Vulnerability to forest loss through altered postfire recovery dynamics in a warming climate in the Klamath Mountains

In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or their postfire forest recovery dynamics could bring about extensive forest loss, with associated effects on biodiversity and carbon‐cycle feedbacks to...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 23; no. 10; pp. 4117 - 4132
Main Authors Tepley, Alan J., Thompson, Jonathan R., Epstein, Howard E., Anderson‐Teixeira, Kristina J.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or their postfire forest recovery dynamics could bring about extensive forest loss, with associated effects on biodiversity and carbon‐cycle feedbacks to climate change. Such concerns are particularly valid in the Klamath Region of northern California and southwestern Oregon, where severe fire initially converts montane conifer forests to systems dominated by broadleaf trees and shrubs. Conifers eventually overtop the competing vegetation, but until they do, these systems could be perpetuated by a cycle of reburning. To assess the vulnerability of conifer forests to increased fire activity and altered forest recovery dynamics in a warmer, drier climate, we characterized vegetation dynamics following severe fire in nine fire years over the last three decades across the climatic aridity gradient of montane conifer forests. Postfire conifer recruitment was limited to a narrow window, with 89% of recruitment in the first 4 years, and height growth tended to decrease as the lag between the fire year and the recruitment year increased. Growth reductions at longer lags were more pronounced at drier sites, where conifers comprised a smaller portion of live woody biomass. An interaction between seed‐source availability and climatic aridity drove substantial variation in the density of regenerating conifers. With increasing climatic water deficit, higher propagule pressure (i.e., smaller patch sizes for high‐severity fire) was needed to support a given conifer seedling density, which implies that projected future increases in aridity could limit postfire regeneration across a growing portion of the landscape. Under a more severe prospective warming scenario, by the end of the century more than half of the area currently capable of supporting montane conifer forest could become subject to minimal conifer regeneration in even moderate‐sized (10s of ha) high‐severity patches. If climate change drives increases in wildfire activity while delaying postfire forest recovery, forested landscapes such as the Klamath Mountains (NW California/SW Oregon) could be at risk of extensive forest loss. To understand the vulnerability to such changes, we evaluated three decades of vegetation dynamics following high‐severity fire across the regional aridity gradient. Conifers faced a highly competitive environment following severe fire. They comprised only a small portion of live woody biomass, and recruitment was limited primarily to the first four years. Seedlings that established later faced pronounced growth suppression, particularly on drier sites. With increasing climatic aridity, more abundant seed sources were needed to support conifer recruitment at densities sufficient to develop a new forest canopy. Under a more severe warming scenario, by the end of the century just over half of the landscape could be at risk of minimal conifer recruitment following severe fire, even in relatively small high‐severity patches.
AbstractList In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or their postfire forest recovery dynamics could bring about extensive forest loss, with associated effects on biodiversity and carbon-cycle feedbacks to climate change. Such concerns are particularly valid in the Klamath Region of northern California and southwestern Oregon, where severe fire initially converts montane conifer forests to systems dominated by broadleaf trees and shrubs. Conifers eventually overtop the competing vegetation, but until they do, these systems could be perpetuated by a cycle of reburning. To assess the vulnerability of conifer forests to increased fire activity and altered forest recovery dynamics in a warmer, drier climate, we characterized vegetation dynamics following severe fire in nine fire years over the last three decades across the climatic aridity gradient of montane conifer forests. Postfire conifer recruitment was limited to a narrow window, with 89% of recruitment in the first 4 years, and height growth tended to decrease as the lag between the fire year and the recruitment year increased. Growth reductions at longer lags were more pronounced at drier sites, where conifers comprised a smaller portion of live woody biomass. An interaction between seed-source availability and climatic aridity drove substantial variation in the density of regenerating conifers. With increasing climatic water deficit, higher propagule pressure (i.e., smaller patch sizes for high-severity fire) was needed to support a given conifer seedling density, which implies that projected future increases in aridity could limit postfire regeneration across a growing portion of the landscape. Under a more severe prospective warming scenario, by the end of the century more than half of the area currently capable of supporting montane conifer forest could become subject to minimal conifer regeneration in even moderate-sized (10s of ha) high-severity patches.
In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or their postfire forest recovery dynamics could bring about extensive forest loss, with associated effects on biodiversity and carbon-cycle feedbacks to climate change. Such concerns are particularly valid in the Klamath Region of northern California and southwestern Oregon, where severe fire initially converts montane conifer forests to systems dominated by broadleaf trees and shrubs. Conifers eventually overtop the competing vegetation, but until they do, these systems could be perpetuated by a cycle of reburning. To assess the vulnerability of conifer forests to increased fire activity and altered forest recovery dynamics in a warmer, drier climate, we characterized vegetation dynamics following severe fire in nine fire years over the last three decades across the climatic aridity gradient of montane conifer forests. Postfire conifer recruitment was limited to a narrow window, with 89% of recruitment in the first 4 years, and height growth tended to decrease as the lag between the fire year and the recruitment year increased. Growth reductions at longer lags were more pronounced at drier sites, where conifers comprised a smaller portion of live woody biomass. An interaction between seed-source availability and climatic aridity drove substantial variation in the density of regenerating conifers. With increasing climatic water deficit, higher propagule pressure (i.e., smaller patch sizes for high-severity fire) was needed to support a given conifer seedling density, which implies that projected future increases in aridity could limit postfire regeneration across a growing portion of the landscape. Under a more severe prospective warming scenario, by the end of the century more than half of the area currently capable of supporting montane conifer forest could become subject to minimal conifer regeneration in even moderate-sized (10s of ha) high-severity patches.
In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or their postfire forest recovery dynamics could bring about extensive forest loss, with associated effects on biodiversity and carbon-cycle feedbacks to climate change. Such concerns are particularly valid in the Klamath Region of northern California and southwestern Oregon, where severe fire initially converts montane conifer forests to systems dominated by broadleaf trees and shrubs. Conifers eventually overtop the competing vegetation, but until they do, these systems could be perpetuated by a cycle of reburning. To assess the vulnerability of conifer forests to increased fire activity and altered forest recovery dynamics in a warmer, drier climate, we characterized vegetation dynamics following severe fire in nine fire years over the last three decades across the climatic aridity gradient of montane conifer forests. Postfire conifer recruitment was limited to a narrow window, with 89% of recruitment in the first 4 years, and height growth tended to decrease as the lag between the fire year and the recruitment year increased. Growth reductions at longer lags were more pronounced at drier sites, where conifers comprised a smaller portion of live woody biomass. An interaction between seed-source availability and climatic aridity drove substantial variation in the density of regenerating conifers. With increasing climatic water deficit, higher propagule pressure (i.e., smaller patch sizes for high-severity fire) was needed to support a given conifer seedling density, which implies that projected future increases in aridity could limit postfire regeneration across a growing portion of the landscape. Under a more severe prospective warming scenario, by the end of the century more than half of the area currently capable of supporting montane conifer forest could become subject to minimal conifer regeneration in even moderate-sized (10s of ha) high-severity patches.In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or their postfire forest recovery dynamics could bring about extensive forest loss, with associated effects on biodiversity and carbon-cycle feedbacks to climate change. Such concerns are particularly valid in the Klamath Region of northern California and southwestern Oregon, where severe fire initially converts montane conifer forests to systems dominated by broadleaf trees and shrubs. Conifers eventually overtop the competing vegetation, but until they do, these systems could be perpetuated by a cycle of reburning. To assess the vulnerability of conifer forests to increased fire activity and altered forest recovery dynamics in a warmer, drier climate, we characterized vegetation dynamics following severe fire in nine fire years over the last three decades across the climatic aridity gradient of montane conifer forests. Postfire conifer recruitment was limited to a narrow window, with 89% of recruitment in the first 4 years, and height growth tended to decrease as the lag between the fire year and the recruitment year increased. Growth reductions at longer lags were more pronounced at drier sites, where conifers comprised a smaller portion of live woody biomass. An interaction between seed-source availability and climatic aridity drove substantial variation in the density of regenerating conifers. With increasing climatic water deficit, higher propagule pressure (i.e., smaller patch sizes for high-severity fire) was needed to support a given conifer seedling density, which implies that projected future increases in aridity could limit postfire regeneration across a growing portion of the landscape. Under a more severe prospective warming scenario, by the end of the century more than half of the area currently capable of supporting montane conifer forest could become subject to minimal conifer regeneration in even moderate-sized (10s of ha) high-severity patches.
In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or their postfire forest recovery dynamics could bring about extensive forest loss, with associated effects on biodiversity and carbon‐cycle feedbacks to climate change. Such concerns are particularly valid in the Klamath Region of northern California and southwestern Oregon, where severe fire initially converts montane conifer forests to systems dominated by broadleaf trees and shrubs. Conifers eventually overtop the competing vegetation, but until they do, these systems could be perpetuated by a cycle of reburning. To assess the vulnerability of conifer forests to increased fire activity and altered forest recovery dynamics in a warmer, drier climate, we characterized vegetation dynamics following severe fire in nine fire years over the last three decades across the climatic aridity gradient of montane conifer forests. Postfire conifer recruitment was limited to a narrow window, with 89% of recruitment in the first 4 years, and height growth tended to decrease as the lag between the fire year and the recruitment year increased. Growth reductions at longer lags were more pronounced at drier sites, where conifers comprised a smaller portion of live woody biomass. An interaction between seed‐source availability and climatic aridity drove substantial variation in the density of regenerating conifers. With increasing climatic water deficit, higher propagule pressure (i.e., smaller patch sizes for high‐severity fire) was needed to support a given conifer seedling density, which implies that projected future increases in aridity could limit postfire regeneration across a growing portion of the landscape. Under a more severe prospective warming scenario, by the end of the century more than half of the area currently capable of supporting montane conifer forest could become subject to minimal conifer regeneration in even moderate‐sized (10s of ha) high‐severity patches. If climate change drives increases in wildfire activity while delaying postfire forest recovery, forested landscapes such as the Klamath Mountains (NW California/SW Oregon) could be at risk of extensive forest loss. To understand the vulnerability to such changes, we evaluated three decades of vegetation dynamics following high‐severity fire across the regional aridity gradient. Conifers faced a highly competitive environment following severe fire. They comprised only a small portion of live woody biomass, and recruitment was limited primarily to the first four years. Seedlings that established later faced pronounced growth suppression, particularly on drier sites. With increasing climatic aridity, more abundant seed sources were needed to support conifer recruitment at densities sufficient to develop a new forest canopy. Under a more severe warming scenario, by the end of the century just over half of the landscape could be at risk of minimal conifer recruitment following severe fire, even in relatively small high‐severity patches.
Author Tepley, Alan J.
Anderson‐Teixeira, Kristina J.
Epstein, Howard E.
Thompson, Jonathan R.
Author_xml – sequence: 1
  givenname: Alan J.
  orcidid: 0000-0002-5701-9613
  surname: Tepley
  fullname: Tepley, Alan J.
  email: TepleyA@si.edu
  organization: Smithsonian Conservation Biology Institute
– sequence: 2
  givenname: Jonathan R.
  surname: Thompson
  fullname: Thompson, Jonathan R.
  organization: Harvard Forest
– sequence: 3
  givenname: Howard E.
  surname: Epstein
  fullname: Epstein, Howard E.
  organization: University of Virginia
– sequence: 4
  givenname: Kristina J.
  orcidid: 0000-0001-8461-9713
  surname: Anderson‐Teixeira
  fullname: Anderson‐Teixeira, Kristina J.
  organization: Smithsonian Tropical Research Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28447370$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URP_AgS-ALHGhh7R2nMTxka5oQRRxAa7RxBnvuvLai-1Q5dvjZQuHSoAv4xn93kjz3ik58sEjIS85u-DlXa71eMGFZM0TcsJF11Z103dH-3_bVJxxcUxOU7pjjImadc_Icd03jSyCEzJ_m53HCKN1Ni80B2pCxJSpCynRvIlhXm8ouIwRJ7oLKRsbkUbU4QfGhU6Lh63ViVpPgd5D3Fq_ptrZLWTcD_MG6UcHpd3QT2H2GaxPz8lTAy7hi4d6Rr5ev_uyel_dfr75sHp7W2nRd00luQajxmmC0QDvhJhUreqxVa0yUmvgTGqJLegOWjCaA3LTGCVV3xepQnFG3hz27mL4Ppezhq1NGp0Dj2FOQ10saXsle_ZflPeqlnUjVFfQ14_QuzBHXw4ZuBKy4aKv99SrB2oetzgNu1g8icvw2_sCnB8AHYvXEc0fhLNhn-tQch1-5VrYy0esthmyDT5HsO5finvrcPn76uFmdXVQ_AT07bRv
CitedBy_id crossref_primary_10_1017_S0030605322000102
crossref_primary_10_1111_nph_16412
crossref_primary_10_1088_1748_9326_aaf354
crossref_primary_10_3389_ffgc_2023_1224624
crossref_primary_10_1073_pnas_1815107116
crossref_primary_10_3390_f12111567
crossref_primary_10_1016_j_foreco_2024_121916
crossref_primary_10_3390_f9040165
crossref_primary_10_1007_s10980_019_00929_1
crossref_primary_10_1016_j_foreco_2021_119678
crossref_primary_10_1016_j_scitotenv_2023_162575
crossref_primary_10_1073_pnas_2208120120
crossref_primary_10_1111_geb_13277
crossref_primary_10_1111_1365_2664_13630
crossref_primary_10_1186_s42408_024_00327_2
crossref_primary_10_1002_ecs2_2696
crossref_primary_10_1002_ecs2_4510
crossref_primary_10_1007_s10980_021_01325_4
crossref_primary_10_1029_2021AV000654
crossref_primary_10_1016_j_foreco_2024_122100
crossref_primary_10_3390_fire5020041
crossref_primary_10_1002_ecs2_2679
crossref_primary_10_1016_j_foreco_2024_122346
crossref_primary_10_1111_1365_2435_13132
crossref_primary_10_1016_j_foreco_2018_06_001
crossref_primary_10_1038_s41467_021_21266_5
crossref_primary_10_1016_j_foreco_2022_120536
crossref_primary_10_3390_rs10071000
crossref_primary_10_1002_ecs2_3091
crossref_primary_10_1002_ecs2_3250
crossref_primary_10_1016_j_foreco_2023_120951
crossref_primary_10_1186_s42408_025_00357_4
crossref_primary_10_1002_ecs2_3258
crossref_primary_10_1002_ecs2_2702
crossref_primary_10_3389_ffgc_2023_1198156
crossref_primary_10_1016_j_foreco_2019_117461
crossref_primary_10_1111_gcb_15118
crossref_primary_10_1186_s42408_019_0032_1
crossref_primary_10_3390_f11070779
crossref_primary_10_1093_biosci_biz162
crossref_primary_10_1111_1365_2745_13403
crossref_primary_10_1111_nph_18131
crossref_primary_10_1111_1365_2745_12950
crossref_primary_10_1016_j_tplants_2023_03_024
crossref_primary_10_1016_j_foreco_2018_10_030
crossref_primary_10_1016_j_foreco_2022_120129
crossref_primary_10_1002_ecy_2571
crossref_primary_10_1016_j_foreco_2020_118886
crossref_primary_10_2139_ssrn_4115277
crossref_primary_10_1002_hyp_14689
crossref_primary_10_1111_jbi_14136
crossref_primary_10_1007_s10980_020_01118_1
crossref_primary_10_1111_geb_13498
crossref_primary_10_1111_nph_18539
crossref_primary_10_1016_j_foreco_2022_120487
crossref_primary_10_1111_geb_13496
crossref_primary_10_3389_fevo_2021_596282
crossref_primary_10_3390_f10090782
crossref_primary_10_3390_d11090157
crossref_primary_10_1186_s42408_019_0062_8
crossref_primary_10_1002_eap_2001
crossref_primary_10_1002_ecs2_2019
crossref_primary_10_1186_s42408_023_00200_8
crossref_primary_10_1016_j_agrformet_2022_108939
crossref_primary_10_1186_s42408_019_0047_7
crossref_primary_10_1016_j_biocon_2022_109779
crossref_primary_10_1038_s41558_020_0738_8
crossref_primary_10_1002_ecy_2181
crossref_primary_10_1111_ddi_13281
crossref_primary_10_1002_ecs2_3199
crossref_primary_10_1016_j_ecolind_2025_113117
crossref_primary_10_1016_j_oneear_2023_02_007
crossref_primary_10_1111_gcb_17242
crossref_primary_10_1002_ecs2_4827
crossref_primary_10_1016_j_foreco_2024_122011
crossref_primary_10_1002_fee_2408
crossref_primary_10_1002_ecs2_3734
crossref_primary_10_1111_gcb_15655
crossref_primary_10_1111_geb_13115
crossref_primary_10_1007_s10980_019_00802_1
crossref_primary_10_1093_forestry_cpad028
crossref_primary_10_1111_ecog_04445
crossref_primary_10_1002_eap_1902
crossref_primary_10_1007_s11056_019_09745_6
crossref_primary_10_1038_s41612_024_00575_8
crossref_primary_10_1007_s11258_022_01248_3
crossref_primary_10_1029_2018GL078294
crossref_primary_10_3389_fevo_2019_00239
crossref_primary_10_1002_ecs2_2651
crossref_primary_10_2139_ssrn_4172998
crossref_primary_10_1002_ecs2_3220
crossref_primary_10_1002_ecs2_4397
crossref_primary_10_1007_s10342_021_01371_2
crossref_primary_10_1071_WF21089
crossref_primary_10_1073_pnas_2201954120
crossref_primary_10_1016_j_foreco_2019_117570
crossref_primary_10_1071_WF22061
crossref_primary_10_1093_biosci_biaa061
crossref_primary_10_1186_s42408_024_00246_2
crossref_primary_10_1016_j_foreco_2020_118385
crossref_primary_10_3390_f13071060
crossref_primary_10_1016_j_foreco_2020_118783
crossref_primary_10_1007_s00442_019_04536_4
crossref_primary_10_1111_1365_2745_13771
crossref_primary_10_1016_j_agrformet_2023_109750
crossref_primary_10_1038_s41598_018_24642_2
crossref_primary_10_1002_ecs2_2882
crossref_primary_10_1186_s42408_024_00333_4
crossref_primary_10_3389_fclim_2021_689945
crossref_primary_10_1002_eap_2383
crossref_primary_10_1002_ecs2_4409
crossref_primary_10_1038_s43247_023_00954_8
crossref_primary_10_3390_fire8030092
crossref_primary_10_1016_j_foreco_2022_120292
crossref_primary_10_1139_cjfr_2019_0161
crossref_primary_10_1111_nph_18059
crossref_primary_10_3389_ffgc_2020_00044
crossref_primary_10_3389_fevo_2023_1229123
crossref_primary_10_1007_s10980_024_01908_x
crossref_primary_10_1186_s42408_022_00131_w
crossref_primary_10_1029_2021AV000384
crossref_primary_10_26848_rbgf_v17_3_p1894_1904
crossref_primary_10_1186_s42408_022_00153_4
crossref_primary_10_1007_s10980_018_0665_5
crossref_primary_10_1073_pnas_1902841116
crossref_primary_10_1007_s11676_019_01062_0
crossref_primary_10_1007_s11258_022_01247_4
crossref_primary_10_1073_pnas_2007434117
crossref_primary_10_1111_ecog_03491
crossref_primary_10_1016_j_foreco_2021_119814
crossref_primary_10_1111_gcb_16764
crossref_primary_10_1186_s42408_024_00272_0
crossref_primary_10_1016_j_foreco_2023_121011
crossref_primary_10_1016_j_tfp_2024_100651
crossref_primary_10_1029_2020GL089858
crossref_primary_10_1111_geb_13174
crossref_primary_10_1016_j_foreco_2024_121691
crossref_primary_10_1016_j_foreco_2019_117674
crossref_primary_10_1007_s10980_020_01071_z
crossref_primary_10_1016_j_rse_2024_114307
crossref_primary_10_1088_1748_9326_ad86cf
crossref_primary_10_1002_eap_2725
crossref_primary_10_1016_j_ecolind_2022_109756
crossref_primary_10_1002_eap_1756
crossref_primary_10_1007_s10980_023_01597_y
crossref_primary_10_1007_s11056_023_09991_9
crossref_primary_10_1007_s10021_021_00645_5
crossref_primary_10_1016_j_foreco_2024_121848
crossref_primary_10_1016_j_foreco_2024_121726
crossref_primary_10_1016_j_foreco_2018_07_010
crossref_primary_10_1002_ecs2_2182
crossref_primary_10_1002_pei3_10153
crossref_primary_10_1002_eap_2280
crossref_primary_10_1007_s10530_020_02227_3
crossref_primary_10_1088_1748_9326_abb9df
crossref_primary_10_1126_science_aaz9463
crossref_primary_10_1093_biosci_biab139
crossref_primary_10_3389_fenvs_2020_00137
Cites_doi 10.2307/1933114
10.1111/j.2041-210X.2012.00231.x
10.1007/s10584-007-9363-z
10.1016/j.yqres.2005.03.001
10.18637/jss.v067.i01
10.1073/pnas.1422385112
10.1139/X09-016
10.1111/gcb.12194
10.1093/forestry/cps034
10.1029/2011JG001695
10.1007/s10980-015-0268-3
10.1890/090157
10.1890/15-0225
10.1007/s10980-010-9480-3
10.1111/j.1365-2699.2009.02268.x
10.1007/s10584-017-1899-y
10.1093/wjaf/25.4.203
10.1016/S0378-1127(97)00006-6
10.1016/j.foreco.2015.12.016
10.1016/j.foreco.2013.03.050
10.1098/rstb.2015.0178
10.1093/jof/105.3.139
10.1111/j.1467-9868.2010.00749.x
10.1007/s101440050026
10.1890/ES10-00184.1
10.1002/joc.2007
10.1002/bimj.200810425
10.1890/ES15-00203.1
10.1139/cjfr-2015-0033
10.1111/j.1365-2745.2009.01597.x
10.1073/pnas.0901438106
10.1890/10-2108.1
10.5194/gmd-4-1051-2011
10.1038/nclimate1693
10.1002/ecs2.1410
10.1111/ele.12151
10.1111/geb.12302
10.1071/WF15083
10.1002/ecs2.1594
10.1525/california/9780520246058.003.0009
10.1007/978-1-4899-7180-7
10.1029/1998WR900018
10.1007/s10980-010-9456-3
10.1016/j.foreco.2016.07.001
10.1073/pnas.1607171113
10.1002/joc.3487
10.1073/pnas.1007692107
10.1890/ES14-00112.1
10.1111/j.2041-210x.2012.00261.x
10.1111/geb.12443
10.1890/15-0775
10.1111/gcb.12674
10.2307/1313098
10.1093/forestscience/33.1.3
10.1111/j.1365-2745.2008.01456.x
10.1093/biosci/biu194
10.1126/science.242.4880.911
10.5194/gmd-4-543-2011
10.1002/wcc.428
10.1007/s10021-016-0008-9
10.1126/sciadv.1501344
10.1016/j.ecolmodel.2010.10.017
10.1111/jvs.12225
10.3159/1095-5674(2005)132[442:FAPOMC]2.0.CO;2
10.1111/ecog.02074
10.1016/S0034-4257(01)00289-9
10.3390/f7040077
10.1111/j.1654-1103.2006.tb02505.x
10.4996/fireecology.0801032
10.1016/j.rse.2008.11.009
ContentType Journal Article
Copyright 2017 John Wiley & Sons Ltd
2017 John Wiley & Sons Ltd.
Copyright © 2017 John Wiley & Sons Ltd
Copyright_xml – notice: 2017 John Wiley & Sons Ltd
– notice: 2017 John Wiley & Sons Ltd.
– notice: Copyright © 2017 John Wiley & Sons Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
DOI 10.1111/gcb.13704
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
MEDLINE
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 4132
ExternalDocumentID 28447370
10_1111_gcb_13704
GCB13704
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GeographicLocations Oregon
California
GeographicLocations_xml – name: California
– name: Oregon
GrantInformation_xml – fundername: National Science Foundation
  funderid: DEB‐1353301
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
H97
L.G
7X8
7S9
L.6
ID FETCH-LOGICAL-c3864-71caf9bddabfa1633d9292b5959f7cca107c7e5ac6a5afc1ae1f4f9798871c9e3
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Fri Jul 11 18:30:11 EDT 2025
Fri Jul 11 03:25:27 EDT 2025
Fri Jul 25 10:42:38 EDT 2025
Thu Apr 03 07:10:01 EDT 2025
Thu Apr 24 23:01:25 EDT 2025
Tue Jul 01 03:52:57 EDT 2025
Wed Jan 22 16:39:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords postfire recruitment
tree regeneration
forest resilience
reburn
tipping point
propagule pressure
Douglas-fir
stem analysis
Klamath Mountains
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3864-71caf9bddabfa1633d9292b5959f7cca107c7e5ac6a5afc1ae1f4f9798871c9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5701-9613
0000-0001-8461-9713
PMID 28447370
PQID 1937413826
PQPubID 30327
PageCount 16
ParticipantIDs proquest_miscellaneous_2000589780
proquest_miscellaneous_1892724396
proquest_journals_1937413826
pubmed_primary_28447370
crossref_primary_10_1111_gcb_13704
crossref_citationtrail_10_1111_gcb_13704
wiley_primary_10_1111_gcb_13704_GCB13704
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2017
2017-10-00
20171001
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: October 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2017
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2011; 116
1987; 33
2010; 98
2013; 4
2007; 105
2010; 107
2005; 132
1997; 47
2016; 31
2005; 64
2009a; 39
2009; 113
1999; 41
2016; 39
2009b; 97
1998; 45
2013; 19
2015; 45
1997; 95
2014; 5
2010; 25
2013; 16
2011; 73
2016; 113
2001; 57
2012; 22
2010; 30
1989
1972; 118
2015; 6
2010; 37
2011; 2
2016; 19
2013; 302
2006; 17
2009
1995a
1996
2016; 363
2006
1995b
1988; 242
1967; 48
2002; 80
2002
2011; 4
2008; 50
2011; 9
2015; 24
2015; 67
2015; 26
2016; 7
2012; 3
2016; 2
2013; 33
2015; 112
2015; 21
2015; 65
1999; 35
2016
2008; 87
2015
2017; 141
2016; 378
2016; 26
2016; 25
2011; 222
2012; 85
2012; 8
2016; 371
2009; 106
e_1_2_6_51_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
USDA (e_1_2_6_73_1) 1989
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_34_1
e_1_2_6_17_1
NatureServe (e_1_2_6_53_1) 2009
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
ESRI (e_1_2_6_25_1) 2015
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
Russell W. H. (e_1_2_6_63_1) 1998; 45
Dyer M. E. (e_1_2_6_24_1) 1987; 33
USDA (e_1_2_6_74_1) 1995
e_1_2_6_9_1
McCune B. (e_1_2_6_46_1) 2002
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_49_1
e_1_2_6_3_1
Shatford J. P. A. (e_1_2_6_65_1) 2007; 105
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
Carmean W. H. (e_1_2_6_11_1) 1972; 118
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_80_1
USDA (e_1_2_6_75_1) 1995
e_1_2_6_40_1
R Core Team (e_1_2_6_58_1) 2016
e_1_2_6_61_1
e_1_2_6_82_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_69_1
Grissino‐Mayer H. D. (e_1_2_6_28_1) 2001; 57
References_xml – volume: 4
  start-page: 543
  year: 2011
  end-page: 570
  article-title: The HadGEM2‐ES implementation of CMIP5 centennial simulations
  publication-title: Geoscientific Model Development
– year: 2009
– volume: 4
  start-page: 133
  year: 2013
  end-page: 142
  article-title: A general and simple method for obtaining from generalized linear mixed‐effects models
  publication-title: Methods in Ecology and Evolution
– volume: 24
  start-page: 917
  year: 2015
  end-page: 927
  article-title: Forest structure and species traits mediate projected recruitment declines in western US tree species: tree recruitment patterns in the western US
  publication-title: Global Ecology and Biogeography
– volume: 57
  start-page: 205
  year: 2001
  end-page: 221
  article-title: Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA
  publication-title: Tree‐ring Research
– volume: 105
  start-page: 139
  year: 2007
  end-page: 146
  article-title: Conifer regeneration after forest fire in the Klamath‐Siskiyous: how much, how soon?
  publication-title: Journal of Forestry
– volume: 7
  start-page: e01410
  year: 2016
  article-title: Regeneration of montane forests 24 years after the 1988 Yellowstone fires: a fire‐catalyzed shift in lower treelines?
  publication-title: Ecosphere
– volume: 50
  start-page: 346
  year: 2008
  end-page: 363
  article-title: Simultaneous inference in general parametric models
  publication-title: Biometrical Journal
– volume: 112
  start-page: 3931
  year: 2015
  end-page: 3936
  article-title: Anthropogenic warming has increased drought risk in California
  publication-title: Proceedings of the National Academy of Sciences
– volume: 25
  start-page: 1055
  year: 2010
  end-page: 1069
  article-title: Effects of landscape patterns of fire severity on regenerating ponderosa pine forests ( ) in New Mexico and Arizona, USA
  publication-title: Landscape Ecology
– volume: 141
  start-page: 287
  year: 2017
  end-page: 299
  article-title: Effects of climate change on snowpack and fire potential in the western USA
  publication-title: Climatic Change
– volume: 16
  start-page: 1151
  year: 2013
  end-page: 1156
  article-title: Climatic stress increases forest fire severity across the western United States
  publication-title: Ecology Letters
– volume: 45
  start-page: 1607
  year: 2015
  end-page: 1616
  article-title: A field experiment informs expected patterns of conifer regeneration after disturbance under changing climate conditions
  publication-title: Canadian Journal of Forest Research
– year: 1989
– volume: 22
  start-page: 184
  year: 2012
  end-page: 203
  article-title: Trends and causes of severity, size, and number of fires in northwestern California, USA
  publication-title: Ecological Applications
– volume: 6
  start-page: 129
  year: 2015
  article-title: On underestimation of global vulnerability to tree mortality and forest die‐off from hotter drought in the Anthropocene
  publication-title: Ecosphere
– volume: 48
  start-page: 302
  year: 1967
  end-page: 304
  article-title: History and fire record of a timberland brush field in the Sierra Nevada of California
  publication-title: Ecology
– volume: 3
  start-page: 292
  year: 2012
  end-page: 297
  article-title: Temperature as a potent driver of regional forest drought stress and tree mortality
  publication-title: Nature Climate Change
– volume: 67
  start-page: 1
  year: 2015
  end-page: 48
  article-title: Fitting linear mixed‐effects models using lme4
  publication-title: Journal of Statistical Software
– volume: 24
  start-page: 892
  year: 2015
  end-page: 899
  article-title: Climate change presents increased potential for very large fires in the contiguous United States
  publication-title: International Journal of Wildland Fire
– volume: 7
  start-page: e01594
  year: 2016
  article-title: Limited conifer regeneration following wildfires in dry ponderosa pine forests of the Colorado Front Range
  publication-title: Ecosphere
– volume: 39
  start-page: 823
  year: 2009a
  end-page: 838
  article-title: Conifer regeneration in stand‐replacement portions of a large mixed‐severity wildfire in the Klamath‐Siskiyou Mountains
  publication-title: Canadian Journal of Forest Research
– volume: 19
  start-page: 1325
  year: 2016
  end-page: 1344
  article-title: Positive feedbacks to fire‐driven deforestation following human colonization of the south island of New Zealand
  publication-title: Ecosystems
– volume: 95
  start-page: 63
  year: 1997
  end-page: 77
  article-title: Predicting late‐successional fire refugia pre‐dating European settlement in the Wenatchee Mountains
  publication-title: Forest Ecology and Management
– volume: 26
  start-page: 346
  year: 2016
  end-page: 354
  article-title: Influences of prior wildfires on vegetation response to subsequent fire in a reburned southwestern landscape
  publication-title: Ecological Applications
– start-page: 170
  year: 2006
  end-page: 194
– volume: 363
  start-page: 74
  year: 2016
  end-page: 85
  article-title: High severity fire and mixed conifer forest‐chaparral dynamics in the southern Cascade Range, USA
  publication-title: Forest Ecology and Management
– volume: 4
  start-page: 1051
  year: 2011
  end-page: 1075
  article-title: Development and evaluation of an Earth‐System model – HadGEM2
  publication-title: Geoscientific Model Development
– volume: 31
  start-page: 619
  year: 2016
  end-page: 636
  article-title: Fire legacies impact conifer regeneration across environmental gradients in the U.S. northern Rockies
  publication-title: Landscape Ecology
– volume: 47
  start-page: 758
  year: 1997
  end-page: 768
  article-title: Fires, hurricanes, and volcanoes: comparing large disturbances
  publication-title: BioScience
– volume: 107
  start-page: 18909
  year: 2010
  end-page: 18914
  article-title: Highly episodic fire and erosion regime over the past 2,000 y in the Siskiyou Mountains, Oregon
  publication-title: Proceedings of the National Academy of Sciences
– year: 1995b
– volume: 2
  start-page: art40
  year: 2011
  article-title: Mixed‐severity fire regimes: lessons and hypotheses from the Klamath‐Siskiyou Ecoregion
  publication-title: Ecosphere
– volume: 65
  start-page: 151
  year: 2015
  end-page: 163
  article-title: Past and present vulnerability of closed‐canopy temperate forests to altered fire regimes: a comparison of the Pacific Northwest, New Zealand, and Patagonia
  publication-title: BioScience
– volume: 113
  start-page: 645
  year: 2009
  end-page: 656
  article-title: Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA
  publication-title: Remote Sensing of Environment
– volume: 132
  start-page: 442
  year: 2005
  end-page: 457
  article-title: Fire and persistence of montane chaparral in mixed conifer forest landscapes in the northern Sierra Nevada, Lake Tahoe Basin, California, USA
  publication-title: Journal of the Torrey Botanical Society
– volume: 106
  start-page: 7063
  year: 2009
  end-page: 7066
  article-title: Temperature sensitivity of drought‐induced tree mortality portends increased regional die‐off under global‐change‐type drought
  publication-title: Proceedings of the National Academy of Sciences
– volume: 8
  start-page: 32
  year: 2012
  end-page: 48
  article-title: Shrub seed banks in mixed conifer forests of northern California and the role of fire in regulating abundance
  publication-title: Fire Ecology
– volume: 33
  start-page: 1053
  year: 2013
  end-page: 1056
  article-title: A refined index of model performance: a rejoinder
  publication-title: International Journal of Climatology
– year: 2015
– volume: 41
  start-page: 229
  year: 1999
  end-page: 234
  article-title: Transformation using (x + 0.5) to stabilize the variance of populations
  publication-title: Researches on Population Ecology
– volume: 21
  start-page: 445
  year: 2015
  end-page: 458
  article-title: Effects of high‐severity fire drove the population collapse of the subalpine Tasmanian endemic conifer
  publication-title: Global Change Biology
– volume: 37
  start-page: 936
  year: 2010
  end-page: 950
  article-title: Climatic water deficit, tree species ranges, and climate change in Yosemite National Park
  publication-title: Journal of Biogeography
– volume: 85
  start-page: 353
  year: 2012
  end-page: 368
  article-title: A non‐asymptotic sigmoid growth curve for top height growth in forest stands
  publication-title: Forestry
– volume: 113
  start-page: 11770
  year: 2016
  end-page: 11775
  article-title: Impact of anthropogenic climate change on wildfire across western US forests
  publication-title: Proceedings of the National Academy of Sciences
– volume: 80
  start-page: 76
  year: 2002
  end-page: 87
  article-title: Novel algorithms for remote estimation of vegetation fraction
  publication-title: Remote sensing of Environment
– volume: 116
  start-page: G03037
  year: 2011
  article-title: Impacts of climate change on fire regimes and carbon stocks of the U.S. Pacific Northwest
  publication-title: Journal of Geophysical Research
– year: 1996
– year: 1995a
– volume: 242
  start-page: 911
  year: 1988
  end-page: 913
  article-title: Enhancement of surface cooling due to forest fire smoke
  publication-title: Science
– volume: 73
  start-page: 3
  year: 2011
  end-page: 36
  article-title: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models
  publication-title: Journal of the Royal Statistical Society Series B (Statistical Methodology)
– volume: 39
  start-page: 844
  year: 2016
  end-page: 845
  article-title: Averaged 30 year climate change projections mask opportunities for species establishment
  publication-title: Ecography
– volume: 222
  start-page: 427
  year: 2011
  end-page: 436
  article-title: Quantifying ecological thresholds from response surfaces
  publication-title: Ecological Modelling
– volume: 98
  start-page: 96
  year: 2010
  end-page: 105
  article-title: Alternative community states maintained by fire in the Klamath Mountains, USA
  publication-title: Journal of Ecology
– year: 2016
– volume: 7
  start-page: 77
  year: 2016
  article-title: Climate change refugia, fire ecology and management
  publication-title: Forests
– volume: 25
  start-page: 775
  year: 2010
  end-page: 789
  article-title: Factors associated with crown damage following recurring mixed‐severity wildfires and post‐fire management in southwestern Oregon
  publication-title: Landscape Ecology
– volume: 19
  start-page: 2001
  year: 2013
  end-page: 2021
  article-title: Altered dynamics of forest recovery under a changing climate
  publication-title: Global Change Biology
– volume: 64
  start-page: 44
  year: 2005
  end-page: 56
  article-title: Postglacial vegetation, fire, and climate history of the Siskiyou Mountains, Oregon, USA
  publication-title: Quaternary Research
– volume: 2
  start-page: e1501344
  year: 2016
  article-title: Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California
  publication-title: Science Advances
– volume: 378
  start-page: 57
  year: 2016
  end-page: 67
  article-title: Patterns of conifer regeneration following high severity wildfire in ponderosa pine–dominated forests of the Colorado Front Range
  publication-title: Forest Ecology and Management
– volume: 9
  start-page: 117
  year: 2011
  end-page: 125
  article-title: The forgotten stage of forest succession: early‐successional ecosystems on forest sites
  publication-title: Frontiers in Ecology and the Environment
– volume: 30
  start-page: 1857
  year: 2010
  end-page: 1864
  article-title: Local atmospheric decoupling in complex topography alters climate change impacts
  publication-title: International Journal of Climatology
– volume: 26
  start-page: 89
  year: 2015
  end-page: 101
  article-title: Positive fire feedbacks contribute to shifts from forests to fire‐prone shrublands in Patagonia
  publication-title: Journal of Vegetation Science
– volume: 118
  start-page: 109
  year: 1972
  end-page: 120
  article-title: Site index curves for upland oaks in the central states
  publication-title: Forest Science
– volume: 35
  start-page: 233
  year: 1999
  end-page: 241
  article-title: Evaluating the use of “goodness‐of‐fit” measures in hydrologic and hydroclimatic model validation
  publication-title: Water Resources Research
– year: 2002
– volume: 97
  start-page: 142
  year: 2009b
  end-page: 154
  article-title: Vegetation response to a short interval between high‐severity wildfires in a mixed‐evergreen forest
  publication-title: Journal of Ecology
– volume: 25
  start-page: 203
  year: 2010
  end-page: 209
  article-title: Estimating aboveground biomass for broadleaf woody plants and young conifers in Sierra Nevada, California, forests
  publication-title: Western Journal of Applied Forestry
– volume: 7
  start-page: 910
  year: 2016
  end-page: 931
  article-title: Climate–vegetation–fire interactions and feedbacks: trivial detail or major barrier to projecting the future of the Earth system?
  publication-title: WIREs Climate Change
– volume: 33
  start-page: 3
  year: 1987
  end-page: 13
  article-title: A test of six methods for estimating true heights from stem analysis data
  publication-title: Forest Science
– volume: 302
  start-page: 163
  year: 2013
  end-page: 170
  article-title: Conifer regeneration following stand‐replacing wildfire varies along an elevation gradient in a ponderosa pine forest, Oregon, USA
  publication-title: Forest Ecology and Management
– volume: 5
  start-page: 80
  year: 2014
  article-title: Post‐fire tree establishment and early cohort development in conifer forests of the western Cascades of Oregon, USA
  publication-title: Ecosphere
– volume: 371
  start-page: 20150178
  year: 2016
  article-title: Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 26
  start-page: 686
  year: 2016
  end-page: 699
  article-title: Post‐fire vegetation and fuel development influences fire severity patterns in reburns
  publication-title: Ecological Applications
– volume: 3
  start-page: 1073
  year: 2012
  end-page: 1077
  article-title: FlexParamCurve: R package for flexible fitting of nonlinear parametric curves
  publication-title: Methods in Ecology and Evolution
– volume: 87
  start-page: 231
  year: 2008
  end-page: 249
  article-title: Climate change and wildfire in California
  publication-title: Climatic Change
– volume: 17
  start-page: 819
  year: 2006
  end-page: 830
  article-title: Non‐parametric habitat models with automatic interactions
  publication-title: Journal of Vegetation Science
– volume: 45
  start-page: 40
  year: 1998
  end-page: 46
  article-title: Revegetation after four stand‐replacing fires in the Lake Tahoe basin
  publication-title: Madroño
– volume: 25
  start-page: 655
  year: 2016
  end-page: 669
  article-title: High and dry: post‐fire tree seedling establishment in subalpine forests decreases with post‐fire drought and large stand‐replacing burn patches
  publication-title: Global Ecology and Biogeography
– ident: e_1_2_6_79_1
  doi: 10.2307/1933114
– ident: e_1_2_6_55_1
  doi: 10.1111/j.2041-210X.2012.00231.x
– ident: e_1_2_6_77_1
  doi: 10.1007/s10584-007-9363-z
– volume: 45
  start-page: 40
  year: 1998
  ident: e_1_2_6_63_1
  article-title: Revegetation after four stand‐replacing fires in the Lake Tahoe basin
  publication-title: Madroño
– ident: e_1_2_6_9_1
  doi: 10.1016/j.yqres.2005.03.001
– ident: e_1_2_6_7_1
  doi: 10.18637/jss.v067.i01
– ident: e_1_2_6_18_1
  doi: 10.1073/pnas.1422385112
– ident: e_1_2_6_21_1
  doi: 10.1139/X09-016
– ident: e_1_2_6_5_1
  doi: 10.1111/gcb.12194
– ident: e_1_2_6_8_1
  doi: 10.1093/forestry/cps034
– ident: e_1_2_6_60_1
  doi: 10.1029/2011JG001695
– ident: e_1_2_6_37_1
  doi: 10.1007/s10980-015-0268-3
– ident: e_1_2_6_68_1
  doi: 10.1890/090157
– ident: e_1_2_6_16_1
  doi: 10.1890/15-0225
– ident: e_1_2_6_29_1
  doi: 10.1007/s10980-010-9480-3
– ident: e_1_2_6_43_1
  doi: 10.1111/j.1365-2699.2009.02268.x
– ident: e_1_2_6_26_1
  doi: 10.1007/s10584-017-1899-y
– ident: e_1_2_6_48_1
  doi: 10.1093/wjaf/25.4.203
– ident: e_1_2_6_10_1
  doi: 10.1016/S0378-1127(97)00006-6
– ident: e_1_2_6_39_1
  doi: 10.1016/j.foreco.2015.12.016
– volume-title: Shasta‐trinity national forests, land and resource management plan
  year: 1995
  ident: e_1_2_6_75_1
– ident: e_1_2_6_47_1
– ident: e_1_2_6_20_1
  doi: 10.1016/j.foreco.2013.03.050
– volume-title: ArcGIS 10.4 for desktop
  year: 2015
  ident: e_1_2_6_25_1
– ident: e_1_2_6_76_1
  doi: 10.1098/rstb.2015.0178
– volume: 105
  start-page: 139
  year: 2007
  ident: e_1_2_6_65_1
  article-title: Conifer regeneration after forest fire in the Klamath‐Siskiyous: how much, how soon?
  publication-title: Journal of Forestry
  doi: 10.1093/jof/105.3.139
– ident: e_1_2_6_82_1
  doi: 10.1111/j.1467-9868.2010.00749.x
– ident: e_1_2_6_83_1
  doi: 10.1007/s101440050026
– ident: e_1_2_6_30_1
  doi: 10.1890/ES10-00184.1
– ident: e_1_2_6_17_1
  doi: 10.1002/joc.2007
– volume-title: Land and resource management plan, Klamath National Forest (including all amendments as of 7/29/2010)
  year: 1995
  ident: e_1_2_6_74_1
– ident: e_1_2_6_34_1
  doi: 10.1002/bimj.200810425
– ident: e_1_2_6_4_1
  doi: 10.1890/ES15-00203.1
– ident: e_1_2_6_62_1
  doi: 10.1139/cjfr-2015-0033
– volume-title: Final environmental impact statement, land and resource management plan, Siskiyou National Forest
  year: 1989
  ident: e_1_2_6_73_1
– ident: e_1_2_6_54_1
  doi: 10.1111/j.1365-2745.2009.01597.x
– ident: e_1_2_6_3_1
  doi: 10.1073/pnas.0901438106
– ident: e_1_2_6_50_1
  doi: 10.1890/10-2108.1
– ident: e_1_2_6_13_1
  doi: 10.5194/gmd-4-1051-2011
– volume: 118
  start-page: 109
  year: 1972
  ident: e_1_2_6_11_1
  article-title: Site index curves for upland oaks in the central states
  publication-title: Forest Science
– ident: e_1_2_6_81_1
  doi: 10.1038/nclimate1693
– volume-title: International ecological classification standard: terrestrial ecological classifications
  year: 2009
  ident: e_1_2_6_53_1
– ident: e_1_2_6_23_1
  doi: 10.1002/ecs2.1410
– ident: e_1_2_6_44_1
  doi: 10.1111/ele.12151
– ident: e_1_2_6_19_1
  doi: 10.1111/geb.12302
– volume-title: Analysis of ecological communities
  year: 2002
  ident: e_1_2_6_46_1
– ident: e_1_2_6_6_1
  doi: 10.1071/WF15083
– volume-title: R: a language and environment for statistical computing
  year: 2016
  ident: e_1_2_6_58_1
– ident: e_1_2_6_61_1
  doi: 10.1002/ecs2.1594
– ident: e_1_2_6_66_1
  doi: 10.1525/california/9780520246058.003.0009
– ident: e_1_2_6_35_1
  doi: 10.1007/978-1-4899-7180-7
– ident: e_1_2_6_40_1
  doi: 10.1029/1998WR900018
– ident: e_1_2_6_71_1
  doi: 10.1007/s10980-010-9456-3
– ident: e_1_2_6_12_1
  doi: 10.1016/j.foreco.2016.07.001
– ident: e_1_2_6_2_1
  doi: 10.1073/pnas.1607171113
– ident: e_1_2_6_41_1
  doi: 10.1002/joc.3487
– ident: e_1_2_6_14_1
  doi: 10.1073/pnas.1007692107
– ident: e_1_2_6_69_1
  doi: 10.1890/ES14-00112.1
– ident: e_1_2_6_52_1
  doi: 10.1111/j.2041-210x.2012.00261.x
– ident: e_1_2_6_32_1
  doi: 10.1111/geb.12443
– ident: e_1_2_6_15_1
  doi: 10.1890/15-0775
– ident: e_1_2_6_33_1
  doi: 10.1111/gcb.12674
– ident: e_1_2_6_72_1
  doi: 10.2307/1313098
– volume: 33
  start-page: 3
  year: 1987
  ident: e_1_2_6_24_1
  article-title: A test of six methods for estimating true heights from stem analysis data
  publication-title: Forest Science
  doi: 10.1093/forestscience/33.1.3
– ident: e_1_2_6_22_1
  doi: 10.1111/j.1365-2745.2008.01456.x
– ident: e_1_2_6_78_1
  doi: 10.1093/biosci/biu194
– ident: e_1_2_6_59_1
  doi: 10.1126/science.242.4880.911
– ident: e_1_2_6_36_1
  doi: 10.5194/gmd-4-543-2011
– ident: e_1_2_6_31_1
  doi: 10.1002/wcc.428
– ident: e_1_2_6_70_1
  doi: 10.1007/s10021-016-0008-9
– ident: e_1_2_6_67_1
  doi: 10.1126/sciadv.1501344
– ident: e_1_2_6_42_1
  doi: 10.1016/j.ecolmodel.2010.10.017
– ident: e_1_2_6_56_1
  doi: 10.1111/jvs.12225
– volume: 57
  start-page: 205
  year: 2001
  ident: e_1_2_6_28_1
  article-title: Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA
  publication-title: Tree‐ring Research
– ident: e_1_2_6_51_1
  doi: 10.3159/1095-5674(2005)132[442:FAPOMC]2.0.CO;2
– ident: e_1_2_6_57_1
– ident: e_1_2_6_64_1
  doi: 10.1111/ecog.02074
– ident: e_1_2_6_27_1
  doi: 10.1016/S0034-4257(01)00289-9
– ident: e_1_2_6_80_1
  doi: 10.3390/f7040077
– ident: e_1_2_6_45_1
  doi: 10.1111/j.1654-1103.2006.tb02505.x
– ident: e_1_2_6_38_1
  doi: 10.4996/fireecology.0801032
– ident: e_1_2_6_49_1
  doi: 10.1016/j.rse.2008.11.009
SSID ssj0003206
Score 2.5887353
Snippet In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or their...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4117
SubjectTerms Aridity
Biodiversity
Biomass
broadleaved trees
California
Carbon cycle
Climate
Climate Change
Coniferous forests
Coniferous trees
Conifers
Douglas‐fir
dry environmental conditions
Dynamics
Ecosystem
fire regime
Fires
forest resilience
Forests
Global warming
Growth
Klamath Mountains
Landscape
landscapes
Mountains
Oregon
Planting density
postfire recruitment
propagule pressure
Prospective Studies
reburn
Reburning
Recovery
Recruitment
Recruitment (fisheries)
Regeneration
Regeneration (biological)
risk assessment
Seedlings
Shrubs
stem analysis
tipping point
tree regeneration
Trees
Vegetation
Vulnerability
Water deficit
Title Vulnerability to forest loss through altered postfire recovery dynamics in a warming climate in the Klamath Mountains
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.13704
https://www.ncbi.nlm.nih.gov/pubmed/28447370
https://www.proquest.com/docview/1937413826
https://www.proquest.com/docview/1892724396
https://www.proquest.com/docview/2000589780
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fa9RAEMeHUhB88cdpNVplFBFfcjTZ5JLFJz1ai1IfxEofhLC72S1Hz6Q0CXL-9c5sftT6C_Htfky43dzM5jPJ7HcAnu0pFessl6ETihKUUupQS5WEUqTGljlrwvkq3_eLw-Pk7Ul6sgUvx70wvT7EdMONI8Ov1xzgSjc_BPmp0fNIZF4LlGu1GIg-XEpHidj31YxEmtBSE4lBVYireKYjr16LfgHMq7zqLzgHN-HzONS-zuRs3rV6br79pOL4n3O5BTcGEMVXvefchi1bzeBa35pyM4Od_csdcGQ2LAHNDIIjwuz6wpvhc1yuV8S8_t0d6D51a1ax9gW3G2xrJCSmueKapo9DSyD0D-htied10zpacZGTcoqoDZabSn1ZmQZXFSr8qrhO5xSN_wnLHxKt4jvyYcJWPOIuF2pVNXfh-GD_4_IwHPo6hEbkCy7_NMpJXZZKO0U8KEpitFinMpUuI4-ijNRkNlVmoVLlTKRs5BInWVmNDpVW7MB2VVf2PqBMrJGlcW5REpqYXGopKQfULtrLpXFJAC_Gf7gwg-g5995YF2PyQ6e-8Kc-gKeT6Xmv9PE7o93RTYoh2JuCGJi4TFCiFsCT6WsKU372oipbd2STyziLif7-YsO7ptKcJaECuNe74DQSoogkoxHQhLwj_XmIxZvla__iwb-bPoTrMeOKL1Lche32orOPCLZa_dhH1Xe7VSds
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Lb9QwEIdHVRGCC4WFlpQCBiHEJasmTjaxxAWWloV2e0At6gVFtmNXK5akahKh5a9nxnmU8hLito-J1s7OON8k498APNuVMlRJKnzLJSYouVC-EjLyBY-1yVPShHNVvkeT2Un0_jQ-XYOX_V6YVh9iuOFGkeHWawpwuiH9Q5SfaTUOeEJioNeoozcp57_5cCkexUPXWTPgcYSLTcA7XSGq4xkOvXo1-gUxrxKru-Tsb8CnfrBtpcnncVOrsf72k47j_87mNtzqWJS9ap3nDqyZYgTX2-6UqxFs7l1ugkOzbhWoRuDNkbTLC2fGnrPpcoHY697dheZjsyQha1dzu2J1yZCKcbJsifNnXVcg5p7Rm5ydl1VtcdFllJdjUK1Yvirkl4Wu2KJgkn2VVKpzxrT7CUMfIrCyA3RjJFc2p0YXclFU9-Bkf-94OvO71g6-5umEKkC1tELluVRWIhLyHDEtVLGIhU3QqTAp1YmJpZ7IWFodSBPYyAoSV8NDheGbsF6UhbkPTERGi1xbO8mRTnQqlBCYBiob7KZC28iDF_1fnOlO95zabyyzPv_BU5-5U-_B08H0vBX7-J3RTu8nWRfvVYYYjGjGMVfz4MnwNUYqPX6RhSkbtElFmIQIgH-xoY1TcUqqUB5stT44jARBIkpwBDgh50l_HmL2dvravdj-d9PHcGN2PD_MDt8dHTyAmyHRi6tZ3IH1-qIxD5G9avXIhdh3EVkriA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Zb9NAEIdHVRGIFyiBgqHAghDixVHs9bXqU5s2FEorhCjqQyVrzyoi2FFtC4W_ntn1UcolxFuOsbLrzKy_sWd_A_Biwnko0oz5hnJMUBQTvmA88hmNpVaZ1YRzVb7HycFJ9PY0Pl2D7X4vTKsPMdxws5Hh1msb4EtlfgjycynGAU2tFui1KJkw27dh78OldhQNXWPNgMYRrjUB7WSFbBnPcOjVi9EvhHkVWN0VZ3YbzvqxtoUmn8dNLcby208yjv85mQ241ZEo2Wld5w6s6WIE19velKsRbO5fboFDs24NqEbgHSFnlxfOjLwk08Ucode9uwvNp2ZhZaxdxe2K1CVBJsa5kgVOn3Q9gYh7Qq8VWZZVbXDJJTYrx5BaEbUq-Je5rMi8IJx85bZQ55xI9xPafoi4Sg7RiZFbyZFtc8HnRXUPTmb7H6cHftfYwZc0S2z9p-SGCaW4MByBkCqEtFDELGYmRZfClFSmOuYy4TE3MuA6MJFhVloND2WabsJ6URb6ARAWacmUNCZRyCYyY4IxTAKFCSYZkyby4FX_D-eyUz23zTcWeZ_94KnP3an34PlgumylPn5ntNW7Sd5Fe5UjBCOYUczUPHg2fI1xah--8EKXDdpkLExDxL-_2NhtU3FmNaE8uN-64DASxIgoxRHghJwj_XmI-evprnvx8N9Nn8KN93uz_N2b48NHcDO06OIKFrdgvb5o9GMEr1o8cQH2HXVEKjc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vulnerability+to+forest+loss+through+altered+postfire+recovery+dynamics+in+a+warming+climate+in+the+Klamath+Mountains&rft.jtitle=Global+change+biology&rft.au=Tepley%2C+Alan+J.&rft.au=Thompson%2C+Jonathan+R.&rft.au=Epstein%2C+Howard+E.&rft.au=Anderson%E2%80%90Teixeira%2C+Kristina+J.&rft.date=2017-10-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=23&rft.issue=10&rft.spage=4117&rft.epage=4132&rft_id=info:doi/10.1111%2Fgcb.13704&rft.externalDBID=10.1111%252Fgcb.13704&rft.externalDocID=GCB13704
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon