Laser ablation of polymers: a review
ABSTRACT Laser ablation (LA), which employs a pulsed laser to remove materials from a substrate for generating micro‐/nanostructures, has tremendous applications in the fabrication of metals, ceramics, glasses and polymers. It has become a noteworthy approach for achieving various functional structu...
Saved in:
Published in | Polymer international Vol. 68; no. 8; pp. 1391 - 1401 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.08.2019
Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Laser ablation (LA), which employs a pulsed laser to remove materials from a substrate for generating micro‐/nanostructures, has tremendous applications in the fabrication of metals, ceramics, glasses and polymers. It has become a noteworthy approach for achieving various functional structures in engineering, chemistry, biology, medicine and other fields. Polymers are one such class of materials; they can be melted and vaporized at high temperature during the ablation process. A number of polymers have been researched as candidate substrates in LA, and many different structures and patterns have been realized by this method. The current states of research and progress are reviewed from basic concepts to optimal parameters, polymer types and applications. The significance of this paper is to provide a basis for follow‐up research that leads to the development of superior materials and high‐quality production through LA. In this review, we first introduce the basic concept of LA, including mechanism, laser types (millisecond, microsecond, nanosecond, picosecond and femtosecond) and influential parameters (wavelength, repetition rate, fluence and pulse duration). Then, we focus on several commonly used polymer materials and compare them in detail, including the effects of polymer properties, laser parameters and feature designs. Finally, we summarize the applications of various structures fabricated by LA in a variety of areas along with a perspective of the challenges in this research area. Overall, a thorough review of LA of several polymers is presented, which could pave the way for characterization of future novel materials. © 2019 Society of Chemical Industry
This review summarizes current state‐of‐the‐art laser ablation of polymers. Effects of laser ablation parameters and research directions of polymer ablation are reviewed. |
---|---|
AbstractList | Laser ablation (LA), which employs a pulsed laser to remove materials from a substrate for generating micro‐/nanostructures, has tremendous applications in the fabrication of metals, ceramics, glasses and polymers. It has become a noteworthy approach for achieving various functional structures in engineering, chemistry, biology, medicine and other fields. Polymers are one such class of materials; they can be melted and vaporized at high temperature during the ablation process. A number of polymers have been researched as candidate substrates in LA, and many different structures and patterns have been realized by this method. The current states of research and progress are reviewed from basic concepts to optimal parameters, polymer types and applications. The significance of this paper is to provide a basis for follow‐up research that leads to the development of superior materials and high‐quality production through LA. In this review, we first introduce the basic concept of LA, including mechanism, laser types (millisecond, microsecond, nanosecond, picosecond and femtosecond) and influential parameters (wavelength, repetition rate, fluence and pulse duration). Then, we focus on several commonly used polymer materials and compare them in detail, including the effects of polymer properties, laser parameters and feature designs. Finally, we summarize the applications of various structures fabricated by LA in a variety of areas along with a perspective of the challenges in this research area. Overall, a thorough review of LA of several polymers is presented, which could pave the way for characterization of future novel materials. © 2019 Society of Chemical Industry ABSTRACT Laser ablation (LA), which employs a pulsed laser to remove materials from a substrate for generating micro‐/nanostructures, has tremendous applications in the fabrication of metals, ceramics, glasses and polymers. It has become a noteworthy approach for achieving various functional structures in engineering, chemistry, biology, medicine and other fields. Polymers are one such class of materials; they can be melted and vaporized at high temperature during the ablation process. A number of polymers have been researched as candidate substrates in LA, and many different structures and patterns have been realized by this method. The current states of research and progress are reviewed from basic concepts to optimal parameters, polymer types and applications. The significance of this paper is to provide a basis for follow‐up research that leads to the development of superior materials and high‐quality production through LA. In this review, we first introduce the basic concept of LA, including mechanism, laser types (millisecond, microsecond, nanosecond, picosecond and femtosecond) and influential parameters (wavelength, repetition rate, fluence and pulse duration). Then, we focus on several commonly used polymer materials and compare them in detail, including the effects of polymer properties, laser parameters and feature designs. Finally, we summarize the applications of various structures fabricated by LA in a variety of areas along with a perspective of the challenges in this research area. Overall, a thorough review of LA of several polymers is presented, which could pave the way for characterization of future novel materials. © 2019 Society of Chemical Industry This review summarizes current state‐of‐the‐art laser ablation of polymers. Effects of laser ablation parameters and research directions of polymer ablation are reviewed. |
Author | Zhang, Xiao Lyu, Hao Qin, Hantang Ravi‐Kumar, Sandeep Lies, Benjamin |
Author_xml | – sequence: 1 givenname: Sandeep surname: Ravi‐Kumar fullname: Ravi‐Kumar, Sandeep organization: Iowa State University – sequence: 2 givenname: Benjamin surname: Lies fullname: Lies, Benjamin organization: Iowa State University – sequence: 3 givenname: Xiao surname: Zhang fullname: Zhang, Xiao organization: Iowa State University – sequence: 4 givenname: Hao surname: Lyu fullname: Lyu, Hao organization: Qingdao University of Science and Technology – sequence: 5 givenname: Hantang orcidid: 0000-0003-4180-7911 surname: Qin fullname: Qin, Hantang email: qin@iastate.edu organization: Iowa State University |
BackLink | https://www.osti.gov/biblio/1559060$$D View this record in Osti.gov |
BookMark | eNp10M1KAzEUBeAgFWyr-AqDCi5k6k0yySTupPhTKOhC1yGTJpgynYzJ1NK3d9q6El3dzcfh3DNCgyY0FqFzDBMMQG5bP2GCFkdoiEGWOWDCB2gIkslcYKAnaJTSEgCElHKIruY62ZjpqtadD00WXNaGeruyMd1lOov2y9vNKTp2uk727OeO0fvjw9v0OZ-_PM2m9_PcUMGL3JmKUWsLw8EAVMwRYhxnhVhIIRy1FGNrOCYLBrwEbMu-hauEJBUFXXFHx-jikBtS51UyvrPmw4SmsaZTmDEJHHp0eUBtDJ9rmzq1DOvY9L0UIYXkJS0Z7VV-UCaGlKJ1qk_bv9hF7WuFQe3WUq1Xu7V6f_3Lt9GvdNz-IW8OcuNru_2PqdfZXn8D0h92QQ |
CitedBy_id | crossref_primary_10_2478_msp_2024_0004 crossref_primary_10_1016_j_apsusc_2022_156032 crossref_primary_10_1007_s11082_024_07135_7 crossref_primary_10_1016_j_ijmecsci_2024_109632 crossref_primary_10_54503_0515_9628_2023_76_3_277 crossref_primary_10_1007_s11244_024_01904_0 crossref_primary_10_3390_mi12030346 crossref_primary_10_1016_j_optlastec_2024_110620 crossref_primary_10_1016_j_tibtech_2021_07_001 crossref_primary_10_1002_sia_7363 crossref_primary_10_1021_acs_biomac_3c00387 crossref_primary_10_1002_adhm_202304447 crossref_primary_10_3390_ma15238347 crossref_primary_10_1109_TCPMT_2019_2941866 crossref_primary_10_1007_s40516_023_00212_x crossref_primary_10_1002_smtd_202301105 crossref_primary_10_1016_j_jajp_2024_100260 crossref_primary_10_2139_ssrn_4177849 crossref_primary_10_1002_pi_5998 crossref_primary_10_1016_j_jmapro_2023_01_036 crossref_primary_10_3390_app15052617 crossref_primary_10_1088_1361_6463_acd38f crossref_primary_10_35848_1347_4065_adb439 crossref_primary_10_1016_j_surfin_2022_102561 crossref_primary_10_3390_polym13101553 crossref_primary_10_3390_mi12020138 crossref_primary_10_1002_ente_202300482 crossref_primary_10_1088_2053_1591_acdeca crossref_primary_10_1063_10_0034395 crossref_primary_10_3390_molecules26216701 crossref_primary_10_1088_1742_6596_2539_1_012063 crossref_primary_10_3390_polym12092041 crossref_primary_10_1364_OE_529991 crossref_primary_10_1016_j_seppur_2024_129343 crossref_primary_10_1016_j_jaap_2022_105819 crossref_primary_10_1049_ote2_12039 crossref_primary_10_1021_acs_chemrev_1c00626 crossref_primary_10_1063_5_0200822 crossref_primary_10_1002_pol_20230926 crossref_primary_10_3390_nano13010168 crossref_primary_10_1007_s00170_022_08992_w crossref_primary_10_1016_j_optlastec_2021_107554 crossref_primary_10_1016_j_bej_2023_109104 crossref_primary_10_1007_s10118_022_2765_6 crossref_primary_10_1021_acs_chemrev_1c00539 crossref_primary_10_1016_j_jmst_2022_10_088 crossref_primary_10_1063_5_0150598 crossref_primary_10_1039_D2NR04464A crossref_primary_10_1016_j_tifs_2021_10_031 crossref_primary_10_1002_adma_202402014 crossref_primary_10_1002_ange_202404802 crossref_primary_10_1039_D1SE01475G crossref_primary_10_3390_catal10020171 crossref_primary_10_1016_j_sna_2024_115746 crossref_primary_10_1364_OE_491526 crossref_primary_10_3390_polym13173004 crossref_primary_10_1002_adma_202207081 crossref_primary_10_1016_j_jmrt_2021_03_083 crossref_primary_10_1002_smll_202205994 crossref_primary_10_1002_app_54486 crossref_primary_10_1016_j_optlastec_2024_111069 crossref_primary_10_1007_s12567_024_00570_y crossref_primary_10_1016_j_optlastec_2024_111588 crossref_primary_10_1016_j_apsusc_2024_160124 crossref_primary_10_1039_D4LC00280F crossref_primary_10_1007_s10853_023_08566_5 crossref_primary_10_1002_admt_202300244 crossref_primary_10_1016_j_biotechadv_2024_108317 crossref_primary_10_1002_adhm_202401260 crossref_primary_10_1002_anie_202404802 crossref_primary_10_1007_s00170_024_13178_7 crossref_primary_10_1016_j_ijadhadh_2022_103155 crossref_primary_10_1021_acsanm_4c00337 crossref_primary_10_1039_D1CP02199K crossref_primary_10_1002_asia_202400717 crossref_primary_10_3390_w16131896 crossref_primary_10_3390_foods12162983 crossref_primary_10_1016_j_optlastec_2024_111751 crossref_primary_10_3390_polym14102028 crossref_primary_10_1177_1687814020982713 crossref_primary_10_1016_j_ccr_2024_216158 crossref_primary_10_3390_ma14092243 crossref_primary_10_1016_j_ijmecsci_2022_107528 crossref_primary_10_61186_ijop_17_2_205 crossref_primary_10_37188_lam_2022_030 crossref_primary_10_3390_app13074313 crossref_primary_10_1002_adem_202400215 crossref_primary_10_1007_s11468_023_01852_7 crossref_primary_10_1063_5_0256691 crossref_primary_10_1016_j_optlastec_2022_107937 crossref_primary_10_1002_wfs2_1495 crossref_primary_10_3390_ma17071550 crossref_primary_10_3390_polym15030531 crossref_primary_10_1177_09544062241237705 crossref_primary_10_3788_CJL230827 crossref_primary_10_1088_2631_7990_ad8a26 crossref_primary_10_1002_admt_201900519 crossref_primary_10_3390_mi16010059 crossref_primary_10_1016_j_actaastro_2022_12_022 crossref_primary_10_1016_j_optlastec_2024_112052 crossref_primary_10_1080_10426914_2021_2001505 crossref_primary_10_1088_2631_8695_aca319 crossref_primary_10_1002_adfm_202418437 crossref_primary_10_1063_5_0130799 crossref_primary_10_1002_jbm_a_37633 crossref_primary_10_1515_gps_2023_0076 crossref_primary_10_1186_s40494_023_00933_4 crossref_primary_10_2351_7_0001070 crossref_primary_10_3390_lubricants11090368 crossref_primary_10_1021_acsphotonics_3c01756 crossref_primary_10_1039_D3RA05816F crossref_primary_10_1021_acsanm_4c04059 crossref_primary_10_1021_acsapm_3c00822 crossref_primary_10_1002_mame_202200053 crossref_primary_10_1007_s40194_021_01143_x crossref_primary_10_1016_j_optlastec_2025_112705 crossref_primary_10_1002_slct_202104603 crossref_primary_10_1016_j_apsusc_2024_162219 crossref_primary_10_1017_hpl_2023_26 crossref_primary_10_1016_j_msec_2020_111615 crossref_primary_10_3390_polym14102041 crossref_primary_10_1002_adhm_202403992 crossref_primary_10_1007_s10544_023_00661_3 crossref_primary_10_1063_5_0191909 crossref_primary_10_3390_coatings12010071 crossref_primary_10_3762_bjnano_16_31 crossref_primary_10_1007_s00170_022_08731_1 crossref_primary_10_1016_j_apsusc_2023_158488 crossref_primary_10_3390_mi14010090 crossref_primary_10_3390_coatings13111922 crossref_primary_10_1002_adma_202206110 crossref_primary_10_1088_1361_6528_ac1097 crossref_primary_10_3390_ma14247548 crossref_primary_10_1021_acsami_2c17106 crossref_primary_10_1007_s40123_024_01007_9 crossref_primary_10_1149_2754_2726_ad304a crossref_primary_10_1002_adom_202303194 crossref_primary_10_1016_j_mtchem_2024_102316 crossref_primary_10_1016_j_optlastec_2025_112490 crossref_primary_10_3390_s21175891 crossref_primary_10_1063_5_0017566 |
Cites_doi | 10.1063/1.96767 10.1016/j.jmatprotec.2006.11.106 10.1364/OE.23.019854 10.4018/978-1-5225-0329-3 10.1063/1.2793628 10.1063/1.336012 10.1063/1.97744 10.1016/S0040-6090(97)00201-0 10.1016/j.apsusc.2008.07.100 10.1063/1.97113 10.1063/1.100235 10.1016/j.apsusc.2012.01.154 10.1007/s00339-012-7209-7 10.1016/j.ijmachtools.2014.10.013 10.1007/BF00686468 10.1103/PhysRevLett.58.2142 10.1063/1.96798 10.1016/S0169-4332(03)00835-3 10.1016/j.promfg.2016.08.049 10.1007/BF00348965 10.1002/adma.200390012 10.1002/(SICI)1096-9101(1998)22:1<51::AID-LSM12>3.0.CO;2-B 10.1039/b403037k 10.1088/0022-3727/33/7/301 10.1007/s10404-017-1943-2 10.1021/ma00117a034 10.1063/1.357486 10.1116/1.583081 10.1016/S0169-4332(99)00440-7 10.1002/pen.760181113 10.1016/S0002-9394(14)71911-7 10.1063/1.341590 10.1364/AO.42.006349 10.1016/S0169-4332(02)00404-X 10.1063/1.4812491 10.1063/1.1785291 10.1063/1.334503 10.1007/s00339-008-4567-2 10.4271/2010-01-0022 10.1063/1.359776 10.1116/1.573823 10.1007/s003390100832 10.1002/adem.200600171 10.1007/s10404-011-0917-z 10.1126/science.142.3589.236 10.1016/S0169-4332(99)00474-2 10.1088/0960-1317/19/5/055007 10.1108/AA-07-2014-066 10.1063/1.97406 10.1366/000370262774416074 10.1088/0960-1317/14/4/007 10.1088/0022-3727/29/5/034 10.1016/j.ijmachtools.2007.10.017 10.1063/1.342788 10.1063/1.2138800 10.1007/BF01567637 10.1016/j.jmapro.2015.05.004 10.1109/3.631270 10.1016/j.optlaseng.2011.10.008 10.1007/s12541-010-0078-0 10.1364/OE.23.017584 10.1080/10426914.2015.1048359 10.1039/b206409j 10.1139/p00-024 10.1063/1.1725592 10.1117/1.1753589 10.2351/1.521827 10.1016/0301-0104(88)85053-5 10.1088/0960-1317/18/9/095020 10.1007/s00339-004-2572-7 10.1016/j.apsusc.2003.11.078 10.1109/LPT.2003.823124 10.1016/0169-4332(94)00413-7 10.1007/BF00692122 10.1007/978-3-642-10523-4_4 10.1016/j.progpolymsci.2012.02.005 10.1021/am100393e 10.1109/2944.806756 10.1021/j100149a033 10.1021/j100131a029 10.1007/s00339-004-3085-0 10.1021/j100401a028 10.1063/1.103873 10.1051/epjap:2003083 10.1557/PROC-526-385 10.1109/LPT.2006.873357 10.1063/1.93108 10.1063/1.338834 10.1021/ma00168a044 10.1364/AO.4.000147 10.1103/PhysRevB.82.165417 10.1007/BF00694197 10.3390/polym9070242 10.1147/rd.411.0143 10.1088/0022-3727/48/23/235201 10.1007/BF00694355 10.1063/1.338015 10.1002/lsm.1900090409 10.1116/1.574091 10.1002/smll.201403419 10.1023/A:1004567301546 10.1007/BF00332440 10.1039/C7TA05383E 10.1063/1.3043883 10.1002/(SICI)1097-4628(19970509)64:6<1203::AID-APP21>3.0.CO;2-V 10.2351/1.4906475 10.1007/s003399900296 10.1021/acsami.6b03743 10.1039/c3lc51041g 10.1039/b508288a 10.1063/1.1568154 10.1007/s003390000686 10.1088/0964-1726/11/5/307 10.1117/12.486521 10.1002/(SICI)1522-2683(20000101)21:1<12::AID-ELPS12>3.0.CO;2-7 10.1116/1.583976 10.1117/12.482093 10.1179/026708304225010488 |
ContentType | Journal Article |
Copyright | 2019 Society of Chemical Industry Copyright © 2019 Society of Chemical Industry |
Copyright_xml | – notice: 2019 Society of Chemical Industry – notice: Copyright © 2019 Society of Chemical Industry |
DBID | AAYXX CITATION 7SR 8FD F28 FR3 JG9 OTOTI |
DOI | 10.1002/pi.5834 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Engineering Research Database Technology Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1097-0126 |
EndPage | 1401 |
ExternalDocumentID | 1559060 10_1002_pi_5834 PI5834 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Iowa State University – fundername: U.S. Department of Energy funderid: DE‐EE0007897 – fundername: Office of Energy Efficiency and Renewable Energy – fundername: Advanced Manufacturing Office |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 29O 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6S M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWB RWI RX1 RYL SAMSI SUPJJ TTC UB1 V2E W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 JG9 AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI UMP |
ID | FETCH-LOGICAL-c3864-fcb53ee4c60c00b5f22cf6548d988f3e311ec612d506701e7000fb892b30ab6f3 |
IEDL.DBID | DR2 |
ISSN | 0959-8103 |
IngestDate | Thu May 18 22:26:50 EDT 2023 Fri Jul 25 12:21:22 EDT 2025 Thu Apr 24 23:12:25 EDT 2025 Tue Jul 01 02:19:16 EDT 2025 Wed Jan 22 16:40:04 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3864-fcb53ee4c60c00b5f22cf6548d988f3e311ec612d506701e7000fb892b30ab6f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 DE‐EE0007897 USDOE |
ORCID | 0000-0003-4180-7911 0000000341807911 |
OpenAccessLink | https://www.osti.gov/biblio/1559060 |
PQID | 2249673753 |
PQPubID | 1016451 |
PageCount | 12 |
ParticipantIDs | osti_scitechconnect_1559060 proquest_journals_2249673753 crossref_citationtrail_10_1002_pi_5834 crossref_primary_10_1002_pi_5834 wiley_primary_10_1002_pi_5834_PI5834 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2019 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: August 2019 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: London – name: United Kingdom |
PublicationTitle | Polymer international |
PublicationYear | 2019 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
References | 1990; 51 2010; 11 2004; 20 1990; 57 1997; 41 2007; 187 2004; 25 2002; 11 2004; 4 1975 2016; 31 2004; 3 1983; 96 1989; 48 2012; 12 1964; 40 2015; 89 1987; 44 1997; 304 1995; 28 1986; 4 1965; 4 2013; 112 2007; 9 2013; 114 1996; 63 1981 2012; 258 2009; 19 2010; 2 1998; 10 2003; 42 1994; 76 1989 1987; 58 1986; 90 1989; 65 1962; 7 2002; 74 1987; 50 1989; 9 1962; 16 1998 1997 2002; 2 2007; 91 1994 2005; 80 2012; 37 2008; 486 2012; 50 2016; 5 1917; 18 1963; 142 1997; 33 1987; 61 2000; 78 1982; 40 2003; 4830 2005; 5 1999; 34 2005; 98 2008; 255 2016; 8 2009; 105 2015; 35 2017; 5 1995; 78 2003; 15 2003; 93 2017; 9 2015; 48 1996; 29 2013; 13 1986; 48 2004; 79 1986; 49 1998; 526 1988; 46 1985; 57 1985; 58 2004; 221 2004; 85 2015; 5 2010 1985; 3 1997; 64 2000; 21 2008; 18 2017; 21 2015; 11 1999; 69 2008 2006; 18 1978; 18 2000; 154 1988; 53 2008; 92 2004; 227 1999; 5 1998; 22 2010; 82 1988; 126 1995; 86 1994; 9 2015; 23 1987; 20 2002; 4760 2015; 27 2004; 16 1988; 6 2015; 20 2004; 14 2000; 33 1993; 97 1994; 58 2016 1988; 64 2002; 197–198 2001; 73 1968 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 Einstein A (e_1_2_8_2_1) 1917; 18 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 Patel RS (e_1_2_8_22_1) 1997 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 Becker W (e_1_2_8_97_1) 1994; 9 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 Akinlabi ET (e_1_2_8_5_1) 2016 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 Venkateswarlu G (e_1_2_8_96_1) 2015; 5 e_1_2_8_70_1 e_1_2_8_122_1 Paschotta R (e_1_2_8_48_1) 2008 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_93_1 e_1_2_8_46_1 Townes CH (e_1_2_8_3_1) 2010 e_1_2_8_27_1 e_1_2_8_69_1 Linlor WI (e_1_2_8_12_1) 1962; 7 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 20 start-page: 349 year: 2015 end-page: 355 publication-title: J Manufac Process – volume: 8 start-page: 17784 year: 2016 end-page: 17792 publication-title: ACS Appl Mater Interfaces – volume: 61 start-page: 2090 year: 1987 end-page: 2092 publication-title: J Appl Phys – volume: 221 start-page: 99 year: 2004 end-page: 109 publication-title: Appl Surf Sci – year: 1981 – volume: 304 start-page: 225 year: 1997 end-page: 228 publication-title: Thin Solid Films – volume: 29 start-page: 1349 year: 1996 end-page: 1355 publication-title: J Phys D – volume: 21 start-page: 12 year: 2000 end-page: 26 publication-title: Electrophoresis – volume: 44 start-page: 81 year: 1987 end-page: 85 publication-title: Appl Phys B – volume: 23 start-page: 17584 year: 2015 end-page: 17598 publication-title: Opt Express – volume: 34 start-page: 615 year: 1999 end-page: 619 publication-title: J Mater Sci – year: 1989 – volume: 19 start-page: 055007 year: 2009 publication-title: J Micromech Microeng – volume: 2 start-page: 2377 year: 2010 end-page: 2384 publication-title: ACS Appl Mater Interfaces – volume: 16 start-page: 1 year: 1962 publication-title: Appl Spectrosc – volume: 6 start-page: 463 year: 1988 end-page: 465 publication-title: J Vac Sci Technol B – year: 1975 – volume: 5 start-page: 20608 year: 2017 end-page: 20614 publication-title: J Mater Chem A – volume: 5 start-page: 1348 year: 2005 end-page: 1354 publication-title: Lab Chip – volume: 18 start-page: 1106 year: 2006 end-page: 1108 publication-title: IEEE Photon Technol Lett – volume: 89 start-page: 14 year: 2015 end-page: 28 publication-title: Int J Mach Tool Manuf – volume: 85 start-page: 1493 year: 2004 end-page: 1495 publication-title: Appl Phys Lett – volume: 16 start-page: 509 year: 2004 end-page: 511 publication-title: IEEE Photon Technol Lett – year: 1998 – volume: 3 start-page: 472 year: 2004 end-page: 478 publication-title: J Micro/Nanolith MEMS MOEMS – volume: 126 start-page: 453 year: 1988 end-page: 468 publication-title: Chem Phys – volume: 91 start-page: 131906 year: 2007 publication-title: Appl Phys Lett – volume: 20 start-page: 450 year: 1987 end-page: 452 publication-title: Macromolecules – volume: 48 start-page: 253 year: 1989 end-page: 256 publication-title: Appl Phys B – volume: 112 start-page: 113 year: 2013 end-page: 117 publication-title: Appl Phys A – volume: 78 start-page: 4881 year: 1995 end-page: 4887 publication-title: J Appl Phys – start-page: 11 year: 2016 end-page: 24 – volume: 3 start-page: 913 year: 1985 end-page: 917 publication-title: J Vac Sci Technol B – volume: 86 start-page: 239 year: 1995 end-page: 244 publication-title: Appl Surf Sci – volume: 154 start-page: 555 year: 2000 end-page: 560 publication-title: Appl Surf Sci – volume: 20 start-page: 270 year: 2004 end-page: 274 publication-title: Mater Sci Technol – volume: 79 start-page: 937 year: 2004 end-page: 940 publication-title: Appl Phys A – volume: 105 start-page: 024901 year: 2009 publication-title: J Appl Phys – volume: 48 start-page: 212 year: 1986 end-page: 214 publication-title: Appl Phys Lett – volume: 14 start-page: 480 year: 2004 end-page: 483 publication-title: J Micromech Microeng – volume: 50 start-page: 449 year: 2012 end-page: 457 publication-title: Opt Lasers Eng – volume: 526 start-page: 385 year: 1998 end-page: 390 publication-title: MRS Online Proc Lib Archive – volume: 96 start-page: 710 year: 1983 end-page: 715 publication-title: Am J Ophthalmol – start-page: 23 year: 2008 end-page: 26 – volume: 74 start-page: 63 year: 2002 end-page: 67 publication-title: Appl Phys A – volume: 18 start-page: 121 year: 1917 end-page: 128 publication-title: Physikalische Zeitschrift – volume: 154 start-page: 1 year: 2000 end-page: 10 publication-title: Appl Surf Sci – volume: 44 start-page: 199 year: 1987 end-page: 204 publication-title: Appl Phys B – volume: 82 start-page: 165417 year: 2010 publication-title: Phys Rev B – volume: 65 start-page: 2591 year: 1989 end-page: 2595 publication-title: J Appl Phys – volume: 90 start-page: 2124 year: 1986 end-page: 2131 publication-title: J Phys Chem – volume: 4760 start-page: 259 year: 2002 end-page: 269 publication-title: Proc SPIE – volume: 187 start-page: 260 year: 2007 end-page: 263 publication-title: J Mater Process Technol – start-page: 217 year: 1997 end-page: 224 – volume: 11 start-page: 665 year: 2010 end-page: 671 publication-title: Int J Precis Eng Manuf – volume: 255 start-page: 2303 year: 2008 end-page: 2311 publication-title: Appl Surf Sci – volume: 48 start-page: 235201 year: 2015 publication-title: J Phys D – volume: 11 start-page: 3007 year: 2015 end-page: 3016 publication-title: Small – volume: 4 start-page: 2459 year: 1986 end-page: 2462 publication-title: J Vac Sci Technol A – volume: 64 start-page: 1203 year: 1997 end-page: 1209 publication-title: J Appl Polym Sci – volume: 18 start-page: 900 year: 1978 end-page: 904 publication-title: Polym Eng Sci – volume: 46 start-page: 147 year: 1988 end-page: 149 publication-title: Appl Phys B – volume: 69 start-page: S67 year: 1999 end-page: S73 publication-title: Appl Phys A – volume: 97 start-page: 7572 year: 1993 end-page: 7577 publication-title: J Phys Chem – year: 2010 – volume: 42 start-page: 6349 year: 2003 end-page: 6359 publication-title: Appl Optics – volume: 18 start-page: 095020 year: 2008 publication-title: J Micromech Microeng – volume: 10 start-page: 18 year: 1998 end-page: 28 publication-title: J Laser Appl – volume: 5 start-page: 594 year: 2016 end-page: 608 publication-title: Procedia Manuf – volume: 227 start-page: 164 year: 2004 end-page: 174 publication-title: Appl Surf Sci – volume: 64 start-page: 2815 year: 1988 end-page: 2818 publication-title: J Appl Phys – volume: 4 start-page: 391 year: 2004 end-page: 395 publication-title: Lab Chip – volume: 258 start-page: 9437 year: 2012 end-page: 9442 publication-title: Appl Surf Sci – volume: 48 start-page: 76 year: 1986 end-page: 77 publication-title: Appl Phys Lett – volume: 7 start-page: 1 year: 1962 publication-title: Physiol Soc – volume: 27 start-page: S28004 year: 2015 publication-title: J Laser Appl – volume: 92 start-page: 743 year: 2008 end-page: 748 publication-title: Appl Phys A – volume: 61 start-page: 372 year: 1987 end-page: 376 publication-title: J Appl Phys – volume: 57 start-page: 2368 year: 1990 end-page: 2370 publication-title: Appl Phys Lett – volume: 49 start-page: 1175 year: 1986 end-page: 1177 publication-title: Appl Phys Lett – volume: 76 start-page: 3052 year: 1994 end-page: 3058 publication-title: J Appl Phys – volume: 53 start-page: 2377 year: 1988 end-page: 2379 publication-title: Appl Phys Lett – volume: 13 start-page: 4848 year: 2013 end-page: 4854 publication-title: Lab Chip – volume: 93 start-page: 6375 year: 2003 end-page: 6380 publication-title: J Appl Phys – volume: 97 start-page: 12296 year: 1993 end-page: 12301 publication-title: J Phys Chem – volume: 2 start-page: 242 year: 2002 end-page: 246 publication-title: Lab Chip – volume: 22 start-page: 51 year: 1998 end-page: 57 publication-title: Lasers Surg Med – volume: 33 start-page: 1706 year: 1997 end-page: 1716 publication-title: IEEE J Quantum Electron – volume: 40 start-page: 374 year: 1982 end-page: 375 publication-title: Appl Phys Lett – volume: 9 start-page: 99 year: 2007 end-page: 103 publication-title: Adv Eng Mater – year: 1994 – volume: 9 start-page: 362 year: 1989 end-page: 374 publication-title: Lasers Surg Med – volume: 35 start-page: 161 year: 2015 end-page: 165 publication-title: Assembly Autom – volume: 197–198 start-page: 746 year: 2002 end-page: 756 publication-title: Appl Surf Sci – volume: 4 start-page: 653 year: 1986 end-page: 658 publication-title: J Vac Sci Technol A – volume: 142 start-page: 236 year: 1963 end-page: 237 publication-title: Science – volume: 114 start-page: 023103 year: 2013 publication-title: J Appl Phys – volume: 50 start-page: 1779 year: 1987 end-page: 1781 publication-title: Appl Phys Lett – volume: 63 start-page: 109 year: 1996 end-page: 115 publication-title: Appl Phys A – volume: 5 start-page: 1312 year: 1999 end-page: 1324 publication-title: IEEE J Select Topics Quantum Electron – volume: 31 start-page: 1121 year: 2016 end-page: 1142 publication-title: Mater Manuf Process – volume: 58 start-page: 475 year: 1994 end-page: 479 publication-title: Appl Phys A – volume: 9 start-page: 31 year: 1994 end-page: 40 publication-title: Int J Oral Maxillofac Implants – volume: 15 start-page: 62 year: 2003 end-page: 65 publication-title: Adv Mater – volume: 9 start-page: 242 year: 2017 publication-title: Polymers – volume: 78 start-page: 509 year: 2000 end-page: 519 publication-title: Can J Phys – volume: 41 start-page: 143 year: 1997 end-page: 148 publication-title: IBM J Res Develop – volume: 28 start-page: 4603 year: 1995 end-page: 4607 publication-title: Macromolecules – volume: 98 start-page: 113520 year: 2005 publication-title: J Appl Phys – volume: 49 start-page: 453 year: 1986 end-page: 455 publication-title: Appl Phys Lett – volume: 4830 start-page: 196 year: 2003 end-page: 201 publication-title: Proc SPIE – year: 1968 – volume: 40 start-page: 2735 year: 1964 end-page: 2736 publication-title: J Chem Phys – volume: 73 start-page: 199 year: 2001 end-page: 208 publication-title: Appl Phys A – start-page: 91 year: 2010 end-page: 120 – volume: 12 start-page: 751 year: 2012 end-page: 760 publication-title: Microfluid Nanofluid – volume: 11 start-page: 668 year: 2002 end-page: 674 publication-title: Smart Mater Struct – volume: 58 start-page: 2142 year: 1987 end-page: 2145 publication-title: Phys Rev Lett – volume: 57 start-page: 1420 year: 1985 end-page: 1422 publication-title: J Appl Phys – volume: 37 start-page: 907 year: 2012 end-page: 974 publication-title: Prog Polym Sci – volume: 486 start-page: 609 year: 2008 end-page: 628 publication-title: Int J Mach Tool Manuf – volume: 51 start-page: 314 year: 1990 end-page: 316 publication-title: Appl Phys B – start-page: 107 year: 2010 end-page: 112 – volume: 58 start-page: 2036 year: 1985 end-page: 2043 publication-title: J Appl Phys – volume: 80 start-page: 529 year: 2005 end-page: 536 publication-title: Appl Phys A – volume: 33 start-page: 757 year: 2000 end-page: 759 publication-title: J Phys D – volume: 4 start-page: 147 year: 1965 end-page: 148 publication-title: Appl Optics – volume: 23 start-page: 19854 year: 2015 end-page: 19862 publication-title: Opt Express – volume: 5 start-page: 560 year: 2015 end-page: 568 publication-title: Int J Sci Res Publ – volume: 25 start-page: 33 year: 2004 end-page: 38 publication-title: Eur Phys J Appl Phys – volume: 21 start-page: 108 year: 2017 publication-title: Microfluid Nanofluid – ident: e_1_2_8_63_1 doi: 10.1063/1.96767 – ident: e_1_2_8_75_1 doi: 10.1016/j.jmatprotec.2006.11.106 – ident: e_1_2_8_109_1 doi: 10.1364/OE.23.019854 – start-page: 11 volume-title: Advanced Manufacturing Techniques Using Laser Material Processing year: 2016 ident: e_1_2_8_5_1 doi: 10.4018/978-1-5225-0329-3 – ident: e_1_2_8_34_1 doi: 10.1063/1.2793628 – ident: e_1_2_8_65_1 doi: 10.1063/1.336012 – ident: e_1_2_8_66_1 doi: 10.1063/1.97744 – ident: e_1_2_8_37_1 doi: 10.1016/S0040-6090(97)00201-0 – ident: e_1_2_8_41_1 doi: 10.1016/j.apsusc.2008.07.100 – ident: e_1_2_8_105_1 doi: 10.1063/1.97113 – ident: e_1_2_8_33_1 doi: 10.1063/1.100235 – ident: e_1_2_8_83_1 doi: 10.1016/j.apsusc.2012.01.154 – ident: e_1_2_8_46_1 doi: 10.1007/s00339-012-7209-7 – ident: e_1_2_8_28_1 doi: 10.1016/j.ijmachtools.2014.10.013 – ident: e_1_2_8_72_1 doi: 10.1007/BF00686468 – ident: e_1_2_8_58_1 doi: 10.1103/PhysRevLett.58.2142 – ident: e_1_2_8_60_1 doi: 10.1063/1.96798 – ident: e_1_2_8_79_1 doi: 10.1016/S0169-4332(03)00835-3 – ident: e_1_2_8_43_1 doi: 10.1016/j.promfg.2016.08.049 – ident: e_1_2_8_80_1 doi: 10.1007/BF00348965 – ident: e_1_2_8_93_1 doi: 10.1002/adma.200390012 – ident: e_1_2_8_104_1 doi: 10.1002/(SICI)1096-9101(1998)22:1<51::AID-LSM12>3.0.CO;2-B – ident: e_1_2_8_81_1 doi: 10.1039/b403037k – ident: e_1_2_8_10_1 – ident: e_1_2_8_124_1 – ident: e_1_2_8_128_1 doi: 10.1088/0022-3727/33/7/301 – ident: e_1_2_8_91_1 doi: 10.1007/s10404-017-1943-2 – ident: e_1_2_8_119_1 doi: 10.1021/ma00117a034 – ident: e_1_2_8_32_1 doi: 10.1063/1.357486 – start-page: 23 volume-title: Field Guide to Laser Pulse Generation year: 2008 ident: e_1_2_8_48_1 – ident: e_1_2_8_77_1 doi: 10.1116/1.583081 – ident: e_1_2_8_25_1 doi: 10.1016/S0169-4332(99)00440-7 – ident: e_1_2_8_20_1 doi: 10.1002/pen.760181113 – ident: e_1_2_8_135_1 doi: 10.1016/S0002-9394(14)71911-7 – ident: e_1_2_8_9_1 – ident: e_1_2_8_67_1 doi: 10.1063/1.341590 – ident: e_1_2_8_131_1 doi: 10.1364/AO.42.006349 – ident: e_1_2_8_120_1 doi: 10.1016/S0169-4332(02)00404-X – volume: 5 start-page: 560 year: 2015 ident: e_1_2_8_96_1 publication-title: Int J Sci Res Publ – ident: e_1_2_8_36_1 doi: 10.1063/1.4812491 – ident: e_1_2_8_101_1 doi: 10.1063/1.1785291 – ident: e_1_2_8_70_1 doi: 10.1063/1.334503 – ident: e_1_2_8_113_1 doi: 10.1007/s00339-008-4567-2 – ident: e_1_2_8_7_1 doi: 10.4271/2010-01-0022 – ident: e_1_2_8_53_1 doi: 10.1063/1.359776 – ident: e_1_2_8_71_1 doi: 10.1116/1.573823 – ident: e_1_2_8_111_1 doi: 10.1007/s003390100832 – ident: e_1_2_8_84_1 doi: 10.1002/adem.200600171 – ident: e_1_2_8_92_1 doi: 10.1007/s10404-011-0917-z – ident: e_1_2_8_14_1 doi: 10.1126/science.142.3589.236 – start-page: 107 volume-title: A Century of Nature: Twenty‐One Discoveries that Changed Science and the World year: 2010 ident: e_1_2_8_3_1 – ident: e_1_2_8_114_1 doi: 10.1016/S0169-4332(99)00474-2 – ident: e_1_2_8_95_1 doi: 10.1088/0960-1317/19/5/055007 – ident: e_1_2_8_6_1 doi: 10.1108/AA-07-2014-066 – ident: e_1_2_8_59_1 doi: 10.1063/1.97406 – ident: e_1_2_8_11_1 doi: 10.1366/000370262774416074 – ident: e_1_2_8_126_1 doi: 10.1088/0960-1317/14/4/007 – ident: e_1_2_8_38_1 doi: 10.1088/0022-3727/29/5/034 – ident: e_1_2_8_8_1 doi: 10.1016/j.ijmachtools.2007.10.017 – ident: e_1_2_8_123_1 – ident: e_1_2_8_73_1 doi: 10.1063/1.342788 – ident: e_1_2_8_27_1 doi: 10.1063/1.2138800 – ident: e_1_2_8_40_1 doi: 10.1007/BF01567637 – ident: e_1_2_8_103_1 doi: 10.1016/j.jmapro.2015.05.004 – ident: e_1_2_8_112_1 doi: 10.1109/3.631270 – ident: e_1_2_8_82_1 doi: 10.1016/j.optlaseng.2011.10.008 – ident: e_1_2_8_88_1 doi: 10.1007/s12541-010-0078-0 – ident: e_1_2_8_117_1 doi: 10.1364/OE.23.017584 – ident: e_1_2_8_24_1 doi: 10.1080/10426914.2015.1048359 – ident: e_1_2_8_115_1 doi: 10.1039/b206409j – ident: e_1_2_8_118_1 doi: 10.1139/p00-024 – ident: e_1_2_8_15_1 doi: 10.1063/1.1725592 – ident: e_1_2_8_50_1 doi: 10.1117/1.1753589 – ident: e_1_2_8_54_1 doi: 10.2351/1.521827 – ident: e_1_2_8_74_1 doi: 10.1016/0301-0104(88)85053-5 – ident: e_1_2_8_47_1 doi: 10.1088/0960-1317/18/9/095020 – ident: e_1_2_8_129_1 doi: 10.1007/s00339-004-2572-7 – ident: e_1_2_8_78_1 doi: 10.1016/j.apsusc.2003.11.078 – ident: e_1_2_8_130_1 doi: 10.1109/LPT.2003.823124 – ident: e_1_2_8_89_1 doi: 10.1016/0169-4332(94)00413-7 – ident: e_1_2_8_55_1 doi: 10.1007/BF00692122 – ident: e_1_2_8_23_1 doi: 10.1007/978-3-642-10523-4_4 – ident: e_1_2_8_102_1 doi: 10.1016/j.progpolymsci.2012.02.005 – ident: e_1_2_8_116_1 doi: 10.1021/am100393e – ident: e_1_2_8_127_1 doi: 10.1109/2944.806756 – start-page: 217 volume-title: Appl Microelectron Optoelectron Manuf II year: 1997 ident: e_1_2_8_22_1 – volume: 9 start-page: 31 year: 1994 ident: e_1_2_8_97_1 publication-title: Int J Oral Maxillofac Implants – ident: e_1_2_8_121_1 doi: 10.1021/j100149a033 – ident: e_1_2_8_31_1 doi: 10.1021/j100131a029 – ident: e_1_2_8_51_1 doi: 10.1007/s00339-004-3085-0 – ident: e_1_2_8_76_1 doi: 10.1021/j100401a028 – ident: e_1_2_8_106_1 doi: 10.1063/1.103873 – ident: e_1_2_8_4_1 – ident: e_1_2_8_13_1 – ident: e_1_2_8_98_1 doi: 10.1051/epjap:2003083 – ident: e_1_2_8_110_1 doi: 10.1557/PROC-526-385 – ident: e_1_2_8_19_1 doi: 10.1109/LPT.2006.873357 – ident: e_1_2_8_56_1 doi: 10.1063/1.93108 – ident: e_1_2_8_69_1 doi: 10.1063/1.338834 – ident: e_1_2_8_62_1 doi: 10.1021/ma00168a044 – ident: e_1_2_8_16_1 doi: 10.1364/AO.4.000147 – ident: e_1_2_8_39_1 doi: 10.1103/PhysRevB.82.165417 – ident: e_1_2_8_64_1 doi: 10.1007/BF00694197 – ident: e_1_2_8_94_1 doi: 10.3390/polym9070242 – ident: e_1_2_8_49_1 doi: 10.1147/rd.411.0143 – ident: e_1_2_8_26_1 doi: 10.1088/0022-3727/48/23/235201 – volume: 7 start-page: 1 year: 1962 ident: e_1_2_8_12_1 publication-title: Physiol Soc – ident: e_1_2_8_68_1 doi: 10.1007/BF00694355 – ident: e_1_2_8_57_1 doi: 10.1063/1.338015 – volume: 18 start-page: 121 year: 1917 ident: e_1_2_8_2_1 publication-title: Physikalische Zeitschrift – ident: e_1_2_8_52_1 doi: 10.1002/lsm.1900090409 – ident: e_1_2_8_17_1 – ident: e_1_2_8_61_1 doi: 10.1116/1.574091 – ident: e_1_2_8_35_1 doi: 10.1002/smll.201403419 – ident: e_1_2_8_99_1 doi: 10.1023/A:1004567301546 – ident: e_1_2_8_85_1 doi: 10.1007/BF00332440 – ident: e_1_2_8_125_1 doi: 10.1039/C7TA05383E – ident: e_1_2_8_45_1 doi: 10.1063/1.3043883 – ident: e_1_2_8_21_1 – ident: e_1_2_8_90_1 doi: 10.1002/(SICI)1097-4628(19970509)64:6<1203::AID-APP21>3.0.CO;2-V – ident: e_1_2_8_42_1 doi: 10.2351/1.4906475 – ident: e_1_2_8_29_1 doi: 10.1007/s003399900296 – ident: e_1_2_8_134_1 doi: 10.1021/acsami.6b03743 – ident: e_1_2_8_108_1 doi: 10.1039/c3lc51041g – ident: e_1_2_8_107_1 doi: 10.1039/b508288a – ident: e_1_2_8_100_1 doi: 10.1063/1.1568154 – ident: e_1_2_8_30_1 doi: 10.1007/s003390000686 – ident: e_1_2_8_44_1 doi: 10.1088/0964-1726/11/5/307 – ident: e_1_2_8_133_1 doi: 10.1117/12.486521 – ident: e_1_2_8_18_1 doi: 10.1002/(SICI)1522-2683(20000101)21:1<12::AID-ELPS12>3.0.CO;2-7 – ident: e_1_2_8_86_1 doi: 10.1116/1.583976 – ident: e_1_2_8_122_1 doi: 10.1117/12.482093 – ident: e_1_2_8_87_1 – ident: e_1_2_8_132_1 doi: 10.1179/026708304225010488 |
SSID | ssj0008999 |
Score | 2.6137776 |
SecondaryResourceType | review_article |
Snippet | ABSTRACT
Laser ablation (LA), which employs a pulsed laser to remove materials from a substrate for generating micro‐/nanostructures, has tremendous... Laser ablation (LA), which employs a pulsed laser to remove materials from a substrate for generating micro‐/nanostructures, has tremendous applications in the... |
SourceID | osti proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1391 |
SubjectTerms | Femtosecond pulsed lasers Fluence High temperature lase ablation Laser ablation Lasers Metals Organic chemistry Parameters polymer Polymers Pulse duration Pulsed lasers review Reviews Substrates |
Title | Laser ablation of polymers: a review |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpi.5834 https://www.proquest.com/docview/2249673753 https://www.osti.gov/biblio/1559060 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-ykx78Fuum5DC8dWubNG28iTimqIg4GF5CkyUwHOvYuoP-9eY13ZciiKdektK8l9f83st7v4dQkzGqudKZn9FQ-zQxoc8Ni3xgQpFhlihTFoU9PrFuj9734_5aqy_HD7EMuIFllP9rMPBMztor0tDJsBWnBJhAIVML4NDLijjKehEVyx4EuQLiymVhZruat3EO1XJrTxsYcx2plkdNZw-9LT7SZZi8t-aFbKnPb_yN_1rFPtqtACi-djvmAG3p8SHaWaMlPELNB3u0TXEmXZ4czg2e5KMPiHBf4Qy7apdj1Ovcvt50_aqbgq9IyqhvlIyJ1lSxQAWBjE0UKQNd4wc8TQ3EQkOtLN4ZxFC6E-rEitHIlEeSBJlkhpyg2jgf61OEqdIWFljHUMWUJjq1erZuCdcxzwJCqPbQ5UK2QlVU49DxYiQcSXIkJkMBy_YQXg6cOHaNn0PqoBxhAQGw2ipI_1GFgNvUgAUeaix0JirjmwmLSji034mJh5ql8H97uXi-g8fZ34bV0baFS9yl_zVQrZjO9bmFJIW8KHffF8iO2ek |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIADb0TZgB4mbt3aJu1abggxbbBNCG3SJA5RExJpYtqqsR3g1xM33QuEhDj1klSNE9efHfszQDkMqYyFTJyEetKhNeU5sQp9B5lQuJfUhMqKwtqdsNGjD_2gn2dVYi2M4YdYBNxQM7L_NSo4BqSrS9bQdFAJIkI3YQv7eWfu1POSOkr7ETnPHoa5XGIKZnFqNZ-4ZokKY61RayhzFatmxqa-Dy_zzzQ5Jm-V2ZRXxOc3Bsf_reMA9nIMat-aQ3MIG3J0BLsrzITHUG5p6zaxE25S5eyxstPx8AOD3Dd2YpuClxPo1e-7dw0nb6jgCBKF1FGCB0RKKkJXuC4PlO8LhY3jX-MoUhgO9aTQkOc1wOodT9a0HBWPYp8TN-GhIqdQGI1H8gxsKqRGBto3FAGlNRnprdaeSSyDOHEJodKC67lwmcjZxrHpxZAZnmSfpQOGy7bAXgxMDcHGzyFF3B2mMQES2wrMABJThheqbuhaUJpvGsv1751pYBJjB56AWFDOpP_by9lTEx_nfxt2BduNbrvFWs3OYxF2NHqKTTZgCQrTyUxeaIQy5ZfZUfwCdpPeBA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90guiD3-Lc1D4M37qlTZq1vok6pk4RURi-hCZLYDi2ovNB_3pzTfehIohPfUlKk8v1fne5-x1AjXOmE6VTP2WB9lnTBH5ieOgjE4oM0qYyeVHYzS1vP7KrbtSda_Xl-CGmATfUjPx_jQqe9UxjRhqa9etRTNkiLDFOYjzQ5_cz5ijrRhQ0exjlItTVy-LURjHxiyEqjaxCfQGZ81A1tzWtdXiafKVLMXmuv41lXX18I3D81zI2YK1AoN6pOzKbsKCHW7A6x0u4DbWOtW0vXipdopw3Ml42GrxjiPvESz1X7rIDj62Lh7O2X7RT8BWNOfONkhHVmilOFCEyMmGoDLaN7yVxbDAYGmhlAU8vwtqdQDftNhoZJ6GkJJXc0F0oDUdDvQceU9riAusZqoixpo6toK1fkugoSQmlTJfheLK3QhVc49jyYiAcS3Iosr7AZZfBmw7MHL3GzyEVFI6wiABpbRXm_6ixwOtUwkkZqhOZiUL7XoWFJQn234loGWr55v_2cnF3iY_9vw07guW785boXN5eV2DFQqfEpQJWoTR-edMHFp6M5WF-ED8BDoPcvA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+ablation+of+polymers%3A+a+review&rft.jtitle=Polymer+international&rft.au=Ravi%E2%80%90Kumar%2C+Sandeep&rft.au=Lies%2C+Benjamin&rft.au=Zhang%2C+Xiao&rft.au=Lyu%2C+Hao&rft.date=2019-08-01&rft.pub=Wiley+Blackwell+%28John+Wiley+%26+Sons%29&rft.issn=0959-8103&rft.eissn=1097-0126&rft.volume=68&rft.issue=8&rft_id=info:doi/10.1002%2Fpi.5834&rft.externalDocID=1559060 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-8103&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-8103&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-8103&client=summon |