Overlaps and trade‐offs in the diversity and inducibility of volatile chemical profiles among diverse sympatric neotropical canopy trees

A central goal in ecology is to understand the mechanisms by which biological diversity is maintained. The diversity of plant chemical defences and the strategies by which they are deployed in nature may influence biological diversity. Trees in neotropical forests are subject to relatively high herb...

Full description

Saved in:
Bibliographic Details
Published inPlant, cell and environment Vol. 46; no. 10; pp. 3059 - 3071
Main Author Frost, Christopher J.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A central goal in ecology is to understand the mechanisms by which biological diversity is maintained. The diversity of plant chemical defences and the strategies by which they are deployed in nature may influence biological diversity. Trees in neotropical forests are subject to relatively high herbivore pressure. Such consistent pressure is thought to select for constitutive, non‐flexible defence‐related phytochemistry with limited capacity for inducible phytochemical responses. However, this has not been explored for volatile organic compounds (VOCs) that have a relatively low ratio of production costs to ecological benefits. To test this, I sampled VOCs emitted from canopy leaves of 10 phylogenetically diverse tree species (3 Magnoliids and 7 Rosids) in the Peruvian Amazon before and after induction with the phytohormone methyl jasmonate (MeJA). There was no phylogenetic signal in induction or magnitude of MeJA‐induced VOC emissions from intact leaves: all trees induced VOC profiles dominated by β‐ocimene, linalool, and α‐farnesene of varying ratios. Moreover, overall inducibility of VOCs from intact leaves was unrelated to phytochemical diversity or richness. In contrast, experimentally wounded leaves showed considerable phylogeny‐based and MeJA‐independent variation the richness and diversity of constitutive wound‐emitted VOCs. Moreover, VOC inducibility from wounded leaves correlated negatively with phytochemical richness and diversity, potentially indicating a tradeoff in constitutive and inducible defence strategies for non‐volatile specialised metabolites but not for inducible VOCs. Importantly, there was no correlation between any chemical profile and either natural herbivory or leaf toughness. The coexistence of multiple phytochemical strategies in a hyper‐diverse forest has broad implications for competitive and multitrophic interactions, and the evolutionary forces that maintain the exceptional plant biodiversity in neotropical forests. Summary Statement Ten phylogenetically diverse, sympatric tree species in a neotropical forest maintain a phylogeny‐independent ability for oxylipin‐mediated signal cascades and inducible volatile emissions, inducing three dominant terpenes and species‐specific minor volatile compounds from intact leaves.
AbstractList A central goal in ecology is to understand the mechanisms by which biological diversity is maintained. The diversity of plant chemical defences and the strategies by which they are deployed in nature may influence biological diversity. Trees in neotropical forests are subject to relatively high herbivore pressure. Such consistent pressure is thought to select for constitutive, non‐flexible defence‐related phytochemistry with limited capacity for inducible phytochemical responses. However, this has not been explored for volatile organic compounds (VOCs) that have a relatively low ratio of production costs to ecological benefits. To test this, I sampled VOCs emitted from canopy leaves of 10 phylogenetically diverse tree species (3 Magnoliids and 7 Rosids) in the Peruvian Amazon before and after induction with the phytohormone methyl jasmonate (MeJA). There was no phylogenetic signal in induction or magnitude of MeJA‐induced VOC emissions from intact leaves: all trees induced VOC profiles dominated by β‐ocimene, linalool, and α‐farnesene of varying ratios. Moreover, overall inducibility of VOCs from intact leaves was unrelated to phytochemical diversity or richness. In contrast, experimentally wounded leaves showed considerable phylogeny‐based and MeJA‐independent variation the richness and diversity of constitutive wound‐emitted VOCs. Moreover, VOC inducibility from wounded leaves correlated negatively with phytochemical richness and diversity, potentially indicating a tradeoff in constitutive and inducible defence strategies for non‐volatile specialised metabolites but not for inducible VOCs. Importantly, there was no correlation between any chemical profile and either natural herbivory or leaf toughness. The coexistence of multiple phytochemical strategies in a hyper‐diverse forest has broad implications for competitive and multitrophic interactions, and the evolutionary forces that maintain the exceptional plant biodiversity in neotropical forests.
A central goal in ecology is to understand the mechanisms by which biological diversity is maintained. The diversity of plant chemical defences and the strategies by which they are deployed in nature may influence biological diversity. Trees in neotropical forests are subject to relatively high herbivore pressure. Such consistent pressure is thought to select for constitutive, non‐flexible defence‐related phytochemistry with limited capacity for inducible phytochemical responses. However, this has not been explored for volatile organic compounds (VOCs) that have a relatively low ratio of production costs to ecological benefits. To test this, I sampled VOCs emitted from canopy leaves of 10 phylogenetically diverse tree species (3 Magnoliids and 7 Rosids) in the Peruvian Amazon before and after induction with the phytohormone methyl jasmonate (MeJA). There was no phylogenetic signal in induction or magnitude of MeJA‐induced VOC emissions from intact leaves: all trees induced VOC profiles dominated by β‐ocimene, linalool, and α‐farnesene of varying ratios. Moreover, overall inducibility of VOCs from intact leaves was unrelated to phytochemical diversity or richness. In contrast, experimentally wounded leaves showed considerable phylogeny‐based and MeJA‐independent variation the richness and diversity of constitutive wound‐emitted VOCs. Moreover, VOC inducibility from wounded leaves correlated negatively with phytochemical richness and diversity, potentially indicating a tradeoff in constitutive and inducible defence strategies for non‐volatile specialised metabolites but not for inducible VOCs. Importantly, there was no correlation between any chemical profile and either natural herbivory or leaf toughness. The coexistence of multiple phytochemical strategies in a hyper‐diverse forest has broad implications for competitive and multitrophic interactions, and the evolutionary forces that maintain the exceptional plant biodiversity in neotropical forests. Ten phylogenetically diverse, sympatric tree species in a neotropical forest maintain a phylogeny‐independent ability for oxylipin‐mediated signal cascades and inducible volatile emissions, inducing three dominant terpenes and species‐specific minor volatile compounds from intact leaves.
A central goal in ecology is to understand the mechanisms by which biological diversity is maintained. The diversity of plant chemical defences and the strategies by which they are deployed in nature may influence biological diversity. Trees in neotropical forests are subject to relatively high herbivore pressure. Such consistent pressure is thought to select for constitutive, non‐flexible defence‐related phytochemistry with limited capacity for inducible phytochemical responses. However, this has not been explored for volatile organic compounds (VOCs) that have a relatively low ratio of production costs to ecological benefits. To test this, I sampled VOCs emitted from canopy leaves of 10 phylogenetically diverse tree species (3 Magnoliids and 7 Rosids) in the Peruvian Amazon before and after induction with the phytohormone methyl jasmonate (MeJA). There was no phylogenetic signal in induction or magnitude of MeJA‐induced VOC emissions from intact leaves: all trees induced VOC profiles dominated by β‐ocimene, linalool, and α‐farnesene of varying ratios. Moreover, overall inducibility of VOCs from intact leaves was unrelated to phytochemical diversity or richness. In contrast, experimentally wounded leaves showed considerable phylogeny‐based and MeJA‐independent variation the richness and diversity of constitutive wound‐emitted VOCs. Moreover, VOC inducibility from wounded leaves correlated negatively with phytochemical richness and diversity, potentially indicating a tradeoff in constitutive and inducible defence strategies for non‐volatile specialised metabolites but not for inducible VOCs. Importantly, there was no correlation between any chemical profile and either natural herbivory or leaf toughness. The coexistence of multiple phytochemical strategies in a hyper‐diverse forest has broad implications for competitive and multitrophic interactions, and the evolutionary forces that maintain the exceptional plant biodiversity in neotropical forests. Summary Statement Ten phylogenetically diverse, sympatric tree species in a neotropical forest maintain a phylogeny‐independent ability for oxylipin‐mediated signal cascades and inducible volatile emissions, inducing three dominant terpenes and species‐specific minor volatile compounds from intact leaves.
A central goal in ecology is to understand the mechanisms by which biological diversity is maintained. The diversity of plant chemical defences and the strategies by which they are deployed in nature may influence biological diversity. Trees in neotropical forests are subject to relatively high herbivore pressure. Such consistent pressure is thought to select for constitutive, non-flexible defence-related phytochemistry with limited capacity for inducible phytochemical responses. However, this has not been explored for volatile organic compounds (VOCs) that have a relatively low ratio of production costs to ecological benefits. To test this, I sampled VOCs emitted from canopy leaves of 10 phylogenetically diverse tree species (3 Magnoliids and 7 Rosids) in the Peruvian Amazon before and after induction with the phytohormone methyl jasmonate (MeJA). There was no phylogenetic signal in induction or magnitude of MeJA-induced VOC emissions from intact leaves: all trees induced VOC profiles dominated by β-ocimene, linalool, and α-farnesene of varying ratios. Moreover, overall inducibility of VOCs from intact leaves was unrelated to phytochemical diversity or richness. In contrast, experimentally wounded leaves showed considerable phylogeny-based and MeJA-independent variation the richness and diversity of constitutive wound-emitted VOCs. Moreover, VOC inducibility from wounded leaves correlated negatively with phytochemical richness and diversity, potentially indicating a tradeoff in constitutive and inducible defence strategies for non-volatile specialised metabolites but not for inducible VOCs. Importantly, there was no correlation between any chemical profile and either natural herbivory or leaf toughness. The coexistence of multiple phytochemical strategies in a hyper-diverse forest has broad implications for competitive and multitrophic interactions, and the evolutionary forces that maintain the exceptional plant biodiversity in neotropical forests.A central goal in ecology is to understand the mechanisms by which biological diversity is maintained. The diversity of plant chemical defences and the strategies by which they are deployed in nature may influence biological diversity. Trees in neotropical forests are subject to relatively high herbivore pressure. Such consistent pressure is thought to select for constitutive, non-flexible defence-related phytochemistry with limited capacity for inducible phytochemical responses. However, this has not been explored for volatile organic compounds (VOCs) that have a relatively low ratio of production costs to ecological benefits. To test this, I sampled VOCs emitted from canopy leaves of 10 phylogenetically diverse tree species (3 Magnoliids and 7 Rosids) in the Peruvian Amazon before and after induction with the phytohormone methyl jasmonate (MeJA). There was no phylogenetic signal in induction or magnitude of MeJA-induced VOC emissions from intact leaves: all trees induced VOC profiles dominated by β-ocimene, linalool, and α-farnesene of varying ratios. Moreover, overall inducibility of VOCs from intact leaves was unrelated to phytochemical diversity or richness. In contrast, experimentally wounded leaves showed considerable phylogeny-based and MeJA-independent variation the richness and diversity of constitutive wound-emitted VOCs. Moreover, VOC inducibility from wounded leaves correlated negatively with phytochemical richness and diversity, potentially indicating a tradeoff in constitutive and inducible defence strategies for non-volatile specialised metabolites but not for inducible VOCs. Importantly, there was no correlation between any chemical profile and either natural herbivory or leaf toughness. The coexistence of multiple phytochemical strategies in a hyper-diverse forest has broad implications for competitive and multitrophic interactions, and the evolutionary forces that maintain the exceptional plant biodiversity in neotropical forests.
Author Frost, Christopher J.
Author_xml – sequence: 1
  givenname: Christopher J.
  orcidid: 0000-0001-5986-8646
  surname: Frost
  fullname: Frost, Christopher J.
  email: jasmonate@gmail.com
  organization: University of Louisville
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37082810$$D View this record in MEDLINE/PubMed
BookMark eNqN0cFu1DAQBmALtaLbwoEXQJa40EPaceLY8RGtCkWqVA5wjrz2hLpK7GAnrXLjzIln5Elwd5ceKoHwxdLom_FY_zE58MEjIa8YnLF8zkeDZ4zXij8jK1aJuqiAwwFZAeNQSKnYETlO6RYgF6R6To4qCU3ZMFiRH9d3GHs9Jqq9pVPUFn99_xm6LlHn6XSD1LoskpuWrXDezsZtXP9QCB29C72eXI_U3ODgjO7pGEOXC3ngEPzXfTvStAyjnqIz1GOYYhi32GgfxiW_i5hekMNO9wlf7u8T8uX9xef1ZXF1_eHj-t1VYapG8KLrSl5vrNgIVEYJVktAWYJQVkEpa2FrtKKqpWiYkcowXUmtoNbScstL7KoT8nY3N2_6bcY0tYNLBvte583m1JZN0wA0SvH_oFBDxUtRZvrmCb0Nc_T5I1kJqJhgkmX1eq_mzYC2HaMbdFzaP4FkcLoDJoaUInaPhEH7EHabw263YWd7_sQaN-U0gs85uv5fHfc5oeXvo9tP64tdx28H6Lxb
CitedBy_id crossref_primary_10_1111_pce_14689
crossref_primary_10_1111_plb_13709
Cites_doi 10.1038/21420
10.1890/14-1474.1
10.1098/rspb.2010.0707
10.1111/j.1461-0248.2007.01043.x
10.1007/s10340-020-01218-6
10.1890/0012-9658(2002)083[0505:CODITC]2.0.CO;2
10.1007/s10886-005-6072-9
10.1016/j.tree.2016.05.007
10.1038/nchembio.2007.5
10.1016/S0305-1978(03)00087-5
10.1111/nph.15522
10.1111/j.1469-8137.2008.02420.x
10.1046/j.1365-2435.2001.00533.x
10.1016/j.chroma.2007.05.044
10.1890/04-0003
10.1007/BF02637263
10.1002/ecy.1875
10.1111/j.1461-0248.2004.00653.x
10.1007/s10886-022-01359-1
10.1890/0012-9658(1998)079[2100:LDAACI]2.0.CO;2
10.1086/417659
10.1073/pnas.94.10.5473
10.1111/nph.14505
10.4161/psb.5.1.10160
10.1046/j.1461-0248.2002.00388.x
10.1111/j.1365-2435.2010.01803.x
10.1111/j.1570-7458.2007.00594.x
10.1086/367580
10.1038/nature01883
10.1890/11-1935.1
10.1111/ele.13422
10.1146/annurev-arplant-042916-041132
10.1111/j.2041-210X.2011.00169.x
10.1111/j.2007.0030-1299.16165.x
10.1126/science.250.4985.1251
10.1007/s10886-008-9579-z
10.1146/annurev.phyto.41.052002.095505
10.1525/9780520953925
10.1104/pp.107.113027
10.1086/284731
10.3390/agronomy11050958
10.2307/3546166
10.1016/S1360-1385(01)02186-0
10.2307/1942495
10.1016/S1369-5266(00)00085-6
10.1111/j.2041-210X.2010.00044.x
10.1078/1439-1791-00134
10.1073/pnas.85.1.156
10.1093/jxb/erv033
10.1016/S0169-5347(99)01678-X
10.1098/rstb.2009.0155
10.1111/ecog.04434
10.1126/science.1098982
10.1038/nature01632
10.1146/annurev.ecolsys.27.1.305
10.2307/2399464
10.1023/A:1025517229934
10.1046/j.1570-7458.1999.00475.x
10.1371/journal.pone.0044467
10.1111/brv.12215
10.1093/pcp/pci122
10.1002/ecy.3158
10.1073/pnas.1016508108
10.1126/science.129.3361.1466
10.1104/pp.104.049981
10.1890/12-1920.1
10.1890/0012-9658(2006)87[150:TGTAHS]2.0.CO;2
10.1111/1365-2435.13610
10.1111/j.0014-3820.2003.tb00285.x
10.1002/ecy.2857
10.1002/ece3.2208
10.1038/s41559-017-0231-6
10.1007/978-3-662-43550-2_5
10.1007/BF02059810
10.1002/eap.2289
10.1111/pce.12357
10.1038/nature05960
10.1016/j.tree.2015.06.005
10.1126/science.171.3973.757
10.1002/ecy.3539
10.1007/s10886-014-0402-8
10.1111/j.1469-8137.2011.04001.x
10.1371/journal.pone.0079900
10.1111/pce.13602
10.1126/science.1190772
10.3389/fpls.2020.00121
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
NPM
7QP
7ST
C1K
SOI
7X8
7S9
L.6
DOI 10.1111/pce.14594
DatabaseName CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Calcium & Calcified Tissue Abstracts
CrossRef

AGRICOLA
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
EISSN 1365-3040
EndPage 3071
ExternalDocumentID 37082810
10_1111_pce_14594
PCE14594
Genre article
Journal Article
GeographicLocations Amazonia
GeographicLocations_xml – name: Amazonia
GrantInformation_xml – fundername: Division of Integrative Organismal Systems
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FIJ
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
YNT
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7QP
7ST
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c3864-ff245bd6b6e9c961570e72069d902756d5ed6357681c79c1a37a905a7d4d42ef3
IEDL.DBID DR2
ISSN 0140-7791
1365-3040
IngestDate Fri Jul 11 18:27:40 EDT 2025
Fri Jul 11 00:32:30 EDT 2025
Tue Aug 12 09:40:32 EDT 2025
Wed Feb 19 02:24:39 EST 2025
Thu Apr 24 22:56:20 EDT 2025
Tue Jul 01 04:28:49 EDT 2025
Wed Jan 22 16:20:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords neotropical forest
biodiversity
plant defence
plant volatiles
inducible defence
methyl jasmonate
forest canopy
phytochemistry
Language English
License 2023 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3864-ff245bd6b6e9c961570e72069d902756d5ed6357681c79c1a37a905a7d4d42ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5986-8646
PMID 37082810
PQID 2860316171
PQPubID 37957
PageCount 13
ParticipantIDs proquest_miscellaneous_2888008994
proquest_miscellaneous_2805034262
proquest_journals_2860316171
pubmed_primary_37082810
crossref_primary_10_1111_pce_14594
crossref_citationtrail_10_1111_pce_14594
wiley_primary_10_1111_pce_14594_PCE14594
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2023
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Plant, cell and environment
PublicationTitleAlternate Plant Cell Environ
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 1
1988a; 75
2000; 3
2004; 7
2015; 30
2004; 23
2003; 57
1983; 53
2016; 31
1988b; 85
2003; 17
2020; 11
2013; 8
2008b; 117
1979
1994; 20
2021; 31
1997; 94
2010; 1
2004; 135
2002; 83
2020; 93
2013; 94
2010; 277
1999; 14
2003; 4
2005; 31
2001; 15
2015; 91
2011; 25
2007; 3
1996; 27
1999; 91
2010; 5
1994; 71
1971; 171
1990; 250
2004; 85
2018; 220
2007; 448
2010; 329
2012
2002; 5
2015; 96
2002; 7
2010; 365
2017; 68
2008c; 146
1997
2005; 43
2008d; 180
2022; 48
2020; 101
2020; 34
2007; 10
2014; 40
2004; 305
2015; 8
2019; 100
2003; 31
2019; 222
2005; 46
2003; 78
1987; 130
2004; 11
2012; 93
2016; 6
2009; 35
2008a; 178
2011; 108
2012; 3
2021; 11
2003; 424
2019; 42
2006; 87
2017; 98
2015; 66
2007; 1157
2012; 193
2014; 37
2018
1999; 399
2020; 23
2014
2003; 423
2012; 7
1992; 67
1959; 129
1998; 79
2022; 103
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Abràmoff M.D. (e_1_2_7_2_1) 2004; 11
e_1_2_7_90_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_88_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
Rhoades D.F. (e_1_2_7_76_1) 1979
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 3
  start-page: 217
  issue: 2
  year: 2012
  end-page: 223
  article-title: phytools: an R package for phylogenetic comparative biology (and other things): phytools: R package
  publication-title: Methods in Ecology and Evolution
– volume: 42
  start-page: 1353
  issue: 8
  year: 2019
  end-page: 1359
  article-title: V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants
  publication-title: Ecography
– year: 2018
  article-title: Mixed and phylogenetic models: a conceptual introduction to correlated data
– volume: 30
  start-page: 441
  year: 2015
  end-page: 445
  article-title: Error management in plant allocation to herbivore defense
  publication-title: Trends in Ecology & Evolution
– volume: 5
  start-page: 764
  issue: 6
  year: 2002
  end-page: 774
  article-title: Jasmonate‐deficient plants have reduced direct and indirect defences against herbivores
  publication-title: Ecology Letters
– volume: 424
  start-page: 1035
  year: 2003
  end-page: 1037
  article-title: Neutral theory and relative species abundance in ecology
  publication-title: Nature
– volume: 193
  start-page: 997
  issue: 4
  year: 2012
  end-page: 1008
  article-title: The major volatile organic compound emitted from flowers, the sesquiterpene (E)‐β‐caryophyllene, is a defense against a bacterial pathogen
  publication-title: New Phytologist
– volume: 3
  start-page: 305
  issue: 4
  year: 2000
  end-page: 308
  article-title: Costs of resistance
  publication-title: Current Opinion in Plant Biology
– volume: 91
  start-page: 131
  issue: 1
  year: 1999
  end-page: 142
  article-title: Are herbivore‐induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods?
  publication-title: Entomologia Experimentalis et Applicata
– volume: 93
  start-page: 1107
  issue: 3
  year: 2020
  end-page: 1117
  article-title: Acute toxicity of the plant volatile indole depends on herbivore specialization
  publication-title: Journal of pest science
– volume: 48
  start-page: 441
  issue: 4
  year: 2022
  end-page: 454
  article-title: Priming seeds with indole and (Z)−3‐hexenyl acetate enhances resistance against herbivores and stimulates growth
  publication-title: Journal of Chemical Ecology
– volume: 75
  start-page: 1
  year: 1988a
  end-page: 34
  article-title: Changes in plant community diversity and floristic composition on environmental and geographical gradients
  publication-title: Annals of the Missouri Botanical Garden
– volume: 4
  start-page: 79
  issue: 1
  year: 2003
  end-page: 89
  article-title: Costs of induced responses in plants
  publication-title: Basic and Applied Ecology
– volume: 23
  start-page: 16
  issue: 1
  year: 2020
  end-page: 32
  article-title: The many dimensions of phytochemical diversity: linking theory to practice
  publication-title: Ecology Letters
– volume: 7
  start-page: 61
  issue: 2
  year: 2002
  end-page: 67
  article-title: Fitness costs of induced resistance: emerging experimental support for a slippery concept
  publication-title: Trends in Plant Science
– start-page: 1
  year: 1979
  end-page: 55
– volume: 178
  start-page: 835
  year: 2008a
  end-page: 845
  article-title: Herbivore‐induced shifts in carbon and nitrogen allocation in red oak seedlings
  publication-title: New Phytologist
– volume: 305
  start-page: 663
  issue: 5684
  year: 2004
  end-page: 665
  article-title: Herbivores promote habitat specialization by trees in Amazonian forests
  publication-title: Science
– volume: 46
  start-page: 1093
  issue: 7
  year: 2005
  end-page: 1102
  article-title: Volatile C6‐aldehydes and allo‐ocimene activate defense genes and induce resistance against in
  publication-title: Plant and Cell Physiology
– volume: 96
  start-page: 617
  issue: 3
  year: 2015
  end-page: 630
  article-title: The raison d'être of chemical ecology
  publication-title: Ecology
– volume: 17
  start-page: 247
  issue: 3
  year: 2003
  end-page: 263
  article-title: Cost of resistance and tolerance under competition: the defense‐stress benefit hypothesis
  publication-title: Evolutionary Ecology
– volume: 399
  start-page: 686
  issue: 6737
  year: 1999
  end-page: 688
  article-title: Jasmonate‐inducible plant defences cause increased parasitism of herbivores
  publication-title: Nature
– volume: 14
  start-page: 443
  issue: 11
  year: 1999
  end-page: 447
  article-title: Induced plant responses and information content about risk of herbivory
  publication-title: Trends in Ecology & Evolution
– volume: 34
  start-page: 1640
  issue: 8
  year: 2020
  end-page: 1652
  article-title: Resource availability drives microevolutionary patterns of plant defences
  publication-title: Functional Ecology
– volume: 15
  start-page: 406
  issue: 3
  year: 2001
  end-page: 415
  article-title: Competition mediates costs of jasmonate‐induced defences, nitrogen acquisition and transgenerational plasticity in
  publication-title: Functional Ecology
– volume: 83
  start-page: 505
  issue: 2
  year: 2002
  end-page: 517
  article-title: Cost of defense in the context of plant competition: may grow and defend
  publication-title: Ecology
– volume: 222
  start-page: 144
  issue: 1
  year: 2019
  end-page: 158
  article-title: Eyes on the future–evidence for trade‐offs between growth, storage and defense in Norway spruce
  publication-title: New Phytologist
– volume: 220
  start-page: 739
  issue: 3
  year: 2018
  end-page: 749
  article-title: Covariation and phenotypic integration in chemical communication displays: biosynthetic constraints and eco‐evolutionary implications
  publication-title: New Phytologist
– volume: 329
  start-page: 330
  issue: 5989
  year: 2010
  end-page: 332
  article-title: Asymmetric density dependence shapes species abundances in a tropical tree community
  publication-title: Science
– volume: 108
  start-page: 5685
  issue: 14
  year: 2011
  end-page: 5689
  article-title: Tradeoffs associated with constitutive and induced plant resistance against herbivory
  publication-title: Proceedings of the National Academy of Sciences
– volume: 11
  start-page: 121
  year: 2020
  article-title: Sequestration of exogenous volatiles by plant cuticular waxes as a mechanism of passive associational resistance: a proof of concept
  publication-title: Frontiers in Plant Science
– volume: 171
  start-page: 757
  issue: 3973
  year: 1971
  end-page: 770
  article-title: Allelochemics: chemical interactions between species
  publication-title: Science
– volume: 6
  start-page: 6037
  issue: 17
  year: 2016
  end-page: 6049
  article-title: High herbivore pressure favors constitutive over induced defense
  publication-title: Ecology and Evolution
– volume: 67
  start-page: 283
  issue: 3
  year: 1992
  end-page: 335
  article-title: The dilemma of plants: to grow or defend
  publication-title: The Quarterly Review of Biology
– volume: 94
  start-page: 5473
  issue: 10
  year: 1997
  end-page: 5477
  article-title: Jasmonate is essential for insect defense in arabidopsis
  publication-title: Proceedings of the National Academy of Sciences
– volume: 57
  start-page: 717
  issue: 4
  year: 2003
  end-page: 745
  article-title: Testing for phylogenetic signal in comparative data: behavioral traits are more labile
  publication-title: Evolution
– volume: 25
  start-page: 389
  issue: 2
  year: 2011
  end-page: 398
  article-title: The resource availability hypothesis revisited: a meta‐analysis
  publication-title: Functional Ecology
– volume: 365
  start-page: 49
  issue: 1537
  year: 2010
  end-page: 60
  article-title: Linking biodiversity and ecosystems: towards a unifying ecological theory
  publication-title: Philosophical Transactions of the Royal Society, B: Biological Sciences
– volume: 130
  start-page: 570
  issue: 4
  year: 1987
  end-page: 581
  article-title: Costs and benefits of plant‐resistance to herbivory
  publication-title: The American Naturalist
– volume: 129
  start-page: 1466
  year: 1959
  end-page: 1470
  article-title: The Raison d'Être of secondary plant substances: these odd chemicals arose as a means of protecting plants from insects and now guide insects to food
  publication-title: Science
– year: 1997
– volume: 1
  start-page: 319
  issue: 4
  year: 2010
  end-page: 329
  article-title: Phylogenetic signal and linear regression on species data
  publication-title: Methods in Ecology and Evolution
– volume: 1157
  start-page: 414
  issue: 1–2
  year: 2007
  end-page: 421
  article-title: Development of a database of gas chromatographic retention properties of organic compounds
  publication-title: Journal of Chromatography A
– volume: 117
  start-page: 13
  year: 2008b
  end-page: 22
  article-title: Insect herbivores and their frass affect leaf quality and initial stages of subsequent litter decomposition
  publication-title: Oikos
– volume: 35
  start-page: 163
  issue: 2
  year: 2009
  end-page: 175
  article-title: Herbivore‐induced volatiles in the perennial shrub, , and their role in inter‐branch signaling
  publication-title: Journal of Chemical Ecology
– volume: 31
  issue: 3
  year: 2021
  article-title: Chemical diversity rather than cultivar diversity predicts natural enemy control of herbivore pests
  publication-title: Ecological Applications
– volume: 180
  start-page: 722
  year: 2008d
  end-page: 734
  article-title: Priming defense genes and metabolites in hybrid poplar by the green leaf volatile −3‐hexenyl acetate
  publication-title: New Phytologist
– volume: 23
  start-page: 223
  issue: 3
  year: 2004
  end-page: 237
  article-title: Jasmonates as signals in the wound response
  publication-title: Journal of Plant Growth Regulation
– volume: 68
  start-page: 485
  year: 2017
  end-page: 512
  article-title: Defense priming: an adaptive part of induced resistance
  publication-title: Annual review of plant biology
– volume: 20
  start-page: 1281
  issue: 6
  year: 1994
  end-page: 1328
  article-title: Metabolic costs of terpenoid accumulation in higher plants
  publication-title: Journal of Chemical Ecology
– volume: 37
  start-page: 1836
  issue: 8
  year: 2014
  end-page: 1844
  article-title: Little peaks with big effects: establishing the role of minor plant volatiles in plant–insect interactions
  publication-title: Plant, Cell & Environment
– volume: 103
  issue: 1
  year: 2022
  article-title: A visual technique used by citizen scientists shows higher herbivory in understory vs. canopy leaves of a tropical forest
  publication-title: Ecology
– volume: 101
  issue: 11
  year: 2020
  article-title: Disentangling dimensions of phytochemical diversity: alpha and beta have contrasting effects on an insect herbivore
  publication-title: Ecology
– volume: 42
  start-page: 2827
  issue: 10
  year: 2019
  end-page: 2843
  article-title: Roles of plant volatiles in defence against microbial pathogens and microbial exploitation of volatiles
  publication-title: Plant, Cell & Environment
– volume: 11
  issue: 5
  year: 2021
  article-title: Dispensing a synthetic Green leaf volatile to two plant species in a common garden differentially alters physiological responses and herbivory
  publication-title: Agronomy
– volume: 11
  start-page: 36
  issue: 7
  year: 2004
  end-page: 42
  article-title: Image processing with ImageJ
  publication-title: Biophotonics International
– volume: 3
  start-page: 408
  issue: 7
  year: 2007
  end-page: 414
  article-title: The function of terpene natural products in the natural world
  publication-title: Nature Chemical Biology
– volume: 7
  start-page: 915
  issue: 10
  year: 2004
  end-page: 918
  article-title: Attraction of willow warblers to sawfly‐damaged mountain birches: novel function of inducible plant defences?
  publication-title: Ecology Letters
– volume: 31
  start-page: 646
  issue: 8
  year: 2016
  end-page: 656
  article-title: A framework for predicting intraspecific variation in plant defense
  publication-title: Trends in Ecology & Evolution
– volume: 94
  start-page: 1764
  issue: 8
  year: 2013
  end-page: 1775
  article-title: Insect herbivores, chemical innovation, and the evolution of habitat specialization in Amazonian trees
  publication-title: Ecology
– volume: 71
  start-page: 3
  year: 1994
  end-page: 12
  article-title: Trade‐offs and constraints in plant‐herbivore defense theory: a life‐history perspective
  publication-title: Oikos
– volume: 91
  start-page: 1118
  issue: 4
  year: 2015
  end-page: 1133
  article-title: Priming and memory of stress responses in organisms lacking a nervous system
  publication-title: Biological Reviews
– volume: 250
  start-page: 1251
  year: 1990
  end-page: 1253
  article-title: Exploitation of herbivore‐induced plant odors by host‐seeking parasitic wasps
  publication-title: Science
– volume: 87
  start-page: S150
  issue: sp7
  year: 2006
  end-page: S162
  article-title: The growth–defense trade‐off and habitat specialization by plants in Amazonian forests
  publication-title: Ecology
– volume: 7
  issue: 8
  year: 2012
  article-title: The tonoplast‐localized sucrose transporter in (PtaSUT4) regulates whole‐plant water relations, responses to water stress, and photosynthesis
  publication-title: PLoS ONE
– volume: 1
  start-page: 1205
  year: 2017
  end-page: 1207
  article-title: Induced defences in plants reduce herbivory by increasing cannibalism
  publication-title: Nature Ecology & Evolution
– volume: 8
  year: 2013
  article-title: Exposure of unwounded plants to chemical cues associated with herbivores leads to exposure‐dependent changes in subsequent herbivore attack
  publication-title: PLoS ONE
– volume: 93
  start-page: 2073
  issue: 9
  year: 2012
  end-page: 2084
  article-title: Coexistence in tropical forests through asynchronous variation in annual seed production
  publication-title: Ecology
– volume: 79
  start-page: 2100
  issue: 6
  year: 1998
  end-page: 2112
  article-title: Leaf damage and associated cues induce aggressive ant recruitment in a neotropical ant‐plant
  publication-title: Ecology
– year: 2012
– volume: 423
  start-page: 635
  year: 2003
  end-page: 638
  article-title: Stability of forest biodiversity
  publication-title: Nature
– volume: 31
  start-page: 1985
  issue: 9
  year: 2005
  end-page: 2002
  article-title: Exogenous application of jasmonic acid induces volatile emissions in rice and enhances parasitism of eggs by the parasitoid Anagrus nilaparvatae
  publication-title: Journal of Chemical Ecology
– volume: 66
  start-page: 2527
  issue: 9
  year: 2015
  end-page: 2534
  article-title: Trade‐off between constitutive and inducible resistance against herbivores is only partially explained by gene expression and glucosinolate production
  publication-title: Journal of Experimental Botany
– volume: 27
  start-page: 305
  issue: 1
  year: 1996
  end-page: 335
  article-title: Herbivory and plant defenses in tropical forests
  publication-title: Annual Review of Ecology and Systematics
– volume: 85
  start-page: 156
  year: 1988b
  end-page: 159
  article-title: Tree species richness of upper Amazonian forests
  publication-title: Proceedings of the National Academy of Sciences (USA)
– volume: 8
  start-page: 19
  year: 2015
  article-title: Vegan: an introduction to ordination
– volume: 78
  start-page: 23
  issue: 1
  year: 2003
  end-page: 55
  article-title: Out of the quagmire of plant defense hypotheses
  publication-title: The Quarterly Review of Biology
– volume: 43
  start-page: 545
  year: 2005
  end-page: 580
  article-title: Signal crosstalk and induced resistance: straddling the line between cost and benefit
  publication-title: Annual Review of Phytopathology
– volume: 277
  start-page: 3055
  issue: 1697
  year: 2010
  end-page: 3064
  article-title: Evolutionary bet‐hedging in the real world: empirical evidence and challenges revealed by plants
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 146
  start-page: 818
  year: 2008c
  end-page: 824
  article-title: Plant defense priming against herbivores: getting ready for a different battle
  publication-title: Plant Physiology
– volume: 98
  start-page: 1750
  issue: 7
  year: 2017
  end-page: 1756
  article-title: Similarity in volatile communities leads to increased herbivory and greater tropical forest diversity
  publication-title: Ecology
– volume: 53
  start-page: 209
  issue: 2
  year: 1983
  end-page: 234
  article-title: Herbivory and defensive characteristics of tree species in a lowland tropical forest
  publication-title: Ecological Monographs
– volume: 31
  start-page: 929
  issue: 8
  year: 2003
  end-page: 949
  article-title: Convergence in defense syndromes of young leaves in tropical rainforests
  publication-title: Biochemical Systematics and Ecology
– volume: 5
  start-page: 58
  issue: 1
  year: 2010
  end-page: 60
  article-title: New evidence for a multifunctional role of herbivore‐induced plant volatiles in defense against herbivores
  publication-title: Plant Signaling & Behavior
– volume: 135
  start-page: 1893
  issue: 4
  year: 2004
  end-page: 1902
  article-title: Biochemistry of plant volatiles
  publication-title: Plant Physiology
– volume: 85
  start-page: 3335
  issue: 12
  year: 2004
  end-page: 3347
  article-title: Insect canopy herbivory and frass deposition affect soil nutrient dynamics and export in oak mesocosms
  publication-title: Ecology
– volume: 100
  issue: 12
  year: 2019
  article-title: Trade‐offs constrain the evolution of an inducible defense within but not between plant species
  publication-title: Ecology
– volume: 448
  start-page: 661
  issue: 7154
  year: 2007
  end-page: 665
  article-title: JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling
  publication-title: Nature
– volume: 10
  start-page: 490
  issue: 6
  year: 2007
  end-page: 498
  article-title: Within‐plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores
  publication-title: Ecology Letters
– volume: 40
  start-page: 225
  issue: 3
  year: 2014
  end-page: 226
  article-title: New synthesis: parallels between biodiversity and chemodiversity
  publication-title: Journal of Chemical Ecology
– start-page: 105
  year: 2014
  end-page: 130
– ident: e_1_2_7_84_1
  doi: 10.1038/21420
– ident: e_1_2_7_72_1
  doi: 10.1890/14-1474.1
– ident: e_1_2_7_10_1
  doi: 10.1098/rspb.2010.0707
– ident: e_1_2_7_26_1
  doi: 10.1111/j.1461-0248.2007.01043.x
– ident: e_1_2_7_63_1
  doi: 10.1007/s10340-020-01218-6
– ident: e_1_2_7_79_1
  doi: 10.1890/0012-9658(2002)083[0505:CODITC]2.0.CO;2
– ident: e_1_2_7_58_1
  doi: 10.1007/s10886-005-6072-9
– ident: e_1_2_7_38_1
  doi: 10.1016/j.tree.2016.05.007
– ident: e_1_2_7_48_1
– ident: e_1_2_7_36_1
  doi: 10.1038/nchembio.2007.5
– ident: e_1_2_7_55_1
  doi: 10.1016/S0305-1978(03)00087-5
– ident: e_1_2_7_46_1
  doi: 10.1111/nph.15522
– ident: e_1_2_7_28_1
  doi: 10.1111/j.1469-8137.2008.02420.x
– ident: e_1_2_7_89_1
  doi: 10.1046/j.1365-2435.2001.00533.x
– ident: e_1_2_7_5_1
  doi: 10.1016/j.chroma.2007.05.044
– ident: e_1_2_7_27_1
  doi: 10.1890/04-0003
– ident: e_1_2_7_45_1
  doi: 10.1007/BF02637263
– ident: e_1_2_7_61_1
  doi: 10.1002/ecy.1875
– ident: e_1_2_7_60_1
  doi: 10.1111/j.1461-0248.2004.00653.x
– ident: e_1_2_7_64_1
  doi: 10.1007/s10886-022-01359-1
– ident: e_1_2_7_3_1
  doi: 10.1890/0012-9658(1998)079[2100:LDAACI]2.0.CO;2
– ident: e_1_2_7_42_1
  doi: 10.1086/417659
– ident: e_1_2_7_65_1
  doi: 10.1073/pnas.94.10.5473
– ident: e_1_2_7_50_1
  doi: 10.1111/nph.14505
– ident: e_1_2_7_77_1
  doi: 10.4161/psb.5.1.10160
– ident: e_1_2_7_85_1
  doi: 10.1046/j.1461-0248.2002.00388.x
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1365-2435.2010.01803.x
– ident: e_1_2_7_52_1
  doi: 10.1111/j.1570-7458.2007.00594.x
– ident: e_1_2_7_82_1
  doi: 10.1086/367580
– ident: e_1_2_7_90_1
  doi: 10.1038/nature01883
– ident: e_1_2_7_88_1
  doi: 10.1890/11-1935.1
– ident: e_1_2_7_91_1
  doi: 10.1111/ele.13422
– ident: e_1_2_7_62_1
  doi: 10.1146/annurev-arplant-042916-041132
– ident: e_1_2_7_75_1
  doi: 10.1111/j.2041-210X.2011.00169.x
– ident: e_1_2_7_29_1
  doi: 10.1111/j.2007.0030-1299.16165.x
– ident: e_1_2_7_87_1
  doi: 10.1126/science.250.4985.1251
– ident: e_1_2_7_78_1
  doi: 10.1007/s10886-008-9579-z
– ident: e_1_2_7_8_1
  doi: 10.1146/annurev.phyto.41.052002.095505
– ident: e_1_2_7_59_1
  doi: 10.1525/9780520953925
– ident: e_1_2_7_30_1
  doi: 10.1104/pp.107.113027
– ident: e_1_2_7_81_1
  doi: 10.1086/284731
– ident: e_1_2_7_24_1
  doi: 10.3390/agronomy11050958
– ident: e_1_2_7_66_1
  doi: 10.2307/3546166
– ident: e_1_2_7_41_1
  doi: 10.1016/S1360-1385(01)02186-0
– ident: e_1_2_7_14_1
  doi: 10.2307/1942495
– ident: e_1_2_7_71_1
  doi: 10.1016/S1369-5266(00)00085-6
– ident: e_1_2_7_74_1
  doi: 10.1111/j.2041-210X.2010.00044.x
– ident: e_1_2_7_11_1
  doi: 10.1078/1439-1791-00134
– ident: e_1_2_7_34_1
  doi: 10.1073/pnas.85.1.156
– ident: e_1_2_7_73_1
  doi: 10.1093/jxb/erv033
– ident: e_1_2_7_51_1
  doi: 10.1016/S0169-5347(99)01678-X
– ident: e_1_2_7_57_1
  doi: 10.1098/rstb.2009.0155
– ident: e_1_2_7_49_1
  doi: 10.1111/ecog.04434
– ident: e_1_2_7_67_1
– ident: e_1_2_7_20_1
  doi: 10.1126/science.1098982
– ident: e_1_2_7_12_1
  doi: 10.1038/nature01632
– ident: e_1_2_7_15_1
  doi: 10.1146/annurev.ecolsys.27.1.305
– ident: e_1_2_7_33_1
  doi: 10.2307/2399464
– ident: e_1_2_7_80_1
  doi: 10.1023/A:1025517229934
– ident: e_1_2_7_17_1
  doi: 10.1046/j.1570-7458.1999.00475.x
– ident: e_1_2_7_32_1
  doi: 10.1371/journal.pone.0044467
– ident: e_1_2_7_44_1
  doi: 10.1111/brv.12215
– ident: e_1_2_7_54_1
  doi: 10.1093/pcp/pci122
– ident: e_1_2_7_37_1
  doi: 10.1002/ecy.3158
– ident: e_1_2_7_53_1
  doi: 10.1073/pnas.1016508108
– ident: e_1_2_7_23_1
  doi: 10.1126/science.129.3361.1466
– ident: e_1_2_7_18_1
  doi: 10.1104/pp.104.049981
– ident: e_1_2_7_21_1
  doi: 10.1890/12-1920.1
– ident: e_1_2_7_22_1
  doi: 10.1890/0012-9658(2006)87[150:TGTAHS]2.0.CO;2
– ident: e_1_2_7_56_1
  doi: 10.1111/1365-2435.13610
– ident: e_1_2_7_7_1
  doi: 10.1111/j.0014-3820.2003.tb00285.x
– start-page: 1
  volume-title: Herbivores: Their Interaction with Secondary Plant Metabolites
  year: 1979
  ident: e_1_2_7_76_1
– ident: e_1_2_7_4_1
  doi: 10.1002/ecy.2857
– volume: 11
  start-page: 36
  issue: 7
  year: 2004
  ident: e_1_2_7_2_1
  article-title: Image processing with ImageJ
  publication-title: Biophotonics International
– ident: e_1_2_7_6_1
  doi: 10.1002/ece3.2208
– ident: e_1_2_7_68_1
  doi: 10.1038/s41559-017-0231-6
– ident: e_1_2_7_83_1
  doi: 10.1007/978-3-662-43550-2_5
– ident: e_1_2_7_35_1
  doi: 10.1007/BF02059810
– ident: e_1_2_7_40_1
  doi: 10.1002/eap.2289
– ident: e_1_2_7_13_1
  doi: 10.1111/pce.12357
– ident: e_1_2_7_86_1
  doi: 10.1038/nature05960
– ident: e_1_2_7_70_1
  doi: 10.1016/j.tree.2015.06.005
– ident: e_1_2_7_92_1
  doi: 10.1126/science.171.3973.757
– ident: e_1_2_7_25_1
  doi: 10.1002/ecy.3539
– ident: e_1_2_7_43_1
  doi: 10.1007/s10886-014-0402-8
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1469-8137.2011.04001.x
– ident: e_1_2_7_69_1
  doi: 10.1371/journal.pone.0079900
– ident: e_1_2_7_39_1
  doi: 10.1111/pce.13602
– ident: e_1_2_7_16_1
  doi: 10.1126/science.1190772
– ident: e_1_2_7_9_1
  doi: 10.3389/fpls.2020.00121
– ident: e_1_2_7_31_1
  doi: 10.1104/pp.107.113027
SSID ssj0001479
Score 2.4444704
Snippet A central goal in ecology is to understand the mechanisms by which biological diversity is maintained. The diversity of plant chemical defences and the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3059
SubjectTerms Amazonia
Biodiversity
Business competition
Canopies
canopy
Chemical defense
Coexistence
Emissions
environment
Farnesene
forest canopy
forests
herbivores
Herbivory
inducible defence
Leaves
Linalool
Metabolites
Methyl jasmonate
neotropical forest
Neotropics
Ocimene
Organic compounds
Ozone
Phylogeny
Phytochemicals
phytochemistry
plant defence
Plant diversity
Plant hormones
Plant species
plant volatiles
Production costs
Sympatric populations
sympatry
Trees
Tropical forests
VOCs
Volatile organic compounds
Title Overlaps and trade‐offs in the diversity and inducibility of volatile chemical profiles among diverse sympatric neotropical canopy trees
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14594
https://www.ncbi.nlm.nih.gov/pubmed/37082810
https://www.proquest.com/docview/2860316171
https://www.proquest.com/docview/2805034262
https://www.proquest.com/docview/2888008994
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Li9YwEA_LsoIXH-vr01WiePDS5UubJg170mWXRfCBuLAHoeRVENe2fO0n1JNnT_s37l_iTNJW1xfirdBpm2Rmkl8y098Q8rgAneeGw-5EWpNwrfJEp8ImsPIBGleKs3A08OKlODrmz0_ykw2yN_0LE_kh5gM39IwwX6ODa9P94OSt9eDmuUIuUMzVQkD05jt1FOORZw_TF6VUbGQVwiye-cmLa9EvAPMiXg0LzuFV8m5qaswz-bC77s2u_fwTi-N_9uUauTICUfo0Ws51suHrbXIplqYctsnWswZg43CDfH31CY_82o7q2tF-pZ0__3LWVFVH39cU4CN1U2pHkIA9_trGlNuBNhWF6Q-Uf-qpHakJ6FgmHF6IhY7Gxz3tho9tqBdAa9_0q6YNwqD5ph0oxs67m-T48ODt_lEyFnBIbFYInlRVynPjhBFeWQXYSS69TJdCOYXRUuFy75APTxTMSmWZzqRWy1xLxx1PfZXdIpt1U_s7hHomjTBZoTOL1OpaSaYcR_5Yp6vK2QV5MqmytCO7ORbZOC2nXQ6McRnGeEEezaJtpPT4ndDOZA_l6NVdmRZYkxswH1uQh_Nt8EcMsmgYnDXKIMMO8vz_TQZmTYy3wmduR1ubW5JJJBVkS-hQsJg_N7F8vX8QLu7-u-g9cjkFlBazEXfIZr9a-_uAqnrzILjPN5nOHoQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILj_JaKGAQSFxSbRInjg8coA9t6QOEWqm34NiOVFGSaLMLCifOnPgh_BX-BL-EGecB5SUuPXBbaSdex57xfLZnvw_gQYJzHmUcdydCZx5XMvJUEGsPMx-icSm5744GdnbjyT5_dhAdLMDn_r8wLT_EcOBGkeHWawpwOpD-IcorbTHOI8m7ksot27zDDVv9eHMNZ_dhEGys761OvE5TwNNhEnMvzwMeZSbOYiu1xHQuxlYE41gaSRd4sYmsIYq2OPG1kNpXoVByHClhuOGBzUNs9xScJgVxYupfe_mdrMrnLbMfFUwKIf2Ox4jqhoauHs9-v0Da4wjZpbiNi_ClH5y2suX1ynyWrej3P_FG_i-jdwkudFibPWmD4zIs2GIJzrbqm80SnHlaIjJursDH52_pVLOqmSoMm02VsV8_fCrzvGaHBUOEzExfveIsDgsz121VccPKnOEKj_59ZJnu2BdYp4SODZKWU_e4ZXXzpnKSCKyw5WxaVs4YnbusGkblAfVV2D-REbkGi0VZ2BvArC-yOAsTFWpij1dS-NJwosg1Ks-NHsGj3ndS3RG4k47IUdpv5HBOUzenI7g_mFYta8nvjJZ7B0y7hatOg4RkxxHW-iO4N3yNSw7dIykcnDnZEIkQSRn8zQYTA10p489cb5176EkoiDfRH-MLORf9cxfTF6vr7sPNfze9C-cmezvb6fbm7tYtOB8gKG2LL5dhcTad29sIImfZHRe7DF6dtLt_A6pwenc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0q5SE2PMproIBBILFJlYdjxwsW0OmopVAqRKXugmM7UkVJokkGFFasWfEf_ApfwZdw7TygvMSmC3YjzY3Hse_1PbbvnANwL8E5jzOKuxOuMo9KEXsyZMrDzIdoXAgauKOBZztsc48-2Y_3l-Dz8F-Yjh9iPHCzkeHWaxvglc5_CPJKGQzzWNC-onLbtO9wv1Y_3Jri5N4Pw9nGy_VNr5cU8FSUMOrleUjjTLOMGaEEZnPuGx76TGhh7--Yjo22DG0sCRQXKpARl8KPJddU09DkEbZ7Ak5S5gurEzF98Z2rKqAdsZ-tl-RcBD2NkS0bGrt6NPn9gmiPAmSX4Wbn4cswNl1hy-u1RZOtqfc_0Ub-J4N3Ac71SJs86kLjIiyZYgVOd9qb7QqcelwiLm4vwcfnb-2ZZlUTWWjSzKU2Xz98KvO8JgcFQXxM9FC74iwOCr1QXU1xS8qc4PqO3n1oiOq5F0ivg44NWiWn_nFD6vZN5QQRSGHKZl5Wzhhdu6xaYosD6suwdywjcgWWi7Iw14CYgGcsixIZKcsdLwUPhKaWIFfLPNdqAg8G10lVT99uVUQO02Ebh3OaujmdwN3RtOo4S35ntDr4X9ovW3UaJlZ0HEFtMIE749e44NhbJImDs7A2lkLIChn8zQbTgr1Qxp-52vn22JOIW9bEwMcXch765y6mu-sb7sP1fze9DWd2p7P06dbO9g04GyIi7SovV2G5mS_MTUSQTXbLRS6BV8ft7d8ArTl5Jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overlaps+and+trade%E2%80%90offs+in+the+diversity+and+inducibility+of+volatile+chemical+profiles+among+diverse+sympatric+neotropical+canopy+trees&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Frost%2C+Christopher+J.&rft.date=2023-10-01&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=46&rft.issue=10&rft.spage=3059&rft.epage=3071&rft_id=info:doi/10.1111%2Fpce.14594&rft.externalDBID=10.1111%252Fpce.14594&rft.externalDocID=PCE14594
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon