Xylem conduit deformation across vascular plants: an evolutionary spandrel or protective valve?
Summary The hydraulic system of vascular plants and its integrity is essential for plant survival. To transport water under tension, the walls of xylem conduits must approximate rigid pipes. Against this expectation, conduit deformation has been reported in the leaves of a few species and hypothesiz...
Saved in:
Published in | The New phytologist Vol. 237; no. 4; pp. 1242 - 1255 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
The hydraulic system of vascular plants and its integrity is essential for plant survival. To transport water under tension, the walls of xylem conduits must approximate rigid pipes. Against this expectation, conduit deformation has been reported in the leaves of a few species and hypothesized to function as a ‘circuit breaker’ against embolism. Experimental evidence is lacking, and its generality is unknown.
We demonstrated the role of conduit deformation in protecting the upstream xylem from embolism through experiments on three species and surveyed a diverse selection of vascular plants for conduit deformation in leaves.
Conduit deformation in minor veins occurred before embolism during slow dehydration. When leaves were exposed to transient increases in transpiration, conduit deformation was accompanied by large water potential differences from leaf to stem and minimal embolism in the upstream xylem. In the three species tested, collapsible vein endings provided clear protection of upstream xylem from embolism during transient increases in transpiration.
We found conduit deformation in diverse vascular plants, including 11 eudicots, ginkgo, a cycad, a fern, a bamboo, and a grass species, but not in two bamboo and a palm species, demonstrating that the potential for ‘circuit breaker’ functionality may be widespread across vascular plants. |
---|---|
AbstractList | The hydraulic system of vascular plants and its integrity is essential for plant survival. To transport water under tension, the walls of xylem conduits must approximate rigid pipes. Against this expectation, conduit deformation has been reported in the leaves of a few species and hypothesized to function as a ‘circuit breaker’ against embolism. Experimental evidence is lacking, and its generality is unknown.
We demonstrated the role of conduit deformation in protecting the upstream xylem from embolism through experiments on three species and surveyed a diverse selection of vascular plants for conduit deformation in leaves.
Conduit deformation in minor veins occurred before embolism during slow dehydration. When leaves were exposed to transient increases in transpiration, conduit deformation was accompanied by large water potential differences from leaf to stem and minimal embolism in the upstream xylem. In the three species tested, collapsible vein endings provided clear protection of upstream xylem from embolism during transient increases in transpiration.
We found conduit deformation in diverse vascular plants, including 11 eudicots, ginkgo, a cycad, a fern, a bamboo, and a grass species, but not in two bamboo and a palm species, demonstrating that the potential for ‘circuit breaker’ functionality may be widespread across vascular plants. Summary The hydraulic system of vascular plants and its integrity is essential for plant survival. To transport water under tension, the walls of xylem conduits must approximate rigid pipes. Against this expectation, conduit deformation has been reported in the leaves of a few species and hypothesized to function as a ‘circuit breaker’ against embolism. Experimental evidence is lacking, and its generality is unknown. We demonstrated the role of conduit deformation in protecting the upstream xylem from embolism through experiments on three species and surveyed a diverse selection of vascular plants for conduit deformation in leaves. Conduit deformation in minor veins occurred before embolism during slow dehydration. When leaves were exposed to transient increases in transpiration, conduit deformation was accompanied by large water potential differences from leaf to stem and minimal embolism in the upstream xylem. In the three species tested, collapsible vein endings provided clear protection of upstream xylem from embolism during transient increases in transpiration. We found conduit deformation in diverse vascular plants, including 11 eudicots, ginkgo, a cycad, a fern, a bamboo, and a grass species, but not in two bamboo and a palm species, demonstrating that the potential for ‘circuit breaker’ functionality may be widespread across vascular plants. The hydraulic system of vascular plants and its integrity is essential for plant survival. To transport water under tension, the walls of xylem conduits must approximate rigid pipes. Against this expectation, conduit deformation has been reported in the leaves of a few species and hypothesized to function as a ‘circuit breaker’ against embolism. Experimental evidence is lacking, and its generality is unknown.We demonstrated the role of conduit deformation in protecting the upstream xylem from embolism through experiments on three species and surveyed a diverse selection of vascular plants for conduit deformation in leaves.Conduit deformation in minor veins occurred before embolism during slow dehydration. When leaves were exposed to transient increases in transpiration, conduit deformation was accompanied by large water potential differences from leaf to stem and minimal embolism in the upstream xylem. In the three species tested, collapsible vein endings provided clear protection of upstream xylem from embolism during transient increases in transpiration.We found conduit deformation in diverse vascular plants, including 11 eudicots, ginkgo, a cycad, a fern, a bamboo, and a grass species, but not in two bamboo and a palm species, demonstrating that the potential for ‘circuit breaker’ functionality may be widespread across vascular plants. The hydraulic system of vascular plants and its integrity is essential for plant survival. To transport water under tension, the walls of xylem conduits must approximate rigid pipes. Against this expectation, conduit deformation has been reported in the leaves of a few species and hypothesized to function as a 'circuit breaker' against embolism. Experimental evidence is lacking, and its generality is unknown. We demonstrated the role of conduit deformation in protecting the upstream xylem from embolism through experiments on three species and surveyed a diverse selection of vascular plants for conduit deformation in leaves. Conduit deformation in minor veins occurred before embolism during slow dehydration. When leaves were exposed to transient increases in transpiration, conduit deformation was accompanied by large water potential differences from leaf to stem and minimal embolism in the upstream xylem. In the three species tested, collapsible vein endings provided clear protection of upstream xylem from embolism during transient increases in transpiration. We found conduit deformation in diverse vascular plants, including 11 eudicots, ginkgo, a cycad, a fern, a bamboo, and a grass species, but not in two bamboo and a palm species, demonstrating that the potential for 'circuit breaker' functionality may be widespread across vascular plants.The hydraulic system of vascular plants and its integrity is essential for plant survival. To transport water under tension, the walls of xylem conduits must approximate rigid pipes. Against this expectation, conduit deformation has been reported in the leaves of a few species and hypothesized to function as a 'circuit breaker' against embolism. Experimental evidence is lacking, and its generality is unknown. We demonstrated the role of conduit deformation in protecting the upstream xylem from embolism through experiments on three species and surveyed a diverse selection of vascular plants for conduit deformation in leaves. Conduit deformation in minor veins occurred before embolism during slow dehydration. When leaves were exposed to transient increases in transpiration, conduit deformation was accompanied by large water potential differences from leaf to stem and minimal embolism in the upstream xylem. In the three species tested, collapsible vein endings provided clear protection of upstream xylem from embolism during transient increases in transpiration. We found conduit deformation in diverse vascular plants, including 11 eudicots, ginkgo, a cycad, a fern, a bamboo, and a grass species, but not in two bamboo and a palm species, demonstrating that the potential for 'circuit breaker' functionality may be widespread across vascular plants. |
Author | Chen, Ya‐Jun Hochberg, Uri Ponomarenko, Alexandre Zhang, Yong‐Jiang Holbrook, N. Michele Graham, Adam C. Rockwell, Fulton E. Manandhar, Anju |
Author_xml | – sequence: 1 givenname: Yong‐Jiang orcidid: 0000-0001-5637-3015 surname: Zhang fullname: Zhang, Yong‐Jiang email: yongjiang.zhang@maine.edu organization: University of Maine – sequence: 2 givenname: Uri orcidid: 0000-0002-7649-7004 surname: Hochberg fullname: Hochberg, Uri organization: Institute of Soil, Water and Environmental Sciences – sequence: 3 givenname: Fulton E. orcidid: 0000-0002-2527-6033 surname: Rockwell fullname: Rockwell, Fulton E. organization: Harvard University – sequence: 4 givenname: Alexandre surname: Ponomarenko fullname: Ponomarenko, Alexandre organization: Harvard University – sequence: 5 givenname: Ya‐Jun orcidid: 0000-0001-5753-5565 surname: Chen fullname: Chen, Ya‐Jun organization: Chinese Academy of Sciences – sequence: 6 givenname: Anju surname: Manandhar fullname: Manandhar, Anju organization: Harvard University – sequence: 7 givenname: Adam C. surname: Graham fullname: Graham, Adam C. organization: Harvard University – sequence: 8 givenname: N. Michele orcidid: 0000-0003-3325-5395 surname: Holbrook fullname: Holbrook, N. Michele email: holbrook@oeb.harvard.edu organization: Harvard University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36307967$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c1O3DAQB3ALLWIXyqEvUEXqBQ5Z7Pgjdi9VhfiSUNtDK3ELjjNRs3LsrZ0s2rfhWXgyzC5wQCr1xZffjGbmv48mzjtA6CPBc5LeiVv-mRPJJdtBM8KEyiWh5QTNMC5kLpi4maL9GBcYY8VFsYemVFBcKlHO0O3N2kKfGe-asRuyBlofej103mXaBB9jttLRjFaHbGm1G-KXTLuHe1h5Oz4pHdZZXGrXBLCZTyj4AczQrSAV2hV8_YB2W20jHD7_B-j3-dmv08v8-sfF1em369xQKViuS4ZriQmVNWetxIbQVnFJa16rkilWcsXAUIF1UwisWmiBCd3UXIACLjA9QEfbvmmCvyPEoeq7aMCmocGPsSokISrtzMr_05JiWmDBVaKf39CFH4NLiyQlhKCKU5rUp2c11j001TJ0fTpM9XLmBI63YHPSAO0rIbh6irBKEVabCJM9eWNNN2wSGYLu7HsVd52F9b9bV99_Xm4rHgHXYK0x |
CitedBy_id | crossref_primary_10_1111_nph_19069 crossref_primary_10_1111_nph_19771 crossref_primary_10_1016_j_celrep_2024_113987 crossref_primary_10_1038_s43247_023_00904_4 crossref_primary_10_1093_plphys_kiad560 crossref_primary_10_1111_nph_20189 crossref_primary_10_3390_su16135483 crossref_primary_10_1007_s11104_024_07006_w crossref_primary_10_1016_j_agrformet_2023_109710 crossref_primary_10_1186_s12870_024_05756_4 crossref_primary_10_1111_ppl_14132 crossref_primary_10_1111_pce_15362 crossref_primary_10_3390_agronomy14030438 |
Cites_doi | 10.1007/s004420100628 10.1111/pce.13087 10.1104/pp.53.1.125 10.1111/pce.14381 10.1104/pp.16.01191 10.1073/pnas.2025251118 10.1046/j.1365-3040.1998.00380.x 10.1098/rspb.1979.0086 10.1104/pp.103.023879 10.1104/pp.114.243105 10.1111/j.1461-0248.2012.01783.x 10.1111/nph.15330 10.1104/pp.113.221424 10.1111/nph.16927 10.1104/pp.108.129015 10.1126/science.1197985 10.1104/pp.16.00380 10.1111/gcb.15040 10.1098/rstb.1895.0012 10.1111/nph.12667 10.1104/pp.114.237107 10.1007/BF00419279 10.1104/pp.106.089367 10.1093/treephys/tpv145 10.1104/pp.16.00136 10.1111/j.1469-8137.2004.01060.x 10.1073/pnas.1525678113 10.1016/j.pbi.2009.10.001 10.1038/nature15539 10.1038/nclimate3114 10.1111/pce.13722 10.1038/s41559-017-0248-x 10.1104/pp.18.01284 10.1111/j.1365-3040.1991.tb01521.x 10.1098/rstb.1898.0009 10.1104/pp.16.01816 10.1073/pnas.1522569113 10.1111/j.1095-8339.1981.tb00350.x 10.1111/j.1365-2435.2009.01577.x 10.1038/s41586-018-0240-x 10.1007/978-3-662-22627-8 10.1038/nature11688 10.1104/pp.16.01772 10.1073/pnas.2008276118 10.1104/pp.104.058156 10.1104/pp.88.3.574 10.1111/nph.13846 10.1111/ele.13856 10.1104/pp.103.028357 10.1104/pp.17.00078 10.1104/pp.114.236323 |
ContentType | Journal Article |
Copyright | 2022 The Authors. © 2022 New Phytologist Foundation. 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation. Copyright © 2023 New Phytologist Trust |
Copyright_xml | – notice: 2022 The Authors. © 2022 New Phytologist Foundation. – notice: 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation. – notice: Copyright © 2023 New Phytologist Trust |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.18584 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 1255 |
ExternalDocumentID | 36307967 10_1111_nph_18584 NPH18584 |
Genre | researchArticle Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: William F. Milton Fund of Harvard University – fundername: U.S. Department of Agriculture funderid: Hatch ME0‐22021 – fundername: National Natural Science Foundation of China funderid: NOS 32071735; 41861144016 – fundername: National Science Foundation funderid: EAGER 1659918; IOS 1456836; DMR 14‐20570 – fundername: Open Fund of CAS Key Laboratory of Tropical Forest Ecology – fundername: Air Force Office of Sponsored Research funderid: FA9550‐09‐1‐0188 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AASVR AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABLJU ABPLY ABPVW ABTLG ABVKB ABXSQ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPNFZ IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT AAYXX ABGDZ ABSQW ADXHL AEYWJ AGHNM AGUYK AGYGG CITATION CGR CUY CVF ECM EIF NPM PKN 7QO 7SN 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3864-a740b80138b54f80c13f9583b5b974947594ec360ad2609fefe46adb56e9e5603 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:29:42 EDT 2025 Fri Jul 11 16:17:31 EDT 2025 Fri Jul 25 09:22:45 EDT 2025 Wed Feb 19 02:25:13 EST 2025 Thu Apr 24 23:13:03 EDT 2025 Tue Jul 01 02:28:44 EDT 2025 Wed Jan 22 16:24:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | conduit collapse xylem vessels water transport vapor pressure deficit water stress embolism transient water stress |
Language | English |
License | 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3864-a740b80138b54f80c13f9583b5b974947594ec360ad2609fefe46adb56e9e5603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2527-6033 0000-0003-3325-5395 0000-0002-7649-7004 0000-0001-5753-5565 0000-0001-5637-3015 |
PMID | 36307967 |
PQID | 2766639533 |
PQPubID | 2026848 |
PageCount | 1255 |
ParticipantIDs | proquest_miscellaneous_2811979647 proquest_miscellaneous_2730320659 proquest_journals_2766639533 pubmed_primary_36307967 crossref_primary_10_1111_nph_18584 crossref_citationtrail_10_1111_nph_18584 wiley_primary_10_1111_nph_18584_NPH18584 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 20230201 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2009; 23 2017; 1 1991; 14 2010; 13 1974; 53 2007; 143 2004; 162 2005; 137 1979; 205 1928; 10 2022; 45 2015; 528 2018; 41 2017; 174 2021a; 24 2012; 15 2013; 164 1981; 83 1998; 21 2001; 126 2016; 36 2019; 221 2003; 132 2011; 331 2012; 491 2004; 134 1898; 190 2016; 6 2019; 180 2018; 558 2021b; 229 2021; 118 2016; 113 1988; 88 2020; 26 2016 1983 2016b; 209 2020; 43 2016; 171 2014; 165 1895; 186 2016a; 113 2014; 164 2014; 202 2009; 149 2016; 172 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Elliott‐Kingston C (e_1_2_9_25_1) 2016 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 174 start-page: 639 year: 2017 end-page: 649 article-title: Evolution of the stomatal regulation of plant water content publication-title: Plant Physiology – volume: 137 start-page: 1139 year: 2005 end-page: 1146 article-title: Water stress deforms tracheids peripheral to the leaf vein of a tropical conifer publication-title: Plant Physiology – volume: 13 start-page: 102 year: 2010 end-page: 107 article-title: The evolution of plant development in a paleontological context publication-title: Current Opinion in Plant Biology – volume: 171 start-page: 1024 year: 2016 end-page: 1036 article-title: In situ visualization of the dynamics in xylem embolism formation and removal in the absence of root pressure: a study on excised grapevine stems publication-title: Plant Physiology – volume: 41 start-page: 342 year: 2018 end-page: 353 article-title: Bundle sheath lignification mediates the linkage of leaf hydraulics and venation publication-title: Plant, Cell & Environment – volume: 53 start-page: 125 year: 1974 end-page: 127 article-title: A water potential threshold for the increase of abscisic acid in leaves publication-title: Plant Physiology – volume: 1 start-page: 1285 year: 2017 end-page: 1291 article-title: A multi‐species synthesis of physiological mechanisms in drought‐induced tree mortality publication-title: Nature Ecology & Evolution – volume: 171 start-page: 2008 year: 2016 end-page: 2016 article-title: Linking turgor with ABA biosynthesis: implications for stomatal responses to vapor pressure deficit across land plants publication-title: Plant Physiology – volume: 186 start-page: 563 year: 1895 end-page: 576 article-title: On the ascent of sap publication-title: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences – volume: 149 start-page: 1992 year: 2009 end-page: 1999 article-title: Water relations of and in Iguazu National Park, Argentina publication-title: Plant Physiology – volume: 174 start-page: 572 year: 2017 end-page: 582 article-title: Modeling stomatal conductance publication-title: Plant Physiology – volume: 190 start-page: 531 year: 1898 end-page: 621 article-title: IX. Observations on stomata publication-title: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences – volume: 6 start-page: 1023 year: 2016 end-page: 1027 article-title: The increasing importance of atmospheric demand for ecosystem water and carbon fluxes publication-title: Nature Climate Change – volume: 331 start-page: 582 year: 2011 end-page: 585 article-title: Passive origins of stomatal control in vascular plants publication-title: Science – volume: 45 start-page: 2607 year: 2022 end-page: 2616 article-title: Tracheid buckling buys time, foliar water uptake pays it back: coordination of leaf structure and function in tall redwood trees publication-title: Plant, Cell & Environment – volume: 229 start-page: 805 year: 2021b end-page: 819 article-title: Quantifying vulnerability to embolism in tropical trees and lianas using five methods: can discrepancies be explained by xylem structural traits? publication-title: New Phytologist – volume: 174 start-page: 764 year: 2017 end-page: 775 article-title: Stomatal closure, basal leaf embolism and shedding protect the hydraulic integrity of grape stems publication-title: Plant Physiology – volume: 88 start-page: 574 year: 1988 end-page: 580 article-title: Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? publication-title: Plant Physiology – volume: 118 year: 2021 article-title: Rapid hydraulic collapse as cause of drought‐induced mortality in conifers publication-title: Proceedings of the National Academy of Sciences, USA – volume: 23 start-page: 922 year: 2009 end-page: 930 article-title: Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance publication-title: Functional Ecology – volume: 172 start-page: 2261 year: 2016 end-page: 2274 article-title: Reversible leaf xylem collapse: a potential 'circuit breaker' against cavitation publication-title: Plant Physiology – volume: 118 year: 2021 article-title: A minimally disruptive method for measuring water potential in planta using hydrogel nanoreporters publication-title: Proceedings of the National Academy of Sciences, USA – volume: 164 start-page: 1741 year: 2014 end-page: 1758 article-title: The competition between liquid and vapor transport in transpiring leaves publication-title: Plant Physiology – volume: 558 start-page: 531 year: 2018 end-page: 539 article-title: Triggers of tree mortality under drought publication-title: Nature – start-page: 1253 year: 2016 article-title: Does size matter? Atmospheric CO may be a stronger driver of stomatal closing rate than stomatal size in taxa that diversified under low CO publication-title: Frontiers in Plant Science – volume: 165 start-page: 1557 year: 2014 end-page: 1565 article-title: Reversible deformation of transfusion tracheids in is associated with a reversible decrease in leaf hydraulic conductance publication-title: Plant Physiology – volume: 113 start-page: 5024 year: 2016 end-page: 5029 article-title: Meta‐analysis reveals that hydraulic traits explain cross‐species patterns of drought‐induced tree mortality across the globe publication-title: Proceedings of the National Academy of Sciences, USA – volume: 43 start-page: 854 year: 2020 end-page: 865 article-title: Neither xylem collapse, cavitation, or changing leaf conductance drive stomatal closure in wheat publication-title: Plant, Cell & Environment – volume: 180 start-page: 874 year: 2019 end-page: 881 article-title: Visualizing embolism propagation in gas‐injected leaves publication-title: Plant Physiology – volume: 126 start-page: 457 year: 2001 end-page: 461 article-title: Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure publication-title: Oecologia – volume: 202 start-page: 499 year: 2014 end-page: 508 article-title: To open or to close: species‐specific stomatal responses to simultaneously applied opposing environmental factors publication-title: New Phytologist – volume: 221 start-page: 93 year: 2019 end-page: 98 article-title: Speedy stomata, photosynthesis and plant water use efficiency publication-title: New Phytologist – volume: 15 start-page: 666 year: 2012 end-page: 672 article-title: The maximum height of grasses is determined by roots publication-title: Ecology Letters – volume: 164 start-page: 1556 year: 2014 end-page: 1570 article-title: Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency publication-title: Plant Physiology – volume: 14 start-page: 509 year: 1991 end-page: 515 article-title: Stomatal responses to humidity in air and helox publication-title: Plant, Cell & Environment – volume: 26 start-page: 3569 year: 2020 end-page: 3584 article-title: Amazonia trees have limited capacity to acclimate plant hydraulic properties in response to long‐term drought publication-title: Global Change Biology – year: 1983 – volume: 24 start-page: 2350 year: 2021a end-page: 2363 article-title: Hydraulic prediction of drought‐induced plant dieback and top‐kill depends on leaf habit and growth form publication-title: Ecology Letters – volume: 143 start-page: 78 year: 2007 end-page: 87 article-title: The mechanical diversity of stomata and its significance in gas‐exchange control publication-title: Plant Physiology – volume: 209 start-page: 1403 year: 2016b end-page: 1409 article-title: Visual quantification of embolism reveals leaf vulnerability to hydraulic failure publication-title: New Phytologist – volume: 164 start-page: 1772 year: 2013 end-page: 1788 article-title: Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance publication-title: Plant Physiology – volume: 132 start-page: 2166 year: 2003 end-page: 2173 article-title: Stomatal closure during leaf dehydration, correlation with other leaf physiological traits publication-title: Plant Physiology – volume: 10 start-page: 62 year: 1928 end-page: 161 article-title: Die Entwicklung der larvalsegmente bei den Anneliden publication-title: Zeitschrift für Morphologie und Ökologie der Tiere – volume: 113 start-page: 4865 year: 2016a end-page: 4869 article-title: Revealing catastrophic failure of leaf networks under stress publication-title: Proceedings of the National Academy of Sciences, USA – volume: 528 start-page: 119 year: 2015 end-page: 122 article-title: Death from drought in tropical forests is triggered by hydraulics not carbon starvation publication-title: Nature – volume: 21 start-page: 1181 year: 1998 end-page: 1188 article-title: The regulation of isoprene emission responses to rapid leaf temperature fluctuations publication-title: Plant, Cell & Environment – volume: 205 start-page: 581 year: 1979 end-page: 598 article-title: The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme publication-title: Proceedings of the Royal Society of London. Series B: Biological Sciences – volume: 162 start-page: 663 year: 2004 end-page: 670 article-title: Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms publication-title: New Phytologist – volume: 36 start-page: 748 year: 2016 end-page: 755 article-title: Short‐time xylem relaxation results in reliable quantification of embolism in grapevine petioles and sheds new light on their hydraulic strategy publication-title: Tree Physiology – volume: 491 start-page: 752 year: 2012 end-page: 755 article-title: Global convergence in the vulnerability of forests to drought publication-title: Nature – volume: 83 start-page: 263 year: 1981 end-page: 272 article-title: Transfusion tissue in gymnosperm leaves publication-title: Botanical Journal of the Linnean Society – volume: 134 start-page: 401 year: 2004 end-page: 408 article-title: Xylem wall collapse in water‐stressed pine needles publication-title: Plant Physiology – ident: e_1_2_9_28_1 doi: 10.1007/s004420100628 – ident: e_1_2_9_43_1 doi: 10.1111/pce.13087 – ident: e_1_2_9_50_1 doi: 10.1104/pp.53.1.125 – ident: e_1_2_9_18_1 doi: 10.1111/pce.14381 – ident: e_1_2_9_51_1 doi: 10.1104/pp.16.01191 – ident: e_1_2_9_4_1 doi: 10.1073/pnas.2025251118 – ident: e_1_2_9_48_1 doi: 10.1046/j.1365-3040.1998.00380.x – start-page: 1253 year: 2016 ident: e_1_2_9_25_1 article-title: Does size matter? Atmospheric CO2 may be a stronger driver of stomatal closing rate than stomatal size in taxa that diversified under low CO2 publication-title: Frontiers in Plant Science – ident: e_1_2_9_27_1 doi: 10.1098/rspb.1979.0086 – ident: e_1_2_9_8_1 doi: 10.1104/pp.103.023879 – ident: e_1_2_9_52_1 doi: 10.1104/pp.114.243105 – ident: e_1_2_9_15_1 doi: 10.1111/j.1461-0248.2012.01783.x – ident: e_1_2_9_37_1 doi: 10.1111/nph.15330 – ident: e_1_2_9_47_1 doi: 10.1104/pp.113.221424 – ident: e_1_2_9_17_1 doi: 10.1111/nph.16927 – ident: e_1_2_9_46_1 doi: 10.1104/pp.108.129015 – ident: e_1_2_9_11_1 doi: 10.1126/science.1197985 – ident: e_1_2_9_38_1 doi: 10.1104/pp.16.00380 – ident: e_1_2_9_5_1 doi: 10.1111/gcb.15040 – ident: e_1_2_9_24_1 doi: 10.1098/rstb.1895.0012 – ident: e_1_2_9_40_1 doi: 10.1111/nph.12667 – ident: e_1_2_9_36_1 doi: 10.1104/pp.114.237107 – ident: e_1_2_9_33_1 doi: 10.1007/BF00419279 – ident: e_1_2_9_26_1 doi: 10.1104/pp.106.089367 – ident: e_1_2_9_29_1 doi: 10.1093/treephys/tpv145 – ident: e_1_2_9_35_1 doi: 10.1104/pp.16.00136 – ident: e_1_2_9_9_1 doi: 10.1111/j.1469-8137.2004.01060.x – ident: e_1_2_9_3_1 doi: 10.1073/pnas.1525678113 – ident: e_1_2_9_6_1 doi: 10.1016/j.pbi.2009.10.001 – ident: e_1_2_9_45_1 doi: 10.1038/nature15539 – ident: e_1_2_9_42_1 doi: 10.1038/nclimate3114 – ident: e_1_2_9_22_1 doi: 10.1111/pce.13722 – ident: e_1_2_9_2_1 doi: 10.1038/s41559-017-0248-x – ident: e_1_2_9_30_1 doi: 10.1104/pp.18.01284 – ident: e_1_2_9_41_1 doi: 10.1111/j.1365-3040.1991.tb01521.x – ident: e_1_2_9_23_1 doi: 10.1098/rstb.1898.0009 – ident: e_1_2_9_31_1 doi: 10.1104/pp.16.01816 – ident: e_1_2_9_7_1 doi: 10.1073/pnas.1522569113 – ident: e_1_2_9_32_1 doi: 10.1111/j.1095-8339.1981.tb00350.x – ident: e_1_2_9_39_1 doi: 10.1111/j.1365-2435.2009.01577.x – ident: e_1_2_9_19_1 doi: 10.1038/s41586-018-0240-x – ident: e_1_2_9_53_1 doi: 10.1007/978-3-662-22627-8 – ident: e_1_2_9_20_1 doi: 10.1038/nature11688 – ident: e_1_2_9_14_1 doi: 10.1104/pp.16.01772 – ident: e_1_2_9_34_1 doi: 10.1073/pnas.2008276118 – ident: e_1_2_9_10_1 doi: 10.1104/pp.104.058156 – ident: e_1_2_9_49_1 doi: 10.1104/pp.88.3.574 – ident: e_1_2_9_13_1 doi: 10.1111/nph.13846 – ident: e_1_2_9_16_1 doi: 10.1111/ele.13856 – ident: e_1_2_9_21_1 doi: 10.1104/pp.103.028357 – ident: e_1_2_9_12_1 doi: 10.1104/pp.17.00078 – ident: e_1_2_9_44_1 doi: 10.1104/pp.114.236323 |
SSID | ssj0009562 |
Score | 2.4858131 |
Snippet | Summary
The hydraulic system of vascular plants and its integrity is essential for plant survival. To transport water under tension, the walls of xylem... The hydraulic system of vascular plants and its integrity is essential for plant survival. To transport water under tension, the walls of xylem conduits must... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1242 |
SubjectTerms | Bamboo bamboos Circuit breakers conduit collapse Cycadopsida Deformation Dehydration Embolism Ferns ferns and fern allies Flowers & plants Ginkgo Grasses Hydraulic equipment Hydraulic systems Leaves Plant Leaves Plants Plants (botany) Poaceae Rigid pipes Species Survival Tracheophyta transient water stress Transpiration Upstream vapor pressure deficit Veins (plant anatomy) Water Water potential water stress water transport Xylem xylem vessels |
Title | Xylem conduit deformation across vascular plants: an evolutionary spandrel or protective valve? |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.18584 https://www.ncbi.nlm.nih.gov/pubmed/36307967 https://www.proquest.com/docview/2766639533 https://www.proquest.com/docview/2730320659 https://www.proquest.com/docview/2811979647 |
Volume | 237 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fSxwxEB9EfOhLrf3nWVvS0gdf9lgv2WxWH6QtylGolFLhHgrbJDvB0nXvqHeC_TR-Fj-ZM_sPrW0R3xYygclOZvKbZPILwFtMyaramojQp4mUjWVknFeRwlQlroidqrcuPh3q8ZH6OEkmS7Db3YVp-CH6DTf2jDpes4Nbd3rNyavZ8ZAWG8NcoFyrxYDoy-ga4a4edQzMWulJyyrEVTx9z5tr0S2AeROv1gvOwSp861Rt6kx-DhdzN_S__2BxvOdYHsHDFoiKd83MWYMlrB7DyvspgcXzJ_B9cl7iiaBkuVj8mIsC-0uOwtaDEV0Jq5iVXEqzI2x1eYFn7UwmVQTFKq6WLMWUhBo6CAqt1LE8w72ncHSw__XDOGofY4i8NFpFNlWxM3yu6RIVTOy3ZcgSI13iKCXJmDZQoZc6tgWlSFnAgErbwiUaMyRYJZ_BcjWtcB1EKGRIUxsIjBhF8cSEWBbeS49JCBa3B7DVmSX3LVM5P5hR5l3GQv8rr__XAN70orOGnuNvQpudbfPWQ0_zUUqJm-Ti2gG87pvJt_jAxFY4XbCM5PfldZL9R8bwQSzf5x3A82be9JpITRE009SyVVv_3yrmh5_H9cfG3UVfwIMRIa6mhHwTlue_FviSENLcvapd4Qr43A2L |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1taxQxEB5qFfRL67unVaP4oV_22F6y2awI4ls5tT1EWrgvZU2yExS3e4feFeqv6W_xlzmzb7S-IX5byASSnczkmWTyDMAjTEmr2pqI0KeJlI1lZJxXkcJUJa6InaqPLnYneryv3kyT6Qo86d7CNPwQ_YEbW0btr9nA-UD6lJVX849D2m2MOgfnuaI3M-e_fD86RbmrRx0Hs1Z62vIKcR5P3_XsbvQLxDyLWOstZ3sdDrrBNpkmn4fLhRv6bz_xOP7vbC7DWotFxbNm8VyBFayuwoXnM8KLx9fgw_S4xENB8XKx_LQQBfbvHIWtZyO6LFYxLzmb5rGw1fcTPGoXM41FkLvihMlSzEioYYQg70odyyN8eh32t1_tvRhHbT2GyEujVWRTFTvDV5suUcHEfkuGLDHSJY6ikoyZAxV6qWNbUJSUBQyotC1cojFDQlbyBqxWswpvgQiFDGlqA-ERo8ilmBDLwnvpMQnB4tYANju95L4lK-eaGWXeBS30v_L6fw3gYS86bxg6fie00Sk3b430az5KKXaTnF87gAd9M5kX35nYCmdLlpFcYl4n2V9kDN_F8pPeAdxsFk4_EqnJiWaaWjZr9f95iPnk3bj-uP3vovfh4nhvdyffeT15ewcujQiANRnlG7C6-LLEuwSYFu5ebRc_AL20Eac |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fTxQxEJ8AGuIL-A84QC3EB172sly73a48GBUvp-iFGEnuwWRtu9NoXPYucEeCn8bP4idjuv8CiobwtkmnSbvTmf6mnf4G4DnGpFWpVUDoUwVChzxQxopAYCwik4VGlEcXH4dycCTej6LRHOw1b2Eqfoj2wM1bRumvvYFPMnfJyIvJty5tNkrMwx0hw8TXbdj_1LvEuCt7DQWzFHJU0wr5NJ6269XN6C-EeRWwljtOfxm-NGOtEk1-dGdT07U__6BxvOVk7sNSjUTZq2rpPIA5LB7C3ddjQovnj-Dr6DzHY0bRcjb7PmUZtq8cmS4nw5ocVjbJfS7NC6aL37_wrF7KNBRGzsqnS-ZsTEIVHwT5VuqYn-HLx3DUf_v5zSCoqzEElispAh2L0Ch_sWki4VRod7lLIsVNZCgmSTxvoEDLZagzipEShw6F1JmJJCZIuIqvwEIxLnANmMu4i2PtCI0oQQ5FuZBn1nKLkXMadzuw06gltTVVua-YkadNyEL_Ky3_Vwe2W9FJxc9xndBmo9u0NtHTtBdT5MZ9dm0HttpmMi5_Y6ILHM-8DPcF5mWU_EdG-ZtY_6C3A6vVumlHwiW50ERSy06p_X8PMR0eDsqP9ZuLPoPFw_1--uHd8GAD7vUIfVXp5JuwMD2Z4RNCS1PztLSKC4PjEFY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Xylem+conduit+deformation+across+vascular+plants%3A+an%C2%A0evolutionary+spandrel+or+protective+valve%3F&rft.jtitle=The+New+phytologist&rft.au=Zhang%2C+Yong%E2%80%90Jiang&rft.au=Hochberg%2C+Uri&rft.au=Rockwell%2C+Fulton+E.&rft.au=Ponomarenko%2C+Alexandre&rft.date=2023-02-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=237&rft.issue=4&rft.spage=1242&rft.epage=1255&rft_id=info:doi/10.1111%2Fnph.18584&rft.externalDBID=10.1111%252Fnph.18584&rft.externalDocID=NPH18584 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |