j.cnki.jnju.2021.03.006
– ident: e_1_2_10_2_121_1
  doi: 10.1016/j.jhazmat.2021.125954
– ident: e_1_2_10_1_9_1
  doi: 10.1021/acs.est.9b01339
– ident: e_1_2_10_2_11_1
  doi: 10.1016/j.apsoil.2022.104694
– ident: e_1_2_10_1_6_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_10_2_31_1
  doi: 10.1016/j.envpol.2019.112983
– ident: e_1_2_10_2_124_1
  doi: 10.1016/j.chemosphere.2021.130998
– ident: e_1_2_10_1_32_1
  doi: 10.1021/acs.est.0c04849
– ident: e_1_2_10_1_45_1
  doi: 10.1016/j.progpolymsci.2004.10.001
– ident: e_1_2_10_1_24_1
  doi: 10.1016/S0038‐0717(01)00158‐4
– ident: e_1_2_10_2_42_1
  doi: 10.1021/acs.est.0c04849
– ident: e_1_2_10_1_11_1
  doi: 10.1016/j.envint.2022.107244
– ident: e_1_2_10_1_64_1
  doi: 10.1021/acs.est.2c09491
– ident: e_1_2_10_2_125_1
  doi: 10.1016/j.jhazmat.2021.127944
– ident: e_1_2_10_1_48_1
  doi: 10.1186/s43591‐021‐00004‐0
– ident: e_1_2_10_2_84_1
  doi: 10.1016/j.apsoil.2022.104794
– ident: e_1_2_10_1_50_1
  doi: 10.1126/science.abb5979
– ident: e_1_2_10_1_66_1
  doi: 10.1016/j.envpol.2021.117733
– ident: e_1_2_10_1_37_1
  doi: 10.1111/1462‐2920.16549
– ident: e_1_2_10_1_40_1
  doi: 10.1021/acs.est.6b04140
– ident: e_1_2_10_2_89_1
  doi: 10.1016/j.scitotenv.2021.151768
– ident: e_1_2_10_1_42_1
  doi: 10.1021/acs.est.1c02695
– ident: e_1_2_10_1_44_1
  doi: 10.1093/ismejo/wrad017
– ident: e_1_2_10_2_103_1
  doi: 10.1016/j.envpol.2022.120603
– ident: e_1_2_10_2_41_1
  doi: 10.1016/j.scitotenv.2023.164589
– ident: e_1_2_10_2_91_1
  doi: 10.1016/j.scitotenv.2021.150516
– ident: e_1_2_10_1_35_1
  doi: 10.1016/j.soilbio.2023.108940
– ident: e_1_2_10_1_51_1
  doi: 10.1371/journal.pbio.3001130
– ident: e_1_2_10_2_50_1
  doi: 10.1016/j.catena.2019.104177
– ident: e_1_2_10_2_37_1
  doi: 10.1016/j.impact.2023.100460
– ident: e_1_2_10_2_87_1
  doi: 10.1016/j.soilbio.2023.108989
– ident: e_1_2_10_1_34_1
  doi: 10.1038/nmicrobiol.2017.105
– ident: e_1_2_10_2_75_1
  doi: 10.1016/j.jhazmat.2023.130825
– ident: e_1_2_10_2_116_1
  doi: 10.13227/j.hjkx.202102042
– ident: e_1_2_10_1_55_1
  doi: 10.1021/acs.est.3c02133
– ident: e_1_2_10_2_72_1
  doi: 10.1016/j.apsoil.2022.104773
– ident: e_1_2_10_2_25_1
  doi: 10.1016/j.jhazmat.2020.124701
– ident: e_1_2_10_2_88_1
  doi: 10.1016/j.chemosphere.2022.137155
– ident: e_1_2_10_2_79_1
  doi: 10.1016/j.scitotenv.2021.145640
– ident: e_1_2_10_2_66_1
  doi: 10.1016/j.envres.2021.111938
– ident: e_1_2_10_2_113_1
  doi: 10.1016/j.soilbio.2023.109006
– ident: e_1_2_10_1_73_1
  doi: 10.1016/j.apsoil.2022.104486
– ident: e_1_2_10_2_22_1
  doi: 10.1002/etc.4916
– ident: e_1_2_10_2_110_1
  doi: 10.1016/j.jhazmat.2023.131445
– ident: e_1_2_10_2_34_1
  doi: 10.1016/j.jhazmat.2023.131950
– ident: e_1_2_10_2_35_1
  doi: 10.1016/j.scitotenv.2022.153358
– ident: e_1_2_10_2_43_1
  doi: 10.1016/j.chemosphere.2021.132984
– ident: e_1_2_10_1_15_1
  doi: 10.1016/j.soilbio.2005.06.020
– ident: e_1_2_10_2_85_1
  doi: 10.1016/j.scitotenv.2022.156471
– ident: e_1_2_10_2_46_1
  doi: 10.1016/j.chemosphere.2022.135836
– ident: e_1_2_10_2_49_1
  doi: 10.1016/j.jhazmat.2022.129057
– ident: e_1_2_10_2_122_1
  doi: 10.1111/gcb.16734
– ident: e_1_2_10_2_4_1
  doi: 10.1016/j.envpol.2020.115468
– ident: e_1_2_10_1_61_1
  doi: 10.1016/j.jhazmat.2021.127531
– ident: e_1_2_10_2_32_1
  doi: 10.1080/00380768.2021.2022437
– ident: e_1_2_10_1_68_1
  doi: 10.1021/es401288x
– ident: e_1_2_10_2_12_1
  doi: 10.13930/j.cnki.cjea.200677
– ident: e_1_2_10_2_86_1
  doi: 10.1016/j.scitotenv.2023.162885
– ident: e_1_2_10_2_17_1
  doi: 10.1016/j.ecoenv.2021.113045
– ident: e_1_2_10_1_31_1
  doi: 10.1016/j.jhazmat.2022.130288
– ident: e_1_2_10_2_2_1
  doi: 10.1016/j.envres.2023.115891
– ident: e_1_2_10_1_33_1
  doi: 10.1038/ncomms2224
– ident: e_1_2_10_1_67_1
  doi: 10.1016/j.jhazmat.2022.128721
– ident: e_1_2_10_2_106_1
  doi: 10.1016/j.chemosphere.2023.138737
– ident: e_1_2_10_2_27_1
  doi: 10.1021/acssuschemeng.1c07749
– ident: e_1_2_10_2_48_1
  doi: 10.1016/j.envpol.2022.120433
– ident: e_1_2_10_2_105_1
  doi: 10.1016/j.chemosphere.2023.139082
– ident: e_1_2_10_2_5_1
  doi: 10.1186/s43591‐021‐00004‐0
– ident: e_1_2_10_2_29_1
– ident: e_1_2_10_2_33_1
  doi: 10.1016/j.jenvman.2023.118013
– ident: e_1_2_10_1_26_1
  doi: 10.1039/c7cs00149e
– ident: e_1_2_10_2_26_1
  doi: 10.1016/j.jhazmat.2021.126671
– ident: e_1_2_10_2_101_1
  doi: 10.1016/j.jhazmat.2022.128589
– ident: e_1_2_10_1_10_1
  doi: 10.1016/j.soilbio.2010.02.003
– ident: e_1_2_10_1_18_1
  doi: 10.2307/177062
– ident: e_1_2_10_2_78_1
  doi: 10.1111/sum.12991
– ident: e_1_2_10_2_13_1
  doi: 10.1111/sum.13055
– ident: e_1_2_10_2_107_1
  doi: 10.1016/j.envpol.2020.115544
– ident: e_1_2_10_1_8_1
  doi: 10.1021/acsestengg.3c00401
– ident: e_1_2_10_2_9_1
  doi: 10.3390/w16020348
– ident: e_1_2_10_1_53_1
  doi: 10.1038/s41467‐018‐03798‐5
– ident: e_1_2_10_1_13_1
  doi: 10.1002/etc.4916
– start-page: 13
  volume-title: Effective care of the newborn infant
  year: 1992
  ident: e_1_2_10_1_5_1
– ident: e_1_2_10_2_92_1
  doi: 10.1016/j.jhazmat.2022.129610
– ident: e_1_2_10_1_75_1
  doi: 10.1016/j.soilbio.2021.108211
– ident: e_1_2_10_1_57_1
  doi: 10.1021/acs.est.2c06258
– ident: e_1_2_10_2_52_1
  doi: 10.3390/pr10102128
– ident: e_1_2_10_2_39_1
  doi: 10.1016/j.jhazmat.2022.128353
– ident: e_1_2_10_2_80_1
  doi: 10.1007/s11356‐023‐30550‐4
– ident: e_1_2_10_1_19_1
  doi: 10.1016/j.envint.2021.106398
– ident: e_1_2_10_1_72_1
  doi: 10.1016/j.envpol.2022.119374
– ident: e_1_2_10_2_98_1
  doi: 10.1016/j.scitotenv.2021.148087
– ident: e_1_2_10_2_111_1
  doi: 10.1016/j.jhazmat.2022.128721
– ident: e_1_2_10_2_10_1
  doi: 10.1007/s41742‐023‐00558‐2
– ident: e_1_2_10_2_24_1
  doi: 10.1016/j.envpol.2022.119046
– ident: e_1_2_10_2_68_1
  doi: 10.1016/j.envpol.2024.123791
– ident: e_1_2_10_2_102_1
  doi: 10.1016/j.jhazmat.2021.125286
– ident: e_1_2_10_1_65_1
  doi: 10.1016/j.ese.2021.100121
– ident: e_1_2_10_1_70_1
  doi: 10.1016/j.scitotenv.2023.168961
– ident: e_1_2_10_1_17_1
  doi: 10.1016/j.envint.2019.105263
– ident: e_1_2_10_1_28_1
  doi: 10.1038/s41467‐020‐20616‐z
– ident: e_1_2_10_2_126_1
  doi: 10.1016/j.jhazmat.2022.129509
– ident: e_1_2_10_2_28_1
  doi: 10.1016/j.envpol.2021.118386
– ident: e_1_2_10_2_60_1
  doi: 10.1016/j.jclepro.2022.135558
– ident: e_1_2_10_2_19_1
  doi: 10.1016/j.jhazmat.2021.127364
– ident: e_1_2_10_1_74_1
  doi: 10.1016/j.soilbio.2018.10.006
– ident: e_1_2_10_1_25_1
  doi: 10.1111/2041‐210X.12472
– ident: e_1_2_10_2_120_1
  doi: 10.1016/j.scitotenv.2022.157886
– ident: e_1_2_10_2_30_1
  doi: 10.1016/j.jhazmat.2023.131391
– ident: e_1_2_10_2_114_1
  doi: 10.1016/j.ecoenv.2023.114618
– ident: e_1_2_10_2_54_1
  doi: 10.1016/j.jhazmat.2022.130102
– ident: e_1_2_10_1_63_1
  doi: 10.1016/j.ejsobi.2009.05.002
– ident: e_1_2_10_2_51_1
  doi: 10.1016/j.chemosphere.2023.138504
– ident: e_1_2_10_1_4_1
  doi: 10.1016/j.envpol.2020.115468
– ident: e_1_2_10_2_3_1
  doi: 10.1016/j.jenvman.2021.114193
– ident: e_1_2_10_2_95_1
  doi: 10.1016/j.envpol.2023.121960
– ident: e_1_2_10_2_63_1
  doi: 10.1016/j.envpol.2020.114689
– ident: e_1_2_10_1_29_1
  doi: 10.1073/pnas.1606615113
– ident: e_1_2_10_2_8_1
  doi: 10.1016/j.scitotenv.2023.162967
– ident: e_1_2_10_2_100_1
  doi: 10.1016/j.jhazmat.2021.127258
– ident: e_1_2_10_1_62_1
  doi: 10.1016/j.jhazmat.2022.130045
– ident: e_1_2_10_2_108_1
  doi: 10.1016/j.envint.2021.106708
– ident: e_1_2_10_1_30_1
  doi: 10.1016/j.xinn.2023.100543
– ident: e_1_2_10_2_94_1
  doi: 10.1016/j.biortech.2021.125133
– ident: e_1_2_10_1_20_1
  doi: 10.1038/s41561‐023‐01345‐6
– ident: e_1_2_10_1_60_1
  doi: 10.1016/j.jhazmat.2020.124357
– ident: e_1_2_10_2_16_1
  doi: 10.1016/j.chemosphere.2021.132460
– ident: e_1_2_10_1_38_1
  doi: 10.1038/s41467‐022‐33064‐8
– ident: e_1_2_10_1_56_1
  doi: 10.1126/science.abb0354
– ident: e_1_2_10_1_21_1
  doi: 10.1002/ep.670120108
– ident: e_1_2_10_2_109_1
  doi: 10.1016/j.envpol.2021.117733
– ident: e_1_2_10_2_6_1
  doi: 10.1016/j.chemosphere.2019.125271
– ident: e_1_2_10_2_123_1
  doi: 10.1016/j.jhazmat.2023.131857
– ident: e_1_2_10_2_61_1
  doi: 10.1111/1462‐2920.16549
– ident: e_1_2_10_2_36_1
  doi: 10.1016/j.envpol.2023.121810
– ident: e_1_2_10_2_74_1
  doi: 10.1016/j.apsoil.2022.104714
– ident: e_1_2_10_1_46_1
  doi: 10.1016/j.jhazmat.2021.126455
– ident: e_1_2_10_1_49_1
  doi: 10.1038/s41579‐023‐00967‐2
– ident: e_1_2_10_2_40_1
  doi: 10.1007/s11356‐023‐26159‐2
– ident: e_1_2_10_2_81_1
  doi: 10.1038/s41467‐020‐16235‐3
– ident: e_1_2_10_2_23_1
  doi: 10.1007/s11356‐022‐19373‐x
– ident: e_1_2_10_1_71_1
  doi: 10.1016/j.scitotenv.2021.150714
– ident: e_1_2_10_1_2_1
  doi: 10.1016/S0043‐1354(02)00387‐1
– ident: e_1_2_10_2_57_1
  doi: 10.1016/j.jhazmat.2023.131076
– ident: e_1_2_10_2_115_1
  doi: 10.1016/j.jhazmat.2023.131152
– ident: e_1_2_10_2_70_1
  doi: 10.1016/j.jhazmat.2023.131989
– ident: e_1_2_10_2_82_1
  doi: 10.1016/j.chemosphere.2023.138188
– ident: e_1_2_10_2_53_1
  doi: 10.3390/agronomy13010075
– ident: e_1_2_10_2_93_1
  doi: 10.1021/acs.est.2c06258
– ident: e_1_2_10_2_45_1
  doi: 10.1016/j.apsoil.2022.104716
– ident: e_1_2_10_2_118_1
  doi: 10.1016/j.scitotenv.2021.150714
– ident: e_1_2_10_1_22_1
  doi: 10.1016/j.polymdegradstab.2013.07.004
– ident: e_1_2_10_1_7_1
  doi: 10.1021/acssuschemeng.9b06635
– ident: e_1_2_10_2_58_1
  doi: 10.1016/j.chemosphere.2022.135941
– ident: e_1_2_10_2_55_1
  doi: 10.1016/j.scitotenv.2021.151435
– ident: e_1_2_10_1_54_1
  doi: 10.1038/s41467‐022‐31691‐9
– ident: e_1_2_10_1_76_1
  doi: 10.1111/gcb.16734
– ident: e_1_2_10_2_99_1
  doi: 10.1016/j.chemosphere.2018.01.166
– ident: e_1_2_10_2_119_1
  doi: 10.1016/j.apsoil.2022.104650
– ident: e_1_2_10_1_43_1
  doi: 10.1016/j.oneear.2024.04.002
– ident: e_1_2_10_1_36_1
  doi: 10.1021/acs.est.3c02976
– ident: e_1_2_10_2_69_1
  doi: 10.1111/sum.12808
– ident: e_1_2_10_2_71_1
  doi: 10.3390/plants11040536
– ident: e_1_2_10_2_104_1
  doi: 10.1016/j.apsoil.2022.104623
– ident: e_1_2_10_1_23_1
  doi: 10.4014/jmb.1709.09027
– ident: e_1_2_10_2_38_1
  doi: 10.1007/s40009‐023‐01246‐7
– ident: e_1_2_10_2_15_1
– ident: e_1_2_10_2_18_1
  doi: 10.1016/j.scitotenv.2019.135634
– ident: e_1_2_10_1_27_1
  doi: 10.1038/ngeo689
– ident: e_1_2_10_2_62_1
  doi: 10.1016/j.jhazmat.2021.128196
– ident: e_1_2_10_2_67_1
  doi: 10.1016/j.scitotenv.2018.11.438
– ident: e_1_2_10_2_47_1
  doi: 10.1016/j.envpol.2023.122095
– ident: e_1_2_10_1_47_1
  doi: 10.1021/acs.est.8b02338
– ident: e_1_2_10_1_14_1
  doi: 10.1126/sciadv.1700782
– ident: e_1_2_10_1_58_1
  doi: 10.1126/science.1094559
– ident: e_1_2_10_1_16_1
  doi: 10.1016/j.soilbio.2015.07.021
– ident: e_1_2_10_1_12_1
  doi: 10.1021/acs.est.6b00816
– ident: e_1_2_10_1_69_1
  doi: 10.1016/j.soilbio.2023.109006
– ident: e_1_2_10_2_56_1
  doi: 10.1016/j.jhazmat.2022.129547
– ident: e_1_2_10_2_73_1
  doi: 10.1016/j.eti.2023.103174
– ident: e_1_2_10_2_64_1
  doi: 10.1016/j.scitotenv.2023.161642
– ident: e_1_2_10_1_3_1
  doi: 10.1038/s41579‐019‐0308‐0
– ident: e_1_2_10_2_96_1
  doi: 10.1016/j.scitotenv.2020.140463
– ident: e_1_2_10_2_76_1
  doi: 10.1016/j.envpol.2019.113347
– ident: e_1_2_10_2_59_1
  doi: 10.1016/j.envpol.2022.119094
– ident: e_1_2_10_1_39_1
  doi: 10.1016/j.jhazmat.2020.124606
– ident: e_1_2_10_1_59_1
  doi: 10.18637/jss.v036.i03
– ident: e_1_2_10_2_83_1
  doi: 10.1016/j.jenvman.2023.119616
– ident: e_1_2_10_1_52_1
  doi: 10.1038/s41558‐023‐01627‐2
– ident: e_1_2_10_2_7_1
  doi: 10.1016/j.scitotenv.2021.151960
– ident: e_1_2_10_2_14_1
  doi: 10.3390/agronomy13010149
– ident: e_1_2_10_1_41_1
  doi: 10.1016/j.envpol.2015.12.035
– ident: e_1_2_10_2_97_1
  doi: 10.1016/j.jhazmat.2022.128826
– ident: e_1_2_10_2_112_1
  doi: 10.1016/j.jhazmat.2022.130712
– ident: e_1_2_10_2_20_1
  doi: 10.1016/j.jhazmat.2021.126831
– ident: e_1_2_10_2_77_1
  doi: 10.1007/s11104‐021‐04869‐1
– ident: e_1_2_10_2_117_1
  doi: 10.1016/j.jhazmat.2023.130762
– ident: e_1_2_10_2_21_1
  doi: 10.1016/j.envres.2022.113728
– ident: e_1_2_10_2_44_1
  doi: 10.1007/s11368‐022‐03387‐6
SSID ssj0003206
Score 2.5578084
SecondaryResourceType review_article
Snippet Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e17415
SubjectTerms Autotrophic microorganisms
Biomass
Carbon - analysis
Carbon - metabolism
Carbon dioxide
Carbon Dioxide - analysis
Carbon Dioxide - metabolism
Carbon dioxide emissions
Chloroflexi
climate
Components
Cyanobacteria
Dissolved organic carbon
Emission analysis
Fluorescein diacetate
global change
global climate change
Heterotrophic microorganisms
hydrolases
Meta-analysis
microbial biomass
Microbiomes
Microbiota - drug effects
Microorganisms
Microplastic pollution
Microplastics
Microplastics - analysis
Plastic debris
Plastic pollution
pollution
Respiration
Soil
Soil - chemistry
Soil analysis
Soil bacteria
soil CO2 emission
soil enzyme activities
Soil Microbiology
Soil microorganisms
soil organic C
soil organic carbon
Soil Pollutants - analysis
Soil pollution
soil respiration
Soils
Substrate inhibition
Title Microplastic pollution promotes soil respiration: A global‐scale meta‐analysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.17415
https://www.ncbi.nlm.nih.gov/pubmed/39005227
https://www.proquest.com/docview/3085621769
https://www.proquest.com/docview/3080635240
https://www.proquest.com/docview/3153705877
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5CIODFx2p0NEorIrlM6Ne84ikuiUFYD8FADsIw3VMdguvusrN70JM_wd-YX5LqnkeML8TbNF0z9KOq5-vuqq8AXhbcVNyJOjZ1YmNNkCQ2qHRsTYqIArULG8XJ-_T4VL87S8424HUfC9PyQwwHbt4ywnrtDbwyzQ9Gfm6N98YJAebeV8sDopNr6iglQ15NoRJNS41QHauQ9-IZ3rz5L_oFYN7Eq-GHc3QHPvZNbf1MPu2tV2bPfv2JxfE_-3IXbndAlB20mnMPNnA2gq02NeWXEWwfXkfAkVi3BDQjiCYEs-fLIMZesfH0gjBvKN2Hk4l371sQIKePsoXPouznnS2Czx82rJlfTNmyu92nmn12wFpKkstv3xtSF2SfcVVRoerIUh7A6dHhh_Fx3CVtiK1PHxrnhMlcUWspnNaulkVW5ELLLOPCCYuZ0ihRWqpPlE0qq7il2dHa-gjbVKHahs3ZfIaPgOUcjTZC14qjlmhz5wqPx3iGeeF4HcFuP32l7RjNfWKNadnvbGhcyzCuEbwYRBctjcfvhHZ6HSg7S25KRZg0pX1bWkTwfKgmG_QXK9UM5-sgQ0gvIXD0Fxnqb8aTPMsieNjq19ASVfjTeUk1u0FL_tzE8u34TXh4_O-iT-CWJCTW-hjvwOZqucanhKRW5lkwmSsNeho7
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQguPBZaAgUMQqiXVHbsvBCXsrQs0O2haqVeUBQ7Y1Sx7K42uwc48RP4jfwSxs6jlJcQt1ieRH7MOJ_tmW8AnuRcl9yKKtRVbEJFkCTUKFVodIKIApX1G8XxYTI6UW9O49M1eN7FwjT8EP2Bm7MMv147A3cH0j9Y-XujnTuOizC_5DJ6O-b8l0fn5FEy8pk1hYwVLTZCtrxCzo-nf_Xi3-gXiHkRsfpfzv51eNc1tvE0-bCzWuod8_knHsf_7c0NuNZiUbbbKM9NWMPpAC432Sk_DWBj7zwIjsTaVaAeQDAmpD1beDH2lA0nZwR7fekWHI2dh9-cMDl9lM1dImU39Wzu3f6wZvXsbMIW7QU_1Txju6xhJfn25WtNGoPsIy5LKpQtX8ptONnfOx6OwjZvQ2hcBtEwI1hm80pFwiplqyhP80yoKE25sMJgKhVGGBmqj6WJSyO5oelRyrgg20Si3ID16WyKd4BlHLXSQlWSo4rQZNbmDpLxFLPc8iqA7W7-CtOSmrvcGpOi29zQuBZ-XAN43IvOGyaP3wltdUpQtMZcF5JgaUJbtyQP4FFfTWbo7lbKKc5WXobAXkz46C8y1N-Ux1maBrDZKFjfEpm7A_qIara9mvy5icWr4Qv_cPffRR_CldHx-KA4eH349h5cjQiYNS7HW7C-XKzwPgGrpX7g7ec7nQMeVw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRSAuFBYKKQUMQqiXVI7tvOBUtl3KYytUUamHSlHijFHFshttdg_tiZ_Ab-SXMHYepbyEuMXyJPJjxvlsz3wD8DTlRc5NUPpFGWpfESTxC5TK10WEiAEq4zaK44No_0i9OQ6PV-BFFwvT8EP0B27WMtx6bQ28Ks0PRv5RF9YbxwaYX1ERT23eht3DC-4oKVxizUCGitaaQLa0QtaNp3_18s_oF4R5GbC6P85oDU66tjaOJp-2l4tiW5__ROP4n525CTdaJMp2GtW5BSs4HcDVJjfl2QDW9y5C4EisXQPqAXhjwtmzuRNjz9hwckqg15Vuw-HY-vdVhMjpo6yyaZTtxLPKOf1hzerZ6YTN2-t9qnnOdljDSfLty9ea9AXZZ1zkVMhbtpQ7cDTa-zDc99usDb62-UP9hECZSUslAqOUKUUap0mgRBzzwAQaY6lQoNBUH0od5lpyTbOjlLYhtpFEuQ6r09kU7wFLOBaqCFQpOSqBOjEmtYCMx5ikhpcebHXTl-mW0txm1phk3daGxjVz4-rBk160ang8fie02elA1ppynUkCpRFt3KLUg8d9NRmhvVnJpzhbOhmCeiGho7_IUH9jHiZx7MHdRr_6lsjUHs8LqtlyWvLnJmavhi_dw8a_iz6Ca-93R9m71wdv78N1Qais8TfehNXFfIkPCFUtiofOer4DLmMdBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microplastic+pollution+promotes+soil+respiration%3A+A+global%E2%80%90scale+meta%E2%80%90analysis&rft.jtitle=Global+change+biology&rft.au=Zhao%2C+Shuling&rft.au=Rillig%2C+Matthias+C.&rft.au=Bing%2C+Haijian&rft.au=Cui%2C+Qingliang&rft.date=2024-07-01&rft.issn=1354-1013&rft.volume=30&rft.issue=7+p.e17415-&rft_id=info:doi/10.1111%2Fgcb.17415&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon