Laser ablation of polymers: a review

ABSTRACT Laser ablation (LA), which employs a pulsed laser to remove materials from a substrate for generating micro‐/nanostructures, has tremendous applications in the fabrication of metals, ceramics, glasses and polymers. It has become a noteworthy approach for achieving various functional structu...

Full description

Saved in:
Bibliographic Details
Published inPolymer international Vol. 68; no. 8; pp. 1391 - 1401
Main Authors Ravi‐Kumar, Sandeep, Lies, Benjamin, Zhang, Xiao, Lyu, Hao, Qin, Hantang
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.08.2019
Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Laser ablation (LA), which employs a pulsed laser to remove materials from a substrate for generating micro‐/nanostructures, has tremendous applications in the fabrication of metals, ceramics, glasses and polymers. It has become a noteworthy approach for achieving various functional structures in engineering, chemistry, biology, medicine and other fields. Polymers are one such class of materials; they can be melted and vaporized at high temperature during the ablation process. A number of polymers have been researched as candidate substrates in LA, and many different structures and patterns have been realized by this method. The current states of research and progress are reviewed from basic concepts to optimal parameters, polymer types and applications. The significance of this paper is to provide a basis for follow‐up research that leads to the development of superior materials and high‐quality production through LA. In this review, we first introduce the basic concept of LA, including mechanism, laser types (millisecond, microsecond, nanosecond, picosecond and femtosecond) and influential parameters (wavelength, repetition rate, fluence and pulse duration). Then, we focus on several commonly used polymer materials and compare them in detail, including the effects of polymer properties, laser parameters and feature designs. Finally, we summarize the applications of various structures fabricated by LA in a variety of areas along with a perspective of the challenges in this research area. Overall, a thorough review of LA of several polymers is presented, which could pave the way for characterization of future novel materials. © 2019 Society of Chemical Industry This review summarizes current state‐of‐the‐art laser ablation of polymers. Effects of laser ablation parameters and research directions of polymer ablation are reviewed.
AbstractList Laser ablation (LA), which employs a pulsed laser to remove materials from a substrate for generating micro‐/nanostructures, has tremendous applications in the fabrication of metals, ceramics, glasses and polymers. It has become a noteworthy approach for achieving various functional structures in engineering, chemistry, biology, medicine and other fields. Polymers are one such class of materials; they can be melted and vaporized at high temperature during the ablation process. A number of polymers have been researched as candidate substrates in LA, and many different structures and patterns have been realized by this method. The current states of research and progress are reviewed from basic concepts to optimal parameters, polymer types and applications. The significance of this paper is to provide a basis for follow‐up research that leads to the development of superior materials and high‐quality production through LA. In this review, we first introduce the basic concept of LA, including mechanism, laser types (millisecond, microsecond, nanosecond, picosecond and femtosecond) and influential parameters (wavelength, repetition rate, fluence and pulse duration). Then, we focus on several commonly used polymer materials and compare them in detail, including the effects of polymer properties, laser parameters and feature designs. Finally, we summarize the applications of various structures fabricated by LA in a variety of areas along with a perspective of the challenges in this research area. Overall, a thorough review of LA of several polymers is presented, which could pave the way for characterization of future novel materials. © 2019 Society of Chemical Industry
ABSTRACT Laser ablation (LA), which employs a pulsed laser to remove materials from a substrate for generating micro‐/nanostructures, has tremendous applications in the fabrication of metals, ceramics, glasses and polymers. It has become a noteworthy approach for achieving various functional structures in engineering, chemistry, biology, medicine and other fields. Polymers are one such class of materials; they can be melted and vaporized at high temperature during the ablation process. A number of polymers have been researched as candidate substrates in LA, and many different structures and patterns have been realized by this method. The current states of research and progress are reviewed from basic concepts to optimal parameters, polymer types and applications. The significance of this paper is to provide a basis for follow‐up research that leads to the development of superior materials and high‐quality production through LA. In this review, we first introduce the basic concept of LA, including mechanism, laser types (millisecond, microsecond, nanosecond, picosecond and femtosecond) and influential parameters (wavelength, repetition rate, fluence and pulse duration). Then, we focus on several commonly used polymer materials and compare them in detail, including the effects of polymer properties, laser parameters and feature designs. Finally, we summarize the applications of various structures fabricated by LA in a variety of areas along with a perspective of the challenges in this research area. Overall, a thorough review of LA of several polymers is presented, which could pave the way for characterization of future novel materials. © 2019 Society of Chemical Industry This review summarizes current state‐of‐the‐art laser ablation of polymers. Effects of laser ablation parameters and research directions of polymer ablation are reviewed.
Author Zhang, Xiao
Lyu, Hao
Qin, Hantang
Ravi‐Kumar, Sandeep
Lies, Benjamin
Author_xml – sequence: 1
  givenname: Sandeep
  surname: Ravi‐Kumar
  fullname: Ravi‐Kumar, Sandeep
  organization: Iowa State University
– sequence: 2
  givenname: Benjamin
  surname: Lies
  fullname: Lies, Benjamin
  organization: Iowa State University
– sequence: 3
  givenname: Xiao
  surname: Zhang
  fullname: Zhang, Xiao
  organization: Iowa State University
– sequence: 4
  givenname: Hao
  surname: Lyu
  fullname: Lyu, Hao
  organization: Qingdao University of Science and Technology
– sequence: 5
  givenname: Hantang
  orcidid: 0000-0003-4180-7911
  surname: Qin
  fullname: Qin, Hantang
  email: qin@iastate.edu
  organization: Iowa State University
BackLink https://www.osti.gov/biblio/1559060$$D View this record in Osti.gov
BookMark eNp10M1KAzEUBeAgFWyr-AqDCi5k6k0yySTupPhTKOhC1yGTJpgynYzJ1NK3d9q6El3dzcfh3DNCgyY0FqFzDBMMQG5bP2GCFkdoiEGWOWDCB2gIkslcYKAnaJTSEgCElHKIruY62ZjpqtadD00WXNaGeruyMd1lOov2y9vNKTp2uk727OeO0fvjw9v0OZ-_PM2m9_PcUMGL3JmKUWsLw8EAVMwRYhxnhVhIIRy1FGNrOCYLBrwEbMu-hauEJBUFXXFHx-jikBtS51UyvrPmw4SmsaZTmDEJHHp0eUBtDJ9rmzq1DOvY9L0UIYXkJS0Z7VV-UCaGlKJ1qk_bv9hF7WuFQe3WUq1Xu7V6f_3Lt9GvdNz-IW8OcuNru_2PqdfZXn8D0h92QQ
CitedBy_id crossref_primary_10_2478_msp_2024_0004
crossref_primary_10_1016_j_apsusc_2022_156032
crossref_primary_10_1007_s11082_024_07135_7
crossref_primary_10_1016_j_ijmecsci_2024_109632
crossref_primary_10_54503_0515_9628_2023_76_3_277
crossref_primary_10_1007_s11244_024_01904_0
crossref_primary_10_3390_mi12030346
crossref_primary_10_1016_j_optlastec_2024_110620
crossref_primary_10_1016_j_tibtech_2021_07_001
crossref_primary_10_1002_sia_7363
crossref_primary_10_1021_acs_biomac_3c00387
crossref_primary_10_1002_adhm_202304447
crossref_primary_10_3390_ma15238347
crossref_primary_10_1109_TCPMT_2019_2941866
crossref_primary_10_1007_s40516_023_00212_x
crossref_primary_10_1002_smtd_202301105
crossref_primary_10_1016_j_jajp_2024_100260
crossref_primary_10_2139_ssrn_4177849
crossref_primary_10_1002_pi_5998
crossref_primary_10_1016_j_jmapro_2023_01_036
crossref_primary_10_3390_app15052617
crossref_primary_10_1088_1361_6463_acd38f
crossref_primary_10_35848_1347_4065_adb439
crossref_primary_10_1016_j_surfin_2022_102561
crossref_primary_10_3390_polym13101553
crossref_primary_10_3390_mi12020138
crossref_primary_10_1002_ente_202300482
crossref_primary_10_1088_2053_1591_acdeca
crossref_primary_10_1063_10_0034395
crossref_primary_10_3390_molecules26216701
crossref_primary_10_1088_1742_6596_2539_1_012063
crossref_primary_10_3390_polym12092041
crossref_primary_10_1364_OE_529991
crossref_primary_10_1016_j_seppur_2024_129343
crossref_primary_10_1016_j_jaap_2022_105819
crossref_primary_10_1049_ote2_12039
crossref_primary_10_1021_acs_chemrev_1c00626
crossref_primary_10_1063_5_0200822
crossref_primary_10_1002_pol_20230926
crossref_primary_10_3390_nano13010168
crossref_primary_10_1007_s00170_022_08992_w
crossref_primary_10_1016_j_optlastec_2021_107554
crossref_primary_10_1016_j_bej_2023_109104
crossref_primary_10_1007_s10118_022_2765_6
crossref_primary_10_1021_acs_chemrev_1c00539
crossref_primary_10_1016_j_jmst_2022_10_088
crossref_primary_10_1063_5_0150598
crossref_primary_10_1039_D2NR04464A
crossref_primary_10_1016_j_tifs_2021_10_031
crossref_primary_10_1002_adma_202402014
crossref_primary_10_1002_ange_202404802
crossref_primary_10_1039_D1SE01475G
crossref_primary_10_3390_catal10020171
crossref_primary_10_1016_j_sna_2024_115746
crossref_primary_10_1364_OE_491526
crossref_primary_10_3390_polym13173004
crossref_primary_10_1002_adma_202207081
crossref_primary_10_1016_j_jmrt_2021_03_083
crossref_primary_10_1002_smll_202205994
crossref_primary_10_1002_app_54486
crossref_primary_10_1016_j_optlastec_2024_111069
crossref_primary_10_1007_s12567_024_00570_y
crossref_primary_10_1016_j_optlastec_2024_111588
crossref_primary_10_1016_j_apsusc_2024_160124
crossref_primary_10_1039_D4LC00280F
crossref_primary_10_1007_s10853_023_08566_5
crossref_primary_10_1002_admt_202300244
crossref_primary_10_1016_j_biotechadv_2024_108317
crossref_primary_10_1002_adhm_202401260
crossref_primary_10_1002_anie_202404802
crossref_primary_10_1007_s00170_024_13178_7
crossref_primary_10_1016_j_ijadhadh_2022_103155
crossref_primary_10_1021_acsanm_4c00337
crossref_primary_10_1039_D1CP02199K
crossref_primary_10_1002_asia_202400717
crossref_primary_10_3390_w16131896
crossref_primary_10_3390_foods12162983
crossref_primary_10_1016_j_optlastec_2024_111751
crossref_primary_10_3390_polym14102028
crossref_primary_10_1177_1687814020982713
crossref_primary_10_1016_j_ccr_2024_216158
crossref_primary_10_3390_ma14092243
crossref_primary_10_1016_j_ijmecsci_2022_107528
crossref_primary_10_61186_ijop_17_2_205
crossref_primary_10_37188_lam_2022_030
crossref_primary_10_3390_app13074313
crossref_primary_10_1002_adem_202400215
crossref_primary_10_1007_s11468_023_01852_7
crossref_primary_10_1063_5_0256691
crossref_primary_10_1016_j_optlastec_2022_107937
crossref_primary_10_1002_wfs2_1495
crossref_primary_10_3390_ma17071550
crossref_primary_10_3390_polym15030531
crossref_primary_10_1177_09544062241237705
crossref_primary_10_3788_CJL230827
crossref_primary_10_1088_2631_7990_ad8a26
crossref_primary_10_1002_admt_201900519
crossref_primary_10_3390_mi16010059
crossref_primary_10_1016_j_actaastro_2022_12_022
crossref_primary_10_1016_j_optlastec_2024_112052
crossref_primary_10_1080_10426914_2021_2001505
crossref_primary_10_1088_2631_8695_aca319
crossref_primary_10_1002_adfm_202418437
crossref_primary_10_1063_5_0130799
crossref_primary_10_1002_jbm_a_37633
crossref_primary_10_1515_gps_2023_0076
crossref_primary_10_1186_s40494_023_00933_4
crossref_primary_10_2351_7_0001070
crossref_primary_10_3390_lubricants11090368
crossref_primary_10_1021_acsphotonics_3c01756
crossref_primary_10_1039_D3RA05816F
crossref_primary_10_1021_acsanm_4c04059
crossref_primary_10_1021_acsapm_3c00822
crossref_primary_10_1002_mame_202200053
crossref_primary_10_1007_s40194_021_01143_x
crossref_primary_10_1016_j_optlastec_2025_112705
crossref_primary_10_1002_slct_202104603
crossref_primary_10_1016_j_apsusc_2024_162219
crossref_primary_10_1017_hpl_2023_26
crossref_primary_10_1016_j_msec_2020_111615
crossref_primary_10_3390_polym14102041
crossref_primary_10_1002_adhm_202403992
crossref_primary_10_1007_s10544_023_00661_3
crossref_primary_10_1063_5_0191909
crossref_primary_10_3390_coatings12010071
crossref_primary_10_3762_bjnano_16_31
crossref_primary_10_1007_s00170_022_08731_1
crossref_primary_10_1016_j_apsusc_2023_158488
crossref_primary_10_3390_mi14010090
crossref_primary_10_3390_coatings13111922
crossref_primary_10_1002_adma_202206110
crossref_primary_10_1088_1361_6528_ac1097
crossref_primary_10_3390_ma14247548
crossref_primary_10_1021_acsami_2c17106
crossref_primary_10_1007_s40123_024_01007_9
crossref_primary_10_1149_2754_2726_ad304a
crossref_primary_10_1002_adom_202303194
crossref_primary_10_1016_j_mtchem_2024_102316
crossref_primary_10_1016_j_optlastec_2025_112490
crossref_primary_10_3390_s21175891
crossref_primary_10_1063_5_0017566
Cites_doi 10.1063/1.96767
10.1016/j.jmatprotec.2006.11.106
10.1364/OE.23.019854
10.4018/978-1-5225-0329-3
10.1063/1.2793628
10.1063/1.336012
10.1063/1.97744
10.1016/S0040-6090(97)00201-0
10.1016/j.apsusc.2008.07.100
10.1063/1.97113
10.1063/1.100235
10.1016/j.apsusc.2012.01.154
10.1007/s00339-012-7209-7
10.1016/j.ijmachtools.2014.10.013
10.1007/BF00686468
10.1103/PhysRevLett.58.2142
10.1063/1.96798
10.1016/S0169-4332(03)00835-3
10.1016/j.promfg.2016.08.049
10.1007/BF00348965
10.1002/adma.200390012
10.1002/(SICI)1096-9101(1998)22:1<51::AID-LSM12>3.0.CO;2-B
10.1039/b403037k
10.1088/0022-3727/33/7/301
10.1007/s10404-017-1943-2
10.1021/ma00117a034
10.1063/1.357486
10.1116/1.583081
10.1016/S0169-4332(99)00440-7
10.1002/pen.760181113
10.1016/S0002-9394(14)71911-7
10.1063/1.341590
10.1364/AO.42.006349
10.1016/S0169-4332(02)00404-X
10.1063/1.4812491
10.1063/1.1785291
10.1063/1.334503
10.1007/s00339-008-4567-2
10.4271/2010-01-0022
10.1063/1.359776
10.1116/1.573823
10.1007/s003390100832
10.1002/adem.200600171
10.1007/s10404-011-0917-z
10.1126/science.142.3589.236
10.1016/S0169-4332(99)00474-2
10.1088/0960-1317/19/5/055007
10.1108/AA-07-2014-066
10.1063/1.97406
10.1366/000370262774416074
10.1088/0960-1317/14/4/007
10.1088/0022-3727/29/5/034
10.1016/j.ijmachtools.2007.10.017
10.1063/1.342788
10.1063/1.2138800
10.1007/BF01567637
10.1016/j.jmapro.2015.05.004
10.1109/3.631270
10.1016/j.optlaseng.2011.10.008
10.1007/s12541-010-0078-0
10.1364/OE.23.017584
10.1080/10426914.2015.1048359
10.1039/b206409j
10.1139/p00-024
10.1063/1.1725592
10.1117/1.1753589
10.2351/1.521827
10.1016/0301-0104(88)85053-5
10.1088/0960-1317/18/9/095020
10.1007/s00339-004-2572-7
10.1016/j.apsusc.2003.11.078
10.1109/LPT.2003.823124
10.1016/0169-4332(94)00413-7
10.1007/BF00692122
10.1007/978-3-642-10523-4_4
10.1016/j.progpolymsci.2012.02.005
10.1021/am100393e
10.1109/2944.806756
10.1021/j100149a033
10.1021/j100131a029
10.1007/s00339-004-3085-0
10.1021/j100401a028
10.1063/1.103873
10.1051/epjap:2003083
10.1557/PROC-526-385
10.1109/LPT.2006.873357
10.1063/1.93108
10.1063/1.338834
10.1021/ma00168a044
10.1364/AO.4.000147
10.1103/PhysRevB.82.165417
10.1007/BF00694197
10.3390/polym9070242
10.1147/rd.411.0143
10.1088/0022-3727/48/23/235201
10.1007/BF00694355
10.1063/1.338015
10.1002/lsm.1900090409
10.1116/1.574091
10.1002/smll.201403419
10.1023/A:1004567301546
10.1007/BF00332440
10.1039/C7TA05383E
10.1063/1.3043883
10.1002/(SICI)1097-4628(19970509)64:6<1203::AID-APP21>3.0.CO;2-V
10.2351/1.4906475
10.1007/s003399900296
10.1021/acsami.6b03743
10.1039/c3lc51041g
10.1039/b508288a
10.1063/1.1568154
10.1007/s003390000686
10.1088/0964-1726/11/5/307
10.1117/12.486521
10.1002/(SICI)1522-2683(20000101)21:1<12::AID-ELPS12>3.0.CO;2-7
10.1116/1.583976
10.1117/12.482093
10.1179/026708304225010488
ContentType Journal Article
Copyright 2019 Society of Chemical Industry
Copyright © 2019 Society of Chemical Industry
Copyright_xml – notice: 2019 Society of Chemical Industry
– notice: Copyright © 2019 Society of Chemical Industry
DBID AAYXX
CITATION
7SR
8FD
F28
FR3
JG9
OTOTI
DOI 10.1002/pi.5834
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Engineering Research Database
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-0126
EndPage 1401
ExternalDocumentID 1559060
10_1002_pi_5834
PI5834
Genre reviewArticle
GrantInformation_xml – fundername: Iowa State University
– fundername: U.S. Department of Energy
  funderid: DE‐EE0007897
– fundername: Office of Energy Efficiency and Renewable Energy
– fundername: Advanced Manufacturing Office
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
29O
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYXMG
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6S
M6T
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWB
RWI
RX1
RYL
SAMSI
SUPJJ
TTC
UB1
V2E
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SR
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
JG9
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
UMP
ID FETCH-LOGICAL-c3864-fcb53ee4c60c00b5f22cf6548d988f3e311ec612d506701e7000fb892b30ab6f3
IEDL.DBID DR2
ISSN 0959-8103
IngestDate Thu May 18 22:26:50 EDT 2023
Fri Jul 25 12:21:22 EDT 2025
Thu Apr 24 23:12:25 EDT 2025
Tue Jul 01 02:19:16 EDT 2025
Wed Jan 22 16:40:04 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3864-fcb53ee4c60c00b5f22cf6548d988f3e311ec612d506701e7000fb892b30ab6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
DE‐EE0007897
USDOE
ORCID 0000-0003-4180-7911
0000000341807911
OpenAccessLink https://www.osti.gov/biblio/1559060
PQID 2249673753
PQPubID 1016451
PageCount 12
ParticipantIDs osti_scitechconnect_1559060
proquest_journals_2249673753
crossref_citationtrail_10_1002_pi_5834
crossref_primary_10_1002_pi_5834
wiley_primary_10_1002_pi_5834_PI5834
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2019
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: London
– name: United Kingdom
PublicationTitle Polymer international
PublicationYear 2019
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 1990; 51
2010; 11
2004; 20
1990; 57
1997; 41
2007; 187
2004; 25
2002; 11
2004; 4
1975
2016; 31
2004; 3
1983; 96
1989; 48
2012; 12
1964; 40
2015; 89
1987; 44
1997; 304
1995; 28
1986; 4
1965; 4
2013; 112
2007; 9
2013; 114
1996; 63
1981
2012; 258
2009; 19
2010; 2
1998; 10
2003; 42
1994; 76
1989
1987; 58
1986; 90
1989; 65
1962; 7
2002; 74
1987; 50
1989; 9
1962; 16
1998
1997
2002; 2
2007; 91
1994
2005; 80
2012; 37
2008; 486
2012; 50
2016; 5
1917; 18
1963; 142
1997; 33
1987; 61
2000; 78
1982; 40
2003; 4830
2005; 5
1999; 34
2005; 98
2008; 255
2016; 8
2009; 105
2015; 35
2017; 5
1995; 78
2003; 15
2003; 93
2017; 9
2015; 48
1996; 29
2013; 13
1986; 48
2004; 79
1986; 49
1998; 526
1988; 46
1985; 57
1985; 58
2004; 221
2004; 85
2015; 5
2010
1985; 3
1997; 64
2000; 21
2008; 18
2017; 21
2015; 11
1999; 69
2008
2006; 18
1978; 18
2000; 154
1988; 53
2008; 92
2004; 227
1999; 5
1998; 22
2010; 82
1988; 126
1995; 86
1994; 9
2015; 23
1987; 20
2002; 4760
2015; 27
2004; 16
1988; 6
2015; 20
2004; 14
2000; 33
1993; 97
1994; 58
2016
1988; 64
2002; 197–198
2001; 73
1968
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
Einstein A (e_1_2_8_2_1) 1917; 18
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
Patel RS (e_1_2_8_22_1) 1997
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
Becker W (e_1_2_8_97_1) 1994; 9
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
Akinlabi ET (e_1_2_8_5_1) 2016
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
Venkateswarlu G (e_1_2_8_96_1) 2015; 5
e_1_2_8_70_1
e_1_2_8_122_1
Paschotta R (e_1_2_8_48_1) 2008
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_93_1
e_1_2_8_46_1
Townes CH (e_1_2_8_3_1) 2010
e_1_2_8_27_1
e_1_2_8_69_1
Linlor WI (e_1_2_8_12_1) 1962; 7
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 20
  start-page: 349
  year: 2015
  end-page: 355
  publication-title: J Manufac Process
– volume: 8
  start-page: 17784
  year: 2016
  end-page: 17792
  publication-title: ACS Appl Mater Interfaces
– volume: 61
  start-page: 2090
  year: 1987
  end-page: 2092
  publication-title: J Appl Phys
– volume: 221
  start-page: 99
  year: 2004
  end-page: 109
  publication-title: Appl Surf Sci
– year: 1981
– volume: 304
  start-page: 225
  year: 1997
  end-page: 228
  publication-title: Thin Solid Films
– volume: 29
  start-page: 1349
  year: 1996
  end-page: 1355
  publication-title: J Phys D
– volume: 21
  start-page: 12
  year: 2000
  end-page: 26
  publication-title: Electrophoresis
– volume: 44
  start-page: 81
  year: 1987
  end-page: 85
  publication-title: Appl Phys B
– volume: 23
  start-page: 17584
  year: 2015
  end-page: 17598
  publication-title: Opt Express
– volume: 34
  start-page: 615
  year: 1999
  end-page: 619
  publication-title: J Mater Sci
– year: 1989
– volume: 19
  start-page: 055007
  year: 2009
  publication-title: J Micromech Microeng
– volume: 2
  start-page: 2377
  year: 2010
  end-page: 2384
  publication-title: ACS Appl Mater Interfaces
– volume: 16
  start-page: 1
  year: 1962
  publication-title: Appl Spectrosc
– volume: 6
  start-page: 463
  year: 1988
  end-page: 465
  publication-title: J Vac Sci Technol B
– year: 1975
– volume: 5
  start-page: 20608
  year: 2017
  end-page: 20614
  publication-title: J Mater Chem A
– volume: 5
  start-page: 1348
  year: 2005
  end-page: 1354
  publication-title: Lab Chip
– volume: 18
  start-page: 1106
  year: 2006
  end-page: 1108
  publication-title: IEEE Photon Technol Lett
– volume: 89
  start-page: 14
  year: 2015
  end-page: 28
  publication-title: Int J Mach Tool Manuf
– volume: 85
  start-page: 1493
  year: 2004
  end-page: 1495
  publication-title: Appl Phys Lett
– volume: 16
  start-page: 509
  year: 2004
  end-page: 511
  publication-title: IEEE Photon Technol Lett
– year: 1998
– volume: 3
  start-page: 472
  year: 2004
  end-page: 478
  publication-title: J Micro/Nanolith MEMS MOEMS
– volume: 126
  start-page: 453
  year: 1988
  end-page: 468
  publication-title: Chem Phys
– volume: 91
  start-page: 131906
  year: 2007
  publication-title: Appl Phys Lett
– volume: 20
  start-page: 450
  year: 1987
  end-page: 452
  publication-title: Macromolecules
– volume: 48
  start-page: 253
  year: 1989
  end-page: 256
  publication-title: Appl Phys B
– volume: 112
  start-page: 113
  year: 2013
  end-page: 117
  publication-title: Appl Phys A
– volume: 78
  start-page: 4881
  year: 1995
  end-page: 4887
  publication-title: J Appl Phys
– start-page: 11
  year: 2016
  end-page: 24
– volume: 3
  start-page: 913
  year: 1985
  end-page: 917
  publication-title: J Vac Sci Technol B
– volume: 86
  start-page: 239
  year: 1995
  end-page: 244
  publication-title: Appl Surf Sci
– volume: 154
  start-page: 555
  year: 2000
  end-page: 560
  publication-title: Appl Surf Sci
– volume: 20
  start-page: 270
  year: 2004
  end-page: 274
  publication-title: Mater Sci Technol
– volume: 79
  start-page: 937
  year: 2004
  end-page: 940
  publication-title: Appl Phys A
– volume: 105
  start-page: 024901
  year: 2009
  publication-title: J Appl Phys
– volume: 48
  start-page: 212
  year: 1986
  end-page: 214
  publication-title: Appl Phys Lett
– volume: 14
  start-page: 480
  year: 2004
  end-page: 483
  publication-title: J Micromech Microeng
– volume: 50
  start-page: 449
  year: 2012
  end-page: 457
  publication-title: Opt Lasers Eng
– volume: 526
  start-page: 385
  year: 1998
  end-page: 390
  publication-title: MRS Online Proc Lib Archive
– volume: 96
  start-page: 710
  year: 1983
  end-page: 715
  publication-title: Am J Ophthalmol
– start-page: 23
  year: 2008
  end-page: 26
– volume: 74
  start-page: 63
  year: 2002
  end-page: 67
  publication-title: Appl Phys A
– volume: 18
  start-page: 121
  year: 1917
  end-page: 128
  publication-title: Physikalische Zeitschrift
– volume: 154
  start-page: 1
  year: 2000
  end-page: 10
  publication-title: Appl Surf Sci
– volume: 44
  start-page: 199
  year: 1987
  end-page: 204
  publication-title: Appl Phys B
– volume: 82
  start-page: 165417
  year: 2010
  publication-title: Phys Rev B
– volume: 65
  start-page: 2591
  year: 1989
  end-page: 2595
  publication-title: J Appl Phys
– volume: 90
  start-page: 2124
  year: 1986
  end-page: 2131
  publication-title: J Phys Chem
– volume: 4760
  start-page: 259
  year: 2002
  end-page: 269
  publication-title: Proc SPIE
– volume: 187
  start-page: 260
  year: 2007
  end-page: 263
  publication-title: J Mater Process Technol
– start-page: 217
  year: 1997
  end-page: 224
– volume: 11
  start-page: 665
  year: 2010
  end-page: 671
  publication-title: Int J Precis Eng Manuf
– volume: 255
  start-page: 2303
  year: 2008
  end-page: 2311
  publication-title: Appl Surf Sci
– volume: 48
  start-page: 235201
  year: 2015
  publication-title: J Phys D
– volume: 11
  start-page: 3007
  year: 2015
  end-page: 3016
  publication-title: Small
– volume: 4
  start-page: 2459
  year: 1986
  end-page: 2462
  publication-title: J Vac Sci Technol A
– volume: 64
  start-page: 1203
  year: 1997
  end-page: 1209
  publication-title: J Appl Polym Sci
– volume: 18
  start-page: 900
  year: 1978
  end-page: 904
  publication-title: Polym Eng Sci
– volume: 46
  start-page: 147
  year: 1988
  end-page: 149
  publication-title: Appl Phys B
– volume: 69
  start-page: S67
  year: 1999
  end-page: S73
  publication-title: Appl Phys A
– volume: 97
  start-page: 7572
  year: 1993
  end-page: 7577
  publication-title: J Phys Chem
– year: 2010
– volume: 42
  start-page: 6349
  year: 2003
  end-page: 6359
  publication-title: Appl Optics
– volume: 18
  start-page: 095020
  year: 2008
  publication-title: J Micromech Microeng
– volume: 10
  start-page: 18
  year: 1998
  end-page: 28
  publication-title: J Laser Appl
– volume: 5
  start-page: 594
  year: 2016
  end-page: 608
  publication-title: Procedia Manuf
– volume: 227
  start-page: 164
  year: 2004
  end-page: 174
  publication-title: Appl Surf Sci
– volume: 64
  start-page: 2815
  year: 1988
  end-page: 2818
  publication-title: J Appl Phys
– volume: 4
  start-page: 391
  year: 2004
  end-page: 395
  publication-title: Lab Chip
– volume: 258
  start-page: 9437
  year: 2012
  end-page: 9442
  publication-title: Appl Surf Sci
– volume: 48
  start-page: 76
  year: 1986
  end-page: 77
  publication-title: Appl Phys Lett
– volume: 7
  start-page: 1
  year: 1962
  publication-title: Physiol Soc
– volume: 27
  start-page: S28004
  year: 2015
  publication-title: J Laser Appl
– volume: 92
  start-page: 743
  year: 2008
  end-page: 748
  publication-title: Appl Phys A
– volume: 61
  start-page: 372
  year: 1987
  end-page: 376
  publication-title: J Appl Phys
– volume: 57
  start-page: 2368
  year: 1990
  end-page: 2370
  publication-title: Appl Phys Lett
– volume: 49
  start-page: 1175
  year: 1986
  end-page: 1177
  publication-title: Appl Phys Lett
– volume: 76
  start-page: 3052
  year: 1994
  end-page: 3058
  publication-title: J Appl Phys
– volume: 53
  start-page: 2377
  year: 1988
  end-page: 2379
  publication-title: Appl Phys Lett
– volume: 13
  start-page: 4848
  year: 2013
  end-page: 4854
  publication-title: Lab Chip
– volume: 93
  start-page: 6375
  year: 2003
  end-page: 6380
  publication-title: J Appl Phys
– volume: 97
  start-page: 12296
  year: 1993
  end-page: 12301
  publication-title: J Phys Chem
– volume: 2
  start-page: 242
  year: 2002
  end-page: 246
  publication-title: Lab Chip
– volume: 22
  start-page: 51
  year: 1998
  end-page: 57
  publication-title: Lasers Surg Med
– volume: 33
  start-page: 1706
  year: 1997
  end-page: 1716
  publication-title: IEEE J Quantum Electron
– volume: 40
  start-page: 374
  year: 1982
  end-page: 375
  publication-title: Appl Phys Lett
– volume: 9
  start-page: 99
  year: 2007
  end-page: 103
  publication-title: Adv Eng Mater
– year: 1994
– volume: 9
  start-page: 362
  year: 1989
  end-page: 374
  publication-title: Lasers Surg Med
– volume: 35
  start-page: 161
  year: 2015
  end-page: 165
  publication-title: Assembly Autom
– volume: 197–198
  start-page: 746
  year: 2002
  end-page: 756
  publication-title: Appl Surf Sci
– volume: 4
  start-page: 653
  year: 1986
  end-page: 658
  publication-title: J Vac Sci Technol A
– volume: 142
  start-page: 236
  year: 1963
  end-page: 237
  publication-title: Science
– volume: 114
  start-page: 023103
  year: 2013
  publication-title: J Appl Phys
– volume: 50
  start-page: 1779
  year: 1987
  end-page: 1781
  publication-title: Appl Phys Lett
– volume: 63
  start-page: 109
  year: 1996
  end-page: 115
  publication-title: Appl Phys A
– volume: 5
  start-page: 1312
  year: 1999
  end-page: 1324
  publication-title: IEEE J Select Topics Quantum Electron
– volume: 31
  start-page: 1121
  year: 2016
  end-page: 1142
  publication-title: Mater Manuf Process
– volume: 58
  start-page: 475
  year: 1994
  end-page: 479
  publication-title: Appl Phys A
– volume: 9
  start-page: 31
  year: 1994
  end-page: 40
  publication-title: Int J Oral Maxillofac Implants
– volume: 15
  start-page: 62
  year: 2003
  end-page: 65
  publication-title: Adv Mater
– volume: 9
  start-page: 242
  year: 2017
  publication-title: Polymers
– volume: 78
  start-page: 509
  year: 2000
  end-page: 519
  publication-title: Can J Phys
– volume: 41
  start-page: 143
  year: 1997
  end-page: 148
  publication-title: IBM J Res Develop
– volume: 28
  start-page: 4603
  year: 1995
  end-page: 4607
  publication-title: Macromolecules
– volume: 98
  start-page: 113520
  year: 2005
  publication-title: J Appl Phys
– volume: 49
  start-page: 453
  year: 1986
  end-page: 455
  publication-title: Appl Phys Lett
– volume: 4830
  start-page: 196
  year: 2003
  end-page: 201
  publication-title: Proc SPIE
– year: 1968
– volume: 40
  start-page: 2735
  year: 1964
  end-page: 2736
  publication-title: J Chem Phys
– volume: 73
  start-page: 199
  year: 2001
  end-page: 208
  publication-title: Appl Phys A
– start-page: 91
  year: 2010
  end-page: 120
– volume: 12
  start-page: 751
  year: 2012
  end-page: 760
  publication-title: Microfluid Nanofluid
– volume: 11
  start-page: 668
  year: 2002
  end-page: 674
  publication-title: Smart Mater Struct
– volume: 58
  start-page: 2142
  year: 1987
  end-page: 2145
  publication-title: Phys Rev Lett
– volume: 57
  start-page: 1420
  year: 1985
  end-page: 1422
  publication-title: J Appl Phys
– volume: 37
  start-page: 907
  year: 2012
  end-page: 974
  publication-title: Prog Polym Sci
– volume: 486
  start-page: 609
  year: 2008
  end-page: 628
  publication-title: Int J Mach Tool Manuf
– volume: 51
  start-page: 314
  year: 1990
  end-page: 316
  publication-title: Appl Phys B
– start-page: 107
  year: 2010
  end-page: 112
– volume: 58
  start-page: 2036
  year: 1985
  end-page: 2043
  publication-title: J Appl Phys
– volume: 80
  start-page: 529
  year: 2005
  end-page: 536
  publication-title: Appl Phys A
– volume: 33
  start-page: 757
  year: 2000
  end-page: 759
  publication-title: J Phys D
– volume: 4
  start-page: 147
  year: 1965
  end-page: 148
  publication-title: Appl Optics
– volume: 23
  start-page: 19854
  year: 2015
  end-page: 19862
  publication-title: Opt Express
– volume: 5
  start-page: 560
  year: 2015
  end-page: 568
  publication-title: Int J Sci Res Publ
– volume: 25
  start-page: 33
  year: 2004
  end-page: 38
  publication-title: Eur Phys J Appl Phys
– volume: 21
  start-page: 108
  year: 2017
  publication-title: Microfluid Nanofluid
– ident: e_1_2_8_63_1
  doi: 10.1063/1.96767
– ident: e_1_2_8_75_1
  doi: 10.1016/j.jmatprotec.2006.11.106
– ident: e_1_2_8_109_1
  doi: 10.1364/OE.23.019854
– start-page: 11
  volume-title: Advanced Manufacturing Techniques Using Laser Material Processing
  year: 2016
  ident: e_1_2_8_5_1
  doi: 10.4018/978-1-5225-0329-3
– ident: e_1_2_8_34_1
  doi: 10.1063/1.2793628
– ident: e_1_2_8_65_1
  doi: 10.1063/1.336012
– ident: e_1_2_8_66_1
  doi: 10.1063/1.97744
– ident: e_1_2_8_37_1
  doi: 10.1016/S0040-6090(97)00201-0
– ident: e_1_2_8_41_1
  doi: 10.1016/j.apsusc.2008.07.100
– ident: e_1_2_8_105_1
  doi: 10.1063/1.97113
– ident: e_1_2_8_33_1
  doi: 10.1063/1.100235
– ident: e_1_2_8_83_1
  doi: 10.1016/j.apsusc.2012.01.154
– ident: e_1_2_8_46_1
  doi: 10.1007/s00339-012-7209-7
– ident: e_1_2_8_28_1
  doi: 10.1016/j.ijmachtools.2014.10.013
– ident: e_1_2_8_72_1
  doi: 10.1007/BF00686468
– ident: e_1_2_8_58_1
  doi: 10.1103/PhysRevLett.58.2142
– ident: e_1_2_8_60_1
  doi: 10.1063/1.96798
– ident: e_1_2_8_79_1
  doi: 10.1016/S0169-4332(03)00835-3
– ident: e_1_2_8_43_1
  doi: 10.1016/j.promfg.2016.08.049
– ident: e_1_2_8_80_1
  doi: 10.1007/BF00348965
– ident: e_1_2_8_93_1
  doi: 10.1002/adma.200390012
– ident: e_1_2_8_104_1
  doi: 10.1002/(SICI)1096-9101(1998)22:1<51::AID-LSM12>3.0.CO;2-B
– ident: e_1_2_8_81_1
  doi: 10.1039/b403037k
– ident: e_1_2_8_10_1
– ident: e_1_2_8_124_1
– ident: e_1_2_8_128_1
  doi: 10.1088/0022-3727/33/7/301
– ident: e_1_2_8_91_1
  doi: 10.1007/s10404-017-1943-2
– ident: e_1_2_8_119_1
  doi: 10.1021/ma00117a034
– ident: e_1_2_8_32_1
  doi: 10.1063/1.357486
– start-page: 23
  volume-title: Field Guide to Laser Pulse Generation
  year: 2008
  ident: e_1_2_8_48_1
– ident: e_1_2_8_77_1
  doi: 10.1116/1.583081
– ident: e_1_2_8_25_1
  doi: 10.1016/S0169-4332(99)00440-7
– ident: e_1_2_8_20_1
  doi: 10.1002/pen.760181113
– ident: e_1_2_8_135_1
  doi: 10.1016/S0002-9394(14)71911-7
– ident: e_1_2_8_9_1
– ident: e_1_2_8_67_1
  doi: 10.1063/1.341590
– ident: e_1_2_8_131_1
  doi: 10.1364/AO.42.006349
– ident: e_1_2_8_120_1
  doi: 10.1016/S0169-4332(02)00404-X
– volume: 5
  start-page: 560
  year: 2015
  ident: e_1_2_8_96_1
  publication-title: Int J Sci Res Publ
– ident: e_1_2_8_36_1
  doi: 10.1063/1.4812491
– ident: e_1_2_8_101_1
  doi: 10.1063/1.1785291
– ident: e_1_2_8_70_1
  doi: 10.1063/1.334503
– ident: e_1_2_8_113_1
  doi: 10.1007/s00339-008-4567-2
– ident: e_1_2_8_7_1
  doi: 10.4271/2010-01-0022
– ident: e_1_2_8_53_1
  doi: 10.1063/1.359776
– ident: e_1_2_8_71_1
  doi: 10.1116/1.573823
– ident: e_1_2_8_111_1
  doi: 10.1007/s003390100832
– ident: e_1_2_8_84_1
  doi: 10.1002/adem.200600171
– ident: e_1_2_8_92_1
  doi: 10.1007/s10404-011-0917-z
– ident: e_1_2_8_14_1
  doi: 10.1126/science.142.3589.236
– start-page: 107
  volume-title: A Century of Nature: Twenty‐One Discoveries that Changed Science and the World
  year: 2010
  ident: e_1_2_8_3_1
– ident: e_1_2_8_114_1
  doi: 10.1016/S0169-4332(99)00474-2
– ident: e_1_2_8_95_1
  doi: 10.1088/0960-1317/19/5/055007
– ident: e_1_2_8_6_1
  doi: 10.1108/AA-07-2014-066
– ident: e_1_2_8_59_1
  doi: 10.1063/1.97406
– ident: e_1_2_8_11_1
  doi: 10.1366/000370262774416074
– ident: e_1_2_8_126_1
  doi: 10.1088/0960-1317/14/4/007
– ident: e_1_2_8_38_1
  doi: 10.1088/0022-3727/29/5/034
– ident: e_1_2_8_8_1
  doi: 10.1016/j.ijmachtools.2007.10.017
– ident: e_1_2_8_123_1
– ident: e_1_2_8_73_1
  doi: 10.1063/1.342788
– ident: e_1_2_8_27_1
  doi: 10.1063/1.2138800
– ident: e_1_2_8_40_1
  doi: 10.1007/BF01567637
– ident: e_1_2_8_103_1
  doi: 10.1016/j.jmapro.2015.05.004
– ident: e_1_2_8_112_1
  doi: 10.1109/3.631270
– ident: e_1_2_8_82_1
  doi: 10.1016/j.optlaseng.2011.10.008
– ident: e_1_2_8_88_1
  doi: 10.1007/s12541-010-0078-0
– ident: e_1_2_8_117_1
  doi: 10.1364/OE.23.017584
– ident: e_1_2_8_24_1
  doi: 10.1080/10426914.2015.1048359
– ident: e_1_2_8_115_1
  doi: 10.1039/b206409j
– ident: e_1_2_8_118_1
  doi: 10.1139/p00-024
– ident: e_1_2_8_15_1
  doi: 10.1063/1.1725592
– ident: e_1_2_8_50_1
  doi: 10.1117/1.1753589
– ident: e_1_2_8_54_1
  doi: 10.2351/1.521827
– ident: e_1_2_8_74_1
  doi: 10.1016/0301-0104(88)85053-5
– ident: e_1_2_8_47_1
  doi: 10.1088/0960-1317/18/9/095020
– ident: e_1_2_8_129_1
  doi: 10.1007/s00339-004-2572-7
– ident: e_1_2_8_78_1
  doi: 10.1016/j.apsusc.2003.11.078
– ident: e_1_2_8_130_1
  doi: 10.1109/LPT.2003.823124
– ident: e_1_2_8_89_1
  doi: 10.1016/0169-4332(94)00413-7
– ident: e_1_2_8_55_1
  doi: 10.1007/BF00692122
– ident: e_1_2_8_23_1
  doi: 10.1007/978-3-642-10523-4_4
– ident: e_1_2_8_102_1
  doi: 10.1016/j.progpolymsci.2012.02.005
– ident: e_1_2_8_116_1
  doi: 10.1021/am100393e
– ident: e_1_2_8_127_1
  doi: 10.1109/2944.806756
– start-page: 217
  volume-title: Appl Microelectron Optoelectron Manuf II
  year: 1997
  ident: e_1_2_8_22_1
– volume: 9
  start-page: 31
  year: 1994
  ident: e_1_2_8_97_1
  publication-title: Int J Oral Maxillofac Implants
– ident: e_1_2_8_121_1
  doi: 10.1021/j100149a033
– ident: e_1_2_8_31_1
  doi: 10.1021/j100131a029
– ident: e_1_2_8_51_1
  doi: 10.1007/s00339-004-3085-0
– ident: e_1_2_8_76_1
  doi: 10.1021/j100401a028
– ident: e_1_2_8_106_1
  doi: 10.1063/1.103873
– ident: e_1_2_8_4_1
– ident: e_1_2_8_13_1
– ident: e_1_2_8_98_1
  doi: 10.1051/epjap:2003083
– ident: e_1_2_8_110_1
  doi: 10.1557/PROC-526-385
– ident: e_1_2_8_19_1
  doi: 10.1109/LPT.2006.873357
– ident: e_1_2_8_56_1
  doi: 10.1063/1.93108
– ident: e_1_2_8_69_1
  doi: 10.1063/1.338834
– ident: e_1_2_8_62_1
  doi: 10.1021/ma00168a044
– ident: e_1_2_8_16_1
  doi: 10.1364/AO.4.000147
– ident: e_1_2_8_39_1
  doi: 10.1103/PhysRevB.82.165417
– ident: e_1_2_8_64_1
  doi: 10.1007/BF00694197
– ident: e_1_2_8_94_1
  doi: 10.3390/polym9070242
– ident: e_1_2_8_49_1
  doi: 10.1147/rd.411.0143
– ident: e_1_2_8_26_1
  doi: 10.1088/0022-3727/48/23/235201
– volume: 7
  start-page: 1
  year: 1962
  ident: e_1_2_8_12_1
  publication-title: Physiol Soc
– ident: e_1_2_8_68_1
  doi: 10.1007/BF00694355
– ident: e_1_2_8_57_1
  doi: 10.1063/1.338015
– volume: 18
  start-page: 121
  year: 1917
  ident: e_1_2_8_2_1
  publication-title: Physikalische Zeitschrift
– ident: e_1_2_8_52_1
  doi: 10.1002/lsm.1900090409
– ident: e_1_2_8_17_1
– ident: e_1_2_8_61_1
  doi: 10.1116/1.574091
– ident: e_1_2_8_35_1
  doi: 10.1002/smll.201403419
– ident: e_1_2_8_99_1
  doi: 10.1023/A:1004567301546
– ident: e_1_2_8_85_1
  doi: 10.1007/BF00332440
– ident: e_1_2_8_125_1
  doi: 10.1039/C7TA05383E
– ident: e_1_2_8_45_1
  doi: 10.1063/1.3043883
– ident: e_1_2_8_21_1
– ident: e_1_2_8_90_1
  doi: 10.1002/(SICI)1097-4628(19970509)64:6<1203::AID-APP21>3.0.CO;2-V
– ident: e_1_2_8_42_1
  doi: 10.2351/1.4906475
– ident: e_1_2_8_29_1
  doi: 10.1007/s003399900296
– ident: e_1_2_8_134_1
  doi: 10.1021/acsami.6b03743
– ident: e_1_2_8_108_1
  doi: 10.1039/c3lc51041g
– ident: e_1_2_8_107_1
  doi: 10.1039/b508288a
– ident: e_1_2_8_100_1
  doi: 10.1063/1.1568154
– ident: e_1_2_8_30_1
  doi: 10.1007/s003390000686
– ident: e_1_2_8_44_1
  doi: 10.1088/0964-1726/11/5/307
– ident: e_1_2_8_133_1
  doi: 10.1117/12.486521
– ident: e_1_2_8_18_1
  doi: 10.1002/(SICI)1522-2683(20000101)21:1<12::AID-ELPS12>3.0.CO;2-7
– ident: e_1_2_8_86_1
  doi: 10.1116/1.583976
– ident: e_1_2_8_122_1
  doi: 10.1117/12.482093
– ident: e_1_2_8_87_1
– ident: e_1_2_8_132_1
  doi: 10.1179/026708304225010488
SSID ssj0008999
Score 2.6137776
SecondaryResourceType review_article
Snippet ABSTRACT Laser ablation (LA), which employs a pulsed laser to remove materials from a substrate for generating micro‐/nanostructures, has tremendous...
Laser ablation (LA), which employs a pulsed laser to remove materials from a substrate for generating micro‐/nanostructures, has tremendous applications in the...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1391
SubjectTerms Femtosecond pulsed lasers
Fluence
High temperature
lase ablation
Laser ablation
Lasers
Metals
Organic chemistry
Parameters
polymer
Polymers
Pulse duration
Pulsed lasers
review
Reviews
Substrates
Title Laser ablation of polymers: a review
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpi.5834
https://www.proquest.com/docview/2249673753
https://www.osti.gov/biblio/1559060
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-ykx78Fuum5DC8dWubNG28iTimqIg4GF5CkyUwHOvYuoP-9eY13ZciiKdektK8l9f83st7v4dQkzGqudKZn9FQ-zQxoc8Ni3xgQpFhlihTFoU9PrFuj9734_5aqy_HD7EMuIFllP9rMPBMztor0tDJsBWnBJhAIVML4NDLijjKehEVyx4EuQLiymVhZruat3EO1XJrTxsYcx2plkdNZw-9LT7SZZi8t-aFbKnPb_yN_1rFPtqtACi-djvmAG3p8SHaWaMlPELNB3u0TXEmXZ4czg2e5KMPiHBf4Qy7apdj1Ovcvt50_aqbgq9IyqhvlIyJ1lSxQAWBjE0UKQNd4wc8TQ3EQkOtLN4ZxFC6E-rEitHIlEeSBJlkhpyg2jgf61OEqdIWFljHUMWUJjq1erZuCdcxzwJCqPbQ5UK2QlVU49DxYiQcSXIkJkMBy_YQXg6cOHaNn0PqoBxhAQGw2ipI_1GFgNvUgAUeaix0JirjmwmLSji034mJh5ql8H97uXi-g8fZ34bV0baFS9yl_zVQrZjO9bmFJIW8KHffF8iO2ek
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIADb0TZgB4mbt3aJu1abggxbbBNCG3SJA5RExJpYtqqsR3g1xM33QuEhDj1klSNE9efHfszQDkMqYyFTJyEetKhNeU5sQp9B5lQuJfUhMqKwtqdsNGjD_2gn2dVYi2M4YdYBNxQM7L_NSo4BqSrS9bQdFAJIkI3YQv7eWfu1POSOkr7ETnPHoa5XGIKZnFqNZ-4ZokKY61RayhzFatmxqa-Dy_zzzQ5Jm-V2ZRXxOc3Bsf_reMA9nIMat-aQ3MIG3J0BLsrzITHUG5p6zaxE25S5eyxstPx8AOD3Dd2YpuClxPo1e-7dw0nb6jgCBKF1FGCB0RKKkJXuC4PlO8LhY3jX-MoUhgO9aTQkOc1wOodT9a0HBWPYp8TN-GhIqdQGI1H8gxsKqRGBto3FAGlNRnprdaeSSyDOHEJodKC67lwmcjZxrHpxZAZnmSfpQOGy7bAXgxMDcHGzyFF3B2mMQES2wrMABJThheqbuhaUJpvGsv1751pYBJjB56AWFDOpP_by9lTEx_nfxt2BduNbrvFWs3OYxF2NHqKTTZgCQrTyUxeaIQy5ZfZUfwCdpPeBA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90guiD3-Lc1D4M37qlTZq1vok6pk4RURi-hCZLYDi2ovNB_3pzTfehIohPfUlKk8v1fne5-x1AjXOmE6VTP2WB9lnTBH5ieOgjE4oM0qYyeVHYzS1vP7KrbtSda_Xl-CGmATfUjPx_jQqe9UxjRhqa9etRTNkiLDFOYjzQ5_cz5ijrRhQ0exjlItTVy-LURjHxiyEqjaxCfQGZ81A1tzWtdXiafKVLMXmuv41lXX18I3D81zI2YK1AoN6pOzKbsKCHW7A6x0u4DbWOtW0vXipdopw3Ml42GrxjiPvESz1X7rIDj62Lh7O2X7RT8BWNOfONkhHVmilOFCEyMmGoDLaN7yVxbDAYGmhlAU8vwtqdQDftNhoZJ6GkJJXc0F0oDUdDvQceU9riAusZqoixpo6toK1fkugoSQmlTJfheLK3QhVc49jyYiAcS3Iosr7AZZfBmw7MHL3GzyEVFI6wiABpbRXm_6ixwOtUwkkZqhOZiUL7XoWFJQn234loGWr55v_2cnF3iY_9vw07guW785boXN5eV2DFQqfEpQJWoTR-edMHFp6M5WF-ED8BDoPcvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+ablation+of+polymers%3A+a+review&rft.jtitle=Polymer+international&rft.au=Ravi%E2%80%90Kumar%2C+Sandeep&rft.au=Lies%2C+Benjamin&rft.au=Zhang%2C+Xiao&rft.au=Lyu%2C+Hao&rft.date=2019-08-01&rft.pub=Wiley+Blackwell+%28John+Wiley+%26+Sons%29&rft.issn=0959-8103&rft.eissn=1097-0126&rft.volume=68&rft.issue=8&rft_id=info:doi/10.1002%2Fpi.5834&rft.externalDocID=1559060
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-8103&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-8103&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-8103&client=summon