Defence‐related pathways, phytohormones and primary metabolism are key players in kiwifruit plant tolerance to Pseudomonas syringae pv. actinidiae

The reasons underlying the differential tolerance of Actinidia spp. to the pandemic pathogen Pseudomonas syringae pv. actinidiae (Psa) have not yet been elucidated. We hypothesized that differential plant‐defence strategies linked to transcriptome regulation, phytohormones and primary metabolism mig...

Full description

Saved in:
Bibliographic Details
Published inPlant, cell and environment Vol. 45; no. 2; pp. 528 - 541
Main Authors Nunes da Silva, Marta, Carvalho, Susana M. P., Rodrigues, Ana M., Gómez‐Cadenas, ‪Aurelio, António, Carla, Vasconcelos, Marta W.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The reasons underlying the differential tolerance of Actinidia spp. to the pandemic pathogen Pseudomonas syringae pv. actinidiae (Psa) have not yet been elucidated. We hypothesized that differential plant‐defence strategies linked to transcriptome regulation, phytohormones and primary metabolism might be key and that Actinidia chinensis susceptibility results from an inefficient activation of defensive mechanisms and metabolic impairments shortly following infection. Here, 48 h postinoculation bacterial density was 10‐fold higher in A. chinensis var. deliciosa than in Actinidia arguta, accompanied by significant increases in glutamine, ornithine, jasmonic acid (JA) and salicylic acid (SA) (up to 3.2‐fold). Actinidia arguta showed decreased abscisic acid (ABA) (0.7‐fold), no changes in primary metabolites, and 20 defence‐related genes that were only differentially expressed in this species. These include GLOX1, FOX1, SN2 and RBOHA, which may contribute to its higher tolerance. Results suggest that A. chinensis' higher susceptibility to Psa is due to an inefficient activation of plant defences, with the involvement of ABA, JA and SA, leading to impairments in primary metabolism, particularly the ammonia assimilation cycle. A schematic overview on the interaction between Psa and genotypes with distinct tolerance is provided, highlighting the key transcriptomic and metabolomic aspects contributing to the different plant phenotypes after infection. Summary Statement The pandemic bacterium P. syringae pv. actinidiae is currently the most important pathogen affecting kiwifruit productivity worldwide. Given the absence of sustainable and effective mitigation strategies, it is imperative to understand plant tolerance mechanisms that could support crop improvement and better agronomical practices. Here, we found that plant susceptibility to Psa results from an inefficient activation of plant defences, involving the jasmonic acid and salicylic acid pathways, and leads to impairments in primary metabolism, particularly the ammonia assimilation cycle. Tolerance is most likely due to a more strategic defensive and metabolic readjustment, resulting from the activation of specific defence‐related genes and to the downregulation of the abscisic acid pathway.
AbstractList The reasons underlying the differential tolerance of Actinidia spp. to the pandemic pathogen Pseudomonas syringae pv. actinidiae (Psa) have not yet been elucidated. We hypothesized that differential plant-defence strategies linked to transcriptome regulation, phytohormones and primary metabolism might be key and that Actinidia chinensis susceptibility results from an inefficient activation of defensive mechanisms and metabolic impairments shortly following infection. Here, 48 h postinoculation bacterial density was 10-fold higher in A. chinensis var. deliciosa than in Actinidia arguta, accompanied by significant increases in glutamine, ornithine, jasmonic acid (JA) and salicylic acid (SA) (up to 3.2-fold). Actinidia arguta showed decreased abscisic acid (ABA) (0.7-fold), no changes in primary metabolites, and 20 defence-related genes that were only differentially expressed in this species. These include GLOX1, FOX1, SN2 and RBOHA, which may contribute to its higher tolerance. Results suggest that A. chinensis' higher susceptibility to Psa is due to an inefficient activation of plant defences, with the involvement of ABA, JA and SA, leading to impairments in primary metabolism, particularly the ammonia assimilation cycle. A schematic overview on the interaction between Psa and genotypes with distinct tolerance is provided, highlighting the key transcriptomic and metabolomic aspects contributing to the different plant phenotypes after infection.The reasons underlying the differential tolerance of Actinidia spp. to the pandemic pathogen Pseudomonas syringae pv. actinidiae (Psa) have not yet been elucidated. We hypothesized that differential plant-defence strategies linked to transcriptome regulation, phytohormones and primary metabolism might be key and that Actinidia chinensis susceptibility results from an inefficient activation of defensive mechanisms and metabolic impairments shortly following infection. Here, 48 h postinoculation bacterial density was 10-fold higher in A. chinensis var. deliciosa than in Actinidia arguta, accompanied by significant increases in glutamine, ornithine, jasmonic acid (JA) and salicylic acid (SA) (up to 3.2-fold). Actinidia arguta showed decreased abscisic acid (ABA) (0.7-fold), no changes in primary metabolites, and 20 defence-related genes that were only differentially expressed in this species. These include GLOX1, FOX1, SN2 and RBOHA, which may contribute to its higher tolerance. Results suggest that A. chinensis' higher susceptibility to Psa is due to an inefficient activation of plant defences, with the involvement of ABA, JA and SA, leading to impairments in primary metabolism, particularly the ammonia assimilation cycle. A schematic overview on the interaction between Psa and genotypes with distinct tolerance is provided, highlighting the key transcriptomic and metabolomic aspects contributing to the different plant phenotypes after infection.
The reasons underlying the differential tolerance of Actinidia spp. to the pandemic pathogen Pseudomonas syringae pv. actinidiae (Psa) have not yet been elucidated. We hypothesized that differential plant‐defence strategies linked to transcriptome regulation, phytohormones and primary metabolism might be key and that Actinidia chinensis susceptibility results from an inefficient activation of defensive mechanisms and metabolic impairments shortly following infection. Here, 48 h postinoculation bacterial density was 10‐fold higher in A. chinensis var. deliciosa than in Actinidia arguta , accompanied by significant increases in glutamine, ornithine, jasmonic acid (JA) and salicylic acid (SA) (up to 3.2‐fold). Actinidia arguta showed decreased abscisic acid (ABA) (0.7‐fold), no changes in primary metabolites, and 20 defence‐related genes that were only differentially expressed in this species. These include GLOX1, FOX1, SN2 and RBOHA , which may contribute to its higher tolerance. Results suggest that A. chinensis ' higher susceptibility to Psa is due to an inefficient activation of plant defences, with the involvement of ABA, JA and SA, leading to impairments in primary metabolism, particularly the ammonia assimilation cycle. A schematic overview on the interaction between Psa and genotypes with distinct tolerance is provided, highlighting the key transcriptomic and metabolomic aspects contributing to the different plant phenotypes after infection. The pandemic bacterium P. syringae pv. actinidiae is currently the most important pathogen affecting kiwifruit productivity worldwide. Given the absence of sustainable and effective mitigation strategies, it is imperative to understand plant tolerance mechanisms that could support crop improvement and better agronomical practices. Here, we found that plant susceptibility to Psa results from an inefficient activation of plant defences, involving the jasmonic acid and salicylic acid pathways, and leads to impairments in primary metabolism, particularly the ammonia assimilation cycle. Tolerance is most likely due to a more strategic defensive and metabolic readjustment, resulting from the activation of specific defence‐related genes and to the downregulation of the abscisic acid pathway.
The reasons underlying the differential tolerance of Actinidia spp. to the pandemic pathogen Pseudomonas syringae pv. actinidiae (Psa) have not yet been elucidated. We hypothesized that differential plant‐defence strategies linked to transcriptome regulation, phytohormones and primary metabolism might be key and that Actinidia chinensis susceptibility results from an inefficient activation of defensive mechanisms and metabolic impairments shortly following infection. Here, 48 h postinoculation bacterial density was 10‐fold higher in A. chinensis var. deliciosa than in Actinidia arguta, accompanied by significant increases in glutamine, ornithine, jasmonic acid (JA) and salicylic acid (SA) (up to 3.2‐fold). Actinidia arguta showed decreased abscisic acid (ABA) (0.7‐fold), no changes in primary metabolites, and 20 defence‐related genes that were only differentially expressed in this species. These include GLOX1, FOX1, SN2 and RBOHA, which may contribute to its higher tolerance. Results suggest that A. chinensis' higher susceptibility to Psa is due to an inefficient activation of plant defences, with the involvement of ABA, JA and SA, leading to impairments in primary metabolism, particularly the ammonia assimilation cycle. A schematic overview on the interaction between Psa and genotypes with distinct tolerance is provided, highlighting the key transcriptomic and metabolomic aspects contributing to the different plant phenotypes after infection. Summary Statement The pandemic bacterium P. syringae pv. actinidiae is currently the most important pathogen affecting kiwifruit productivity worldwide. Given the absence of sustainable and effective mitigation strategies, it is imperative to understand plant tolerance mechanisms that could support crop improvement and better agronomical practices. Here, we found that plant susceptibility to Psa results from an inefficient activation of plant defences, involving the jasmonic acid and salicylic acid pathways, and leads to impairments in primary metabolism, particularly the ammonia assimilation cycle. Tolerance is most likely due to a more strategic defensive and metabolic readjustment, resulting from the activation of specific defence‐related genes and to the downregulation of the abscisic acid pathway.
The reasons underlying the differential tolerance of Actinidia spp. to the pandemic pathogen Pseudomonas syringae pv. actinidiae (Psa) have not yet been elucidated. We hypothesized that differential plant‐defence strategies linked to transcriptome regulation, phytohormones and primary metabolism might be key and that Actinidia chinensis susceptibility results from an inefficient activation of defensive mechanisms and metabolic impairments shortly following infection. Here, 48 h postinoculation bacterial density was 10‐fold higher in A. chinensis var. deliciosa than in Actinidia arguta, accompanied by significant increases in glutamine, ornithine, jasmonic acid (JA) and salicylic acid (SA) (up to 3.2‐fold). Actinidia arguta showed decreased abscisic acid (ABA) (0.7‐fold), no changes in primary metabolites, and 20 defence‐related genes that were only differentially expressed in this species. These include GLOX1, FOX1, SN2 and RBOHA, which may contribute to its higher tolerance. Results suggest that A. chinensis' higher susceptibility to Psa is due to an inefficient activation of plant defences, with the involvement of ABA, JA and SA, leading to impairments in primary metabolism, particularly the ammonia assimilation cycle. A schematic overview on the interaction between Psa and genotypes with distinct tolerance is provided, highlighting the key transcriptomic and metabolomic aspects contributing to the different plant phenotypes after infection.
The reasons underlying the differential tolerance of Actinidia spp. to the pandemic pathogen Pseudomonas syringae pv. actinidiae (Psa) have not yet been elucidated. We hypothesized that differential plant-defence strategies linked to transcriptome regulation, phytohormones and primary metabolism might be key and that Actinidia chinensis susceptibility results from an inefficient activation of defensive mechanisms and metabolic impairments shortly following infection. Here, 48 h postinoculation bacterial density was 10-fold higher in A. chinensis var. deliciosa than in Actinidia arguta, accompanied by significant increases in glutamine, ornithine, jasmonic acid (JA) and salicylic acid (SA) (up to 3.2-fold). Actinidia arguta showed decreased abscisic acid (ABA) (0.7-fold), no changes in primary metabolites, and 20 defence-related genes that were only differentially expressed in this species. These include GLOX1, FOX1, SN2 and RBOHA, which may contribute to its higher tolerance. Results suggest that A. chinensis' higher susceptibility to Psa is due to an inefficient activation of plant defences, with the involvement of ABA, JA and SA, leading to impairments in primary metabolism, particularly the ammonia assimilation cycle. A schematic overview on the interaction between Psa and genotypes with distinct tolerance is provided, highlighting the key transcriptomic and metabolomic aspects contributing to the different plant phenotypes after infection.
Author Carvalho, Susana M. P.
Nunes da Silva, Marta
Gómez‐Cadenas, ‪Aurelio
António, Carla
Vasconcelos, Marta W.
Rodrigues, Ana M.
Author_xml – sequence: 1
  givenname: Marta
  orcidid: 0000-0001-8228-0576
  surname: Nunes da Silva
  fullname: Nunes da Silva, Marta
  organization: Faculty of Sciences of University of Porto
– sequence: 2
  givenname: Susana M. P.
  orcidid: 0000-0001-7157-1079
  surname: Carvalho
  fullname: Carvalho, Susana M. P.
  organization: Faculty of Sciences of University of Porto
– sequence: 3
  givenname: Ana M.
  orcidid: 0000-0003-3257-9777
  surname: Rodrigues
  fullname: Rodrigues, Ana M.
  organization: Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA)
– sequence: 4
  givenname: ‪Aurelio
  orcidid: 0000-0002-4598-2664
  surname: Gómez‐Cadenas
  fullname: Gómez‐Cadenas, ‪Aurelio
  organization: Universitat Jaume I
– sequence: 5
  givenname: Carla
  orcidid: 0000-0001-6747-1243
  surname: António
  fullname: António, Carla
  organization: Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA)
– sequence: 6
  givenname: Marta W.
  orcidid: 0000-0002-5110-7006
  surname: Vasconcelos
  fullname: Vasconcelos, Marta W.
  email: mvasconcelos@ucp.pt
  organization: Escola Superior de Biotecnologia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34773419$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFBS-ALLEBiUz972aJhvIjVaILWEeOc8O4TexgO4yy4xFY8IQ8CS4zsKgEeGPr-LvnXvucoCMfPCD0mJI1LetssrCmgjFxD60oV7LiRJAjtCJUkErrmh6jk5SuCSmCrh-gYy605oLWK_T9FfTgLfz4-i3CYDJ0eDJ5uzNLeoGn7ZLDNsSxtEvY-HIX3WjigkfIpg2DSyM2EfANLHgazAIxYefxjdu5Ps4u34o-4xwGiKZ0KSd8lWDuQrE0CaclOv_JAJ6-rLGx2XnXOQMP0f3eDAkeHfZT9PH1xYfN2-ry_Zt3m5eXleXnSlSStaJWvGOEgLJcaWV76KkVVoiuI0TYlkqjJZNGsfO6ZRKKqJRgwkomCD9Fz_a-UwyfZ0i5GV2yMJShIcypYYorXpde6v-orHUZRmpW0Kd30OswR18eUgwZqaVitSzUkwM1tyN0zeFnm9_RFOD5HrAxpBSh_4NQ0tzG3pTYm1-xF_bsDmtdNtkFn6Nxw78qdm6A5e_WzdXmYl_xE14Rv4w
CitedBy_id crossref_primary_10_3389_fpls_2023_1168985
crossref_primary_10_3390_ijms232113145
crossref_primary_10_1111_mpp_13470
crossref_primary_10_1016_j_plaphy_2023_02_006
crossref_primary_10_3390_ijms232214019
crossref_primary_10_1016_j_pmpp_2024_102506
crossref_primary_10_1016_j_biocontrol_2023_105237
crossref_primary_10_1016_j_hpj_2024_03_008
crossref_primary_10_3390_cimb47030177
crossref_primary_10_3390_crops2040025
crossref_primary_10_1007_s44281_024_00061_4
crossref_primary_10_1042_EBC20210089
crossref_primary_10_1093_hr_uhad242
crossref_primary_10_1111_pce_15189
crossref_primary_10_1016_j_plaphy_2024_108933
crossref_primary_10_1038_s42003_024_07208_z
crossref_primary_10_1007_s11103_024_01546_6
crossref_primary_10_3389_fpls_2022_881032
crossref_primary_10_1002_ps_7861
crossref_primary_10_3389_fpls_2023_1306420
Cites_doi 10.1073/pnas.0907711106
10.1016/j.plaphy.2021.02.045
10.1038/s41598-017-05377-y
10.3390/plants8080287
10.1111/j.1399-3054.2012.01659.x
10.1104/pp.113.223503
10.1016/j.cell.2006.06.054
10.1016/j.febslet.2005.01.029
10.1186/s12864-018-4967-4
10.1111/j.1365-313X.2006.02999.x
10.1038/srep16961
10.1038/s41438-019-0184-9
10.1074/jbc.M109275200
10.3389/fpls.2020.01022
10.17660/eJHS.2019/84.4.2
10.1104/pp.117.2.585
10.1006/pmpp.1993.1056
10.3390/ijms19020373
10.1186/1471-2105-11-450
10.5923/j.ajbe.20120205.03
10.1038/nmeth.1226
10.1111/j.1365-313X.2008.03603.x
10.1007/s00709-010-0162-4
10.1016/j.molp.2014.11.015
10.1093/bioinformatics/bti236
10.1007/s10658-016-1080-x
10.1016/j.jprot.2014.01.030
10.1073/pnas.0802157105
10.30843/nzpp.2017.70.61
10.1104/pp.010605
10.1016/j.jprot.2012.10.014
10.3389/fpls.2013.00024
10.1146/annurev-phyto-080516-035530
10.1038/nchembio.164
10.30843/nzpp.2013.66.5594
10.1073/pnas.0805760105
10.1038/nature14907
10.1002/pld3.297
10.1094/MPMI.2001.14.6.725
10.1111/aab.12150
10.3389/fpls.2017.01366
10.1038/nprot.2006.59
10.1104/pp.010685
10.1007/BF01106753
10.1093/bioinformatics/btn023
10.1186/1471-2164-13-599
10.1371/journal.pone.0211913
10.1111/tpj.14654
10.1111/nph.12256
10.3389/fpls.2020.551201
10.1093/jxb/eru288
10.1105/tpc.012211
10.1111/j.1365-313X.2009.03981.x
10.1094/PDIS-06-13-0667-PDN
10.3233/JBR-160128
10.1093/bioinformatics/btp616
10.3389/fpls.2014.00804
10.3390/ijms22094375
10.1104/pp.91.1.23
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2022 John Wiley & Sons Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7ST
C1K
SOI
7X8
7S9
L.6
DOI 10.1111/pce.14224
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

AGRICOLA
Calcium & Calcified Tissue Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
EISSN 1365-3040
EndPage 541
ExternalDocumentID 34773419
10_1111_pce_14224
PCE14224
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fundação para a Ciência e a Tecnologia
  funderid: PTDC/AGR‐PRO/6156/2014; SFRH/BD/99853/2014; UID/Multi/50016/2019; UIDB/05748/2020; UIDB/04551/2020; IF/00376/2012/CP0165/CT0003; PD/BD/114417/2016; PD/00035/2013
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FIJ
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
YNT
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7ST
C1K
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c3864-52b4963d200e6c3676cfef1c4c44dd004cb15a7525a6289b25e00466424c52403
IEDL.DBID DR2
ISSN 0140-7791
1365-3040
IngestDate Fri Jul 11 18:23:23 EDT 2025
Fri Jul 11 16:21:17 EDT 2025
Fri Jul 25 19:27:55 EDT 2025
Mon Jul 21 06:07:26 EDT 2025
Thu Apr 24 22:52:53 EDT 2025
Tue Jul 01 04:28:46 EDT 2025
Wed Jan 22 16:27:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords kiwifruit bacterial canker
whole-transcriptome sequencing
susceptibility
ammonia assimilation cycle
Language English
License 2021 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3864-52b4963d200e6c3676cfef1c4c44dd004cb15a7525a6289b25e00466424c52403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6747-1243
0000-0002-5110-7006
0000-0001-8228-0576
0000-0002-4598-2664
0000-0001-7157-1079
0000-0003-3257-9777
PMID 34773419
PQID 2620956295
PQPubID 37957
PageCount 14
ParticipantIDs proquest_miscellaneous_2636393866
proquest_miscellaneous_2597496572
proquest_journals_2620956295
pubmed_primary_34773419
crossref_primary_10_1111_pce_14224
crossref_citationtrail_10_1111_pce_14224
wiley_primary_10_1111_pce_14224_PCE14224
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Plant, cell and environment
PublicationTitleAlternate Plant Cell Environ
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 11
2017; 7
2013; 4
2021; 22
2013; 66
2005; 579
2019; 14
2002; 277
2003; 15
2021; 162
2005; 21
2008; 105
2008; 5
2013; 163
2016; 148
2020; 11
1998; 117
2012; 13
2014; 65
2017b; 8
2020; 4
2010; 26
2017a; 70
2013; 199
2008; 24
2014; 165
2006; 126
2001; 14
2014; 98
2019; 8
2015; 5
2019; 6
2010; 248
2009; 60
1993; 43
2008; 56
2013; 147
2006; 1
2015; 525
2020; 102
2015; 8
2018; 19
2016; 6
2012; 2
2019; 84
2013; 78
2020
2004; 196
2017; 55
1989; 91
2002; 128
2019
2009; 5
2014; 101
2007; 49
2009; 106
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
R Core Team (e_1_2_8_36_1) 2019
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 2
  start-page: 206
  issue: 5
  year: 2012
  end-page: 211
  article-title: A novel anticlustering filtering algorithm for the prediction of genes as a drug target
  publication-title: American Journal of Biomedical Engineering
– volume: 162
  start-page: 258
  year: 2021
  end-page: 266
  article-title: Role of methyl jasmonate and salicylic acid in kiwifruit plants further subjected to Psa infection: biochemical and genetic responses
  publication-title: Plant Physiology and Biochemistry
– volume: 7
  start-page: 4910
  year: 2017
  article-title: Whole transcriptome sequencing of pv. ‐infected kiwifruit plants reveals species‐specific interaction between long non‐coding RNA and coding genes
  publication-title: Scientific Reports
– volume: 128
  start-page: 951
  year: 2002
  end-page: 961
  article-title: Snakin‐2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection
  publication-title: Plant Physiology
– volume: 65
  start-page: 5243
  year: 2014
  end-page: 5255
  article-title: and : key genes involved in ABA metabolism during tomato fruit ripening
  publication-title: Journal of Experimental Botany
– volume: 43
  start-page: 265
  year: 1993
  end-page: 273
  article-title: Changes in abscisic acid levels in bean leaves during the initial stages of host and nonhost reactions to rust fungi
  publication-title: Physiological and Molecular Plant Pathology
– volume: 277
  start-page: 8588
  year: 2002
  end-page: 8596
  article-title: Regulation of osmotic stress‐responsive gene expression by the / locus in
  publication-title: The Journal of Biological Chemistry
– volume: 106
  start-page: 22522
  year: 2009
  end-page: 22527
  article-title: Uncoupling of sustained MAMP receptor signaling from early outputs in an endoplasmic reticulum glucosidase II allele
  publication-title: Proceedings of the National Academy of Sciences
– volume: 6
  start-page: 101
  year: 2019
  article-title: Multiple quantitative trait loci contribute to resistance to bacterial canker incited by e pv.  in kiwifruit (Actinidia chinensis)
  publication-title: Horticulture Research
– volume: 19
  start-page: 585
  year: 2018
  article-title: Comparative transcriptome analysis of the interaction between var. and pv. in absence and presence of acibenzolar‐S‐methyl
  publication-title: BMC Genomics
– volume: 102
  start-page: 688
  issue: 4
  year: 2020
  end-page: 702
  article-title: mediates an immune response to and confers resistance against pv.
  publication-title: The Plant Journal: For Cell and Molecular Biology
– volume: 22
  start-page: 4375. 
  issue: 9
  year: 2021
  article-title: A Breach in plant defences: pv. targets ethylene signalling to overcome pathogen responses
  publication-title: International Journal of Molecular Sciences
– volume: 199
  start-page: 228
  issue: 1
  year: 2013
  end-page: 240
  article-title: phospholipase Dβ1 modulates defense responses to bacterial and fungal pathogens
  publication-title: The New Phytologist
– volume: 579
  start-page: 1332
  year: 2005
  end-page: 1337
  article-title: GC‐MS libraries for the rapid identification of metabolites in complex biological samples
  publication-title: FEBS Letters
– volume: 163
  start-page: 896
  year: 2013
  end-page: 906
  article-title: phospholipase Dδ is involved in basal defense and nonhost resistance to powdery mildew fungi
  publication-title: Plant Physiology
– volume: 19
  issue: 2
  year: 2018
  article-title: Transcriptome analysis of kiwifruit in response to pv. infection
  publication-title: International Journal of Molecular Sciences
– volume: 126
  start-page: 969
  year: 2006
  end-page: 980
  article-title: Plant stomata function in innate immunity against bacterial invasion
  publication-title: Cell
– volume: 78
  start-page: 461
  year: 2013
  end-page: 476
  article-title: Proteomic changes in shoot during systemic infection with a pandemic pv. strain
  publication-title: Journal of Proteomics
– volume: 5
  year: 2015
  article-title: Reference gene selection for normalization of RT‐qPCR gene expression data from leaves infected with pv.
  publication-title: Scientific Reports
– volume: 11
  start-page: 1022. 
  year: 2020
  article-title: Early pathogen recognition and antioxidant system activation contributes to tolerance against pathovars and
  publication-title: Frontiers in Plant Science
– volume: 4
  start-page: 24. 
  year: 2013
  article-title: Using fundamental knowledge of induced resistance to develop control strategies for bacterial canker of kiwifruit caused by pv.
  publication-title: Frontiers in Plant Science
– volume: 165
  start-page: 441
  year: 2014
  end-page: 453
  article-title: Elicitors of the salicylic acid pathway reduce incidence of bacterial canker of kiwifruit caused by pv.
  publication-title: Annals of Applied Biology
– volume: 70
  start-page: 272
  year: 2017a
  end-page: 284
  article-title: Elicitor induction of defence genes and reduction of bacterial canker in kiwifruit
  publication-title: New Zealand Plant Protection
– volume: 148
  start-page: 163
  year: 2016
  end-page: 179
  article-title: Enhancement of PR1 and PR5 gene expressions by chitosan treatment in kiwifruit plants inoculated with pv.
  publication-title: European Journal of Plant Pathology
– volume: 24
  start-page: 732
  year: 2008
  end-page: 737
  article-title: TagFinder for the quantitative analysis of gas chromatography‐mass spectrometry (GC‐MS)‐based metabolite profiling experiments
  publication-title: Bioinformatics (Oxford, England)
– volume: 4
  issue: 12
  year: 2020
  article-title: Metabolic profiling reveals local and systemic responses of kiwifruit to pv.
  publication-title: Plant Direct
– volume: 105
  start-page: 14732
  year: 2008
  end-page: 14737
  article-title: , and participate in a ‐initiated antiviral RNA silencing pathway negatively regulated by
  publication-title: Proceedings of the National Academy of Sciences
– volume: 14
  start-page: 725
  issue: 6
  year: 2001
  end-page: 736
  article-title: Induction of plant gp91 homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato
  publication-title: Molecular Plant‐Microbe Interactions
– volume: 84
  start-page: 206
  year: 2019
  end-page: 212
  article-title: Exploring the expression of defence‐related genes in spp. after infection with pv. and pv. : first steps
  publication-title: European Journal of Horticultural Science
– volume: 55
  start-page: 377
  year: 2017
  end-page: 399
  article-title: The scientific, economic, and social impacts of the New Zealand outbreak of bacterial canker of kiwifruit ( pv. )
  publication-title: Annual Review of Phytopathology
– volume: 60
  start-page: 575
  issue: 4
  year: 2009
  end-page: 588
  article-title: Modulation of drought resistance by the abscisic acid receptor through inhibition of clade A
  publication-title: The Plant Journal: For Cell and Molecular Biology
– volume: 8
  start-page: 389
  issue: 3
  year: 2015
  end-page: 398
  article-title: BEACH‐domain proteins act together in a cascade to mediate vacuolar protein trafficking and disease resistance in Arabidopsis
  publication-title: Molecular Plant
– volume: 5
  start-page: 308
  issue: 5
  year: 2009
  end-page: 316
  article-title: Networking by small‐molecule hormones in plant immunity
  publication-title: Nature Chemical Biology
– year: 2019
– volume: 66
  start-page: 170
  year: 2013
  end-page: 177
  article-title: Recent progress on detecting, understanding and controlling pv. : a short review
  publication-title: Journal of the New Zealand Plant Protection Society
– volume: 13
  start-page: 599. 
  year: 2012
  article-title: Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening
  publication-title: BMC Genomics
– volume: 1
  start-page: 387
  year: 2006
  end-page: 396
  article-title: Gas chromatography mass spectrometry‐based metabolite profiling in plants
  publication-title: Nature Protocols
– volume: 49
  start-page: 829
  issue: 5
  year: 2007
  end-page: 839
  article-title: is required for ‐dependent disease resistance in and affects transcript levels
  publication-title: The Plant Journal: For Cell and Molecular Biology
– volume: 15
  start-page: 1846
  year: 2003
  end-page: 1858
  article-title: Salicylic acid and induce the recruitment of trans‐activating TGA factors to a defense gene promoter in
  publication-title: The Plant Cell
– volume: 8
  issue: 8
  year: 2019
  article-title: Integrated use of strain CG163 and acibenzolar‐s‐methyl for management of bacterial canker in kiwifruit
  publication-title: Plants
– volume: 8
  start-page: 1366. 
  year: 2017b
  article-title: Phytohormone and putative defense gene expression differentiates the response of ‘Hayward’ kiwifruit to Psa and Pfm infections
  publication-title: Frontiers in Plant Science
– volume: 5
  start-page: 621
  year: 2008
  end-page: 628
  article-title: Mapping and quantifying mammalian transcriptomes by RNA‐Seq
  publication-title: Nature Methods
– volume: 117
  start-page: 585
  issue: 2
  year: 1998
  end-page: 592
  article-title: Transcriptional down‐regulation by abscisic acid of pathogenesis‐related beta‐1,3‐glucanase genes in tobacco cell cultures
  publication-title: Plant Physiology
– volume: 248
  start-page: 415
  year: 2010
  end-page: 423
  article-title: Transient expression of glyoxal oxidase from the Chinese wild grape can suppress powdery mildew in a susceptible genotype
  publication-title: Protoplasma
– volume: 56
  start-page: 336
  issue: 2
  year: 2008
  end-page: 349
  article-title: Overexpression of a fatty acid amide hydrolase compromises innate immunity in
  publication-title: The Plant Journal: For Cell and Molecular Biology
– volume: 26
  start-page: 139
  year: 2010
  end-page: 140
  article-title: edgeR: a bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
– volume: 98
  start-page: 418
  year: 2014
  article-title: First report of pv. the causal agent of bacterial canker of kiwifruit on vines in New Zealand
  publication-title: Plant Disease
– volume: 525
  start-page: 376
  year: 2015
  end-page: 379
  article-title: A new cyanogenic metabolite in required for inducible pathogen defense
  publication-title: Nature
– volume: 105
  start-page: 6475
  year: 2008
  end-page: 6480
  article-title: Arabidopsis TAO1 is a TIR‐NB‐LRR protein that contributes to disease resistance induced by the effector AvrB
  publication-title: Proceedings of the National Academy of Sciences
– volume: 6
  start-page: 407
  year: 2016
  end-page: 415
  article-title: Greenhouse assays on the control of the bacterial canker of kiwifruit ( pv. )
  publication-title: Journal of Berry Research
– volume: 196
  start-page: 627
  year: 2004
  end-page: 634
  article-title: Biosynthesis and metabolism of abscisic acid in tomato leaves infected with
  publication-title: Planta
– volume: 11
  start-page: 450
  year: 2010
  article-title: Filtering, FDR and power
  publication-title: BMC Bioinformatics
– volume: 91
  start-page: 23
  issue: 1
  year: 1989
  end-page: 27
  article-title: Abscisic acid suppression of phenylalanine ammonia‐lyase activity and mRNA, and resistance of soybeans to f.sp.
  publication-title: Plant Physiology
– volume: 14
  issue: 2
  year: 2019
  article-title: Comparative transcriptome analysis of resistant and susceptible kiwifruits in response to pv. a during early infection
  publication-title: PLOS ONE
– year: 2020
– volume: 21
  start-page: 1635
  year: 2005
  end-page: 1638
  article-title: GMD@CSB.DB: the golm metabolome database
  publication-title: Bioinformatics
– volume: 11
  year: 2020
  article-title: Molecular cloning and functional analysis of the NPR1 homolog in kiwifruit ( )
  publication-title: Frontiers in Plant Science
– volume: 128
  start-page: 491
  year: 2002
  end-page: 501
  article-title: Abscisic acid determines basal susceptibility of tomato to  and suppresses salicylic acid‐dependent signaling mechanisms
  publication-title: Plant Physiology
– volume: 101
  start-page: 43
  year: 2014
  end-page: 62
  article-title: Proteomic analysis of the leaf apoplast during biotrophic colonization by pv.
  publication-title: Journal of Proteomics
– volume: 5
  year: 2015
  article-title: Synthetic plant defense elicitors
  publication-title: Frontiers in Plant Science
– volume: 147
  start-page: 296
  year: 2013
  end-page: 306
  article-title: Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions
  publication-title: Physiologia Plantarum
– ident: e_1_2_8_21_1
  doi: 10.1073/pnas.0907711106
– ident: e_1_2_8_28_1
  doi: 10.1016/j.plaphy.2021.02.045
– ident: e_1_2_8_54_1
  doi: 10.1038/s41598-017-05377-y
– ident: e_1_2_8_14_1
  doi: 10.3390/plants8080287
– ident: e_1_2_8_29_1
  doi: 10.1111/j.1399-3054.2012.01659.x
– ident: e_1_2_8_34_1
  doi: 10.1104/pp.113.223503
– ident: e_1_2_8_23_1
  doi: 10.1016/j.cell.2006.06.054
– ident: e_1_2_8_45_1
  doi: 10.1016/j.febslet.2005.01.029
– ident: e_1_2_8_24_1
  doi: 10.1186/s12864-018-4967-4
– ident: e_1_2_8_10_1
  doi: 10.1111/j.1365-313X.2006.02999.x
– ident: e_1_2_8_31_1
  doi: 10.1038/srep16961
– ident: e_1_2_8_48_1
  doi: 10.1038/s41438-019-0184-9
– volume-title: R: a language and environment for statistical computing
  year: 2019
  ident: e_1_2_8_36_1
– ident: e_1_2_8_59_1
  doi: 10.1074/jbc.M109275200
– ident: e_1_2_8_27_1
  doi: 10.3389/fpls.2020.01022
– ident: e_1_2_8_26_1
  doi: 10.17660/eJHS.2019/84.4.2
– ident: e_1_2_8_40_1
  doi: 10.1104/pp.117.2.585
– ident: e_1_2_8_41_1
  doi: 10.1006/pmpp.1993.1056
– ident: e_1_2_8_53_1
  doi: 10.3390/ijms19020373
– ident: e_1_2_8_20_1
  doi: 10.1186/1471-2105-11-450
– ident: e_1_2_8_38_1
  doi: 10.5923/j.ajbe.20120205.03
– ident: e_1_2_8_25_1
  doi: 10.1038/nmeth.1226
– ident: e_1_2_8_16_1
  doi: 10.1111/j.1365-313X.2008.03603.x
– ident: e_1_2_8_11_1
  doi: 10.1007/s00709-010-0162-4
– ident: e_1_2_8_49_1
  doi: 10.1016/j.molp.2014.11.015
– ident: e_1_2_8_17_1
  doi: 10.1093/bioinformatics/bti236
– ident: e_1_2_8_4_1
  doi: 10.1007/s10658-016-1080-x
– ident: e_1_2_8_32_1
  doi: 10.1016/j.jprot.2014.01.030
– ident: e_1_2_8_9_1
  doi: 10.1073/pnas.0802157105
– ident: e_1_2_8_57_1
  doi: 10.30843/nzpp.2017.70.61
– ident: e_1_2_8_2_1
  doi: 10.1104/pp.010605
– ident: e_1_2_8_30_1
  doi: 10.1016/j.jprot.2012.10.014
– ident: e_1_2_8_39_1
  doi: 10.3389/fpls.2013.00024
– ident: e_1_2_8_51_1
  doi: 10.1146/annurev-phyto-080516-035530
– ident: e_1_2_8_33_1
  doi: 10.1038/nchembio.164
– ident: e_1_2_8_50_1
  doi: 10.30843/nzpp.2013.66.5594
– ident: e_1_2_8_56_1
– ident: e_1_2_8_35_1
  doi: 10.1073/pnas.0805760105
– ident: e_1_2_8_37_1
  doi: 10.1038/nature14907
– ident: e_1_2_8_18_1
  doi: 10.1002/pld3.297
– ident: e_1_2_8_61_1
  doi: 10.1094/MPMI.2001.14.6.725
– ident: e_1_2_8_6_1
  doi: 10.1111/aab.12150
– ident: e_1_2_8_58_1
  doi: 10.3389/fpls.2017.01366
– ident: e_1_2_8_19_1
  doi: 10.1038/nprot.2006.59
– ident: e_1_2_8_5_1
  doi: 10.1104/pp.010685
– ident: e_1_2_8_15_1
  doi: 10.1007/BF01106753
– ident: e_1_2_8_22_1
  doi: 10.1093/bioinformatics/btn023
– ident: e_1_2_8_44_1
  doi: 10.1186/1471-2164-13-599
– ident: e_1_2_8_46_1
  doi: 10.1371/journal.pone.0211913
– ident: e_1_2_8_60_1
  doi: 10.1111/tpj.14654
– ident: e_1_2_8_62_1
  doi: 10.1111/nph.12256
– ident: e_1_2_8_47_1
  doi: 10.3389/fpls.2020.551201
– ident: e_1_2_8_12_1
  doi: 10.1093/jxb/eru288
– ident: e_1_2_8_13_1
  doi: 10.1105/tpc.012211
– ident: e_1_2_8_43_1
  doi: 10.1111/j.1365-313X.2009.03981.x
– ident: e_1_2_8_52_1
  doi: 10.1094/PDIS-06-13-0667-PDN
– ident: e_1_2_8_8_1
  doi: 10.3233/JBR-160128
– ident: e_1_2_8_42_1
  doi: 10.1093/bioinformatics/btp616
– ident: e_1_2_8_3_1
  doi: 10.3389/fpls.2014.00804
– ident: e_1_2_8_7_1
  doi: 10.3390/ijms22094375
– ident: e_1_2_8_55_1
  doi: 10.1104/pp.91.1.23
SSID ssj0001479
Score 2.4807773
Snippet The reasons underlying the differential tolerance of Actinidia spp. to the pandemic pathogen Pseudomonas syringae pv. actinidiae (Psa) have not yet been...
The reasons underlying the differential tolerance of Actinidia spp. to the pandemic pathogen Pseudomonas syringae pv. actinidiae (Psa) have not yet been...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 528
SubjectTerms Abscisic acid
Actinidia
Actinidia - microbiology
Actinidia - physiology
Actinidia arguta
Actinidia chinensis
Ammonia
ammonia assimilation cycle
environment
Genotypes
Glutamine
Host Microbial Interactions
Jasmonic acid
Kiwifruit
kiwifruit bacterial canker
Metabolic disorders
Metabolism
Metabolites
Metabolomics
Ornithine
pandemic
Pandemics
pathogens
Phenotypes
Phytohormones
Plant bacterial diseases
Plant Diseases - microbiology
Plant Growth Regulators - metabolism
Plant hormones
Plant Immunity - physiology
Pseudomonas
Pseudomonas syringae
Pseudomonas syringae - physiology
Pseudomonas syringae pv. actinidiae
Salicylic acid
susceptibility
transcriptome
Transcriptomes
Transcriptomics
whole‐transcriptome sequencing
Title Defence‐related pathways, phytohormones and primary metabolism are key players in kiwifruit plant tolerance to Pseudomonas syringae pv. actinidiae
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14224
https://www.ncbi.nlm.nih.gov/pubmed/34773419
https://www.proquest.com/docview/2620956295
https://www.proquest.com/docview/2597496572
https://www.proquest.com/docview/2636393866
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtRAEC1FEZG4sCQsAwE1EQcOzCi2u91jcYKQKOKAIkSkHJCs7nZZsTKxR2ObaDjxCRzyhfkSqrxlYRHiZtllq5d69qt29SuAlzrwPetHjoIc3B5zAuM4krwcFiQ4TadKR63a58dw_1B-OFJHK_Cm3wvT6kMMC26MjOZ9zQA3trwC8rnDCS9gsBYo52oxIfp0KR3lyVZnj9MXtY68TlWIs3iGO69_i34hmNf5avPB2bsLX_qmtnkmJ5O6shP37YaK43_25R7c6YioeNt6zn1YwXwd1trSlMt1uPWuINq43IDz95gy-i--_2j2vWAiuIrxmVmWrwXNUVUcE-1lxX9hcrrWqleIU6zIvWZZeSrMAgW9KsR8ZpjfiywXJ9lZli7qrOKTeSWqYoZc4QPpSByUWCcFPdKUolzyuqNBMf86EbwHI8_IofEBHO7tft7ZH3elHMYumIaSPMFKgnpCmMTQsUqcSzH1nHRSJgkB1VlPGa18ZUIKAa2vkCN3Co6kUywZ-BBWc-rKYxAsMO-MCbVNU7lt3ZRYBhpNkaBnIwoHR_Cqn9TYdTrnXG5jFvfxDo123Iz2CLYG0254fme02XtG3OG7jFnGnyJLP1IjeDFcJmTy7xaTY1GTDcdqUai0_xebMCCKSEMUjuBR63VDSwKpNavtUYca3_lzE-ODnd3m4Mm_mz6F2z7v5GgS0DdhtVrU-Iz4VWWfN0D6Ccs8IRo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VAoILj9JCoMCCOHAgUW2vvbHEBUqrAKWqUCv1gqz1eiyspnYU21ThxE_oob-QX8LM-gHlJcTNiifR7nq-9XyT2W8AnijPdWI3NERycGPIBYzDUHI6zEtwnI59FTZqn7vB5EC-OfQPl-B5dxam0YfoE26MDLtfM8A5If0DymcGR5zBkBfgInf0toTq_XfxKEc2SntcwKhU6LS6QlzH03_1_NvolxDzfMRqXznb1-FDN9im0uRoVFfxyHz-Scfxf2dzA661sah40TjPTVjCfAUuN90pFytw6WVBkePiFpy9wpQ3gK9fTu3RF0wENzI-0YvymaDHVBUfKfJl0X-hc7rXCFiIY6zIw6ZZeSz0HAXtFmI21RziiywXR9lJls7rrOIP80pUxRS5yQfSldgrsU4K-kldinLBqUeNYvZpJPgYRp6RT-MqHGxv7W9Ohm03h6HxxoEkZ4gloT0hWGJgWCjOpJg6Rhopk4SwamLH18p3fR0QC4xdH5m8Ez-SxmfVwDVYzmkqd0CwxrzROlBxmsqN2Iwp0ECtiAw6cUiMcABPu6camVbqnDtuTKOO8tBqR3a1B_C4N22X53dG651rRC3Ey4iV_IlcuqE_gEf9bQIn_-OicyxqsmG6Fga-cv9iE3gUJdISBQO43bhdPxJPKsWCezQh6zx_HmK0t7llL-7-u-lDuDLZf7cT7bzefXsPrrp8sMPWo6_DcjWv8T6FW1X8wKLqG7-KJTU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtRAEC2FsIhLgLANBGgQBw7MaGy33bY4QSajsCgaISLlgGS122VhZWKPxjbRcOITcsgX5kuo8gZhE-Jm2WWrl3p2vXb1K4CnyrGtyA4MkRwcDzmBcRhIXg5zYvQT31VBo_a55-3uyzcH7sEavOj2wjT6EP2CGyOjfl8zwBdx8gPIFwZHvIAhL8BF6Y19dunJ--_aUZZshPY4f1GpwGplhTiNp7_1_MfolwjzfMBaf3Gm1-Bj19Ym0eRwVJXRyHz5ScbxPztzHTbaSFS8bFznBqxhtgmXm9qUq0249CqnuHF1E04nmDD8z76e1BtfMBZcxvhYr4rngiapzD9R3MuS_0JndK2RrxBHWJJ_zdPiSOglCnpXiMVcc4Av0kwcpsdpsqzSkk9mpSjzOXKJD6QjMSuwinN6pC5EseKFR41i8XkkeBNGlpJH4y3Yn-582N4dtrUchsbxPUmuEEnCekygRM-wTJxJMLGMNFLGMSHVRJarlWu72iMOGNkuMnUndiSNy5qBt2E9o67cBcEK80ZrT0VJIseR8SnMQK2IClpRQHxwAM-6SQ1NK3TO9TbmYUd4aLTDerQH8KQ3bYfnd0ZbnWeELcCLkHX8iVragTuAx_1lgib_b9EZ5hXZMFkLPFfZf7HxHIoRaYi8AdxpvK5viSOVYrk96lDtO39uYjjb3qkP7v276SO4MptMw3ev997eh6s27-qok9G3YL1cVviAYq0yelhj6htWeSPt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defence-related+pathways%2C+phytohormones+and+primary+metabolism+are+key+players+in+kiwifruit+plant+tolerance+to+Pseudomonas+syringae+pv.+actinidiae&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Nunes+da+Silva%2C+Marta&rft.au=Carvalho%2C+Susana+M+P&rft.au=Rodrigues%2C+Ana+M&rft.au=G%C3%B3mez-Cadenas%2C+Aurelio&rft.date=2022-02-01&rft.issn=1365-3040&rft.eissn=1365-3040&rft.volume=45&rft.issue=2&rft.spage=528&rft_id=info:doi/10.1111%2Fpce.14224&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon