Rice NIN‐LIKE PROTEIN 3 modulates nitrogen use efficiency and grain yield under nitrate‐sufficient conditions

Nitrogen (N) is an essential macronutrient for crop growth and yield. Improving the N use efficiency (NUE) of crops is important to agriculture. However, the molecular mechanisms underlying NUE regulation remain largely elusive. Here we report that the OsNLP3 (NIN‐like protein 3) regulates NUE and g...

Full description

Saved in:
Bibliographic Details
Published inPlant, cell and environment Vol. 45; no. 5; pp. 1520 - 1536
Main Authors Zhang, Zi‐Sheng, Xia, Jin‐Qiu, Alfatih, Alamin, Song, Ying, Huang, Yi‐Jie, Sun, Liang‐Qi, Wan, Guang‐Yu, Wang, Shi‐Mei, Wang, Yu‐Ping, Hu, Bin‐Hua, Zhang, Guo‐Hua, Qin, Peng, Li, Shi‐Gui, Yu, Lin‐Hui, Wu, Jie, Xiang, Cheng‐Bin
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nitrogen (N) is an essential macronutrient for crop growth and yield. Improving the N use efficiency (NUE) of crops is important to agriculture. However, the molecular mechanisms underlying NUE regulation remain largely elusive. Here we report that the OsNLP3 (NIN‐like protein 3) regulates NUE and grain yield in rice under N sufficient conditions. OsNLP3 transcript level is significantly induced by N starvation and its protein nucleocytosolic shuttling is specifically regulated by nitrate. Loss‐of‐function of OsNLP3 reduces plant growth, grain yield, and NUE under sufficient nitrate conditions, whereas under low nitrate or different ammonium conditions, osnlp3 mutants show no clear difference from the wild type. Importantly, under sufficient N conditions in the field, OsNLP3 overexpression lines display improved grain yield and NUE compared with the wild type. OsNLP3 orchestrates the expression of multiple N uptake and assimilation genes by directly binding to the nitrate‐responsive cis‐elements in their promoters. Overall, our study demonstrates that OsNLP3, together with OsNLP1 and OsNLP4, plays overlapping and differential roles in N acquisition and NUE, and modulates NUE and the grain yield increase promoted by N fertilizer. Therefore, OsNLP3 is a promising candidate gene for the genetic improvement of grain yield and NUE in rice. Summary Statement Crop nitrogen use efficiency (NUE) is an important agronomic trait. But the molecular mechanisms underlying NUE regulation are not well understood. This study reveals that rice NIN‐like protein 3 (OsNLP3) regulates NUE and grain yield especially under N sufficient conditions and is a promising candidate gene for improving grain yield and NUE in rice.
AbstractList Nitrogen (N) is an essential macronutrient for crop growth and yield. Improving the N use efficiency (NUE) of crops is important to agriculture. However, the molecular mechanisms underlying NUE regulation remain largely elusive. Here we report that the OsNLP3 (NIN-like protein 3) regulates NUE and grain yield in rice under N sufficient conditions. OsNLP3 transcript level is significantly induced by N starvation and its protein nucleocytosolic shuttling is specifically regulated by nitrate. Loss-of-function of OsNLP3 reduces plant growth, grain yield, and NUE under sufficient nitrate conditions, whereas under low nitrate or different ammonium conditions, osnlp3 mutants show no clear difference from the wild type. Importantly, under sufficient N conditions in the field, OsNLP3 overexpression lines display improved grain yield and NUE compared with the wild type. OsNLP3 orchestrates the expression of multiple N uptake and assimilation genes by directly binding to the nitrate-responsive cis-elements in their promoters. Overall, our study demonstrates that OsNLP3, together with OsNLP1 and OsNLP4, plays overlapping and differential roles in N acquisition and NUE, and modulates NUE and the grain yield increase promoted by N fertilizer. Therefore, OsNLP3 is a promising candidate gene for the genetic improvement of grain yield and NUE in rice.
Nitrogen (N) is an essential macronutrient for crop growth and yield. Improving the N use efficiency (NUE) of crops is important to agriculture. However, the molecular mechanisms underlying NUE regulation remain largely elusive. Here we report that the OsNLP3 (NIN‐like protein 3) regulates NUE and grain yield in rice under N sufficient conditions. OsNLP3 transcript level is significantly induced by N starvation and its protein nucleocytosolic shuttling is specifically regulated by nitrate. Loss‐of‐function of OsNLP3 reduces plant growth, grain yield, and NUE under sufficient nitrate conditions, whereas under low nitrate or different ammonium conditions, osnlp3 mutants show no clear difference from the wild type. Importantly, under sufficient N conditions in the field, OsNLP3 overexpression lines display improved grain yield and NUE compared with the wild type. OsNLP3 orchestrates the expression of multiple N uptake and assimilation genes by directly binding to the nitrate‐responsive cis ‐elements in their promoters. Overall, our study demonstrates that OsNLP3, together with OsNLP1 and OsNLP4, plays overlapping and differential roles in N acquisition and NUE, and modulates NUE and the grain yield increase promoted by N fertilizer. Therefore, OsNLP3 is a promising candidate gene for the genetic improvement of grain yield and NUE in rice. Crop nitrogen use efficiency (NUE) is an important agronomic trait. But the molecular mechanisms underlying NUE regulation are not well understood. This study reveals that rice NIN‐like protein 3 (OsNLP3) regulates NUE and grain yield especially under N sufficient conditions and is a promising candidate gene for improving grain yield and NUE in rice.
Nitrogen (N) is an essential macronutrient for crop growth and yield. Improving the N use efficiency (NUE) of crops is important to agriculture. However, the molecular mechanisms underlying NUE regulation remain largely elusive. Here we report that the OsNLP3 (NIN-like protein 3) regulates NUE and grain yield in rice under N sufficient conditions. OsNLP3 transcript level is significantly induced by N starvation and its protein nucleocytosolic shuttling is specifically regulated by nitrate. Loss-of-function of OsNLP3 reduces plant growth, grain yield, and NUE under sufficient nitrate conditions, whereas under low nitrate or different ammonium conditions, osnlp3 mutants show no clear difference from the wild type. Importantly, under sufficient N conditions in the field, OsNLP3 overexpression lines display improved grain yield and NUE compared with the wild type. OsNLP3 orchestrates the expression of multiple N uptake and assimilation genes by directly binding to the nitrate-responsive cis-elements in their promoters. Overall, our study demonstrates that OsNLP3, together with OsNLP1 and OsNLP4, plays overlapping and differential roles in N acquisition and NUE, and modulates NUE and the grain yield increase promoted by N fertilizer. Therefore, OsNLP3 is a promising candidate gene for the genetic improvement of grain yield and NUE in rice.Nitrogen (N) is an essential macronutrient for crop growth and yield. Improving the N use efficiency (NUE) of crops is important to agriculture. However, the molecular mechanisms underlying NUE regulation remain largely elusive. Here we report that the OsNLP3 (NIN-like protein 3) regulates NUE and grain yield in rice under N sufficient conditions. OsNLP3 transcript level is significantly induced by N starvation and its protein nucleocytosolic shuttling is specifically regulated by nitrate. Loss-of-function of OsNLP3 reduces plant growth, grain yield, and NUE under sufficient nitrate conditions, whereas under low nitrate or different ammonium conditions, osnlp3 mutants show no clear difference from the wild type. Importantly, under sufficient N conditions in the field, OsNLP3 overexpression lines display improved grain yield and NUE compared with the wild type. OsNLP3 orchestrates the expression of multiple N uptake and assimilation genes by directly binding to the nitrate-responsive cis-elements in their promoters. Overall, our study demonstrates that OsNLP3, together with OsNLP1 and OsNLP4, plays overlapping and differential roles in N acquisition and NUE, and modulates NUE and the grain yield increase promoted by N fertilizer. Therefore, OsNLP3 is a promising candidate gene for the genetic improvement of grain yield and NUE in rice.
Nitrogen (N) is an essential macronutrient for crop growth and yield. Improving the N use efficiency (NUE) of crops is important to agriculture. However, the molecular mechanisms underlying NUE regulation remain largely elusive. Here we report that the OsNLP3 (NIN‐like protein 3) regulates NUE and grain yield in rice under N sufficient conditions. OsNLP3 transcript level is significantly induced by N starvation and its protein nucleocytosolic shuttling is specifically regulated by nitrate. Loss‐of‐function of OsNLP3 reduces plant growth, grain yield, and NUE under sufficient nitrate conditions, whereas under low nitrate or different ammonium conditions, osnlp3 mutants show no clear difference from the wild type. Importantly, under sufficient N conditions in the field, OsNLP3 overexpression lines display improved grain yield and NUE compared with the wild type. OsNLP3 orchestrates the expression of multiple N uptake and assimilation genes by directly binding to the nitrate‐responsive cis‐elements in their promoters. Overall, our study demonstrates that OsNLP3, together with OsNLP1 and OsNLP4, plays overlapping and differential roles in N acquisition and NUE, and modulates NUE and the grain yield increase promoted by N fertilizer. Therefore, OsNLP3 is a promising candidate gene for the genetic improvement of grain yield and NUE in rice. Summary Statement Crop nitrogen use efficiency (NUE) is an important agronomic trait. But the molecular mechanisms underlying NUE regulation are not well understood. This study reveals that rice NIN‐like protein 3 (OsNLP3) regulates NUE and grain yield especially under N sufficient conditions and is a promising candidate gene for improving grain yield and NUE in rice.
Author Alfatih, Alamin
Wan, Guang‐Yu
Li, Shi‐Gui
Yu, Lin‐Hui
Zhang, Guo‐Hua
Sun, Liang‐Qi
Zhang, Zi‐Sheng
Xia, Jin‐Qiu
Xiang, Cheng‐Bin
Song, Ying
Wang, Shi‐Mei
Wu, Jie
Wang, Yu‐Ping
Qin, Peng
Huang, Yi‐Jie
Hu, Bin‐Hua
Author_xml – sequence: 1
  givenname: Zi‐Sheng
  surname: Zhang
  fullname: Zhang, Zi‐Sheng
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Jin‐Qiu
  surname: Xia
  fullname: Xia, Jin‐Qiu
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Alamin
  surname: Alfatih
  fullname: Alfatih, Alamin
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Ying
  surname: Song
  fullname: Song, Ying
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Yi‐Jie
  surname: Huang
  fullname: Huang, Yi‐Jie
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Liang‐Qi
  surname: Sun
  fullname: Sun, Liang‐Qi
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Guang‐Yu
  surname: Wan
  fullname: Wan, Guang‐Yu
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Shi‐Mei
  surname: Wang
  fullname: Wang, Shi‐Mei
  organization: Anhui Academy of Agricultural Sciences
– sequence: 9
  givenname: Yu‐Ping
  surname: Wang
  fullname: Wang, Yu‐Ping
  organization: Sichuan Agricultural University
– sequence: 10
  givenname: Bin‐Hua
  surname: Hu
  fullname: Hu, Bin‐Hua
  organization: Sichuan Agricultural University
– sequence: 11
  givenname: Guo‐Hua
  surname: Zhang
  fullname: Zhang, Guo‐Hua
  organization: Sichuan Agricultural University
– sequence: 12
  givenname: Peng
  surname: Qin
  fullname: Qin, Peng
  organization: Sichuan Agricultural University
– sequence: 13
  givenname: Shi‐Gui
  surname: Li
  fullname: Li, Shi‐Gui
  organization: Sichuan Agricultural University
– sequence: 14
  givenname: Lin‐Hui
  surname: Yu
  fullname: Yu, Lin‐Hui
  email: yulh@ustc.edu.cn
  organization: Northwest A&F University
– sequence: 15
  givenname: Jie
  surname: Wu
  fullname: Wu, Jie
  email: wujie199104@163.com
  organization: Chinese Academy of Sciences
– sequence: 16
  givenname: Cheng‐Bin
  surname: Xiang
  fullname: Xiang, Cheng‐Bin
  email: xiangcb@ustc.edu.cn
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35150141$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1qGzEUhUVJaZy0i75AEXTTLibR3_wti3FaU-OEkK6F5upOUBhLjjRD8a6P0GfMk1SJnU1oodJCQnznXHTOCTnywSMh7zk743mdbwHPuBKtekVmXFZlIZliR2TGuGJFXbf8mJykdMdYfqjbN-RYlrzMdz4j99cOkK6X64dfv1fL7wt6dX15s1iuqaSbYKfBjJiod2MMt-jplJBi3ztw6GFHjbf0Nhrn6c7hYOnkLcYnOsuyYZoO7EgheOtGF3x6S173Zkj47nCekh8Xi5v5t2J1-XU5_7IqQDaVKlTXGdb30Jcd1Ir3ohLKAoAoTd6daGTfgW1YJU2jOLSmk5WCBlpRo7HGylPyae-7jeF-wjTqjUuAw2A8hilpUVU8J1Ip-R9oHsdYK9qMfnyB3oUp-vyRTKm6LJkSKlMfDtTUbdDqbXQbE3f6OfcMnO8BiCGliL0GN5rHfHJ2btCc6cdmdW5WPzWbFZ9fKJ5N_8Ye3H-6AXf_BvXVfLFX_AF6GbND
CitedBy_id crossref_primary_10_1007_s11104_022_05655_3
crossref_primary_10_1016_j_xplc_2024_100999
crossref_primary_10_1111_ppl_70069
crossref_primary_10_1016_j_jia_2023_05_032
crossref_primary_10_1073_pnas_2416345122
crossref_primary_10_1111_nph_19129
crossref_primary_10_1016_j_molp_2023_09_004
crossref_primary_10_3389_fpls_2023_1156514
crossref_primary_10_1111_jipb_13832
crossref_primary_10_3389_fpls_2024_1408356
crossref_primary_10_1016_j_xplc_2022_100353
crossref_primary_10_1111_pbi_14185
crossref_primary_10_1007_s11738_025_03791_8
crossref_primary_10_1016_j_agwat_2022_108066
crossref_primary_10_1111_ppl_14486
crossref_primary_10_1111_tpj_70010
crossref_primary_10_48130_forres_0024_0014
crossref_primary_10_1007_s00299_025_03447_4
crossref_primary_10_1016_j_jia_2023_12_037
crossref_primary_10_3390_life12101653
crossref_primary_10_1016_j_agrcom_2024_100031
crossref_primary_10_1016_j_jgg_2024_11_016
crossref_primary_10_1093_plcell_koae184
crossref_primary_10_1016_j_ncrops_2024_100047
crossref_primary_10_3390_agronomy13071834
crossref_primary_10_1007_s42729_023_01398_x
crossref_primary_10_1016_j_indcrop_2022_115368
crossref_primary_10_1016_j_plantsci_2023_111842
crossref_primary_10_3390_ijms24076080
crossref_primary_10_3390_plants12010085
crossref_primary_10_1016_j_rsci_2023_03_006
crossref_primary_10_3390_plants12122276
crossref_primary_10_1111_pce_15275
crossref_primary_10_1016_j_pbi_2022_102327
crossref_primary_10_1038_s41477_025_01934_w
crossref_primary_10_1007_s10142_024_01503_y
crossref_primary_10_1007_s42994_024_00193_1
crossref_primary_10_1111_nph_19318
crossref_primary_10_1021_acs_jafc_2c08051
crossref_primary_10_1186_s12284_025_00768_6
crossref_primary_10_3390_agronomy14122888
Cites_doi 10.1073/pnas.1404657111
10.1016/j.molp.2017.06.007
10.1016/j.pbi.2010.08.005
10.1038/srep09635
10.1093/jxb/ert458
10.1104/pp.102.016071
10.1093/jxb/erq419
10.3389/fpls.2017.01703
10.1038/s41467-019-13110-8
10.1111/pbi.13475
10.1093/jxb/eru425
10.1104/pp.117.1.293
10.1093/jxb/eru261
10.1126/science.abg5945
10.1111/j.1365-3040.2011.02335.x
10.1126/science.aaz2046
10.1105/tpc.15.00567
10.1016/j.tplants.2004.10.008
10.1088/1748-9326/9/5/054002
10.1111/j.1365-313X.2008.03695.x
10.3390/su3091452
10.1021/acs.jmedchem.0c00897
10.1111/tpj.12618
10.1146/annurev-arplant-042811-105532
10.1104/pp.16.00891
10.1105/tpc.17.00809
10.1093/jxb/eraa292
10.1126/science.279.5349.407
10.1126/science.aba0196
10.1186/s12870-019-1692-3
10.1038/s41467-018-02831-x
10.1146/annurev-arplant-042817-040056
10.3390/ijms16059037
10.1093/aob/mci216
10.1093/jxb/eru001
10.1146/annurev-genet-112414-055037
10.1073/pnas.1615676114
10.1186/1746-4811-1-13
10.2134/jeq2010.0292
10.1007/s00299-008-0665-z
10.1111/tpj.14628
10.1038/nature22077
10.3390/ijms19082270
10.1111/j.1365-3040.2009.02046.x
10.1038/srep27795
10.1111/j.1744-7909.2007.00442.x
10.1111/ppl.12696
10.1038/s41477-018-0261-3
10.1111/pbi.12031
10.1038/ncomms13179
10.1038/ncomms2621
10.1038/s41467-020-14979-6
10.1038/ncomms6833
10.1038/s41586-018-0415-5
10.1111/j.1467-7652.2012.00700.x
10.1038/s41467-019-13187-1
10.1080/00103627509366547
10.1038/ng.3337
10.1038/ncomms2650
10.1104/pp.106.093021
10.1073/pnas.0909571107
10.1007/s00018-019-03164-8
10.1093/plcell/koab103
10.1105/tpc.109.067041
10.1073/pnas.1101419108
10.1016/j.pbi.2020.03.006
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7ST
C1K
SOI
7X8
7S9
L.6
DOI 10.1111/pce.14294
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
CrossRef
AGRICOLA
MEDLINE - Academic

Calcium & Calcified Tissue Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
EISSN 1365-3040
EndPage 1536
ExternalDocumentID 35150141
10_1111_pce_14294
PCE14294
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 3157110003; 31572183
– fundername: The National Key R & D Program of China
  funderid: 2016YFD0100701
– fundername: Fundamental Research Funds for the Central Universities
  funderid: WK6030000122
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FIJ
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
YNT
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7ST
C1K
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c3864-4bba0ffcf5bc741f2624dccc25a5a5b283fbcd8063a841c9ab364c8c927eadad3
IEDL.DBID DR2
ISSN 0140-7791
1365-3040
IngestDate Fri Jul 11 18:31:58 EDT 2025
Fri Jul 11 00:59:04 EDT 2025
Fri Jul 25 10:56:28 EDT 2025
Mon Jul 21 06:00:33 EDT 2025
Tue Jul 01 04:28:47 EDT 2025
Thu Apr 24 23:01:02 EDT 2025
Wed Jan 22 16:26:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords rice (Oryza sativa L.)
nitrogen availability
rice NIN-like protein 3 (OsNLP3)
grain yield
nitrogen use efficiency (NUE)
Language English
License 2022 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3864-4bba0ffcf5bc741f2624dccc25a5a5b283fbcd8063a841c9ab364c8c927eadad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 35150141
PQID 2647550424
PQPubID 37957
PageCount 0
ParticipantIDs proquest_miscellaneous_2661000643
proquest_miscellaneous_2628300929
proquest_journals_2647550424
pubmed_primary_35150141
crossref_citationtrail_10_1111_pce_14294
crossref_primary_10_1111_pce_14294
wiley_primary_10_1111_pce_14294_PCE14294
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Plant, cell and environment
PublicationTitleAlternate Plant Cell Environ
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 560
2017; 8
2021; 64
2013; 4
2010; 13
2010; 107
2018c; 163
2019; 10
2007; 144
2011; 62
2004; 9
2020; 368
2019; 19
1998; 279
2020; 11
1998; 117
2020; 367
2020; 55
2017; 114
2012; 10
2014; 65
2018; 9
2009; 57
2015; 47
2014; 5
2015; 49
2018; 4
2021; 33
2013; 11
2014; 9
1975; 6
2012; 63
2010; 33
2015; 16
2015; 5
2009; 21
2019; 76
2011; 40
2018b; 69
2011; 34
2020; 102
2018a; 30
2011; 3
2014; 111
2003; 131
2009; 28
1995; 7
2018; 19
2016; 6
2016; 7
2014; 80
2011; 108
2020; 71
2017; 10
2015; 66
2021; 19
2005; 96
2018
2005; 1
2021; 374
2016; 28
2017; 545
2007; 49
2016; 172
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Crawford N.M. (e_1_2_9_16_1) 1995; 7
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 65
  start-page: 5577
  year: 2014
  end-page: 5587
  article-title: The plant RWP‐RK transcription factors: key regulators of nitrogen responses and of gametophyte development
  publication-title: Journal of Experimental Botany
– volume: 107
  start-page: 4477
  year: 2010
  end-page: 4482
  article-title: Nitrate‐responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 47
  start-page: 834
  year: 2015
  end-page: 838
  article-title: Variation in NRT1.1B contributes to nitrate‐use divergence between rice subspecies
  publication-title: Nature Genetics
– volume: 28
  start-page: 485
  year: 2016
  end-page: 504
  article-title: The arabidopsis NRG2 protein mediates nitrate signaling and interacts with and regulates key nitrate regulators
  publication-title: Plant Cell
– volume: 9
  start-page: 499
  year: 2018
  article-title: A NIN‐LIKE PROTEIN mediates nitrate‐induced control of root nodule symbiosis in Lotus japonicus
  publication-title: Nature Communications
– volume: 40
  start-page: 1051
  year: 2011
  end-page: 1057
  article-title: Integrated soil‐crop system management: reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China
  publication-title: Journal of Environmental Quality
– volume: 65
  start-page: 789
  year: 2014
  end-page: 798
  article-title: Nitrate transport and signalling in Arabidopsis
  publication-title: Journal of Experimental Botany
– volume: 34
  start-page: 1360
  year: 2011
  end-page: 1372
  article-title: Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges
  publication-title: Plant, Cell & Environment
– volume: 10
  start-page: 5279
  year: 2019
  article-title: Genome‐wide associated study identifies NAC42‐activated nitrate transporter conferring high nitrogen use efficiency in rice
  publication-title: Nature Communications
– volume: 144
  start-page: 324
  year: 2007
  end-page: 335
  article-title: Medicago truncatula NIN is essential for rhizobial‐independent nodule organogenesis induced by autoactive calcium/calmodulin‐dependent protein kinase
  publication-title: Plant Physiology
– volume: 13
  start-page: 604
  year: 2010
  end-page: 610
  article-title: Nitrate, ammonium, and potassium sensing and signaling
  publication-title: Current Opinion in Plant Biology
– volume: 279
  start-page: 407
  year: 1998
  end-page: 409
  article-title: An Arabidopsis MADS box gene that controls nutrient‐induced changes in root architecture
  publication-title: Science
– volume: 19
  start-page: 448
  year: 2021
  end-page: 461
  article-title: Rice NIN‐LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency
  publication-title: Plant Biotechnology Journal
– volume: 111
  start-page: 10371
  year: 2014
  end-page: 10376
  article-title: Hit‐and‐run transcriptional control by bZIP1 mediates rapid nutrient signaling in Arabidopsis
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 374
  start-page: 625
  year: 2021
  end-page: 628
  article-title: NIN‐like protein transcription factors regulate leghemoglobin genes in legume nodules
  publication-title: Science
– volume: 368
  start-page: 368
  year: 2020
  article-title: A plant's diet, surviving in a variable nutrient environment
  publication-title: Science
– volume: 8
  start-page: 1703
  year: 2017
  article-title: Overexpression of the Maize ZmNLP6 and ZmNLP8 can complement the arabidopsis nitrate regulatory mutant nlp7 by restoring nitrate signaling and assimilation
  publication-title: Frontiers in Plant Science
– volume: 163
  start-page: 269
  year: 2018c
  end-page: 281
  article-title: Phylogenetic, expression and functional characterizations of the maize NLP transcription factor family reveal a role in nitrate assimilation and signaling
  publication-title: Physiologia Plantarum
– volume: 28
  start-page: 527
  year: 2009
  end-page: 537
  article-title: Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice
  publication-title: Plant Cell Reports
– volume: 3
  start-page: 1452
  year: 2011
  end-page: 1485
  article-title: Improving nitrogen use efficiency in crops for sustainable agriculture
  publication-title: Sustainability
– volume: 4
  start-page: 1713
  year: 2013
  article-title: Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants
  publication-title: Nature Communications
– volume: 96
  start-page: 639
  year: 2005
  end-page: 646
  article-title: The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study
  publication-title: Annals Botany
– volume: 10
  start-page: 1242
  year: 2017
  end-page: 1245
  article-title: Genome‐wide Targeted mutagenesis in rice using the CRISPR/Cas9 System
  publication-title: Molecular Plant
– volume: 30
  start-page: 638
  year: 2018a
  end-page: 651
  article-title: Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice
  publication-title: Plant Cell
– volume: 57
  start-page: 426
  year: 2009
  end-page: 435
  article-title: The nodule inception‐like protein 7 modulates nitrate sensing and metabolism in Arabidopsis
  publication-title: The Plant Journal
– volume: 55
  start-page: 60
  year: 2020
  end-page: 65
  article-title: Towards understanding the hierarchical nitrogen signalling network in plants
  publication-title: Current Opinion in Plant Biology
– volume: 172
  start-page: 479
  year: 2016
  end-page: 488
  article-title: The DELLA‐CONSTANS transcription factor cascade integrates gibberellic acid and photoperiod signaling to regulate flowering
  publication-title: Plant Physiology
– volume: 7
  start-page: 859
  year: 1995
  end-page: 868
  article-title: Nitrate: nutrient and signal for plant growth
  publication-title: Plant Cell
– volume: 19
  start-page: 90
  year: 2019
  article-title: The role of protein‐protein interactions mediated by the PB1 domain of NLP transcription factors in nitrate‐inducible gene expression
  publication-title: BMC Plant Biology
– volume: 65
  start-page: 965
  year: 2014
  end-page: 979
  article-title: AMT1;1 transgenic rice plants with enhanced NH4(+) permeability show superior growth and higher yield under optimal and suboptimal NH4(+) conditions
  publication-title: Journal of Experimental Botany
– volume: 69
  start-page: 85
  year: 2018b
  end-page: 122
  article-title: Nitrate transport, signaling, and use efficiency
  publication-title: Annual Review of Plant Biology
– volume: 5
  start-page: 9635
  year: 2015
  article-title: Disruption of the rice nitrate transporter OsNPF2.2 hinders root‐to‐shoot nitrate transport and vascular development
  publication-title: Scientific Reports
– volume: 63
  start-page: 153
  year: 2012
  end-page: 182
  article-title: Plant nitrogen assimilation and use efficiency
  publication-title: Annual Review of Plant Biology
– volume: 108
  start-page: 6399
  year: 2011
  end-page: 6404
  article-title: Integrated soil‐crop system management for food security
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 10
  start-page: 5207
  year: 2019
  article-title: The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency
  publication-title: Nature Communications
– volume: 102
  start-page: 353
  year: 2020
  end-page: 368
  article-title: The NIN‐like protein 5 (ZmNLP5) transcription factor is involved in modulating the nitrogen response in maize
  publication-title: The Plant Journal
– volume: 16
  start-page: 9037
  year: 2015
  end-page: 9063
  article-title: Overexpressing of OsAMT1‐3, a high affinity ammonium transporter gene, modifies rice growth and carbon‐nitrogen metabolic status
  publication-title: International Journal of Molecular Sciences
– volume: 33
  start-page: 23
  year: 2010
  end-page: 34
  article-title: Optimization of ammonium acquisition and metabolism by potassium in rice (Oryza sativa L. cv. IR‐72)
  publication-title: Plant, Cell & Environment
– volume: 9
  year: 2014
  article-title: A tradeoff frontier for global nitrogen use and cereal production
  publication-title: Environmental Research Letters
– volume: 62
  start-page: 2299
  year: 2011
  end-page: 2308
  article-title: Nitrate transceptor(s) in plants
  publication-title: Journal of Experimental Botany
– volume: 9
  start-page: 597
  year: 2004
  end-page: 605
  article-title: Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production?
  publication-title: Trends in Plant Science
– volume: 117
  start-page: 293
  year: 1998
  end-page: 302
  article-title: Overexpression of nitrate reductase in tobacco delays drought‐induced decreases in nitrate reductase activity and mRNA
  publication-title: Plant Physiology
– volume: 64
  start-page: 4450
  year: 2021
  end-page: 4461
  article-title: Targeting colorectal cancer with conjugates of a glucose transporter inhibitor and 5‐fluorouracil
  publication-title: Journal of Medicinal Chemistry
– volume: 1
  start-page: 13
  year: 2005
  article-title: Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants
  publication-title: Plant Methods
– volume: 131
  start-page: 1009
  year: 2003
  end-page: 1017
  article-title: The Sym35 gene required for root nodule development in pea is an ortholog of Nin from Lotus japonicus
  publication-title: Plant Physiology
– volume: 21
  start-page: 3567
  year: 2009
  end-page: 3584
  article-title: Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis
  publication-title: Plant Cell
– volume: 6
  year: 2016
  article-title: Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen‐limiting and ‐sufficient conditions by enhancing nitrogen and carbon assimilation
  publication-title: Scientific Reports
– volume: 49
  start-page: 556
  issue: 4
  year: 2007
  end-page: 567
  article-title: High‐throughput binary vectors for plant gene function analysis
  publication-title: Journal of Integrative Plant Biology
– volume: 4
  start-page: 1617
  year: 2013
  article-title: Arabidopsis NIN‐like transcription factors have a central role in nitrate signalling
  publication-title: Nature Communications
– volume: 66
  start-page: 317
  year: 2015
  end-page: 331
  article-title: Rice nitrate transporter OsNPF2.4 functions in low‐affinity acquisition and long‐distance transport
  publication-title: Journal of Experimental Botany
– volume: 11
  start-page: 446
  year: 2013
  end-page: 458
  article-title: Altered expression of the PTR/NRT1 homologue OsPTR9 affects nitrogen utilization efficiency, growth and grain yield in rice
  publication-title: Plant Biotechnology Journal
– volume: 114
  start-page: 2419
  year: 2017
  end-page: 2424
  article-title: Interacting TCP and NLP transcription factors control plant responses to nitrate availability
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 80
  start-page: 1
  year: 2014
  end-page: 13
  article-title: Systems approach identifies TGA1 and TGA4 transcription factors as important regulatory components of the nitrate response of Arabidopsis thaliana roots
  publication-title: The Plant Journal
– volume: 33
  start-page: 2340
  year: 2021
  end-page: 2359
  article-title: Different DNA‐binding specificities of NLP and NIN transcription factors underlie nitrate‐induced control of root nodulation
  publication-title: The Plant cell
– volume: 6
  start-page: 71
  year: 1975
  end-page: 80
  article-title: Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid
  publication-title: Communications in Soil Science and Plant Analysis
– volume: 367
  start-page: 367
  year: 2020
  article-title: Enhanced sustainable green revolution yield via nitrogen‐responsive chromatin modulation in rice
  publication-title: Science
– volume: 5
  start-page: 5833
  year: 2014
  article-title: Arabidopsis ERF109 mediates cross‐talk between jasmonic acid and auxin biosynthesis during lateral root formation
  publication-title: Nature Communications
– volume: 545
  start-page: 311
  year: 2017
  end-page: 316
  article-title: Discovery of nitrate‐CPK‐NLP signalling in central nutrient‐growth networks
  publication-title: Nature
– volume: 4
  start-page: 942
  year: 2018
  end-page: 952
  article-title: NIN interacts with NLPs to mediate nitrate inhibition of nodulation in Medicago truncatula
  publication-title: Nature Plants
– volume: 560
  start-page: 595
  year: 2018
  end-page: 600
  article-title: Modulating plant growth‐metabolism coordination for sustainable agriculture
  publication-title: Nature
– volume: 10
  start-page: 1011
  year: 2012
  end-page: 1025
  article-title: Engineering nitrogen use efficient crop plants: the current status
  publication-title: Plant Biotechnology Journal
– volume: 11
  start-page: 1157
  year: 2020
  article-title: Transient genome‐wide interactions of the master transcription factor NLP7 initiate a rapid nitrogen‐response cascade
  publication-title: Nature Communications
– volume: 19
  start-page: 2270
  year: 2018
  article-title: Genome‐wide identification and characterization of NODULE‐INCEPTION‐Like Protein (NLP) family genes in Brassica napus
  publication-title: International Journal of Molecular Sciences
– volume: 71
  start-page: 6032
  year: 2020
  end-page: 6042
  article-title: Rice NIN‐LIKE PROTEIN 1 rapidly responds to nitrogen deficiency and improves yield and nitrogen use efficiency
  publication-title: Journal of Experimental Botany
– volume: 76
  start-page: 3753
  year: 2019
  end-page: 3764
  article-title: Evolutionary analyses of NIN‐like proteins in plants and their roles in nitrate signaling
  publication-title: Cellular and Molecular Life Sciences
– volume: 49
  start-page: 269
  year: 2015
  end-page: 289
  article-title: The genetics of nitrogen use efficiency in crop plants
  publication-title: Annual Review of Genetics.
– start-page: 77
  year: 2018
  end-page: 93
– volume: 7
  year: 2016
  article-title: NIN‐like protein 8 is a master regulator of nitrate‐promoted seed germination in Arabidopsis
  publication-title: Nature Communications
– ident: e_1_2_9_49_1
  doi: 10.1073/pnas.1404657111
– ident: e_1_2_9_39_1
  doi: 10.1016/j.molp.2017.06.007
– ident: e_1_2_9_26_1
  doi: 10.1016/j.pbi.2010.08.005
– ident: e_1_2_9_35_1
  doi: 10.1038/srep09635
– ident: e_1_2_9_50_1
  doi: 10.1093/jxb/ert458
– ident: e_1_2_9_7_1
  doi: 10.1104/pp.102.016071
– ident: e_1_2_9_20_1
  doi: 10.1093/jxb/erq419
– ident: e_1_2_9_10_1
  doi: 10.3389/fpls.2017.01703
– ident: e_1_2_9_18_1
  doi: 10.1038/s41467-019-13110-8
– ident: e_1_2_9_59_1
  doi: 10.1111/pbi.13475
– ident: e_1_2_9_61_1
  doi: 10.1093/jxb/eru425
– ident: e_1_2_9_52_1
  doi: 10.1104/pp.117.1.293
– ident: e_1_2_9_14_1
  doi: 10.1093/jxb/eru261
– ident: e_1_2_9_28_1
  doi: 10.1126/science.abg5945
– ident: e_1_2_9_65_1
  doi: 10.1111/j.1365-3040.2011.02335.x
– ident: e_1_2_9_60_1
  doi: 10.1126/science.aaz2046
– ident: e_1_2_9_63_1
  doi: 10.1105/tpc.15.00567
– ident: e_1_2_9_21_1
  doi: 10.1016/j.tplants.2004.10.008
– ident: e_1_2_9_45_1
  doi: 10.1088/1748-9326/9/5/054002
– ident: e_1_2_9_11_1
  doi: 10.1111/j.1365-313X.2008.03695.x
– ident: e_1_2_9_25_1
  doi: 10.3390/su3091452
– ident: e_1_2_9_13_1
  doi: 10.1021/acs.jmedchem.0c00897
– ident: e_1_2_9_4_1
  doi: 10.1111/tpj.12618
– ident: e_1_2_9_62_1
  doi: 10.1146/annurev-arplant-042811-105532
– ident: e_1_2_9_55_1
  doi: 10.1104/pp.16.00891
– ident: e_1_2_9_56_1
  doi: 10.1105/tpc.17.00809
– ident: e_1_2_9_2_1
  doi: 10.1093/jxb/eraa292
– ident: e_1_2_9_68_1
  doi: 10.1126/science.279.5349.407
– ident: e_1_2_9_48_1
  doi: 10.1126/science.aba0196
– ident: e_1_2_9_31_1
  doi: 10.1186/s12870-019-1692-3
– ident: e_1_2_9_46_1
  doi: 10.1038/s41467-018-02831-x
– ident: e_1_2_9_57_1
  doi: 10.1146/annurev-arplant-042817-040056
– ident: e_1_2_9_6_1
  doi: 10.3390/ijms16059037
– ident: e_1_2_9_29_1
  doi: 10.1093/aob/mci216
– ident: e_1_2_9_32_1
  doi: 10.1093/jxb/eru001
– ident: e_1_2_9_23_1
  doi: 10.1146/annurev-genet-112414-055037
– ident: e_1_2_9_22_1
  doi: 10.1073/pnas.1615676114
– ident: e_1_2_9_24_1
  doi: 10.1186/1746-4811-1-13
– ident: e_1_2_9_67_1
  doi: 10.2134/jeq2010.0292
– ident: e_1_2_9_8_1
  doi: 10.1007/s00299-008-0665-z
– ident: e_1_2_9_19_1
  doi: 10.1111/tpj.14628
– ident: e_1_2_9_37_1
  doi: 10.1038/nature22077
– ident: e_1_2_9_38_1
  doi: 10.3390/ijms19082270
– ident: e_1_2_9_5_1
  doi: 10.1111/j.1365-3040.2009.02046.x
– ident: e_1_2_9_66_1
  doi: 10.1038/srep27795
– ident: e_1_2_9_33_1
  doi: 10.1111/j.1744-7909.2007.00442.x
– ident: e_1_2_9_58_1
  doi: 10.1111/ppl.12696
– ident: e_1_2_9_40_1
– ident: e_1_2_9_36_1
  doi: 10.1038/s41477-018-0261-3
– ident: e_1_2_9_17_1
  doi: 10.1111/pbi.12031
– ident: e_1_2_9_64_1
  doi: 10.1038/ncomms13179
– ident: e_1_2_9_30_1
  doi: 10.1038/ncomms2621
– ident: e_1_2_9_3_1
  doi: 10.1038/s41467-020-14979-6
– ident: e_1_2_9_9_1
  doi: 10.1038/ncomms6833
– ident: e_1_2_9_34_1
  doi: 10.1038/s41586-018-0415-5
– ident: e_1_2_9_43_1
  doi: 10.1111/j.1467-7652.2012.00700.x
– ident: e_1_2_9_53_1
  doi: 10.1038/s41467-019-13187-1
– ident: e_1_2_9_12_1
  doi: 10.1080/00103627509366547
– ident: e_1_2_9_27_1
  doi: 10.1038/ng.3337
– ident: e_1_2_9_41_1
  doi: 10.1038/ncomms2650
– ident: e_1_2_9_42_1
  doi: 10.1104/pp.106.093021
– ident: e_1_2_9_54_1
  doi: 10.1073/pnas.0909571107
– ident: e_1_2_9_44_1
  doi: 10.1007/s00018-019-03164-8
– ident: e_1_2_9_47_1
  doi: 10.1093/plcell/koab103
– volume: 7
  start-page: 859
  year: 1995
  ident: e_1_2_9_16_1
  article-title: Nitrate: nutrient and signal for plant growth
  publication-title: Plant Cell
– ident: e_1_2_9_51_1
  doi: 10.1105/tpc.109.067041
– ident: e_1_2_9_15_1
  doi: 10.1073/pnas.1101419108
– ident: e_1_2_9_69_1
  doi: 10.1016/j.pbi.2020.03.006
SSID ssj0001479
Score 2.5634327
Snippet Nitrogen (N) is an essential macronutrient for crop growth and yield. Improving the N use efficiency (NUE) of crops is important to agriculture. However, the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1520
SubjectTerms Ammonium
Crop growth
Crop yield
Edible Grain - metabolism
environment
Fertilizers
genes
Genetic improvement
Grain
grain yield
loss-of-function mutation
Molecular modelling
Nitrates
Nitrates - metabolism
Nitrogen
Nitrogen - metabolism
nitrogen availability
nitrogen fertilizers
nitrogen use efficiency (NUE)
nutrient use efficiency
Oryza - genetics
Oryza - metabolism
Plant growth
Proteins
Rice
rice (Oryza sativa L.)
rice NIN‐like protein 3 (OsNLP3)
starvation
Transcription
Title Rice NIN‐LIKE PROTEIN 3 modulates nitrogen use efficiency and grain yield under nitrate‐sufficient conditions
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14294
https://www.ncbi.nlm.nih.gov/pubmed/35150141
https://www.proquest.com/docview/2647550424
https://www.proquest.com/docview/2628300929
https://www.proquest.com/docview/2661000643
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hVKReeLWly0su6qGXoDy8eainghaxULZoBRKHSpHtOD20JLDZHLan_gR-I7-kM3YSHn0IoVwiZRzZ8Yz9jTPzDcB7GSnceOifOufC4XGiHCE5-jyuFHmQ5G6S0TnkySg8POdHF_2LOfjY5sJYfojuwI0sw6zXZOBCVveM_EppNHM_IS5QitUiQDS-o47yuOXZo_DFKEq8hlWIoni6lg_3oj8A5kO8ajacgyX42nbVxpl8362nclf9fMTi-MyxLMNiA0TZJ6s5KzCni1VYsKUpZ6vwYq9E2Dh7BddjXErYaDi6_XXzeXg8YKfjL2eD4YgF7LLMqPiXrhiuC5MSVZHVlWbasFJQSicTRca-UREKNqNIOUYZaxMjjc3whVXdyE4Z-uWZDR97DecHg7P9Q6ep0-CoIA65w6UUbp6rvC8VApTcD32eKaX8vsBLIoDJpcpiBEMi5p5KhAxCrmKV-BHqsciCNzBflIV-C0wQeZAbZa7mmgseoobhi2Wo0FPPvb7swYd2xlLVkJhTLY0faevM4KdMzafswU4nemWZO_4mtNlOe9oYb5UiRozQceM-Pn7XPUazo38potBlTTLEnOYiuPyfTOhZzNeDNatSXU8CxJEUY4sDMorx7y6mp_sDc7P-dNENeOlTmoYJzNyE-emk1lsInqZy21jJb4aRFrE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61BVQu0JYCC4WaqgcuqfLw5iFxgWqr3XYbqtVW6gVFtuNwKCRld3NYTvwEfiO_hBk7CZSXUJVLJE8sO5mxv3FmvgHYl5HCjYf-qXMuHB4nyhGSo8_jSlEESeEmOZ1Dnqbh8JwfX_QvVuBVmwtj-SG6AzeyDLNek4HTgfRPVn6lNNq5n_BVuEUVvY1DNflBHuVxy7RHAYxRlHgNrxDF8XSPXt-NfoOY1xGr2XKO7sO7drA20uTyoF7IA_X5Fx7Hm85mA-41WJS9tsqzCSu63II7tjrlcgtuv6kQOS4fwKcJriYsHaXfvnwdj04G7GzydjoYpSxgH6uc6n_pOcOlYVahNrJ6rpk2xBSU1clEmbP3VIeCLSlYjlHS2sxI42PY4bxuZBcMXfPcRpBtw_nRYHo4dJpSDY4K4pA7XErhFoUq-lIhRin80Oe5UsrvC7wkYphCqjxGPCRi7qlEyCDkKlaJH6Eqizx4CGtlVerHwATxB7lR7mquueAhKhl2LEOFznrh9WUPXrafLFMNjzmV0_iQtf4MvsrMvMoe7HWiV5a8409CO-13zxr7nWcIEyP03biPzS-6ZrQ8-p0iSl3VJEPkaS7iy3_JhJ6FfT14ZHWqG0mAUJLCbHFCRjP-PsTs7HBgbp78v-gurA-np-NsPEpPnsJdn7I2TJzmDqwtZrV-hlhqIZ8bk_kO1rwazA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V8hAXHuW1UMAgDlxS5eHNQ5yg3VWXlrBatVIPSJHt2D0UkmV3c1hO_AR-I7-EGTsJlJcQyiVSxpEdz9jfODPfADyTicKNh_6pcy48nmbKE5Kjz-NLYaLM-FlJ55Bv8nj_mL8-GZ5swIsuF8bxQ_QHbmQZdr0mA5-X5gcjnyuNZh5m_AJc5LGfkkrvzb5zRwXcEe1R_GKSZEFLK0RhPH3T85vRLwjzPGC1O874Orzr-uoCTc52mpXcUZ9-onH8z8HcgGstEmUvnerchA1dbcFlV5tyvQWXXtWIG9e34OMM1xKWT_Kvn78cTg5GbDp7ezSa5CxiH-qSqn_pJcOFYVGjLrJmqZm2tBSU08lEVbJTqkLB1hQqxyhlbWGlsRm-cNm0siuGjnnp4sduw_F4dLS777WFGjwVpTH3uJTCN0aZoVSIUEwYh7xUSoVDgZdEBGOkKlNEQyLlgcqEjGKuUpWFCSqyKKM7sFnVlb4HTBB7kJ-UvuaaCx6jiuGLZazQVTfBUA7geTdjhWpZzKmYxvui82bwUxb2Uw7gaS86d9QdvxPa7qa9aK13WSBITNBz4yE-ftI_Rrujnymi0nVDMkSd5iO6_JtMHDjQN4C7TqX6nkQIJCnIFgdkFePPXSymuyN7c__fRR_DleneuDic5AcP4GpIKRs2SHMbNleLRj9EILWSj6zBfAOWkRmE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rice+NIN%E2%80%90LIKE+PROTEIN+3+modulates+nitrogen+use+efficiency+and+grain+yield+under+nitrate%E2%80%90sufficient+conditions&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Zhang%2C+Zi%E2%80%90Sheng&rft.au=Xia%2C+Jin%E2%80%90Qiu&rft.au=Alfatih%2C+Alamin&rft.au=Song%2C+Ying&rft.date=2022-05-01&rft.issn=0140-7791&rft.volume=45&rft.issue=5+p.1520-1536&rft.spage=1520&rft.epage=1536&rft_id=info:doi/10.1111%2Fpce.14294&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon