Microplastic pollution promotes soil respiration: A global‐scale meta‐analysis
Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta‐analysis to determine the effects of MP pollution on the soil microbiome and CO2 emission. We found that MP pol...
Saved in:
Published in | Global change biology Vol. 30; no. 7; pp. e17415 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta‐analysis to determine the effects of MP pollution on the soil microbiome and CO2 emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO2 emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi, Cyanobacteria). This study reveals that MP pollution can increase soil CO2 emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks.
Microplastic (MP) pollution is a significant global environmental challenge with the potential to impact soil carbon dynamics, necessitating a systematic assessment of its effects on soil respiration. We provide evidence that MPs increased the soil C pool (in part very likely because plastic‐carbon was captured as soil C) and microbial biomass thereby promoting soil CO2 emission. This study enhances our understanding of how MPs influence soil CO2 emissions by regulating the soil microbiome and underscores potential feedback mechanisms related to climate impacts at the Earth system level, thereby providing guidance for future research and policy development. |
---|---|
AbstractList | Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta‐analysis to determine the effects of MP pollution on the soil microbiome and CO2 emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO2 emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi, Cyanobacteria). This study reveals that MP pollution can increase soil CO2 emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks. Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta-analysis to determine the effects of MP pollution on the soil microbiome and CO emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi, Cyanobacteria). This study reveals that MP pollution can increase soil CO emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks. Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta-analysis to determine the effects of MP pollution on the soil microbiome and CO2 emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO2 emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi, Cyanobacteria). This study reveals that MP pollution can increase soil CO2 emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks.Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta-analysis to determine the effects of MP pollution on the soil microbiome and CO2 emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO2 emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi, Cyanobacteria). This study reveals that MP pollution can increase soil CO2 emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks. Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta‐analysis to determine the effects of MP pollution on the soil microbiome and CO₂ emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO₂ emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi, Cyanobacteria). This study reveals that MP pollution can increase soil CO₂ emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks. Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta‐analysis to determine the effects of MP pollution on the soil microbiome and CO 2 emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO 2 emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi , Cyanobacteria ). This study reveals that MP pollution can increase soil CO 2 emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks. Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta‐analysis to determine the effects of MP pollution on the soil microbiome and CO2 emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO2 emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi, Cyanobacteria). This study reveals that MP pollution can increase soil CO2 emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks. Microplastic (MP) pollution is a significant global environmental challenge with the potential to impact soil carbon dynamics, necessitating a systematic assessment of its effects on soil respiration. We provide evidence that MPs increased the soil C pool (in part very likely because plastic‐carbon was captured as soil C) and microbial biomass thereby promoting soil CO2 emission. This study enhances our understanding of how MPs influence soil CO2 emissions by regulating the soil microbiome and underscores potential feedback mechanisms related to climate impacts at the Earth system level, thereby providing guidance for future research and policy development. |
Author | Bian, Shiqi Zhao, Shuling Rillig, Matthias C. Monikh, Fazel Abdolahpur Fang, Linchuan Bing, Haijian Liu, Baiyan Qiu, Tianyi Cui, Qingliang Cui, Yongxing Penuelas, Josep Chen, Jing |
Author_xml | – sequence: 1 givenname: Shuling orcidid: 0009-0007-3134-6222 surname: Zhao fullname: Zhao, Shuling organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Matthias C. orcidid: 0000-0003-3541-7853 surname: Rillig fullname: Rillig, Matthias C. organization: Institute of Biology, Freie Universität Berlin – sequence: 3 givenname: Haijian orcidid: 0000-0002-9813-6939 surname: Bing fullname: Bing, Haijian organization: Institute of Mountain Hazards and Environment, Chinese Academy of Sciences – sequence: 4 givenname: Qingliang orcidid: 0000-0002-2216-4925 surname: Cui fullname: Cui, Qingliang organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Tianyi orcidid: 0000-0002-5778-0592 surname: Qiu fullname: Qiu, Tianyi organization: College of Natural Resources and Environment, Northwest A&F University – sequence: 6 givenname: Yongxing orcidid: 0000-0002-8624-2785 surname: Cui fullname: Cui, Yongxing organization: Institute of Biology, Freie Universität Berlin – sequence: 7 givenname: Josep orcidid: 0000-0002-7215-0150 surname: Penuelas fullname: Penuelas, Josep organization: CREAF – sequence: 8 givenname: Baiyan surname: Liu fullname: Liu, Baiyan organization: University of Chinese Academy of Sciences – sequence: 9 givenname: Shiqi surname: Bian fullname: Bian, Shiqi organization: College of Natural Resources and Environment, Northwest A&F University – sequence: 10 givenname: Fazel Abdolahpur orcidid: 0000-0001-9500-5303 surname: Monikh fullname: Monikh, Fazel Abdolahpur organization: Institute for Nanomaterials, Advanced Technologies, and Innovation, Technical University of Liberec Bendlova 1409/7 – sequence: 11 givenname: Jing orcidid: 0000-0002-4037-7158 surname: Chen fullname: Chen, Jing organization: Renmin Hospital of Wuhan University – sequence: 12 givenname: Linchuan orcidid: 0000-0003-1923-7908 surname: Fang fullname: Fang, Linchuan email: flinc629@hotmail.com organization: Wuhan University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39005227$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctKAzEUhoNU7EUXvoAMuNFF21wnM-5q0SpUBNH1kKaZkpKZjMkM0p2P4DP6JKYXXRTUbJJwvv9wzv93Qau0pQLgFMEBCme4kLMB4hSxA9BBJGZ9TJO4tX4z2kcQkTboer-EEBIM4yPQJimEDGPeAU8PWjpbGeFrLaPKGtPU2pZR5Wxha-Ujb7WJnPKVdmJduYpG0cLYmTCf7x9eCqOiQtUifEQpzMprfwwOc2G8OtndPfBye_M8vutPHyf349G0L0kSZkwQo3k6pxjllOZznPI0QRRzDlGOpOKEKqywDHVGJBOSQBk2oVSmLEYxUaQHLrZ9w6yvjfJ1VmgvlTGiVLbxGQlCDlnC-f8oTGBMGKYwoOd76NI2Lqy2oViMEY_TQJ3tqGZWqHlWOV0It8q-jQ3A5RYI7nrvVP6DIJitQ8tCaNkmtMAO91ip643ZtRPa_KV400atfm-dTcbXW8UXB3Sm0w |
CitedBy_id | crossref_primary_10_1016_j_jhazmat_2025_137591 crossref_primary_10_1016_j_apsoil_2025_106007 crossref_primary_10_3390_plants14020256 crossref_primary_10_1016_j_scitotenv_2024_177875 crossref_primary_10_1016_j_scitotenv_2024_178100 crossref_primary_10_1016_j_jece_2025_115624 crossref_primary_10_1016_j_jhazmat_2025_138033 crossref_primary_10_1016_j_scitotenv_2025_178462 crossref_primary_10_1016_j_jhazmat_2024_135758 crossref_primary_10_1016_j_cej_2024_156676 crossref_primary_10_1016_j_pedsph_2025_03_010 crossref_primary_10_1016_j_tplants_2024_11_018 crossref_primary_10_3390_f16020363 |
Cites_doi | 10.1016/j.jhazmat.2021.127282 10.13232/j.cnki.jnju.2021.03.006 10.1016/j.jhazmat.2021.125954 10.1021/acs.est.9b01339 10.1016/j.apsoil.2022.104694 10.1023/A:1010933404324 10.1016/j.envpol.2019.112983 10.1016/j.chemosphere.2021.130998 10.1021/acs.est.0c04849 10.1016/j.progpolymsci.2004.10.001 10.1016/S0038‐0717(01)00158‐4 10.1016/j.envint.2022.107244 10.1021/acs.est.2c09491 10.1016/j.jhazmat.2021.127944 10.1186/s43591‐021‐00004‐0 10.1016/j.apsoil.2022.104794 10.1126/science.abb5979 10.1016/j.envpol.2021.117733 10.1111/1462‐2920.16549 10.1021/acs.est.6b04140 10.1016/j.scitotenv.2021.151768 10.1021/acs.est.1c02695 10.1093/ismejo/wrad017 10.1016/j.envpol.2022.120603 10.1016/j.scitotenv.2023.164589 10.1016/j.scitotenv.2021.150516 10.1016/j.soilbio.2023.108940 10.1371/journal.pbio.3001130 10.1016/j.catena.2019.104177 10.1016/j.impact.2023.100460 10.1016/j.soilbio.2023.108989 10.1038/nmicrobiol.2017.105 10.1016/j.jhazmat.2023.130825 10.13227/j.hjkx.202102042 10.1021/acs.est.3c02133 10.1016/j.apsoil.2022.104773 10.1016/j.jhazmat.2020.124701 10.1016/j.chemosphere.2022.137155 10.1016/j.scitotenv.2021.145640 10.1016/j.envres.2021.111938 10.1016/j.soilbio.2023.109006 10.1016/j.apsoil.2022.104486 10.1002/etc.4916 10.1016/j.jhazmat.2023.131445 10.1016/j.jhazmat.2023.131950 10.1016/j.scitotenv.2022.153358 10.1016/j.chemosphere.2021.132984 10.1016/j.soilbio.2005.06.020 10.1016/j.scitotenv.2022.156471 10.1016/j.chemosphere.2022.135836 10.1016/j.jhazmat.2022.129057 10.1111/gcb.16734 10.1016/j.envpol.2020.115468 10.1016/j.jhazmat.2021.127531 10.1080/00380768.2021.2022437 10.1021/es401288x 10.13930/j.cnki.cjea.200677 10.1016/j.scitotenv.2023.162885 10.1016/j.ecoenv.2021.113045 10.1016/j.jhazmat.2022.130288 10.1016/j.envres.2023.115891 10.1038/ncomms2224 10.1016/j.jhazmat.2022.128721 10.1016/j.chemosphere.2023.138737 10.1021/acssuschemeng.1c07749 10.1016/j.envpol.2022.120433 10.1016/j.chemosphere.2023.139082 10.1016/j.jenvman.2023.118013 10.1039/c7cs00149e 10.1016/j.jhazmat.2021.126671 10.1016/j.jhazmat.2022.128589 10.1016/j.soilbio.2010.02.003 10.2307/177062 10.1111/sum.12991 10.1111/sum.13055 10.1016/j.envpol.2020.115544 10.1021/acsestengg.3c00401 10.3390/w16020348 10.1038/s41467‐018‐03798‐5 10.1016/j.jhazmat.2022.129610 10.1016/j.soilbio.2021.108211 10.1021/acs.est.2c06258 10.3390/pr10102128 10.1016/j.jhazmat.2022.128353 10.1007/s11356‐023‐30550‐4 10.1016/j.envint.2021.106398 10.1016/j.envpol.2022.119374 10.1016/j.scitotenv.2021.148087 10.1007/s41742‐023‐00558‐2 10.1016/j.envpol.2022.119046 10.1016/j.envpol.2024.123791 10.1016/j.jhazmat.2021.125286 10.1016/j.ese.2021.100121 10.1016/j.scitotenv.2023.168961 10.1016/j.envint.2019.105263 10.1038/s41467‐020‐20616‐z 10.1016/j.jhazmat.2022.129509 10.1016/j.envpol.2021.118386 10.1016/j.jclepro.2022.135558 10.1016/j.jhazmat.2021.127364 10.1016/j.soilbio.2018.10.006 10.1111/2041‐210X.12472 10.1016/j.scitotenv.2022.157886 10.1016/j.jhazmat.2023.131391 10.1016/j.ecoenv.2023.114618 10.1016/j.jhazmat.2022.130102 10.1016/j.ejsobi.2009.05.002 10.1016/j.chemosphere.2023.138504 10.1016/j.jenvman.2021.114193 10.1016/j.envpol.2023.121960 10.1016/j.envpol.2020.114689 10.1073/pnas.1606615113 10.1016/j.scitotenv.2023.162967 10.1016/j.jhazmat.2021.127258 10.1016/j.jhazmat.2022.130045 10.1016/j.envint.2021.106708 10.1016/j.xinn.2023.100543 10.1016/j.biortech.2021.125133 10.1038/s41561‐023‐01345‐6 10.1016/j.jhazmat.2020.124357 10.1016/j.chemosphere.2021.132460 10.1038/s41467‐022‐33064‐8 10.1126/science.abb0354 10.1002/ep.670120108 10.1016/j.chemosphere.2019.125271 10.1016/j.jhazmat.2023.131857 10.1016/j.envpol.2023.121810 10.1016/j.apsoil.2022.104714 10.1016/j.jhazmat.2021.126455 10.1038/s41579‐023‐00967‐2 10.1007/s11356‐023‐26159‐2 10.1038/s41467‐020‐16235‐3 10.1007/s11356‐022‐19373‐x 10.1016/j.scitotenv.2021.150714 10.1016/S0043‐1354(02)00387‐1 10.1016/j.jhazmat.2023.131076 10.1016/j.jhazmat.2023.131152 10.1016/j.jhazmat.2023.131989 10.1016/j.chemosphere.2023.138188 10.3390/agronomy13010075 10.1016/j.apsoil.2022.104716 10.1016/j.polymdegradstab.2013.07.004 10.1021/acssuschemeng.9b06635 10.1016/j.chemosphere.2022.135941 10.1016/j.scitotenv.2021.151435 10.1038/s41467‐022‐31691‐9 10.1016/j.chemosphere.2018.01.166 10.1016/j.apsoil.2022.104650 10.1016/j.oneear.2024.04.002 10.1021/acs.est.3c02976 10.1111/sum.12808 10.3390/plants11040536 10.1016/j.apsoil.2022.104623 10.4014/jmb.1709.09027 10.1007/s40009‐023‐01246‐7 10.1016/j.scitotenv.2019.135634 10.1038/ngeo689 10.1016/j.jhazmat.2021.128196 10.1016/j.scitotenv.2018.11.438 10.1016/j.envpol.2023.122095 10.1021/acs.est.8b02338 10.1126/sciadv.1700782 10.1126/science.1094559 10.1016/j.soilbio.2015.07.021 10.1021/acs.est.6b00816 10.1016/j.jhazmat.2022.129547 10.1016/j.eti.2023.103174 10.1016/j.scitotenv.2023.161642 10.1038/s41579‐019‐0308‐0 10.1016/j.scitotenv.2020.140463 10.1016/j.envpol.2019.113347 10.1016/j.envpol.2022.119094 10.1016/j.jhazmat.2020.124606 10.18637/jss.v036.i03 10.1016/j.jenvman.2023.119616 10.1038/s41558‐023‐01627‐2 10.1016/j.scitotenv.2021.151960 10.3390/agronomy13010149 10.1016/j.envpol.2015.12.035 10.1016/j.jhazmat.2022.128826 10.1016/j.jhazmat.2022.130712 10.1016/j.jhazmat.2021.126831 10.1007/s11104‐021‐04869‐1 10.1016/j.jhazmat.2023.130762 10.1016/j.envres.2022.113728 10.1007/s11368‐022‐03387‐6 |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons Ltd. Copyright © 2024 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: Copyright © 2024 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 |
DOI | 10.1111/gcb.17415 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE MEDLINE - Academic AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
EISSN | 1365-2486 |
EndPage | n/a |
ExternalDocumentID | 39005227 10_1111_gcb_17415 GCB17415 |
Genre | researchArticle Meta-Analysis Journal Article |
GrantInformation_xml | – fundername: The Catalan Government funderid: AGAUR2023 CLIMA 00118; SGR 2021‐1333 – fundername: The Fundación Ramón Areces funderid: CIVP20A6621 – fundername: The Strategic Priority Research Program of Chinese Academy of Sciences funderid: XDB40020202 – fundername: The Joint Key Funds of the National Natural Science Foundation of China funderid: U21A20237 – fundername: MCIN funderid: TED2021‐132627 B‐I00 – fundername: The Spanish Government funderid: PID2022‐140808NB‐I00 – fundername: The Spanish Government grantid: PID2022-140808NB-I00 – fundername: The Strategic Priority Research Program of Chinese Academy of Sciences grantid: XDB40020202 – fundername: The Fundación Ramón Areces grantid: CIVP20A6621 – fundername: MCIN grantid: TED2021-132627 B-I00 – fundername: The Catalan Government grantid: SGR 2021-1333 – fundername: The Catalan Government grantid: AGAUR2023 CLIMA 00118 – fundername: The Joint Key Funds of the National Natural Science Foundation of China grantid: U21A20237 |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION AEUQT AFPWT CGR CUY CVF ECM EIF ESX NPM WRC WUP 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3865-8154f9d421f44fd297981427701f1ce734e2e2c42153c5ac30c01344c956163e3 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 1365-2486 |
IngestDate | Fri Jul 11 18:36:57 EDT 2025 Fri Jul 11 06:20:04 EDT 2025 Fri Jul 25 19:35:23 EDT 2025 Wed Feb 19 02:01:28 EST 2025 Thu Apr 24 22:58:40 EDT 2025 Tue Jul 01 05:13:52 EDT 2025 Sun Jul 06 04:45:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | soil enzyme activities soil microorganisms soil CO2 emission global climate change microplastics soil organic C |
Language | English |
License | 2024 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3865-8154f9d421f44fd297981427701f1ce734e2e2c42153c5ac30c01344c956163e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5778-0592 0000-0001-9500-5303 0000-0002-8624-2785 0000-0003-3541-7853 0000-0003-1923-7908 0009-0007-3134-6222 0000-0002-9813-6939 0000-0002-2216-4925 0000-0002-7215-0150 0000-0002-4037-7158 |
PMID | 39005227 |
PQID | 3085621769 |
PQPubID | 30327 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_3153705877 proquest_miscellaneous_3080635240 proquest_journals_3085621769 pubmed_primary_39005227 crossref_primary_10_1111_gcb_17415 crossref_citationtrail_10_1111_gcb_17415 wiley_primary_10_1111_gcb_17415_GCB17415 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2024 2024-07-00 2024-Jul 20240701 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Chang Biol |
PublicationYear | 2024 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | e_1_2_10_2_4_1 e_1_2_10_2_110_1 e_1_2_10_1_29_1 e_1_2_10_1_67_1 e_1_2_10_2_51_1 e_1_2_10_2_74_1 e_1_2_10_1_21_1 e_1_2_10_1_44_1 e_1_2_10_2_13_1 e_1_2_10_2_36_1 e_1_2_10_2_59_1 e_1_2_10_2_97_1 e_1_2_10_2_118_1 e_1_2_10_2_122_1 e_1_2_10_1_7_1 e_1_2_10_1_18_1 e_1_2_10_1_56_1 e_1_2_10_2_40_1 e_1_2_10_2_63_1 e_1_2_10_1_10_1 e_1_2_10_1_33_1 e_1_2_10_1_71_1 e_1_2_10_2_25_1 e_1_2_10_2_48_1 e_1_2_10_2_86_1 e_1_2_10_2_107_1 e_1_2_10_2_3_1 e_1_2_10_2_111_1 e_1_2_10_1_45_1 e_1_2_10_1_68_1 e_1_2_10_2_96_1 e_1_2_10_2_73_1 e_1_2_10_1_22_1 e_1_2_10_2_50_1 e_1_2_10_1_60_1 e_1_2_10_2_12_1 e_1_2_10_2_35_1 e_1_2_10_2_119_1 e_1_2_10_2_58_1 e_1_2_10_2_123_1 e_1_2_10_2_100_1 e_1_2_10_1_8_1 e_1_2_10_1_19_1 e_1_2_10_1_34_1 e_1_2_10_1_57_1 e_1_2_10_2_85_1 e_1_2_10_2_62_1 e_1_2_10_1_11_1 e_1_2_10_1_72_1 e_1_2_10_2_24_1 e_1_2_10_2_47_1 e_1_2_10_2_108_1 e_1_2_10_2_112_1 e_1_2_10_2_19_1 e_1_2_10_2_2_1 e_1_2_10_1_27_1 e_1_2_10_2_95_1 e_1_2_10_1_42_1 e_1_2_10_1_65_1 e_1_2_10_2_72_1 e_1_2_10_2_11_1 e_1_2_10_2_34_1 e_1_2_10_2_57_1 e_1_2_10_2_101_1 e_1_2_10_2_124_1 e_1_2_10_1_9_1 e_1_2_10_1_16_1 e_1_2_10_1_39_1 e_1_2_10_2_84_1 e_1_2_10_1_31_1 e_1_2_10_2_61_1 e_1_2_10_1_54_1 e_1_2_10_2_109_1 e_1_2_10_2_23_1 e_1_2_10_2_46_1 e_1_2_10_2_69_1 e_1_2_10_2_18_1 e_1_2_10_2_113_1 Bracken M. B. (e_1_2_10_1_5_1) 1992 e_1_2_10_1_28_1 e_1_2_10_2_94_1 e_1_2_10_1_20_1 e_1_2_10_1_66_1 e_1_2_10_1_43_1 e_1_2_10_2_71_1 e_1_2_10_2_10_1 e_1_2_10_2_56_1 e_1_2_10_2_9_1 e_1_2_10_2_33_1 e_1_2_10_2_79_1 e_1_2_10_2_102_1 e_1_2_10_2_125_1 e_1_2_10_1_17_1 e_1_2_10_1_2_1 e_1_2_10_2_83_1 e_1_2_10_1_55_1 e_1_2_10_1_32_1 e_1_2_10_2_60_1 e_1_2_10_2_45_1 e_1_2_10_1_70_1 e_1_2_10_2_22_1 e_1_2_10_2_68_1 e_1_2_10_2_17_1 e_1_2_10_2_114_1 e_1_2_10_2_70_1 e_1_2_10_2_93_1 e_1_2_10_1_25_1 e_1_2_10_1_48_1 e_1_2_10_1_63_1 e_1_2_10_2_32_1 e_1_2_10_2_55_1 e_1_2_10_2_78_1 e_1_2_10_1_40_1 e_1_2_10_2_8_1 e_1_2_10_2_29_1 e_1_2_10_2_103_1 e_1_2_10_2_126_1 e_1_2_10_2_82_1 e_1_2_10_1_14_1 e_1_2_10_1_37_1 e_1_2_10_1_52_1 e_1_2_10_1_3_1 e_1_2_10_1_75_1 e_1_2_10_2_21_1 e_1_2_10_2_44_1 e_1_2_10_2_67_1 e_1_2_10_2_39_1 e_1_2_10_2_115_1 e_1_2_10_1_49_1 e_1_2_10_1_26_1 e_1_2_10_1_41_1 e_1_2_10_1_64_1 e_1_2_10_2_92_1 e_1_2_10_2_7_1 e_1_2_10_2_31_1 e_1_2_10_2_77_1 e_1_2_10_2_54_1 e_1_2_10_2_16_1 e_1_2_10_2_28_1 e_1_2_10_2_104_1 e_1_2_10_1_38_1 e_1_2_10_1_15_1 e_1_2_10_1_53_1 e_1_2_10_1_76_1 e_1_2_10_1_30_1 e_1_2_10_1_4_1 e_1_2_10_2_81_1 e_1_2_10_2_20_1 e_1_2_10_2_66_1 e_1_2_10_2_43_1 e_1_2_10_2_89_1 e_1_2_10_1_23_1 e_1_2_10_1_46_1 e_1_2_10_1_69_1 e_1_2_10_2_30_1 e_1_2_10_2_91_1 e_1_2_10_1_61_1 e_1_2_10_2_6_1 e_1_2_10_2_53_1 e_1_2_10_2_76_1 e_1_2_10_2_116_1 e_1_2_10_2_38_1 e_1_2_10_2_99_1 e_1_2_10_2_15_1 e_1_2_10_2_120_1 e_1_2_10_1_12_1 e_1_2_10_1_35_1 e_1_2_10_1_58_1 e_1_2_10_2_80_1 e_1_2_10_1_73_1 e_1_2_10_2_42_1 e_1_2_10_2_65_1 e_1_2_10_1_50_1 e_1_2_10_2_105_1 e_1_2_10_2_27_1 e_1_2_10_2_88_1 e_1_2_10_2_5_1 e_1_2_10_1_24_1 e_1_2_10_1_47_1 e_1_2_10_2_52_1 e_1_2_10_2_90_1 e_1_2_10_1_62_1 e_1_2_10_2_75_1 e_1_2_10_2_14_1 e_1_2_10_2_117_1 e_1_2_10_2_98_1 e_1_2_10_2_37_1 e_1_2_10_2_121_1 e_1_2_10_1_13_1 e_1_2_10_1_59_1 e_1_2_10_1_36_1 e_1_2_10_1_6_1 e_1_2_10_2_41_1 e_1_2_10_1_74_1 e_1_2_10_1_51_1 e_1_2_10_2_64_1 e_1_2_10_2_49_1 e_1_2_10_2_87_1 e_1_2_10_2_106_1 e_1_2_10_2_26_1 |
References_xml | – ident: e_1_2_10_2_90_1 doi: 10.1016/j.jhazmat.2021.127282 – ident: e_1_2_10_2_65_1 doi: 10.13232/j.cnki.jnju.2021.03.006 – ident: e_1_2_10_2_121_1 doi: 10.1016/j.jhazmat.2021.125954 – ident: e_1_2_10_1_9_1 doi: 10.1021/acs.est.9b01339 – ident: e_1_2_10_2_11_1 doi: 10.1016/j.apsoil.2022.104694 – ident: e_1_2_10_1_6_1 doi: 10.1023/A:1010933404324 – ident: e_1_2_10_2_31_1 doi: 10.1016/j.envpol.2019.112983 – ident: e_1_2_10_2_124_1 doi: 10.1016/j.chemosphere.2021.130998 – ident: e_1_2_10_1_32_1 doi: 10.1021/acs.est.0c04849 – ident: e_1_2_10_1_45_1 doi: 10.1016/j.progpolymsci.2004.10.001 – ident: e_1_2_10_1_24_1 doi: 10.1016/S0038‐0717(01)00158‐4 – ident: e_1_2_10_2_42_1 doi: 10.1021/acs.est.0c04849 – ident: e_1_2_10_1_11_1 doi: 10.1016/j.envint.2022.107244 – ident: e_1_2_10_1_64_1 doi: 10.1021/acs.est.2c09491 – ident: e_1_2_10_2_125_1 doi: 10.1016/j.jhazmat.2021.127944 – ident: e_1_2_10_1_48_1 doi: 10.1186/s43591‐021‐00004‐0 – ident: e_1_2_10_2_84_1 doi: 10.1016/j.apsoil.2022.104794 – ident: e_1_2_10_1_50_1 doi: 10.1126/science.abb5979 – ident: e_1_2_10_1_66_1 doi: 10.1016/j.envpol.2021.117733 – ident: e_1_2_10_1_37_1 doi: 10.1111/1462‐2920.16549 – ident: e_1_2_10_1_40_1 doi: 10.1021/acs.est.6b04140 – ident: e_1_2_10_2_89_1 doi: 10.1016/j.scitotenv.2021.151768 – ident: e_1_2_10_1_42_1 doi: 10.1021/acs.est.1c02695 – ident: e_1_2_10_1_44_1 doi: 10.1093/ismejo/wrad017 – ident: e_1_2_10_2_103_1 doi: 10.1016/j.envpol.2022.120603 – ident: e_1_2_10_2_41_1 doi: 10.1016/j.scitotenv.2023.164589 – ident: e_1_2_10_2_91_1 doi: 10.1016/j.scitotenv.2021.150516 – ident: e_1_2_10_1_35_1 doi: 10.1016/j.soilbio.2023.108940 – ident: e_1_2_10_1_51_1 doi: 10.1371/journal.pbio.3001130 – ident: e_1_2_10_2_50_1 doi: 10.1016/j.catena.2019.104177 – ident: e_1_2_10_2_37_1 doi: 10.1016/j.impact.2023.100460 – ident: e_1_2_10_2_87_1 doi: 10.1016/j.soilbio.2023.108989 – ident: e_1_2_10_1_34_1 doi: 10.1038/nmicrobiol.2017.105 – ident: e_1_2_10_2_75_1 doi: 10.1016/j.jhazmat.2023.130825 – ident: e_1_2_10_2_116_1 doi: 10.13227/j.hjkx.202102042 – ident: e_1_2_10_1_55_1 doi: 10.1021/acs.est.3c02133 – ident: e_1_2_10_2_72_1 doi: 10.1016/j.apsoil.2022.104773 – ident: e_1_2_10_2_25_1 doi: 10.1016/j.jhazmat.2020.124701 – ident: e_1_2_10_2_88_1 doi: 10.1016/j.chemosphere.2022.137155 – ident: e_1_2_10_2_79_1 doi: 10.1016/j.scitotenv.2021.145640 – ident: e_1_2_10_2_66_1 doi: 10.1016/j.envres.2021.111938 – ident: e_1_2_10_2_113_1 doi: 10.1016/j.soilbio.2023.109006 – ident: e_1_2_10_1_73_1 doi: 10.1016/j.apsoil.2022.104486 – ident: e_1_2_10_2_22_1 doi: 10.1002/etc.4916 – ident: e_1_2_10_2_110_1 doi: 10.1016/j.jhazmat.2023.131445 – ident: e_1_2_10_2_34_1 doi: 10.1016/j.jhazmat.2023.131950 – ident: e_1_2_10_2_35_1 doi: 10.1016/j.scitotenv.2022.153358 – ident: e_1_2_10_2_43_1 doi: 10.1016/j.chemosphere.2021.132984 – ident: e_1_2_10_1_15_1 doi: 10.1016/j.soilbio.2005.06.020 – ident: e_1_2_10_2_85_1 doi: 10.1016/j.scitotenv.2022.156471 – ident: e_1_2_10_2_46_1 doi: 10.1016/j.chemosphere.2022.135836 – ident: e_1_2_10_2_49_1 doi: 10.1016/j.jhazmat.2022.129057 – ident: e_1_2_10_2_122_1 doi: 10.1111/gcb.16734 – ident: e_1_2_10_2_4_1 doi: 10.1016/j.envpol.2020.115468 – ident: e_1_2_10_1_61_1 doi: 10.1016/j.jhazmat.2021.127531 – ident: e_1_2_10_2_32_1 doi: 10.1080/00380768.2021.2022437 – ident: e_1_2_10_1_68_1 doi: 10.1021/es401288x – ident: e_1_2_10_2_12_1 doi: 10.13930/j.cnki.cjea.200677 – ident: e_1_2_10_2_86_1 doi: 10.1016/j.scitotenv.2023.162885 – ident: e_1_2_10_2_17_1 doi: 10.1016/j.ecoenv.2021.113045 – ident: e_1_2_10_1_31_1 doi: 10.1016/j.jhazmat.2022.130288 – ident: e_1_2_10_2_2_1 doi: 10.1016/j.envres.2023.115891 – ident: e_1_2_10_1_33_1 doi: 10.1038/ncomms2224 – ident: e_1_2_10_1_67_1 doi: 10.1016/j.jhazmat.2022.128721 – ident: e_1_2_10_2_106_1 doi: 10.1016/j.chemosphere.2023.138737 – ident: e_1_2_10_2_27_1 doi: 10.1021/acssuschemeng.1c07749 – ident: e_1_2_10_2_48_1 doi: 10.1016/j.envpol.2022.120433 – ident: e_1_2_10_2_105_1 doi: 10.1016/j.chemosphere.2023.139082 – ident: e_1_2_10_2_5_1 doi: 10.1186/s43591‐021‐00004‐0 – ident: e_1_2_10_2_29_1 – ident: e_1_2_10_2_33_1 doi: 10.1016/j.jenvman.2023.118013 – ident: e_1_2_10_1_26_1 doi: 10.1039/c7cs00149e – ident: e_1_2_10_2_26_1 doi: 10.1016/j.jhazmat.2021.126671 – ident: e_1_2_10_2_101_1 doi: 10.1016/j.jhazmat.2022.128589 – ident: e_1_2_10_1_10_1 doi: 10.1016/j.soilbio.2010.02.003 – ident: e_1_2_10_1_18_1 doi: 10.2307/177062 – ident: e_1_2_10_2_78_1 doi: 10.1111/sum.12991 – ident: e_1_2_10_2_13_1 doi: 10.1111/sum.13055 – ident: e_1_2_10_2_107_1 doi: 10.1016/j.envpol.2020.115544 – ident: e_1_2_10_1_8_1 doi: 10.1021/acsestengg.3c00401 – ident: e_1_2_10_2_9_1 doi: 10.3390/w16020348 – ident: e_1_2_10_1_53_1 doi: 10.1038/s41467‐018‐03798‐5 – ident: e_1_2_10_1_13_1 doi: 10.1002/etc.4916 – start-page: 13 volume-title: Effective care of the newborn infant year: 1992 ident: e_1_2_10_1_5_1 – ident: e_1_2_10_2_92_1 doi: 10.1016/j.jhazmat.2022.129610 – ident: e_1_2_10_1_75_1 doi: 10.1016/j.soilbio.2021.108211 – ident: e_1_2_10_1_57_1 doi: 10.1021/acs.est.2c06258 – ident: e_1_2_10_2_52_1 doi: 10.3390/pr10102128 – ident: e_1_2_10_2_39_1 doi: 10.1016/j.jhazmat.2022.128353 – ident: e_1_2_10_2_80_1 doi: 10.1007/s11356‐023‐30550‐4 – ident: e_1_2_10_1_19_1 doi: 10.1016/j.envint.2021.106398 – ident: e_1_2_10_1_72_1 doi: 10.1016/j.envpol.2022.119374 – ident: e_1_2_10_2_98_1 doi: 10.1016/j.scitotenv.2021.148087 – ident: e_1_2_10_2_111_1 doi: 10.1016/j.jhazmat.2022.128721 – ident: e_1_2_10_2_10_1 doi: 10.1007/s41742‐023‐00558‐2 – ident: e_1_2_10_2_24_1 doi: 10.1016/j.envpol.2022.119046 – ident: e_1_2_10_2_68_1 doi: 10.1016/j.envpol.2024.123791 – ident: e_1_2_10_2_102_1 doi: 10.1016/j.jhazmat.2021.125286 – ident: e_1_2_10_1_65_1 doi: 10.1016/j.ese.2021.100121 – ident: e_1_2_10_1_70_1 doi: 10.1016/j.scitotenv.2023.168961 – ident: e_1_2_10_1_17_1 doi: 10.1016/j.envint.2019.105263 – ident: e_1_2_10_1_28_1 doi: 10.1038/s41467‐020‐20616‐z – ident: e_1_2_10_2_126_1 doi: 10.1016/j.jhazmat.2022.129509 – ident: e_1_2_10_2_28_1 doi: 10.1016/j.envpol.2021.118386 – ident: e_1_2_10_2_60_1 doi: 10.1016/j.jclepro.2022.135558 – ident: e_1_2_10_2_19_1 doi: 10.1016/j.jhazmat.2021.127364 – ident: e_1_2_10_1_74_1 doi: 10.1016/j.soilbio.2018.10.006 – ident: e_1_2_10_1_25_1 doi: 10.1111/2041‐210X.12472 – ident: e_1_2_10_2_120_1 doi: 10.1016/j.scitotenv.2022.157886 – ident: e_1_2_10_2_30_1 doi: 10.1016/j.jhazmat.2023.131391 – ident: e_1_2_10_2_114_1 doi: 10.1016/j.ecoenv.2023.114618 – ident: e_1_2_10_2_54_1 doi: 10.1016/j.jhazmat.2022.130102 – ident: e_1_2_10_1_63_1 doi: 10.1016/j.ejsobi.2009.05.002 – ident: e_1_2_10_2_51_1 doi: 10.1016/j.chemosphere.2023.138504 – ident: e_1_2_10_1_4_1 doi: 10.1016/j.envpol.2020.115468 – ident: e_1_2_10_2_3_1 doi: 10.1016/j.jenvman.2021.114193 – ident: e_1_2_10_2_95_1 doi: 10.1016/j.envpol.2023.121960 – ident: e_1_2_10_2_63_1 doi: 10.1016/j.envpol.2020.114689 – ident: e_1_2_10_1_29_1 doi: 10.1073/pnas.1606615113 – ident: e_1_2_10_2_8_1 doi: 10.1016/j.scitotenv.2023.162967 – ident: e_1_2_10_2_100_1 doi: 10.1016/j.jhazmat.2021.127258 – ident: e_1_2_10_1_62_1 doi: 10.1016/j.jhazmat.2022.130045 – ident: e_1_2_10_2_108_1 doi: 10.1016/j.envint.2021.106708 – ident: e_1_2_10_1_30_1 doi: 10.1016/j.xinn.2023.100543 – ident: e_1_2_10_2_94_1 doi: 10.1016/j.biortech.2021.125133 – ident: e_1_2_10_1_20_1 doi: 10.1038/s41561‐023‐01345‐6 – ident: e_1_2_10_1_60_1 doi: 10.1016/j.jhazmat.2020.124357 – ident: e_1_2_10_2_16_1 doi: 10.1016/j.chemosphere.2021.132460 – ident: e_1_2_10_1_38_1 doi: 10.1038/s41467‐022‐33064‐8 – ident: e_1_2_10_1_56_1 doi: 10.1126/science.abb0354 – ident: e_1_2_10_1_21_1 doi: 10.1002/ep.670120108 – ident: e_1_2_10_2_109_1 doi: 10.1016/j.envpol.2021.117733 – ident: e_1_2_10_2_6_1 doi: 10.1016/j.chemosphere.2019.125271 – ident: e_1_2_10_2_123_1 doi: 10.1016/j.jhazmat.2023.131857 – ident: e_1_2_10_2_61_1 doi: 10.1111/1462‐2920.16549 – ident: e_1_2_10_2_36_1 doi: 10.1016/j.envpol.2023.121810 – ident: e_1_2_10_2_74_1 doi: 10.1016/j.apsoil.2022.104714 – ident: e_1_2_10_1_46_1 doi: 10.1016/j.jhazmat.2021.126455 – ident: e_1_2_10_1_49_1 doi: 10.1038/s41579‐023‐00967‐2 – ident: e_1_2_10_2_40_1 doi: 10.1007/s11356‐023‐26159‐2 – ident: e_1_2_10_2_81_1 doi: 10.1038/s41467‐020‐16235‐3 – ident: e_1_2_10_2_23_1 doi: 10.1007/s11356‐022‐19373‐x – ident: e_1_2_10_1_71_1 doi: 10.1016/j.scitotenv.2021.150714 – ident: e_1_2_10_1_2_1 doi: 10.1016/S0043‐1354(02)00387‐1 – ident: e_1_2_10_2_57_1 doi: 10.1016/j.jhazmat.2023.131076 – ident: e_1_2_10_2_115_1 doi: 10.1016/j.jhazmat.2023.131152 – ident: e_1_2_10_2_70_1 doi: 10.1016/j.jhazmat.2023.131989 – ident: e_1_2_10_2_82_1 doi: 10.1016/j.chemosphere.2023.138188 – ident: e_1_2_10_2_53_1 doi: 10.3390/agronomy13010075 – ident: e_1_2_10_2_93_1 doi: 10.1021/acs.est.2c06258 – ident: e_1_2_10_2_45_1 doi: 10.1016/j.apsoil.2022.104716 – ident: e_1_2_10_2_118_1 doi: 10.1016/j.scitotenv.2021.150714 – ident: e_1_2_10_1_22_1 doi: 10.1016/j.polymdegradstab.2013.07.004 – ident: e_1_2_10_1_7_1 doi: 10.1021/acssuschemeng.9b06635 – ident: e_1_2_10_2_58_1 doi: 10.1016/j.chemosphere.2022.135941 – ident: e_1_2_10_2_55_1 doi: 10.1016/j.scitotenv.2021.151435 – ident: e_1_2_10_1_54_1 doi: 10.1038/s41467‐022‐31691‐9 – ident: e_1_2_10_1_76_1 doi: 10.1111/gcb.16734 – ident: e_1_2_10_2_99_1 doi: 10.1016/j.chemosphere.2018.01.166 – ident: e_1_2_10_2_119_1 doi: 10.1016/j.apsoil.2022.104650 – ident: e_1_2_10_1_43_1 doi: 10.1016/j.oneear.2024.04.002 – ident: e_1_2_10_1_36_1 doi: 10.1021/acs.est.3c02976 – ident: e_1_2_10_2_69_1 doi: 10.1111/sum.12808 – ident: e_1_2_10_2_71_1 doi: 10.3390/plants11040536 – ident: e_1_2_10_2_104_1 doi: 10.1016/j.apsoil.2022.104623 – ident: e_1_2_10_1_23_1 doi: 10.4014/jmb.1709.09027 – ident: e_1_2_10_2_38_1 doi: 10.1007/s40009‐023‐01246‐7 – ident: e_1_2_10_2_15_1 – ident: e_1_2_10_2_18_1 doi: 10.1016/j.scitotenv.2019.135634 – ident: e_1_2_10_1_27_1 doi: 10.1038/ngeo689 – ident: e_1_2_10_2_62_1 doi: 10.1016/j.jhazmat.2021.128196 – ident: e_1_2_10_2_67_1 doi: 10.1016/j.scitotenv.2018.11.438 – ident: e_1_2_10_2_47_1 doi: 10.1016/j.envpol.2023.122095 – ident: e_1_2_10_1_47_1 doi: 10.1021/acs.est.8b02338 – ident: e_1_2_10_1_14_1 doi: 10.1126/sciadv.1700782 – ident: e_1_2_10_1_58_1 doi: 10.1126/science.1094559 – ident: e_1_2_10_1_16_1 doi: 10.1016/j.soilbio.2015.07.021 – ident: e_1_2_10_1_12_1 doi: 10.1021/acs.est.6b00816 – ident: e_1_2_10_1_69_1 doi: 10.1016/j.soilbio.2023.109006 – ident: e_1_2_10_2_56_1 doi: 10.1016/j.jhazmat.2022.129547 – ident: e_1_2_10_2_73_1 doi: 10.1016/j.eti.2023.103174 – ident: e_1_2_10_2_64_1 doi: 10.1016/j.scitotenv.2023.161642 – ident: e_1_2_10_1_3_1 doi: 10.1038/s41579‐019‐0308‐0 – ident: e_1_2_10_2_96_1 doi: 10.1016/j.scitotenv.2020.140463 – ident: e_1_2_10_2_76_1 doi: 10.1016/j.envpol.2019.113347 – ident: e_1_2_10_2_59_1 doi: 10.1016/j.envpol.2022.119094 – ident: e_1_2_10_1_39_1 doi: 10.1016/j.jhazmat.2020.124606 – ident: e_1_2_10_1_59_1 doi: 10.18637/jss.v036.i03 – ident: e_1_2_10_2_83_1 doi: 10.1016/j.jenvman.2023.119616 – ident: e_1_2_10_1_52_1 doi: 10.1038/s41558‐023‐01627‐2 – ident: e_1_2_10_2_7_1 doi: 10.1016/j.scitotenv.2021.151960 – ident: e_1_2_10_2_14_1 doi: 10.3390/agronomy13010149 – ident: e_1_2_10_1_41_1 doi: 10.1016/j.envpol.2015.12.035 – ident: e_1_2_10_2_97_1 doi: 10.1016/j.jhazmat.2022.128826 – ident: e_1_2_10_2_112_1 doi: 10.1016/j.jhazmat.2022.130712 – ident: e_1_2_10_2_20_1 doi: 10.1016/j.jhazmat.2021.126831 – ident: e_1_2_10_2_77_1 doi: 10.1007/s11104‐021‐04869‐1 – ident: e_1_2_10_2_117_1 doi: 10.1016/j.jhazmat.2023.130762 – ident: e_1_2_10_2_21_1 doi: 10.1016/j.envres.2022.113728 – ident: e_1_2_10_2_44_1 doi: 10.1007/s11368‐022‐03387‐6 |
SSID | ssj0003206 |
Score | 2.5578084 |
SecondaryResourceType | review_article |
Snippet | Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e17415 |
SubjectTerms | Autotrophic microorganisms Biomass Carbon - analysis Carbon - metabolism Carbon dioxide Carbon Dioxide - analysis Carbon Dioxide - metabolism Carbon dioxide emissions Chloroflexi climate Components Cyanobacteria Dissolved organic carbon Emission analysis Fluorescein diacetate global change global climate change Heterotrophic microorganisms hydrolases Meta-analysis microbial biomass Microbiomes Microbiota - drug effects Microorganisms Microplastic pollution Microplastics Microplastics - analysis Plastic debris Plastic pollution pollution Respiration Soil Soil - chemistry Soil analysis Soil bacteria soil CO2 emission soil enzyme activities Soil Microbiology Soil microorganisms soil organic C soil organic carbon Soil Pollutants - analysis Soil pollution soil respiration Soils Substrate inhibition |
Title | Microplastic pollution promotes soil respiration: A global‐scale meta‐analysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.17415 https://www.ncbi.nlm.nih.gov/pubmed/39005227 https://www.proquest.com/docview/3085621769 https://www.proquest.com/docview/3080635240 https://www.proquest.com/docview/3153705877 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5CIODFx2p0NEorIrlM6Ne84ikuiUFYD8FADsIw3VMdguvusrN70JM_wd-YX5LqnkeML8TbNF0z9KOq5-vuqq8AXhbcVNyJOjZ1YmNNkCQ2qHRsTYqIArULG8XJ-_T4VL87S8424HUfC9PyQwwHbt4ywnrtDbwyzQ9Gfm6N98YJAebeV8sDopNr6iglQ15NoRJNS41QHauQ9-IZ3rz5L_oFYN7Eq-GHc3QHPvZNbf1MPu2tV2bPfv2JxfE_-3IXbndAlB20mnMPNnA2gq02NeWXEWwfXkfAkVi3BDQjiCYEs-fLIMZesfH0gjBvKN2Hk4l371sQIKePsoXPouznnS2Czx82rJlfTNmyu92nmn12wFpKkstv3xtSF2SfcVVRoerIUh7A6dHhh_Fx3CVtiK1PHxrnhMlcUWspnNaulkVW5ELLLOPCCYuZ0ihRWqpPlE0qq7il2dHa-gjbVKHahs3ZfIaPgOUcjTZC14qjlmhz5wqPx3iGeeF4HcFuP32l7RjNfWKNadnvbGhcyzCuEbwYRBctjcfvhHZ6HSg7S25KRZg0pX1bWkTwfKgmG_QXK9UM5-sgQ0gvIXD0Fxnqb8aTPMsieNjq19ASVfjTeUk1u0FL_tzE8u34TXh4_O-iT-CWJCTW-hjvwOZqucanhKRW5lkwmSsNeho7 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQguPBZaAgUMQqiXVHbsvBCXsrQs0O2haqVeUBQ7Y1Sx7K42uwc48RP4jfwSxs6jlJcQt1ieRH7MOJ_tmW8AnuRcl9yKKtRVbEJFkCTUKFVodIKIApX1G8XxYTI6UW9O49M1eN7FwjT8EP2Bm7MMv147A3cH0j9Y-XujnTuOizC_5DJ6O-b8l0fn5FEy8pk1hYwVLTZCtrxCzo-nf_Xi3-gXiHkRsfpfzv51eNc1tvE0-bCzWuod8_knHsf_7c0NuNZiUbbbKM9NWMPpAC432Sk_DWBj7zwIjsTaVaAeQDAmpD1beDH2lA0nZwR7fekWHI2dh9-cMDl9lM1dImU39Wzu3f6wZvXsbMIW7QU_1Txju6xhJfn25WtNGoPsIy5LKpQtX8ptONnfOx6OwjZvQ2hcBtEwI1hm80pFwiplqyhP80yoKE25sMJgKhVGGBmqj6WJSyO5oelRyrgg20Si3ID16WyKd4BlHLXSQlWSo4rQZNbmDpLxFLPc8iqA7W7-CtOSmrvcGpOi29zQuBZ-XAN43IvOGyaP3wltdUpQtMZcF5JgaUJbtyQP4FFfTWbo7lbKKc5WXobAXkz46C8y1N-Ux1maBrDZKFjfEpm7A_qIara9mvy5icWr4Qv_cPffRR_CldHx-KA4eH349h5cjQiYNS7HW7C-XKzwPgGrpX7g7ec7nQMeVw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRSAuFBYKKQUMQqiXVI7tvOBUtl3KYytUUamHSlHijFHFshttdg_tiZ_Ab-SXMHYepbyEuMXyJPJjxvlsz3wD8DTlRc5NUPpFGWpfESTxC5TK10WEiAEq4zaK44No_0i9OQ6PV-BFFwvT8EP0B27WMtx6bQ28Ks0PRv5RF9YbxwaYX1ERT23eht3DC-4oKVxizUCGitaaQLa0QtaNp3_18s_oF4R5GbC6P85oDU66tjaOJp-2l4tiW5__ROP4n525CTdaJMp2GtW5BSs4HcDVJjfl2QDW9y5C4EisXQPqAXhjwtmzuRNjz9hwckqg15Vuw-HY-vdVhMjpo6yyaZTtxLPKOf1hzerZ6YTN2-t9qnnOdljDSfLty9ea9AXZZ1zkVMhbtpQ7cDTa-zDc99usDb62-UP9hECZSUslAqOUKUUap0mgRBzzwAQaY6lQoNBUH0od5lpyTbOjlLYhtpFEuQ6r09kU7wFLOBaqCFQpOSqBOjEmtYCMx5ikhpcebHXTl-mW0txm1phk3daGxjVz4-rBk160ang8fie02elA1ppynUkCpRFt3KLUg8d9NRmhvVnJpzhbOhmCeiGho7_IUH9jHiZx7MHdRr_6lsjUHs8LqtlyWvLnJmavhi_dw8a_iz6Ca-93R9m71wdv78N1Qais8TfehNXFfIkPCFUtiofOer4DLmMdBg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microplastic+pollution+promotes+soil+respiration%3A+A+global%E2%80%90scale+meta%E2%80%90analysis&rft.jtitle=Global+change+biology&rft.au=Zhao%2C+Shuling&rft.au=Rillig%2C+Matthias+C.&rft.au=Bing%2C+Haijian&rft.au=Cui%2C+Qingliang&rft.date=2024-07-01&rft.issn=1354-1013&rft.volume=30&rft.issue=7+p.e17415-&rft_id=info:doi/10.1111%2Fgcb.17415&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |