Xylem conduit deformation across vascular plants: an evolutionary spandrel or protective valve?

Summary The hydraulic system of vascular plants and its integrity is essential for plant survival. To transport water under tension, the walls of xylem conduits must approximate rigid pipes. Against this expectation, conduit deformation has been reported in the leaves of a few species and hypothesiz...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 237; no. 4; pp. 1242 - 1255
Main Authors Zhang, Yong‐Jiang, Hochberg, Uri, Rockwell, Fulton E., Ponomarenko, Alexandre, Chen, Ya‐Jun, Manandhar, Anju, Graham, Adam C., Holbrook, N. Michele
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary The hydraulic system of vascular plants and its integrity is essential for plant survival. To transport water under tension, the walls of xylem conduits must approximate rigid pipes. Against this expectation, conduit deformation has been reported in the leaves of a few species and hypothesized to function as a ‘circuit breaker’ against embolism. Experimental evidence is lacking, and its generality is unknown. We demonstrated the role of conduit deformation in protecting the upstream xylem from embolism through experiments on three species and surveyed a diverse selection of vascular plants for conduit deformation in leaves. Conduit deformation in minor veins occurred before embolism during slow dehydration. When leaves were exposed to transient increases in transpiration, conduit deformation was accompanied by large water potential differences from leaf to stem and minimal embolism in the upstream xylem. In the three species tested, collapsible vein endings provided clear protection of upstream xylem from embolism during transient increases in transpiration. We found conduit deformation in diverse vascular plants, including 11 eudicots, ginkgo, a cycad, a fern, a bamboo, and a grass species, but not in two bamboo and a palm species, demonstrating that the potential for ‘circuit breaker’ functionality may be widespread across vascular plants.
AbstractList The hydraulic system of vascular plants and its integrity is essential for plant survival. To transport water under tension, the walls of xylem conduits must approximate rigid pipes. Against this expectation, conduit deformation has been reported in the leaves of a few species and hypothesized to function as a ‘circuit breaker’ against embolism. Experimental evidence is lacking, and its generality is unknown. We demonstrated the role of conduit deformation in protecting the upstream xylem from embolism through experiments on three species and surveyed a diverse selection of vascular plants for conduit deformation in leaves. Conduit deformation in minor veins occurred before embolism during slow dehydration. When leaves were exposed to transient increases in transpiration, conduit deformation was accompanied by large water potential differences from leaf to stem and minimal embolism in the upstream xylem. In the three species tested, collapsible vein endings provided clear protection of upstream xylem from embolism during transient increases in transpiration. We found conduit deformation in diverse vascular plants, including 11 eudicots, ginkgo, a cycad, a fern, a bamboo, and a grass species, but not in two bamboo and a palm species, demonstrating that the potential for ‘circuit breaker’ functionality may be widespread across vascular plants.
Summary The hydraulic system of vascular plants and its integrity is essential for plant survival. To transport water under tension, the walls of xylem conduits must approximate rigid pipes. Against this expectation, conduit deformation has been reported in the leaves of a few species and hypothesized to function as a ‘circuit breaker’ against embolism. Experimental evidence is lacking, and its generality is unknown. We demonstrated the role of conduit deformation in protecting the upstream xylem from embolism through experiments on three species and surveyed a diverse selection of vascular plants for conduit deformation in leaves. Conduit deformation in minor veins occurred before embolism during slow dehydration. When leaves were exposed to transient increases in transpiration, conduit deformation was accompanied by large water potential differences from leaf to stem and minimal embolism in the upstream xylem. In the three species tested, collapsible vein endings provided clear protection of upstream xylem from embolism during transient increases in transpiration. We found conduit deformation in diverse vascular plants, including 11 eudicots, ginkgo, a cycad, a fern, a bamboo, and a grass species, but not in two bamboo and a palm species, demonstrating that the potential for ‘circuit breaker’ functionality may be widespread across vascular plants.
The hydraulic system of vascular plants and its integrity is essential for plant survival. To transport water under tension, the walls of xylem conduits must approximate rigid pipes. Against this expectation, conduit deformation has been reported in the leaves of a few species and hypothesized to function as a ‘circuit breaker’ against embolism. Experimental evidence is lacking, and its generality is unknown.We demonstrated the role of conduit deformation in protecting the upstream xylem from embolism through experiments on three species and surveyed a diverse selection of vascular plants for conduit deformation in leaves.Conduit deformation in minor veins occurred before embolism during slow dehydration. When leaves were exposed to transient increases in transpiration, conduit deformation was accompanied by large water potential differences from leaf to stem and minimal embolism in the upstream xylem. In the three species tested, collapsible vein endings provided clear protection of upstream xylem from embolism during transient increases in transpiration.We found conduit deformation in diverse vascular plants, including 11 eudicots, ginkgo, a cycad, a fern, a bamboo, and a grass species, but not in two bamboo and a palm species, demonstrating that the potential for ‘circuit breaker’ functionality may be widespread across vascular plants.
The hydraulic system of vascular plants and its integrity is essential for plant survival. To transport water under tension, the walls of xylem conduits must approximate rigid pipes. Against this expectation, conduit deformation has been reported in the leaves of a few species and hypothesized to function as a 'circuit breaker' against embolism. Experimental evidence is lacking, and its generality is unknown. We demonstrated the role of conduit deformation in protecting the upstream xylem from embolism through experiments on three species and surveyed a diverse selection of vascular plants for conduit deformation in leaves. Conduit deformation in minor veins occurred before embolism during slow dehydration. When leaves were exposed to transient increases in transpiration, conduit deformation was accompanied by large water potential differences from leaf to stem and minimal embolism in the upstream xylem. In the three species tested, collapsible vein endings provided clear protection of upstream xylem from embolism during transient increases in transpiration. We found conduit deformation in diverse vascular plants, including 11 eudicots, ginkgo, a cycad, a fern, a bamboo, and a grass species, but not in two bamboo and a palm species, demonstrating that the potential for 'circuit breaker' functionality may be widespread across vascular plants.The hydraulic system of vascular plants and its integrity is essential for plant survival. To transport water under tension, the walls of xylem conduits must approximate rigid pipes. Against this expectation, conduit deformation has been reported in the leaves of a few species and hypothesized to function as a 'circuit breaker' against embolism. Experimental evidence is lacking, and its generality is unknown. We demonstrated the role of conduit deformation in protecting the upstream xylem from embolism through experiments on three species and surveyed a diverse selection of vascular plants for conduit deformation in leaves. Conduit deformation in minor veins occurred before embolism during slow dehydration. When leaves were exposed to transient increases in transpiration, conduit deformation was accompanied by large water potential differences from leaf to stem and minimal embolism in the upstream xylem. In the three species tested, collapsible vein endings provided clear protection of upstream xylem from embolism during transient increases in transpiration. We found conduit deformation in diverse vascular plants, including 11 eudicots, ginkgo, a cycad, a fern, a bamboo, and a grass species, but not in two bamboo and a palm species, demonstrating that the potential for 'circuit breaker' functionality may be widespread across vascular plants.
Author Chen, Ya‐Jun
Hochberg, Uri
Ponomarenko, Alexandre
Zhang, Yong‐Jiang
Holbrook, N. Michele
Graham, Adam C.
Rockwell, Fulton E.
Manandhar, Anju
Author_xml – sequence: 1
  givenname: Yong‐Jiang
  orcidid: 0000-0001-5637-3015
  surname: Zhang
  fullname: Zhang, Yong‐Jiang
  email: yongjiang.zhang@maine.edu
  organization: University of Maine
– sequence: 2
  givenname: Uri
  orcidid: 0000-0002-7649-7004
  surname: Hochberg
  fullname: Hochberg, Uri
  organization: Institute of Soil, Water and Environmental Sciences
– sequence: 3
  givenname: Fulton E.
  orcidid: 0000-0002-2527-6033
  surname: Rockwell
  fullname: Rockwell, Fulton E.
  organization: Harvard University
– sequence: 4
  givenname: Alexandre
  surname: Ponomarenko
  fullname: Ponomarenko, Alexandre
  organization: Harvard University
– sequence: 5
  givenname: Ya‐Jun
  orcidid: 0000-0001-5753-5565
  surname: Chen
  fullname: Chen, Ya‐Jun
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Anju
  surname: Manandhar
  fullname: Manandhar, Anju
  organization: Harvard University
– sequence: 7
  givenname: Adam C.
  surname: Graham
  fullname: Graham, Adam C.
  organization: Harvard University
– sequence: 8
  givenname: N. Michele
  orcidid: 0000-0003-3325-5395
  surname: Holbrook
  fullname: Holbrook, N. Michele
  email: holbrook@oeb.harvard.edu
  organization: Harvard University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36307967$$D View this record in MEDLINE/PubMed
BookMark eNqF0c1O3DAQB3ALLWIXyqEvUEXqBQ5Z7Pgjdi9VhfiSUNtDK3ELjjNRs3LsrZ0s2rfhWXgyzC5wQCr1xZffjGbmv48mzjtA6CPBc5LeiVv-mRPJJdtBM8KEyiWh5QTNMC5kLpi4maL9GBcYY8VFsYemVFBcKlHO0O3N2kKfGe-asRuyBlofej103mXaBB9jttLRjFaHbGm1G-KXTLuHe1h5Oz4pHdZZXGrXBLCZTyj4AczQrSAV2hV8_YB2W20jHD7_B-j3-dmv08v8-sfF1em369xQKViuS4ZriQmVNWetxIbQVnFJa16rkilWcsXAUIF1UwisWmiBCd3UXIACLjA9QEfbvmmCvyPEoeq7aMCmocGPsSokISrtzMr_05JiWmDBVaKf39CFH4NLiyQlhKCKU5rUp2c11j001TJ0fTpM9XLmBI63YHPSAO0rIbh6irBKEVabCJM9eWNNN2wSGYLu7HsVd52F9b9bV99_Xm4rHgHXYK0x
CitedBy_id crossref_primary_10_1111_nph_19069
crossref_primary_10_1111_nph_19771
crossref_primary_10_1016_j_celrep_2024_113987
crossref_primary_10_1038_s43247_023_00904_4
crossref_primary_10_1093_plphys_kiad560
crossref_primary_10_1111_nph_20189
crossref_primary_10_3390_su16135483
crossref_primary_10_1007_s11104_024_07006_w
crossref_primary_10_1016_j_agrformet_2023_109710
crossref_primary_10_1186_s12870_024_05756_4
crossref_primary_10_1111_ppl_14132
crossref_primary_10_1111_pce_15362
crossref_primary_10_3390_agronomy14030438
Cites_doi 10.1007/s004420100628
10.1111/pce.13087
10.1104/pp.53.1.125
10.1111/pce.14381
10.1104/pp.16.01191
10.1073/pnas.2025251118
10.1046/j.1365-3040.1998.00380.x
10.1098/rspb.1979.0086
10.1104/pp.103.023879
10.1104/pp.114.243105
10.1111/j.1461-0248.2012.01783.x
10.1111/nph.15330
10.1104/pp.113.221424
10.1111/nph.16927
10.1104/pp.108.129015
10.1126/science.1197985
10.1104/pp.16.00380
10.1111/gcb.15040
10.1098/rstb.1895.0012
10.1111/nph.12667
10.1104/pp.114.237107
10.1007/BF00419279
10.1104/pp.106.089367
10.1093/treephys/tpv145
10.1104/pp.16.00136
10.1111/j.1469-8137.2004.01060.x
10.1073/pnas.1525678113
10.1016/j.pbi.2009.10.001
10.1038/nature15539
10.1038/nclimate3114
10.1111/pce.13722
10.1038/s41559-017-0248-x
10.1104/pp.18.01284
10.1111/j.1365-3040.1991.tb01521.x
10.1098/rstb.1898.0009
10.1104/pp.16.01816
10.1073/pnas.1522569113
10.1111/j.1095-8339.1981.tb00350.x
10.1111/j.1365-2435.2009.01577.x
10.1038/s41586-018-0240-x
10.1007/978-3-662-22627-8
10.1038/nature11688
10.1104/pp.16.01772
10.1073/pnas.2008276118
10.1104/pp.104.058156
10.1104/pp.88.3.574
10.1111/nph.13846
10.1111/ele.13856
10.1104/pp.103.028357
10.1104/pp.17.00078
10.1104/pp.114.236323
ContentType Journal Article
Copyright 2022 The Authors. © 2022 New Phytologist Foundation.
2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
Copyright © 2023 New Phytologist Trust
Copyright_xml – notice: 2022 The Authors. © 2022 New Phytologist Foundation.
– notice: 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
– notice: Copyright © 2023 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.18584
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1255
ExternalDocumentID 36307967
10_1111_nph_18584
NPH18584
Genre researchArticle
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: William F. Milton Fund of Harvard University
– fundername: U.S. Department of Agriculture
  funderid: Hatch ME0‐22021
– fundername: National Natural Science Foundation of China
  funderid: NOS 32071735; 41861144016
– fundername: National Science Foundation
  funderid: EAGER 1659918; IOS 1456836; DMR 14‐20570
– fundername: Open Fund of CAS Key Laboratory of Tropical Forest Ecology
– fundername: Air Force Office of Sponsored Research
  funderid: FA9550‐09‐1‐0188
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPNFZ
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABGDZ
ABSQW
ADXHL
AEYWJ
AGHNM
AGUYK
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QO
7SN
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c3864-a740b80138b54f80c13f9583b5b974947594ec360ad2609fefe46adb56e9e5603
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:29:42 EDT 2025
Fri Jul 11 16:17:31 EDT 2025
Fri Jul 25 09:22:45 EDT 2025
Wed Feb 19 02:25:13 EST 2025
Thu Apr 24 23:13:03 EDT 2025
Tue Jul 01 02:28:44 EDT 2025
Wed Jan 22 16:24:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords conduit collapse
xylem vessels
water transport
vapor pressure deficit
water stress
embolism
transient water stress
Language English
License 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3864-a740b80138b54f80c13f9583b5b974947594ec360ad2609fefe46adb56e9e5603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2527-6033
0000-0003-3325-5395
0000-0002-7649-7004
0000-0001-5753-5565
0000-0001-5637-3015
PMID 36307967
PQID 2766639533
PQPubID 2026848
PageCount 1255
ParticipantIDs proquest_miscellaneous_2811979647
proquest_miscellaneous_2730320659
proquest_journals_2766639533
pubmed_primary_36307967
crossref_primary_10_1111_nph_18584
crossref_citationtrail_10_1111_nph_18584
wiley_primary_10_1111_nph_18584_NPH18584
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 23
2017; 1
1991; 14
2010; 13
1974; 53
2007; 143
2004; 162
2005; 137
1979; 205
1928; 10
2022; 45
2015; 528
2018; 41
2017; 174
2021a; 24
2012; 15
2013; 164
1981; 83
1998; 21
2001; 126
2016; 36
2019; 221
2003; 132
2011; 331
2012; 491
2004; 134
1898; 190
2016; 6
2019; 180
2018; 558
2021b; 229
2021; 118
2016; 113
1988; 88
2020; 26
2016
1983
2016b; 209
2020; 43
2016; 171
2014; 165
1895; 186
2016a; 113
2014; 164
2014; 202
2009; 149
2016; 172
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Elliott‐Kingston C (e_1_2_9_25_1) 2016
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 174
  start-page: 639
  year: 2017
  end-page: 649
  article-title: Evolution of the stomatal regulation of plant water content
  publication-title: Plant Physiology
– volume: 137
  start-page: 1139
  year: 2005
  end-page: 1146
  article-title: Water stress deforms tracheids peripheral to the leaf vein of a tropical conifer
  publication-title: Plant Physiology
– volume: 13
  start-page: 102
  year: 2010
  end-page: 107
  article-title: The evolution of plant development in a paleontological context
  publication-title: Current Opinion in Plant Biology
– volume: 171
  start-page: 1024
  year: 2016
  end-page: 1036
  article-title: In situ visualization of the dynamics in xylem embolism formation and removal in the absence of root pressure: a study on excised grapevine stems
  publication-title: Plant Physiology
– volume: 41
  start-page: 342
  year: 2018
  end-page: 353
  article-title: Bundle sheath lignification mediates the linkage of leaf hydraulics and venation
  publication-title: Plant, Cell & Environment
– volume: 53
  start-page: 125
  year: 1974
  end-page: 127
  article-title: A water potential threshold for the increase of abscisic acid in leaves
  publication-title: Plant Physiology
– volume: 1
  start-page: 1285
  year: 2017
  end-page: 1291
  article-title: A multi‐species synthesis of physiological mechanisms in drought‐induced tree mortality
  publication-title: Nature Ecology & Evolution
– volume: 171
  start-page: 2008
  year: 2016
  end-page: 2016
  article-title: Linking turgor with ABA biosynthesis: implications for stomatal responses to vapor pressure deficit across land plants
  publication-title: Plant Physiology
– volume: 186
  start-page: 563
  year: 1895
  end-page: 576
  article-title: On the ascent of sap
  publication-title: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences
– volume: 149
  start-page: 1992
  year: 2009
  end-page: 1999
  article-title: Water relations of and in Iguazu National Park, Argentina
  publication-title: Plant Physiology
– volume: 174
  start-page: 572
  year: 2017
  end-page: 582
  article-title: Modeling stomatal conductance
  publication-title: Plant Physiology
– volume: 190
  start-page: 531
  year: 1898
  end-page: 621
  article-title: IX. Observations on stomata
  publication-title: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences
– volume: 6
  start-page: 1023
  year: 2016
  end-page: 1027
  article-title: The increasing importance of atmospheric demand for ecosystem water and carbon fluxes
  publication-title: Nature Climate Change
– volume: 331
  start-page: 582
  year: 2011
  end-page: 585
  article-title: Passive origins of stomatal control in vascular plants
  publication-title: Science
– volume: 45
  start-page: 2607
  year: 2022
  end-page: 2616
  article-title: Tracheid buckling buys time, foliar water uptake pays it back: coordination of leaf structure and function in tall redwood trees
  publication-title: Plant, Cell & Environment
– volume: 229
  start-page: 805
  year: 2021b
  end-page: 819
  article-title: Quantifying vulnerability to embolism in tropical trees and lianas using five methods: can discrepancies be explained by xylem structural traits?
  publication-title: New Phytologist
– volume: 174
  start-page: 764
  year: 2017
  end-page: 775
  article-title: Stomatal closure, basal leaf embolism and shedding protect the hydraulic integrity of grape stems
  publication-title: Plant Physiology
– volume: 88
  start-page: 574
  year: 1988
  end-page: 580
  article-title: Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress?
  publication-title: Plant Physiology
– volume: 118
  year: 2021
  article-title: Rapid hydraulic collapse as cause of drought‐induced mortality in conifers
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 23
  start-page: 922
  year: 2009
  end-page: 930
  article-title: Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance
  publication-title: Functional Ecology
– volume: 172
  start-page: 2261
  year: 2016
  end-page: 2274
  article-title: Reversible leaf xylem collapse: a potential 'circuit breaker' against cavitation
  publication-title: Plant Physiology
– volume: 118
  year: 2021
  article-title: A minimally disruptive method for measuring water potential in planta using hydrogel nanoreporters
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 164
  start-page: 1741
  year: 2014
  end-page: 1758
  article-title: The competition between liquid and vapor transport in transpiring leaves
  publication-title: Plant Physiology
– volume: 558
  start-page: 531
  year: 2018
  end-page: 539
  article-title: Triggers of tree mortality under drought
  publication-title: Nature
– start-page: 1253
  year: 2016
  article-title: Does size matter? Atmospheric CO may be a stronger driver of stomatal closing rate than stomatal size in taxa that diversified under low CO
  publication-title: Frontiers in Plant Science
– volume: 165
  start-page: 1557
  year: 2014
  end-page: 1565
  article-title: Reversible deformation of transfusion tracheids in is associated with a reversible decrease in leaf hydraulic conductance
  publication-title: Plant Physiology
– volume: 113
  start-page: 5024
  year: 2016
  end-page: 5029
  article-title: Meta‐analysis reveals that hydraulic traits explain cross‐species patterns of drought‐induced tree mortality across the globe
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 43
  start-page: 854
  year: 2020
  end-page: 865
  article-title: Neither xylem collapse, cavitation, or changing leaf conductance drive stomatal closure in wheat
  publication-title: Plant, Cell & Environment
– volume: 180
  start-page: 874
  year: 2019
  end-page: 881
  article-title: Visualizing embolism propagation in gas‐injected leaves
  publication-title: Plant Physiology
– volume: 126
  start-page: 457
  year: 2001
  end-page: 461
  article-title: Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure
  publication-title: Oecologia
– volume: 202
  start-page: 499
  year: 2014
  end-page: 508
  article-title: To open or to close: species‐specific stomatal responses to simultaneously applied opposing environmental factors
  publication-title: New Phytologist
– volume: 221
  start-page: 93
  year: 2019
  end-page: 98
  article-title: Speedy stomata, photosynthesis and plant water use efficiency
  publication-title: New Phytologist
– volume: 15
  start-page: 666
  year: 2012
  end-page: 672
  article-title: The maximum height of grasses is determined by roots
  publication-title: Ecology Letters
– volume: 164
  start-page: 1556
  year: 2014
  end-page: 1570
  article-title: Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency
  publication-title: Plant Physiology
– volume: 14
  start-page: 509
  year: 1991
  end-page: 515
  article-title: Stomatal responses to humidity in air and helox
  publication-title: Plant, Cell & Environment
– volume: 26
  start-page: 3569
  year: 2020
  end-page: 3584
  article-title: Amazonia trees have limited capacity to acclimate plant hydraulic properties in response to long‐term drought
  publication-title: Global Change Biology
– year: 1983
– volume: 24
  start-page: 2350
  year: 2021a
  end-page: 2363
  article-title: Hydraulic prediction of drought‐induced plant dieback and top‐kill depends on leaf habit and growth form
  publication-title: Ecology Letters
– volume: 143
  start-page: 78
  year: 2007
  end-page: 87
  article-title: The mechanical diversity of stomata and its significance in gas‐exchange control
  publication-title: Plant Physiology
– volume: 209
  start-page: 1403
  year: 2016b
  end-page: 1409
  article-title: Visual quantification of embolism reveals leaf vulnerability to hydraulic failure
  publication-title: New Phytologist
– volume: 164
  start-page: 1772
  year: 2013
  end-page: 1788
  article-title: Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance
  publication-title: Plant Physiology
– volume: 132
  start-page: 2166
  year: 2003
  end-page: 2173
  article-title: Stomatal closure during leaf dehydration, correlation with other leaf physiological traits
  publication-title: Plant Physiology
– volume: 10
  start-page: 62
  year: 1928
  end-page: 161
  article-title: Die Entwicklung der larvalsegmente bei den Anneliden
  publication-title: Zeitschrift für Morphologie und Ökologie der Tiere
– volume: 113
  start-page: 4865
  year: 2016a
  end-page: 4869
  article-title: Revealing catastrophic failure of leaf networks under stress
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 528
  start-page: 119
  year: 2015
  end-page: 122
  article-title: Death from drought in tropical forests is triggered by hydraulics not carbon starvation
  publication-title: Nature
– volume: 21
  start-page: 1181
  year: 1998
  end-page: 1188
  article-title: The regulation of isoprene emission responses to rapid leaf temperature fluctuations
  publication-title: Plant, Cell & Environment
– volume: 205
  start-page: 581
  year: 1979
  end-page: 598
  article-title: The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme
  publication-title: Proceedings of the Royal Society of London. Series B: Biological Sciences
– volume: 162
  start-page: 663
  year: 2004
  end-page: 670
  article-title: Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms
  publication-title: New Phytologist
– volume: 36
  start-page: 748
  year: 2016
  end-page: 755
  article-title: Short‐time xylem relaxation results in reliable quantification of embolism in grapevine petioles and sheds new light on their hydraulic strategy
  publication-title: Tree Physiology
– volume: 491
  start-page: 752
  year: 2012
  end-page: 755
  article-title: Global convergence in the vulnerability of forests to drought
  publication-title: Nature
– volume: 83
  start-page: 263
  year: 1981
  end-page: 272
  article-title: Transfusion tissue in gymnosperm leaves
  publication-title: Botanical Journal of the Linnean Society
– volume: 134
  start-page: 401
  year: 2004
  end-page: 408
  article-title: Xylem wall collapse in water‐stressed pine needles
  publication-title: Plant Physiology
– ident: e_1_2_9_28_1
  doi: 10.1007/s004420100628
– ident: e_1_2_9_43_1
  doi: 10.1111/pce.13087
– ident: e_1_2_9_50_1
  doi: 10.1104/pp.53.1.125
– ident: e_1_2_9_18_1
  doi: 10.1111/pce.14381
– ident: e_1_2_9_51_1
  doi: 10.1104/pp.16.01191
– ident: e_1_2_9_4_1
  doi: 10.1073/pnas.2025251118
– ident: e_1_2_9_48_1
  doi: 10.1046/j.1365-3040.1998.00380.x
– start-page: 1253
  year: 2016
  ident: e_1_2_9_25_1
  article-title: Does size matter? Atmospheric CO2 may be a stronger driver of stomatal closing rate than stomatal size in taxa that diversified under low CO2
  publication-title: Frontiers in Plant Science
– ident: e_1_2_9_27_1
  doi: 10.1098/rspb.1979.0086
– ident: e_1_2_9_8_1
  doi: 10.1104/pp.103.023879
– ident: e_1_2_9_52_1
  doi: 10.1104/pp.114.243105
– ident: e_1_2_9_15_1
  doi: 10.1111/j.1461-0248.2012.01783.x
– ident: e_1_2_9_37_1
  doi: 10.1111/nph.15330
– ident: e_1_2_9_47_1
  doi: 10.1104/pp.113.221424
– ident: e_1_2_9_17_1
  doi: 10.1111/nph.16927
– ident: e_1_2_9_46_1
  doi: 10.1104/pp.108.129015
– ident: e_1_2_9_11_1
  doi: 10.1126/science.1197985
– ident: e_1_2_9_38_1
  doi: 10.1104/pp.16.00380
– ident: e_1_2_9_5_1
  doi: 10.1111/gcb.15040
– ident: e_1_2_9_24_1
  doi: 10.1098/rstb.1895.0012
– ident: e_1_2_9_40_1
  doi: 10.1111/nph.12667
– ident: e_1_2_9_36_1
  doi: 10.1104/pp.114.237107
– ident: e_1_2_9_33_1
  doi: 10.1007/BF00419279
– ident: e_1_2_9_26_1
  doi: 10.1104/pp.106.089367
– ident: e_1_2_9_29_1
  doi: 10.1093/treephys/tpv145
– ident: e_1_2_9_35_1
  doi: 10.1104/pp.16.00136
– ident: e_1_2_9_9_1
  doi: 10.1111/j.1469-8137.2004.01060.x
– ident: e_1_2_9_3_1
  doi: 10.1073/pnas.1525678113
– ident: e_1_2_9_6_1
  doi: 10.1016/j.pbi.2009.10.001
– ident: e_1_2_9_45_1
  doi: 10.1038/nature15539
– ident: e_1_2_9_42_1
  doi: 10.1038/nclimate3114
– ident: e_1_2_9_22_1
  doi: 10.1111/pce.13722
– ident: e_1_2_9_2_1
  doi: 10.1038/s41559-017-0248-x
– ident: e_1_2_9_30_1
  doi: 10.1104/pp.18.01284
– ident: e_1_2_9_41_1
  doi: 10.1111/j.1365-3040.1991.tb01521.x
– ident: e_1_2_9_23_1
  doi: 10.1098/rstb.1898.0009
– ident: e_1_2_9_31_1
  doi: 10.1104/pp.16.01816
– ident: e_1_2_9_7_1
  doi: 10.1073/pnas.1522569113
– ident: e_1_2_9_32_1
  doi: 10.1111/j.1095-8339.1981.tb00350.x
– ident: e_1_2_9_39_1
  doi: 10.1111/j.1365-2435.2009.01577.x
– ident: e_1_2_9_19_1
  doi: 10.1038/s41586-018-0240-x
– ident: e_1_2_9_53_1
  doi: 10.1007/978-3-662-22627-8
– ident: e_1_2_9_20_1
  doi: 10.1038/nature11688
– ident: e_1_2_9_14_1
  doi: 10.1104/pp.16.01772
– ident: e_1_2_9_34_1
  doi: 10.1073/pnas.2008276118
– ident: e_1_2_9_10_1
  doi: 10.1104/pp.104.058156
– ident: e_1_2_9_49_1
  doi: 10.1104/pp.88.3.574
– ident: e_1_2_9_13_1
  doi: 10.1111/nph.13846
– ident: e_1_2_9_16_1
  doi: 10.1111/ele.13856
– ident: e_1_2_9_21_1
  doi: 10.1104/pp.103.028357
– ident: e_1_2_9_12_1
  doi: 10.1104/pp.17.00078
– ident: e_1_2_9_44_1
  doi: 10.1104/pp.114.236323
SSID ssj0009562
Score 2.4858131
Snippet Summary The hydraulic system of vascular plants and its integrity is essential for plant survival. To transport water under tension, the walls of xylem...
The hydraulic system of vascular plants and its integrity is essential for plant survival. To transport water under tension, the walls of xylem conduits must...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1242
SubjectTerms Bamboo
bamboos
Circuit breakers
conduit collapse
Cycadopsida
Deformation
Dehydration
Embolism
Ferns
ferns and fern allies
Flowers & plants
Ginkgo
Grasses
Hydraulic equipment
Hydraulic systems
Leaves
Plant Leaves
Plants
Plants (botany)
Poaceae
Rigid pipes
Species
Survival
Tracheophyta
transient water stress
Transpiration
Upstream
vapor pressure deficit
Veins (plant anatomy)
Water
Water potential
water stress
water transport
Xylem
xylem vessels
Title Xylem conduit deformation across vascular plants: an evolutionary spandrel or protective valve?
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.18584
https://www.ncbi.nlm.nih.gov/pubmed/36307967
https://www.proquest.com/docview/2766639533
https://www.proquest.com/docview/2730320659
https://www.proquest.com/docview/2811979647
Volume 237
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fSxwxEB9EfOhLrf3nWVvS0gdf9lgv2WxWH6QtylGolFLhHgrbJDvB0nXvqHeC_TR-Fj-ZM_sPrW0R3xYygclOZvKbZPILwFtMyaramojQp4mUjWVknFeRwlQlroidqrcuPh3q8ZH6OEkmS7Db3YVp-CH6DTf2jDpes4Nbd3rNyavZ8ZAWG8NcoFyrxYDoy-ga4a4edQzMWulJyyrEVTx9z5tr0S2AeROv1gvOwSp861Rt6kx-DhdzN_S__2BxvOdYHsHDFoiKd83MWYMlrB7DyvspgcXzJ_B9cl7iiaBkuVj8mIsC-0uOwtaDEV0Jq5iVXEqzI2x1eYFn7UwmVQTFKq6WLMWUhBo6CAqt1LE8w72ncHSw__XDOGofY4i8NFpFNlWxM3yu6RIVTOy3ZcgSI13iKCXJmDZQoZc6tgWlSFnAgErbwiUaMyRYJZ_BcjWtcB1EKGRIUxsIjBhF8cSEWBbeS49JCBa3B7DVmSX3LVM5P5hR5l3GQv8rr__XAN70orOGnuNvQpudbfPWQ0_zUUqJm-Ti2gG87pvJt_jAxFY4XbCM5PfldZL9R8bwQSzf5x3A82be9JpITRE009SyVVv_3yrmh5_H9cfG3UVfwIMRIa6mhHwTlue_FviSENLcvapd4Qr43A2L
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1taxQxEB5qFfRL67unVaP4oV_22F6y2awI4ls5tT1EWrgvZU2yExS3e4feFeqv6W_xlzmzb7S-IX5byASSnczkmWTyDMAjTEmr2pqI0KeJlI1lZJxXkcJUJa6InaqPLnYneryv3kyT6Qo86d7CNPwQ_YEbW0btr9nA-UD6lJVX849D2m2MOgfnuaI3M-e_fD86RbmrRx0Hs1Z62vIKcR5P3_XsbvQLxDyLWOstZ3sdDrrBNpkmn4fLhRv6bz_xOP7vbC7DWotFxbNm8VyBFayuwoXnM8KLx9fgw_S4xENB8XKx_LQQBfbvHIWtZyO6LFYxLzmb5rGw1fcTPGoXM41FkLvihMlSzEioYYQg70odyyN8eh32t1_tvRhHbT2GyEujVWRTFTvDV5suUcHEfkuGLDHSJY6ikoyZAxV6qWNbUJSUBQyotC1cojFDQlbyBqxWswpvgQiFDGlqA-ERo8ilmBDLwnvpMQnB4tYANju95L4lK-eaGWXeBS30v_L6fw3gYS86bxg6fie00Sk3b430az5KKXaTnF87gAd9M5kX35nYCmdLlpFcYl4n2V9kDN_F8pPeAdxsFk4_EqnJiWaaWjZr9f95iPnk3bj-uP3vovfh4nhvdyffeT15ewcujQiANRnlG7C6-LLEuwSYFu5ebRc_AL20Eac
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fTxQxEJ8AGuIL-A84QC3EB172sly73a48GBUvp-iFGEnuwWRtu9NoXPYucEeCn8bP4idjuv8CiobwtkmnSbvTmf6mnf4G4DnGpFWpVUDoUwVChzxQxopAYCwik4VGlEcXH4dycCTej6LRHOw1b2Eqfoj2wM1bRumvvYFPMnfJyIvJty5tNkrMwx0hw8TXbdj_1LvEuCt7DQWzFHJU0wr5NJ6269XN6C-EeRWwljtOfxm-NGOtEk1-dGdT07U__6BxvOVk7sNSjUTZq2rpPIA5LB7C3ddjQovnj-Dr6DzHY0bRcjb7PmUZtq8cmS4nw5ocVjbJfS7NC6aL37_wrF7KNBRGzsqnS-ZsTEIVHwT5VuqYn-HLx3DUf_v5zSCoqzEElispAh2L0Ch_sWki4VRod7lLIsVNZCgmSTxvoEDLZagzipEShw6F1JmJJCZIuIqvwEIxLnANmMu4i2PtCI0oQQ5FuZBn1nKLkXMadzuw06gltTVVua-YkadNyEL_Ky3_Vwe2W9FJxc9xndBmo9u0NtHTtBdT5MZ9dm0HttpmMi5_Y6ILHM-8DPcF5mWU_EdG-ZtY_6C3A6vVumlHwiW50ERSy06p_X8PMR0eDsqP9ZuLPoPFw_1--uHd8GAD7vUIfVXp5JuwMD2Z4RNCS1PztLSKC4PjEFY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Xylem+conduit+deformation+across+vascular+plants%3A+an%C2%A0evolutionary+spandrel+or+protective+valve%3F&rft.jtitle=The+New+phytologist&rft.au=Zhang%2C+Yong%E2%80%90Jiang&rft.au=Hochberg%2C+Uri&rft.au=Rockwell%2C+Fulton+E.&rft.au=Ponomarenko%2C+Alexandre&rft.date=2023-02-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=237&rft.issue=4&rft.spage=1242&rft.epage=1255&rft_id=info:doi/10.1111%2Fnph.18584&rft.externalDBID=10.1111%252Fnph.18584&rft.externalDocID=NPH18584
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon