Vulnerability to forest loss through altered postfire recovery dynamics in a warming climate in the Klamath Mountains
In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or their postfire forest recovery dynamics could bring about extensive forest loss, with associated effects on biodiversity and carbon‐cycle feedbacks to...
Saved in:
Published in | Global change biology Vol. 23; no. 10; pp. 4117 - 4132 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or their postfire forest recovery dynamics could bring about extensive forest loss, with associated effects on biodiversity and carbon‐cycle feedbacks to climate change. Such concerns are particularly valid in the Klamath Region of northern California and southwestern Oregon, where severe fire initially converts montane conifer forests to systems dominated by broadleaf trees and shrubs. Conifers eventually overtop the competing vegetation, but until they do, these systems could be perpetuated by a cycle of reburning. To assess the vulnerability of conifer forests to increased fire activity and altered forest recovery dynamics in a warmer, drier climate, we characterized vegetation dynamics following severe fire in nine fire years over the last three decades across the climatic aridity gradient of montane conifer forests. Postfire conifer recruitment was limited to a narrow window, with 89% of recruitment in the first 4 years, and height growth tended to decrease as the lag between the fire year and the recruitment year increased. Growth reductions at longer lags were more pronounced at drier sites, where conifers comprised a smaller portion of live woody biomass. An interaction between seed‐source availability and climatic aridity drove substantial variation in the density of regenerating conifers. With increasing climatic water deficit, higher propagule pressure (i.e., smaller patch sizes for high‐severity fire) was needed to support a given conifer seedling density, which implies that projected future increases in aridity could limit postfire regeneration across a growing portion of the landscape. Under a more severe prospective warming scenario, by the end of the century more than half of the area currently capable of supporting montane conifer forest could become subject to minimal conifer regeneration in even moderate‐sized (10s of ha) high‐severity patches.
If climate change drives increases in wildfire activity while delaying postfire forest recovery, forested landscapes such as the Klamath Mountains (NW California/SW Oregon) could be at risk of extensive forest loss. To understand the vulnerability to such changes, we evaluated three decades of vegetation dynamics following high‐severity fire across the regional aridity gradient. Conifers faced a highly competitive environment following severe fire. They comprised only a small portion of live woody biomass, and recruitment was limited primarily to the first four years. Seedlings that established later faced pronounced growth suppression, particularly on drier sites. With increasing climatic aridity, more abundant seed sources were needed to support conifer recruitment at densities sufficient to develop a new forest canopy. Under a more severe warming scenario, by the end of the century just over half of the landscape could be at risk of minimal conifer recruitment following severe fire, even in relatively small high‐severity patches. |
---|---|
AbstractList | In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or their postfire forest recovery dynamics could bring about extensive forest loss, with associated effects on biodiversity and carbon-cycle feedbacks to climate change. Such concerns are particularly valid in the Klamath Region of northern California and southwestern Oregon, where severe fire initially converts montane conifer forests to systems dominated by broadleaf trees and shrubs. Conifers eventually overtop the competing vegetation, but until they do, these systems could be perpetuated by a cycle of reburning. To assess the vulnerability of conifer forests to increased fire activity and altered forest recovery dynamics in a warmer, drier climate, we characterized vegetation dynamics following severe fire in nine fire years over the last three decades across the climatic aridity gradient of montane conifer forests. Postfire conifer recruitment was limited to a narrow window, with 89% of recruitment in the first 4 years, and height growth tended to decrease as the lag between the fire year and the recruitment year increased. Growth reductions at longer lags were more pronounced at drier sites, where conifers comprised a smaller portion of live woody biomass. An interaction between seed-source availability and climatic aridity drove substantial variation in the density of regenerating conifers. With increasing climatic water deficit, higher propagule pressure (i.e., smaller patch sizes for high-severity fire) was needed to support a given conifer seedling density, which implies that projected future increases in aridity could limit postfire regeneration across a growing portion of the landscape. Under a more severe prospective warming scenario, by the end of the century more than half of the area currently capable of supporting montane conifer forest could become subject to minimal conifer regeneration in even moderate-sized (10s of ha) high-severity patches. In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or their postfire forest recovery dynamics could bring about extensive forest loss, with associated effects on biodiversity and carbon-cycle feedbacks to climate change. Such concerns are particularly valid in the Klamath Region of northern California and southwestern Oregon, where severe fire initially converts montane conifer forests to systems dominated by broadleaf trees and shrubs. Conifers eventually overtop the competing vegetation, but until they do, these systems could be perpetuated by a cycle of reburning. To assess the vulnerability of conifer forests to increased fire activity and altered forest recovery dynamics in a warmer, drier climate, we characterized vegetation dynamics following severe fire in nine fire years over the last three decades across the climatic aridity gradient of montane conifer forests. Postfire conifer recruitment was limited to a narrow window, with 89% of recruitment in the first 4 years, and height growth tended to decrease as the lag between the fire year and the recruitment year increased. Growth reductions at longer lags were more pronounced at drier sites, where conifers comprised a smaller portion of live woody biomass. An interaction between seed-source availability and climatic aridity drove substantial variation in the density of regenerating conifers. With increasing climatic water deficit, higher propagule pressure (i.e., smaller patch sizes for high-severity fire) was needed to support a given conifer seedling density, which implies that projected future increases in aridity could limit postfire regeneration across a growing portion of the landscape. Under a more severe prospective warming scenario, by the end of the century more than half of the area currently capable of supporting montane conifer forest could become subject to minimal conifer regeneration in even moderate-sized (10s of ha) high-severity patches. In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or their postfire forest recovery dynamics could bring about extensive forest loss, with associated effects on biodiversity and carbon-cycle feedbacks to climate change. Such concerns are particularly valid in the Klamath Region of northern California and southwestern Oregon, where severe fire initially converts montane conifer forests to systems dominated by broadleaf trees and shrubs. Conifers eventually overtop the competing vegetation, but until they do, these systems could be perpetuated by a cycle of reburning. To assess the vulnerability of conifer forests to increased fire activity and altered forest recovery dynamics in a warmer, drier climate, we characterized vegetation dynamics following severe fire in nine fire years over the last three decades across the climatic aridity gradient of montane conifer forests. Postfire conifer recruitment was limited to a narrow window, with 89% of recruitment in the first 4 years, and height growth tended to decrease as the lag between the fire year and the recruitment year increased. Growth reductions at longer lags were more pronounced at drier sites, where conifers comprised a smaller portion of live woody biomass. An interaction between seed-source availability and climatic aridity drove substantial variation in the density of regenerating conifers. With increasing climatic water deficit, higher propagule pressure (i.e., smaller patch sizes for high-severity fire) was needed to support a given conifer seedling density, which implies that projected future increases in aridity could limit postfire regeneration across a growing portion of the landscape. Under a more severe prospective warming scenario, by the end of the century more than half of the area currently capable of supporting montane conifer forest could become subject to minimal conifer regeneration in even moderate-sized (10s of ha) high-severity patches.In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or their postfire forest recovery dynamics could bring about extensive forest loss, with associated effects on biodiversity and carbon-cycle feedbacks to climate change. Such concerns are particularly valid in the Klamath Region of northern California and southwestern Oregon, where severe fire initially converts montane conifer forests to systems dominated by broadleaf trees and shrubs. Conifers eventually overtop the competing vegetation, but until they do, these systems could be perpetuated by a cycle of reburning. To assess the vulnerability of conifer forests to increased fire activity and altered forest recovery dynamics in a warmer, drier climate, we characterized vegetation dynamics following severe fire in nine fire years over the last three decades across the climatic aridity gradient of montane conifer forests. Postfire conifer recruitment was limited to a narrow window, with 89% of recruitment in the first 4 years, and height growth tended to decrease as the lag between the fire year and the recruitment year increased. Growth reductions at longer lags were more pronounced at drier sites, where conifers comprised a smaller portion of live woody biomass. An interaction between seed-source availability and climatic aridity drove substantial variation in the density of regenerating conifers. With increasing climatic water deficit, higher propagule pressure (i.e., smaller patch sizes for high-severity fire) was needed to support a given conifer seedling density, which implies that projected future increases in aridity could limit postfire regeneration across a growing portion of the landscape. Under a more severe prospective warming scenario, by the end of the century more than half of the area currently capable of supporting montane conifer forest could become subject to minimal conifer regeneration in even moderate-sized (10s of ha) high-severity patches. In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or their postfire forest recovery dynamics could bring about extensive forest loss, with associated effects on biodiversity and carbon‐cycle feedbacks to climate change. Such concerns are particularly valid in the Klamath Region of northern California and southwestern Oregon, where severe fire initially converts montane conifer forests to systems dominated by broadleaf trees and shrubs. Conifers eventually overtop the competing vegetation, but until they do, these systems could be perpetuated by a cycle of reburning. To assess the vulnerability of conifer forests to increased fire activity and altered forest recovery dynamics in a warmer, drier climate, we characterized vegetation dynamics following severe fire in nine fire years over the last three decades across the climatic aridity gradient of montane conifer forests. Postfire conifer recruitment was limited to a narrow window, with 89% of recruitment in the first 4 years, and height growth tended to decrease as the lag between the fire year and the recruitment year increased. Growth reductions at longer lags were more pronounced at drier sites, where conifers comprised a smaller portion of live woody biomass. An interaction between seed‐source availability and climatic aridity drove substantial variation in the density of regenerating conifers. With increasing climatic water deficit, higher propagule pressure (i.e., smaller patch sizes for high‐severity fire) was needed to support a given conifer seedling density, which implies that projected future increases in aridity could limit postfire regeneration across a growing portion of the landscape. Under a more severe prospective warming scenario, by the end of the century more than half of the area currently capable of supporting montane conifer forest could become subject to minimal conifer regeneration in even moderate‐sized (10s of ha) high‐severity patches. If climate change drives increases in wildfire activity while delaying postfire forest recovery, forested landscapes such as the Klamath Mountains (NW California/SW Oregon) could be at risk of extensive forest loss. To understand the vulnerability to such changes, we evaluated three decades of vegetation dynamics following high‐severity fire across the regional aridity gradient. Conifers faced a highly competitive environment following severe fire. They comprised only a small portion of live woody biomass, and recruitment was limited primarily to the first four years. Seedlings that established later faced pronounced growth suppression, particularly on drier sites. With increasing climatic aridity, more abundant seed sources were needed to support conifer recruitment at densities sufficient to develop a new forest canopy. Under a more severe warming scenario, by the end of the century just over half of the landscape could be at risk of minimal conifer recruitment following severe fire, even in relatively small high‐severity patches. |
Author | Tepley, Alan J. Anderson‐Teixeira, Kristina J. Epstein, Howard E. Thompson, Jonathan R. |
Author_xml | – sequence: 1 givenname: Alan J. orcidid: 0000-0002-5701-9613 surname: Tepley fullname: Tepley, Alan J. email: TepleyA@si.edu organization: Smithsonian Conservation Biology Institute – sequence: 2 givenname: Jonathan R. surname: Thompson fullname: Thompson, Jonathan R. organization: Harvard Forest – sequence: 3 givenname: Howard E. surname: Epstein fullname: Epstein, Howard E. organization: University of Virginia – sequence: 4 givenname: Kristina J. orcidid: 0000-0001-8461-9713 surname: Anderson‐Teixeira fullname: Anderson‐Teixeira, Kristina J. organization: Smithsonian Tropical Research Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28447370$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v1DAQxS1URP_AgS-ALHGhh7R2nMTxka5oQRRxAa7RxBnvuvLai-1Q5dvjZQuHSoAv4xn93kjz3ik58sEjIS85u-DlXa71eMGFZM0TcsJF11Z103dH-3_bVJxxcUxOU7pjjImadc_Icd03jSyCEzJ_m53HCKN1Ni80B2pCxJSpCynRvIlhXm8ouIwRJ7oLKRsbkUbU4QfGhU6Lh63ViVpPgd5D3Fq_ptrZLWTcD_MG6UcHpd3QT2H2GaxPz8lTAy7hi4d6Rr5ev_uyel_dfr75sHp7W2nRd00luQajxmmC0QDvhJhUreqxVa0yUmvgTGqJLegOWjCaA3LTGCVV3xepQnFG3hz27mL4Ppezhq1NGp0Dj2FOQ10saXsle_ZflPeqlnUjVFfQ14_QuzBHXw4ZuBKy4aKv99SrB2oetzgNu1g8icvw2_sCnB8AHYvXEc0fhLNhn-tQch1-5VrYy0esthmyDT5HsO5finvrcPn76uFmdXVQ_AT07bRv |
CitedBy_id | crossref_primary_10_1017_S0030605322000102 crossref_primary_10_1111_nph_16412 crossref_primary_10_1088_1748_9326_aaf354 crossref_primary_10_3389_ffgc_2023_1224624 crossref_primary_10_1073_pnas_1815107116 crossref_primary_10_3390_f12111567 crossref_primary_10_1016_j_foreco_2024_121916 crossref_primary_10_3390_f9040165 crossref_primary_10_1007_s10980_019_00929_1 crossref_primary_10_1016_j_foreco_2021_119678 crossref_primary_10_1016_j_scitotenv_2023_162575 crossref_primary_10_1073_pnas_2208120120 crossref_primary_10_1111_geb_13277 crossref_primary_10_1111_1365_2664_13630 crossref_primary_10_1186_s42408_024_00327_2 crossref_primary_10_1002_ecs2_2696 crossref_primary_10_1002_ecs2_4510 crossref_primary_10_1007_s10980_021_01325_4 crossref_primary_10_1029_2021AV000654 crossref_primary_10_1016_j_foreco_2024_122100 crossref_primary_10_3390_fire5020041 crossref_primary_10_1002_ecs2_2679 crossref_primary_10_1016_j_foreco_2024_122346 crossref_primary_10_1111_1365_2435_13132 crossref_primary_10_1016_j_foreco_2018_06_001 crossref_primary_10_1038_s41467_021_21266_5 crossref_primary_10_1016_j_foreco_2022_120536 crossref_primary_10_3390_rs10071000 crossref_primary_10_1002_ecs2_3091 crossref_primary_10_1002_ecs2_3250 crossref_primary_10_1016_j_foreco_2023_120951 crossref_primary_10_1186_s42408_025_00357_4 crossref_primary_10_1002_ecs2_3258 crossref_primary_10_1002_ecs2_2702 crossref_primary_10_3389_ffgc_2023_1198156 crossref_primary_10_1016_j_foreco_2019_117461 crossref_primary_10_1111_gcb_15118 crossref_primary_10_1186_s42408_019_0032_1 crossref_primary_10_3390_f11070779 crossref_primary_10_1093_biosci_biz162 crossref_primary_10_1111_1365_2745_13403 crossref_primary_10_1111_nph_18131 crossref_primary_10_1111_1365_2745_12950 crossref_primary_10_1016_j_tplants_2023_03_024 crossref_primary_10_1016_j_foreco_2018_10_030 crossref_primary_10_1016_j_foreco_2022_120129 crossref_primary_10_1002_ecy_2571 crossref_primary_10_1016_j_foreco_2020_118886 crossref_primary_10_2139_ssrn_4115277 crossref_primary_10_1002_hyp_14689 crossref_primary_10_1111_jbi_14136 crossref_primary_10_1007_s10980_020_01118_1 crossref_primary_10_1111_geb_13498 crossref_primary_10_1111_nph_18539 crossref_primary_10_1016_j_foreco_2022_120487 crossref_primary_10_1111_geb_13496 crossref_primary_10_3389_fevo_2021_596282 crossref_primary_10_3390_f10090782 crossref_primary_10_3390_d11090157 crossref_primary_10_1186_s42408_019_0062_8 crossref_primary_10_1002_eap_2001 crossref_primary_10_1002_ecs2_2019 crossref_primary_10_1186_s42408_023_00200_8 crossref_primary_10_1016_j_agrformet_2022_108939 crossref_primary_10_1186_s42408_019_0047_7 crossref_primary_10_1016_j_biocon_2022_109779 crossref_primary_10_1038_s41558_020_0738_8 crossref_primary_10_1002_ecy_2181 crossref_primary_10_1111_ddi_13281 crossref_primary_10_1002_ecs2_3199 crossref_primary_10_1016_j_ecolind_2025_113117 crossref_primary_10_1016_j_oneear_2023_02_007 crossref_primary_10_1111_gcb_17242 crossref_primary_10_1002_ecs2_4827 crossref_primary_10_1016_j_foreco_2024_122011 crossref_primary_10_1002_fee_2408 crossref_primary_10_1002_ecs2_3734 crossref_primary_10_1111_gcb_15655 crossref_primary_10_1111_geb_13115 crossref_primary_10_1007_s10980_019_00802_1 crossref_primary_10_1093_forestry_cpad028 crossref_primary_10_1111_ecog_04445 crossref_primary_10_1002_eap_1902 crossref_primary_10_1007_s11056_019_09745_6 crossref_primary_10_1038_s41612_024_00575_8 crossref_primary_10_1007_s11258_022_01248_3 crossref_primary_10_1029_2018GL078294 crossref_primary_10_3389_fevo_2019_00239 crossref_primary_10_1002_ecs2_2651 crossref_primary_10_2139_ssrn_4172998 crossref_primary_10_1002_ecs2_3220 crossref_primary_10_1002_ecs2_4397 crossref_primary_10_1007_s10342_021_01371_2 crossref_primary_10_1071_WF21089 crossref_primary_10_1073_pnas_2201954120 crossref_primary_10_1016_j_foreco_2019_117570 crossref_primary_10_1071_WF22061 crossref_primary_10_1093_biosci_biaa061 crossref_primary_10_1186_s42408_024_00246_2 crossref_primary_10_1016_j_foreco_2020_118385 crossref_primary_10_3390_f13071060 crossref_primary_10_1016_j_foreco_2020_118783 crossref_primary_10_1007_s00442_019_04536_4 crossref_primary_10_1111_1365_2745_13771 crossref_primary_10_1016_j_agrformet_2023_109750 crossref_primary_10_1038_s41598_018_24642_2 crossref_primary_10_1002_ecs2_2882 crossref_primary_10_1186_s42408_024_00333_4 crossref_primary_10_3389_fclim_2021_689945 crossref_primary_10_1002_eap_2383 crossref_primary_10_1002_ecs2_4409 crossref_primary_10_1038_s43247_023_00954_8 crossref_primary_10_3390_fire8030092 crossref_primary_10_1016_j_foreco_2022_120292 crossref_primary_10_1139_cjfr_2019_0161 crossref_primary_10_1111_nph_18059 crossref_primary_10_3389_ffgc_2020_00044 crossref_primary_10_3389_fevo_2023_1229123 crossref_primary_10_1007_s10980_024_01908_x crossref_primary_10_1186_s42408_022_00131_w crossref_primary_10_1029_2021AV000384 crossref_primary_10_26848_rbgf_v17_3_p1894_1904 crossref_primary_10_1186_s42408_022_00153_4 crossref_primary_10_1007_s10980_018_0665_5 crossref_primary_10_1073_pnas_1902841116 crossref_primary_10_1007_s11676_019_01062_0 crossref_primary_10_1007_s11258_022_01247_4 crossref_primary_10_1073_pnas_2007434117 crossref_primary_10_1111_ecog_03491 crossref_primary_10_1016_j_foreco_2021_119814 crossref_primary_10_1111_gcb_16764 crossref_primary_10_1186_s42408_024_00272_0 crossref_primary_10_1016_j_foreco_2023_121011 crossref_primary_10_1016_j_tfp_2024_100651 crossref_primary_10_1029_2020GL089858 crossref_primary_10_1111_geb_13174 crossref_primary_10_1016_j_foreco_2024_121691 crossref_primary_10_1016_j_foreco_2019_117674 crossref_primary_10_1007_s10980_020_01071_z crossref_primary_10_1016_j_rse_2024_114307 crossref_primary_10_1088_1748_9326_ad86cf crossref_primary_10_1002_eap_2725 crossref_primary_10_1016_j_ecolind_2022_109756 crossref_primary_10_1002_eap_1756 crossref_primary_10_1007_s10980_023_01597_y crossref_primary_10_1007_s11056_023_09991_9 crossref_primary_10_1007_s10021_021_00645_5 crossref_primary_10_1016_j_foreco_2024_121848 crossref_primary_10_1016_j_foreco_2024_121726 crossref_primary_10_1016_j_foreco_2018_07_010 crossref_primary_10_1002_ecs2_2182 crossref_primary_10_1002_pei3_10153 crossref_primary_10_1002_eap_2280 crossref_primary_10_1007_s10530_020_02227_3 crossref_primary_10_1088_1748_9326_abb9df crossref_primary_10_1126_science_aaz9463 crossref_primary_10_1093_biosci_biab139 crossref_primary_10_3389_fenvs_2020_00137 |
Cites_doi | 10.2307/1933114 10.1111/j.2041-210X.2012.00231.x 10.1007/s10584-007-9363-z 10.1016/j.yqres.2005.03.001 10.18637/jss.v067.i01 10.1073/pnas.1422385112 10.1139/X09-016 10.1111/gcb.12194 10.1093/forestry/cps034 10.1029/2011JG001695 10.1007/s10980-015-0268-3 10.1890/090157 10.1890/15-0225 10.1007/s10980-010-9480-3 10.1111/j.1365-2699.2009.02268.x 10.1007/s10584-017-1899-y 10.1093/wjaf/25.4.203 10.1016/S0378-1127(97)00006-6 10.1016/j.foreco.2015.12.016 10.1016/j.foreco.2013.03.050 10.1098/rstb.2015.0178 10.1093/jof/105.3.139 10.1111/j.1467-9868.2010.00749.x 10.1007/s101440050026 10.1890/ES10-00184.1 10.1002/joc.2007 10.1002/bimj.200810425 10.1890/ES15-00203.1 10.1139/cjfr-2015-0033 10.1111/j.1365-2745.2009.01597.x 10.1073/pnas.0901438106 10.1890/10-2108.1 10.5194/gmd-4-1051-2011 10.1038/nclimate1693 10.1002/ecs2.1410 10.1111/ele.12151 10.1111/geb.12302 10.1071/WF15083 10.1002/ecs2.1594 10.1525/california/9780520246058.003.0009 10.1007/978-1-4899-7180-7 10.1029/1998WR900018 10.1007/s10980-010-9456-3 10.1016/j.foreco.2016.07.001 10.1073/pnas.1607171113 10.1002/joc.3487 10.1073/pnas.1007692107 10.1890/ES14-00112.1 10.1111/j.2041-210x.2012.00261.x 10.1111/geb.12443 10.1890/15-0775 10.1111/gcb.12674 10.2307/1313098 10.1093/forestscience/33.1.3 10.1111/j.1365-2745.2008.01456.x 10.1093/biosci/biu194 10.1126/science.242.4880.911 10.5194/gmd-4-543-2011 10.1002/wcc.428 10.1007/s10021-016-0008-9 10.1126/sciadv.1501344 10.1016/j.ecolmodel.2010.10.017 10.1111/jvs.12225 10.3159/1095-5674(2005)132[442:FAPOMC]2.0.CO;2 10.1111/ecog.02074 10.1016/S0034-4257(01)00289-9 10.3390/f7040077 10.1111/j.1654-1103.2006.tb02505.x 10.4996/fireecology.0801032 10.1016/j.rse.2008.11.009 |
ContentType | Journal Article |
Copyright | 2017 John Wiley & Sons Ltd 2017 John Wiley & Sons Ltd. Copyright © 2017 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2017 John Wiley & Sons Ltd – notice: 2017 John Wiley & Sons Ltd. – notice: Copyright © 2017 John Wiley & Sons Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 |
DOI | 10.1111/gcb.13704 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
EISSN | 1365-2486 |
EndPage | 4132 |
ExternalDocumentID | 28447370 10_1111_gcb_13704 GCB13704 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GeographicLocations | Oregon California |
GeographicLocations_xml | – name: California – name: Oregon |
GrantInformation_xml | – fundername: National Science Foundation funderid: DEB‐1353301 |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W H97 L.G 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3864-71caf9bddabfa1633d9292b5959f7cca107c7e5ac6a5afc1ae1f4f9798871c9e3 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 1365-2486 |
IngestDate | Fri Jul 11 18:30:11 EDT 2025 Fri Jul 11 03:25:27 EDT 2025 Fri Jul 25 10:42:38 EDT 2025 Thu Apr 03 07:10:01 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 Tue Jul 01 03:52:57 EDT 2025 Wed Jan 22 16:39:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | postfire recruitment tree regeneration forest resilience reburn tipping point propagule pressure Douglas-fir stem analysis Klamath Mountains |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3864-71caf9bddabfa1633d9292b5959f7cca107c7e5ac6a5afc1ae1f4f9798871c9e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5701-9613 0000-0001-8461-9713 |
PMID | 28447370 |
PQID | 1937413826 |
PQPubID | 30327 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2000589780 proquest_miscellaneous_1892724396 proquest_journals_1937413826 pubmed_primary_28447370 crossref_primary_10_1111_gcb_13704 crossref_citationtrail_10_1111_gcb_13704 wiley_primary_10_1111_gcb_13704_GCB13704 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2017 2017-10-00 20171001 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: October 2017 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Chang Biol |
PublicationYear | 2017 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2011; 116 1987; 33 2010; 98 2013; 4 2007; 105 2010; 107 2005; 132 1997; 47 2016; 31 2005; 64 2009a; 39 2009; 113 1999; 41 2016; 39 2009b; 97 1998; 45 2013; 19 2015; 45 1997; 95 2014; 5 2010; 25 2013; 16 2011; 73 2016; 113 2001; 57 2012; 22 2010; 30 1989 1972; 118 2015; 6 2010; 37 2011; 2 2016; 19 2013; 302 2006; 17 2009 1995a 1996 2016; 363 2006 1995b 1988; 242 1967; 48 2002; 80 2002 2011; 4 2008; 50 2011; 9 2015; 24 2015; 67 2015; 26 2016; 7 2012; 3 2016; 2 2013; 33 2015; 112 2015; 21 2015; 65 1999; 35 2016 2008; 87 2015 2017; 141 2016; 378 2016; 26 2016; 25 2011; 222 2012; 85 2012; 8 2016; 371 2009; 106 e_1_2_6_51_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 USDA (e_1_2_6_73_1) 1989 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_34_1 e_1_2_6_17_1 NatureServe (e_1_2_6_53_1) 2009 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 ESRI (e_1_2_6_25_1) 2015 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 Russell W. H. (e_1_2_6_63_1) 1998; 45 Dyer M. E. (e_1_2_6_24_1) 1987; 33 USDA (e_1_2_6_74_1) 1995 e_1_2_6_9_1 McCune B. (e_1_2_6_46_1) 2002 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_49_1 e_1_2_6_3_1 Shatford J. P. A. (e_1_2_6_65_1) 2007; 105 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 Carmean W. H. (e_1_2_6_11_1) 1972; 118 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_80_1 USDA (e_1_2_6_75_1) 1995 e_1_2_6_40_1 R Core Team (e_1_2_6_58_1) 2016 e_1_2_6_61_1 e_1_2_6_82_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_69_1 Grissino‐Mayer H. D. (e_1_2_6_28_1) 2001; 57 |
References_xml | – volume: 4 start-page: 543 year: 2011 end-page: 570 article-title: The HadGEM2‐ES implementation of CMIP5 centennial simulations publication-title: Geoscientific Model Development – year: 2009 – volume: 4 start-page: 133 year: 2013 end-page: 142 article-title: A general and simple method for obtaining from generalized linear mixed‐effects models publication-title: Methods in Ecology and Evolution – volume: 24 start-page: 917 year: 2015 end-page: 927 article-title: Forest structure and species traits mediate projected recruitment declines in western US tree species: tree recruitment patterns in the western US publication-title: Global Ecology and Biogeography – volume: 57 start-page: 205 year: 2001 end-page: 221 article-title: Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA publication-title: Tree‐ring Research – volume: 105 start-page: 139 year: 2007 end-page: 146 article-title: Conifer regeneration after forest fire in the Klamath‐Siskiyous: how much, how soon? publication-title: Journal of Forestry – volume: 7 start-page: e01410 year: 2016 article-title: Regeneration of montane forests 24 years after the 1988 Yellowstone fires: a fire‐catalyzed shift in lower treelines? publication-title: Ecosphere – volume: 50 start-page: 346 year: 2008 end-page: 363 article-title: Simultaneous inference in general parametric models publication-title: Biometrical Journal – volume: 112 start-page: 3931 year: 2015 end-page: 3936 article-title: Anthropogenic warming has increased drought risk in California publication-title: Proceedings of the National Academy of Sciences – volume: 25 start-page: 1055 year: 2010 end-page: 1069 article-title: Effects of landscape patterns of fire severity on regenerating ponderosa pine forests ( ) in New Mexico and Arizona, USA publication-title: Landscape Ecology – volume: 141 start-page: 287 year: 2017 end-page: 299 article-title: Effects of climate change on snowpack and fire potential in the western USA publication-title: Climatic Change – volume: 16 start-page: 1151 year: 2013 end-page: 1156 article-title: Climatic stress increases forest fire severity across the western United States publication-title: Ecology Letters – volume: 45 start-page: 1607 year: 2015 end-page: 1616 article-title: A field experiment informs expected patterns of conifer regeneration after disturbance under changing climate conditions publication-title: Canadian Journal of Forest Research – year: 1989 – volume: 22 start-page: 184 year: 2012 end-page: 203 article-title: Trends and causes of severity, size, and number of fires in northwestern California, USA publication-title: Ecological Applications – volume: 6 start-page: 129 year: 2015 article-title: On underestimation of global vulnerability to tree mortality and forest die‐off from hotter drought in the Anthropocene publication-title: Ecosphere – volume: 48 start-page: 302 year: 1967 end-page: 304 article-title: History and fire record of a timberland brush field in the Sierra Nevada of California publication-title: Ecology – volume: 3 start-page: 292 year: 2012 end-page: 297 article-title: Temperature as a potent driver of regional forest drought stress and tree mortality publication-title: Nature Climate Change – volume: 67 start-page: 1 year: 2015 end-page: 48 article-title: Fitting linear mixed‐effects models using lme4 publication-title: Journal of Statistical Software – volume: 24 start-page: 892 year: 2015 end-page: 899 article-title: Climate change presents increased potential for very large fires in the contiguous United States publication-title: International Journal of Wildland Fire – volume: 7 start-page: e01594 year: 2016 article-title: Limited conifer regeneration following wildfires in dry ponderosa pine forests of the Colorado Front Range publication-title: Ecosphere – volume: 39 start-page: 823 year: 2009a end-page: 838 article-title: Conifer regeneration in stand‐replacement portions of a large mixed‐severity wildfire in the Klamath‐Siskiyou Mountains publication-title: Canadian Journal of Forest Research – volume: 19 start-page: 1325 year: 2016 end-page: 1344 article-title: Positive feedbacks to fire‐driven deforestation following human colonization of the south island of New Zealand publication-title: Ecosystems – volume: 95 start-page: 63 year: 1997 end-page: 77 article-title: Predicting late‐successional fire refugia pre‐dating European settlement in the Wenatchee Mountains publication-title: Forest Ecology and Management – volume: 26 start-page: 346 year: 2016 end-page: 354 article-title: Influences of prior wildfires on vegetation response to subsequent fire in a reburned southwestern landscape publication-title: Ecological Applications – start-page: 170 year: 2006 end-page: 194 – volume: 363 start-page: 74 year: 2016 end-page: 85 article-title: High severity fire and mixed conifer forest‐chaparral dynamics in the southern Cascade Range, USA publication-title: Forest Ecology and Management – volume: 4 start-page: 1051 year: 2011 end-page: 1075 article-title: Development and evaluation of an Earth‐System model – HadGEM2 publication-title: Geoscientific Model Development – volume: 31 start-page: 619 year: 2016 end-page: 636 article-title: Fire legacies impact conifer regeneration across environmental gradients in the U.S. northern Rockies publication-title: Landscape Ecology – volume: 47 start-page: 758 year: 1997 end-page: 768 article-title: Fires, hurricanes, and volcanoes: comparing large disturbances publication-title: BioScience – volume: 107 start-page: 18909 year: 2010 end-page: 18914 article-title: Highly episodic fire and erosion regime over the past 2,000 y in the Siskiyou Mountains, Oregon publication-title: Proceedings of the National Academy of Sciences – year: 1995b – volume: 2 start-page: art40 year: 2011 article-title: Mixed‐severity fire regimes: lessons and hypotheses from the Klamath‐Siskiyou Ecoregion publication-title: Ecosphere – volume: 65 start-page: 151 year: 2015 end-page: 163 article-title: Past and present vulnerability of closed‐canopy temperate forests to altered fire regimes: a comparison of the Pacific Northwest, New Zealand, and Patagonia publication-title: BioScience – volume: 113 start-page: 645 year: 2009 end-page: 656 article-title: Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA publication-title: Remote Sensing of Environment – volume: 132 start-page: 442 year: 2005 end-page: 457 article-title: Fire and persistence of montane chaparral in mixed conifer forest landscapes in the northern Sierra Nevada, Lake Tahoe Basin, California, USA publication-title: Journal of the Torrey Botanical Society – volume: 106 start-page: 7063 year: 2009 end-page: 7066 article-title: Temperature sensitivity of drought‐induced tree mortality portends increased regional die‐off under global‐change‐type drought publication-title: Proceedings of the National Academy of Sciences – volume: 8 start-page: 32 year: 2012 end-page: 48 article-title: Shrub seed banks in mixed conifer forests of northern California and the role of fire in regulating abundance publication-title: Fire Ecology – volume: 33 start-page: 1053 year: 2013 end-page: 1056 article-title: A refined index of model performance: a rejoinder publication-title: International Journal of Climatology – year: 2015 – volume: 41 start-page: 229 year: 1999 end-page: 234 article-title: Transformation using (x + 0.5) to stabilize the variance of populations publication-title: Researches on Population Ecology – volume: 21 start-page: 445 year: 2015 end-page: 458 article-title: Effects of high‐severity fire drove the population collapse of the subalpine Tasmanian endemic conifer publication-title: Global Change Biology – volume: 37 start-page: 936 year: 2010 end-page: 950 article-title: Climatic water deficit, tree species ranges, and climate change in Yosemite National Park publication-title: Journal of Biogeography – volume: 85 start-page: 353 year: 2012 end-page: 368 article-title: A non‐asymptotic sigmoid growth curve for top height growth in forest stands publication-title: Forestry – volume: 113 start-page: 11770 year: 2016 end-page: 11775 article-title: Impact of anthropogenic climate change on wildfire across western US forests publication-title: Proceedings of the National Academy of Sciences – volume: 80 start-page: 76 year: 2002 end-page: 87 article-title: Novel algorithms for remote estimation of vegetation fraction publication-title: Remote sensing of Environment – volume: 116 start-page: G03037 year: 2011 article-title: Impacts of climate change on fire regimes and carbon stocks of the U.S. Pacific Northwest publication-title: Journal of Geophysical Research – year: 1996 – year: 1995a – volume: 242 start-page: 911 year: 1988 end-page: 913 article-title: Enhancement of surface cooling due to forest fire smoke publication-title: Science – volume: 73 start-page: 3 year: 2011 end-page: 36 article-title: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models publication-title: Journal of the Royal Statistical Society Series B (Statistical Methodology) – volume: 39 start-page: 844 year: 2016 end-page: 845 article-title: Averaged 30 year climate change projections mask opportunities for species establishment publication-title: Ecography – volume: 222 start-page: 427 year: 2011 end-page: 436 article-title: Quantifying ecological thresholds from response surfaces publication-title: Ecological Modelling – volume: 98 start-page: 96 year: 2010 end-page: 105 article-title: Alternative community states maintained by fire in the Klamath Mountains, USA publication-title: Journal of Ecology – year: 2016 – volume: 7 start-page: 77 year: 2016 article-title: Climate change refugia, fire ecology and management publication-title: Forests – volume: 25 start-page: 775 year: 2010 end-page: 789 article-title: Factors associated with crown damage following recurring mixed‐severity wildfires and post‐fire management in southwestern Oregon publication-title: Landscape Ecology – volume: 19 start-page: 2001 year: 2013 end-page: 2021 article-title: Altered dynamics of forest recovery under a changing climate publication-title: Global Change Biology – volume: 64 start-page: 44 year: 2005 end-page: 56 article-title: Postglacial vegetation, fire, and climate history of the Siskiyou Mountains, Oregon, USA publication-title: Quaternary Research – volume: 2 start-page: e1501344 year: 2016 article-title: Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California publication-title: Science Advances – volume: 378 start-page: 57 year: 2016 end-page: 67 article-title: Patterns of conifer regeneration following high severity wildfire in ponderosa pine–dominated forests of the Colorado Front Range publication-title: Forest Ecology and Management – volume: 9 start-page: 117 year: 2011 end-page: 125 article-title: The forgotten stage of forest succession: early‐successional ecosystems on forest sites publication-title: Frontiers in Ecology and the Environment – volume: 30 start-page: 1857 year: 2010 end-page: 1864 article-title: Local atmospheric decoupling in complex topography alters climate change impacts publication-title: International Journal of Climatology – volume: 26 start-page: 89 year: 2015 end-page: 101 article-title: Positive fire feedbacks contribute to shifts from forests to fire‐prone shrublands in Patagonia publication-title: Journal of Vegetation Science – volume: 118 start-page: 109 year: 1972 end-page: 120 article-title: Site index curves for upland oaks in the central states publication-title: Forest Science – volume: 35 start-page: 233 year: 1999 end-page: 241 article-title: Evaluating the use of “goodness‐of‐fit” measures in hydrologic and hydroclimatic model validation publication-title: Water Resources Research – year: 2002 – volume: 97 start-page: 142 year: 2009b end-page: 154 article-title: Vegetation response to a short interval between high‐severity wildfires in a mixed‐evergreen forest publication-title: Journal of Ecology – volume: 25 start-page: 203 year: 2010 end-page: 209 article-title: Estimating aboveground biomass for broadleaf woody plants and young conifers in Sierra Nevada, California, forests publication-title: Western Journal of Applied Forestry – volume: 7 start-page: 910 year: 2016 end-page: 931 article-title: Climate–vegetation–fire interactions and feedbacks: trivial detail or major barrier to projecting the future of the Earth system? publication-title: WIREs Climate Change – volume: 33 start-page: 3 year: 1987 end-page: 13 article-title: A test of six methods for estimating true heights from stem analysis data publication-title: Forest Science – volume: 302 start-page: 163 year: 2013 end-page: 170 article-title: Conifer regeneration following stand‐replacing wildfire varies along an elevation gradient in a ponderosa pine forest, Oregon, USA publication-title: Forest Ecology and Management – volume: 5 start-page: 80 year: 2014 article-title: Post‐fire tree establishment and early cohort development in conifer forests of the western Cascades of Oregon, USA publication-title: Ecosphere – volume: 371 start-page: 20150178 year: 2016 article-title: Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 26 start-page: 686 year: 2016 end-page: 699 article-title: Post‐fire vegetation and fuel development influences fire severity patterns in reburns publication-title: Ecological Applications – volume: 3 start-page: 1073 year: 2012 end-page: 1077 article-title: FlexParamCurve: R package for flexible fitting of nonlinear parametric curves publication-title: Methods in Ecology and Evolution – volume: 87 start-page: 231 year: 2008 end-page: 249 article-title: Climate change and wildfire in California publication-title: Climatic Change – volume: 17 start-page: 819 year: 2006 end-page: 830 article-title: Non‐parametric habitat models with automatic interactions publication-title: Journal of Vegetation Science – volume: 45 start-page: 40 year: 1998 end-page: 46 article-title: Revegetation after four stand‐replacing fires in the Lake Tahoe basin publication-title: Madroño – volume: 25 start-page: 655 year: 2016 end-page: 669 article-title: High and dry: post‐fire tree seedling establishment in subalpine forests decreases with post‐fire drought and large stand‐replacing burn patches publication-title: Global Ecology and Biogeography – ident: e_1_2_6_79_1 doi: 10.2307/1933114 – ident: e_1_2_6_55_1 doi: 10.1111/j.2041-210X.2012.00231.x – ident: e_1_2_6_77_1 doi: 10.1007/s10584-007-9363-z – volume: 45 start-page: 40 year: 1998 ident: e_1_2_6_63_1 article-title: Revegetation after four stand‐replacing fires in the Lake Tahoe basin publication-title: Madroño – ident: e_1_2_6_9_1 doi: 10.1016/j.yqres.2005.03.001 – ident: e_1_2_6_7_1 doi: 10.18637/jss.v067.i01 – ident: e_1_2_6_18_1 doi: 10.1073/pnas.1422385112 – ident: e_1_2_6_21_1 doi: 10.1139/X09-016 – ident: e_1_2_6_5_1 doi: 10.1111/gcb.12194 – ident: e_1_2_6_8_1 doi: 10.1093/forestry/cps034 – ident: e_1_2_6_60_1 doi: 10.1029/2011JG001695 – ident: e_1_2_6_37_1 doi: 10.1007/s10980-015-0268-3 – ident: e_1_2_6_68_1 doi: 10.1890/090157 – ident: e_1_2_6_16_1 doi: 10.1890/15-0225 – ident: e_1_2_6_29_1 doi: 10.1007/s10980-010-9480-3 – ident: e_1_2_6_43_1 doi: 10.1111/j.1365-2699.2009.02268.x – ident: e_1_2_6_26_1 doi: 10.1007/s10584-017-1899-y – ident: e_1_2_6_48_1 doi: 10.1093/wjaf/25.4.203 – ident: e_1_2_6_10_1 doi: 10.1016/S0378-1127(97)00006-6 – ident: e_1_2_6_39_1 doi: 10.1016/j.foreco.2015.12.016 – volume-title: Shasta‐trinity national forests, land and resource management plan year: 1995 ident: e_1_2_6_75_1 – ident: e_1_2_6_47_1 – ident: e_1_2_6_20_1 doi: 10.1016/j.foreco.2013.03.050 – volume-title: ArcGIS 10.4 for desktop year: 2015 ident: e_1_2_6_25_1 – ident: e_1_2_6_76_1 doi: 10.1098/rstb.2015.0178 – volume: 105 start-page: 139 year: 2007 ident: e_1_2_6_65_1 article-title: Conifer regeneration after forest fire in the Klamath‐Siskiyous: how much, how soon? publication-title: Journal of Forestry doi: 10.1093/jof/105.3.139 – ident: e_1_2_6_82_1 doi: 10.1111/j.1467-9868.2010.00749.x – ident: e_1_2_6_83_1 doi: 10.1007/s101440050026 – ident: e_1_2_6_30_1 doi: 10.1890/ES10-00184.1 – ident: e_1_2_6_17_1 doi: 10.1002/joc.2007 – volume-title: Land and resource management plan, Klamath National Forest (including all amendments as of 7/29/2010) year: 1995 ident: e_1_2_6_74_1 – ident: e_1_2_6_34_1 doi: 10.1002/bimj.200810425 – ident: e_1_2_6_4_1 doi: 10.1890/ES15-00203.1 – ident: e_1_2_6_62_1 doi: 10.1139/cjfr-2015-0033 – volume-title: Final environmental impact statement, land and resource management plan, Siskiyou National Forest year: 1989 ident: e_1_2_6_73_1 – ident: e_1_2_6_54_1 doi: 10.1111/j.1365-2745.2009.01597.x – ident: e_1_2_6_3_1 doi: 10.1073/pnas.0901438106 – ident: e_1_2_6_50_1 doi: 10.1890/10-2108.1 – ident: e_1_2_6_13_1 doi: 10.5194/gmd-4-1051-2011 – volume: 118 start-page: 109 year: 1972 ident: e_1_2_6_11_1 article-title: Site index curves for upland oaks in the central states publication-title: Forest Science – ident: e_1_2_6_81_1 doi: 10.1038/nclimate1693 – volume-title: International ecological classification standard: terrestrial ecological classifications year: 2009 ident: e_1_2_6_53_1 – ident: e_1_2_6_23_1 doi: 10.1002/ecs2.1410 – ident: e_1_2_6_44_1 doi: 10.1111/ele.12151 – ident: e_1_2_6_19_1 doi: 10.1111/geb.12302 – volume-title: Analysis of ecological communities year: 2002 ident: e_1_2_6_46_1 – ident: e_1_2_6_6_1 doi: 10.1071/WF15083 – volume-title: R: a language and environment for statistical computing year: 2016 ident: e_1_2_6_58_1 – ident: e_1_2_6_61_1 doi: 10.1002/ecs2.1594 – ident: e_1_2_6_66_1 doi: 10.1525/california/9780520246058.003.0009 – ident: e_1_2_6_35_1 doi: 10.1007/978-1-4899-7180-7 – ident: e_1_2_6_40_1 doi: 10.1029/1998WR900018 – ident: e_1_2_6_71_1 doi: 10.1007/s10980-010-9456-3 – ident: e_1_2_6_12_1 doi: 10.1016/j.foreco.2016.07.001 – ident: e_1_2_6_2_1 doi: 10.1073/pnas.1607171113 – ident: e_1_2_6_41_1 doi: 10.1002/joc.3487 – ident: e_1_2_6_14_1 doi: 10.1073/pnas.1007692107 – ident: e_1_2_6_69_1 doi: 10.1890/ES14-00112.1 – ident: e_1_2_6_52_1 doi: 10.1111/j.2041-210x.2012.00261.x – ident: e_1_2_6_32_1 doi: 10.1111/geb.12443 – ident: e_1_2_6_15_1 doi: 10.1890/15-0775 – ident: e_1_2_6_33_1 doi: 10.1111/gcb.12674 – ident: e_1_2_6_72_1 doi: 10.2307/1313098 – volume: 33 start-page: 3 year: 1987 ident: e_1_2_6_24_1 article-title: A test of six methods for estimating true heights from stem analysis data publication-title: Forest Science doi: 10.1093/forestscience/33.1.3 – ident: e_1_2_6_22_1 doi: 10.1111/j.1365-2745.2008.01456.x – ident: e_1_2_6_78_1 doi: 10.1093/biosci/biu194 – ident: e_1_2_6_59_1 doi: 10.1126/science.242.4880.911 – ident: e_1_2_6_36_1 doi: 10.5194/gmd-4-543-2011 – ident: e_1_2_6_31_1 doi: 10.1002/wcc.428 – ident: e_1_2_6_70_1 doi: 10.1007/s10021-016-0008-9 – ident: e_1_2_6_67_1 doi: 10.1126/sciadv.1501344 – ident: e_1_2_6_42_1 doi: 10.1016/j.ecolmodel.2010.10.017 – ident: e_1_2_6_56_1 doi: 10.1111/jvs.12225 – volume: 57 start-page: 205 year: 2001 ident: e_1_2_6_28_1 article-title: Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA publication-title: Tree‐ring Research – ident: e_1_2_6_51_1 doi: 10.3159/1095-5674(2005)132[442:FAPOMC]2.0.CO;2 – ident: e_1_2_6_57_1 – ident: e_1_2_6_64_1 doi: 10.1111/ecog.02074 – ident: e_1_2_6_27_1 doi: 10.1016/S0034-4257(01)00289-9 – ident: e_1_2_6_80_1 doi: 10.3390/f7040077 – ident: e_1_2_6_45_1 doi: 10.1111/j.1654-1103.2006.tb02505.x – ident: e_1_2_6_38_1 doi: 10.4996/fireecology.0801032 – ident: e_1_2_6_49_1 doi: 10.1016/j.rse.2008.11.009 |
SSID | ssj0003206 |
Score | 2.5887353 |
Snippet | In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or their... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4117 |
SubjectTerms | Aridity Biodiversity Biomass broadleaved trees California Carbon cycle Climate Climate Change Coniferous forests Coniferous trees Conifers Douglas‐fir dry environmental conditions Dynamics Ecosystem fire regime Fires forest resilience Forests Global warming Growth Klamath Mountains Landscape landscapes Mountains Oregon Planting density postfire recruitment propagule pressure Prospective Studies reburn Reburning Recovery Recruitment Recruitment (fisheries) Regeneration Regeneration (biological) risk assessment Seedlings Shrubs stem analysis tipping point tree regeneration Trees Vegetation Vulnerability Water deficit |
Title | Vulnerability to forest loss through altered postfire recovery dynamics in a warming climate in the Klamath Mountains |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.13704 https://www.ncbi.nlm.nih.gov/pubmed/28447370 https://www.proquest.com/docview/1937413826 https://www.proquest.com/docview/1892724396 https://www.proquest.com/docview/2000589780 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fa9RAEMeHUhB88cdpNVplFBFfcjTZ5JLFJz1ai1IfxEofhLC72S1Hz6Q0CXL-9c5sftT6C_Htfky43dzM5jPJ7HcAnu0pFessl6ETihKUUupQS5WEUqTGljlrwvkq3_eLw-Pk7Ul6sgUvx70wvT7EdMONI8Ov1xzgSjc_BPmp0fNIZF4LlGu1GIg-XEpHidj31YxEmtBSE4lBVYireKYjr16LfgHMq7zqLzgHN-HzONS-zuRs3rV6br79pOL4n3O5BTcGEMVXvefchi1bzeBa35pyM4Od_csdcGQ2LAHNDIIjwuz6wpvhc1yuV8S8_t0d6D51a1ax9gW3G2xrJCSmueKapo9DSyD0D-htied10zpacZGTcoqoDZabSn1ZmQZXFSr8qrhO5xSN_wnLHxKt4jvyYcJWPOIuF2pVNXfh-GD_4_IwHPo6hEbkCy7_NMpJXZZKO0U8KEpitFinMpUuI4-ijNRkNlVmoVLlTKRs5BInWVmNDpVW7MB2VVf2PqBMrJGlcW5REpqYXGopKQfULtrLpXFJAC_Gf7gwg-g5995YF2PyQ6e-8Kc-gKeT6Xmv9PE7o93RTYoh2JuCGJi4TFCiFsCT6WsKU372oipbd2STyziLif7-YsO7ptKcJaECuNe74DQSoogkoxHQhLwj_XmIxZvla__iwb-bPoTrMeOKL1Lche32orOPCLZa_dhH1Xe7VSds |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Lb9QwEIdHVRGCC4WFlpQCBiHEJasmTjaxxAWWloV2e0At6gVFtmNXK5akahKh5a9nxnmU8hLito-J1s7OON8k498APNuVMlRJKnzLJSYouVC-EjLyBY-1yVPShHNVvkeT2Un0_jQ-XYOX_V6YVh9iuOFGkeHWawpwuiH9Q5SfaTUOeEJioNeoozcp57_5cCkexUPXWTPgcYSLTcA7XSGq4xkOvXo1-gUxrxKru-Tsb8CnfrBtpcnncVOrsf72k47j_87mNtzqWJS9ap3nDqyZYgTX2-6UqxFs7l1ugkOzbhWoRuDNkbTLC2fGnrPpcoHY697dheZjsyQha1dzu2J1yZCKcbJsifNnXVcg5p7Rm5ydl1VtcdFllJdjUK1Yvirkl4Wu2KJgkn2VVKpzxrT7CUMfIrCyA3RjJFc2p0YXclFU9-Bkf-94OvO71g6-5umEKkC1tELluVRWIhLyHDEtVLGIhU3QqTAp1YmJpZ7IWFodSBPYyAoSV8NDheGbsF6UhbkPTERGi1xbO8mRTnQqlBCYBiob7KZC28iDF_1fnOlO95zabyyzPv_BU5-5U-_B08H0vBX7-J3RTu8nWRfvVYYYjGjGMVfz4MnwNUYqPX6RhSkbtElFmIQIgH-xoY1TcUqqUB5stT44jARBIkpwBDgh50l_HmL2dvravdj-d9PHcGN2PD_MDt8dHTyAmyHRi6tZ3IH1-qIxD5G9avXIhdh3EVkriA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Zb9NAEIdHVRGIFyiBgqHAghDixVHs9bXqU5s2FEorhCjqQyVrzyoi2FFtC4W_ntn1UcolxFuOsbLrzKy_sWd_A_Biwnko0oz5hnJMUBQTvmA88hmNpVaZ1YRzVb7HycFJ9PY0Pl2D7X4vTKsPMdxws5Hh1msb4EtlfgjycynGAU2tFui1KJkw27dh78OldhQNXWPNgMYRrjUB7WSFbBnPcOjVi9EvhHkVWN0VZ3YbzvqxtoUmn8dNLcby208yjv85mQ241ZEo2Wld5w6s6WIE19velKsRbO5fboFDs24NqEbgHSFnlxfOjLwk08Ucode9uwvNp2ZhZaxdxe2K1CVBJsa5kgVOn3Q9gYh7Qq8VWZZVbXDJJTYrx5BaEbUq-Je5rMi8IJx85bZQ55xI9xPafoi4Sg7RiZFbyZFtc8HnRXUPTmb7H6cHftfYwZc0S2z9p-SGCaW4MByBkCqEtFDELGYmRZfClFSmOuYy4TE3MuA6MJFhVloND2WabsJ6URb6ARAWacmUNCZRyCYyY4IxTAKFCSYZkyby4FX_D-eyUz23zTcWeZ_94KnP3an34PlgumylPn5ntNW7Sd5Fe5UjBCOYUczUPHg2fI1xah--8EKXDdpkLExDxL-_2NhtU3FmNaE8uN-64DASxIgoxRHghJwj_XmI-evprnvx8N9Nn8KN93uz_N2b48NHcDO06OIKFrdgvb5o9GMEr1o8cQH2HXVEKjc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vulnerability+to+forest+loss+through+altered+postfire+recovery+dynamics+in+a+warming+climate+in+the+Klamath+Mountains&rft.jtitle=Global+change+biology&rft.au=Tepley%2C+Alan+J.&rft.au=Thompson%2C+Jonathan+R.&rft.au=Epstein%2C+Howard+E.&rft.au=Anderson%E2%80%90Teixeira%2C+Kristina+J.&rft.date=2017-10-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=23&rft.issue=10&rft.spage=4117&rft.epage=4132&rft_id=info:doi/10.1111%2Fgcb.13704&rft.externalDBID=10.1111%252Fgcb.13704&rft.externalDocID=GCB13704 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |