Rice NIN‐LIKE PROTEIN 3 modulates nitrogen use efficiency and grain yield under nitrate‐sufficient conditions
Nitrogen (N) is an essential macronutrient for crop growth and yield. Improving the N use efficiency (NUE) of crops is important to agriculture. However, the molecular mechanisms underlying NUE regulation remain largely elusive. Here we report that the OsNLP3 (NIN‐like protein 3) regulates NUE and g...
Saved in:
Published in | Plant, cell and environment Vol. 45; no. 5; pp. 1520 - 1536 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nitrogen (N) is an essential macronutrient for crop growth and yield. Improving the N use efficiency (NUE) of crops is important to agriculture. However, the molecular mechanisms underlying NUE regulation remain largely elusive. Here we report that the OsNLP3 (NIN‐like protein 3) regulates NUE and grain yield in rice under N sufficient conditions. OsNLP3 transcript level is significantly induced by N starvation and its protein nucleocytosolic shuttling is specifically regulated by nitrate. Loss‐of‐function of OsNLP3 reduces plant growth, grain yield, and NUE under sufficient nitrate conditions, whereas under low nitrate or different ammonium conditions, osnlp3 mutants show no clear difference from the wild type. Importantly, under sufficient N conditions in the field, OsNLP3 overexpression lines display improved grain yield and NUE compared with the wild type. OsNLP3 orchestrates the expression of multiple N uptake and assimilation genes by directly binding to the nitrate‐responsive cis‐elements in their promoters. Overall, our study demonstrates that OsNLP3, together with OsNLP1 and OsNLP4, plays overlapping and differential roles in N acquisition and NUE, and modulates NUE and the grain yield increase promoted by N fertilizer. Therefore, OsNLP3 is a promising candidate gene for the genetic improvement of grain yield and NUE in rice.
Summary Statement
Crop nitrogen use efficiency (NUE) is an important agronomic trait. But the molecular mechanisms underlying NUE regulation are not well understood. This study reveals that rice NIN‐like protein 3 (OsNLP3) regulates NUE and grain yield especially under N sufficient conditions and is a promising candidate gene for improving grain yield and NUE in rice. |
---|---|
AbstractList | Nitrogen (N) is an essential macronutrient for crop growth and yield. Improving the N use efficiency (NUE) of crops is important to agriculture. However, the molecular mechanisms underlying NUE regulation remain largely elusive. Here we report that the OsNLP3 (NIN-like protein 3) regulates NUE and grain yield in rice under N sufficient conditions. OsNLP3 transcript level is significantly induced by N starvation and its protein nucleocytosolic shuttling is specifically regulated by nitrate. Loss-of-function of OsNLP3 reduces plant growth, grain yield, and NUE under sufficient nitrate conditions, whereas under low nitrate or different ammonium conditions, osnlp3 mutants show no clear difference from the wild type. Importantly, under sufficient N conditions in the field, OsNLP3 overexpression lines display improved grain yield and NUE compared with the wild type. OsNLP3 orchestrates the expression of multiple N uptake and assimilation genes by directly binding to the nitrate-responsive cis-elements in their promoters. Overall, our study demonstrates that OsNLP3, together with OsNLP1 and OsNLP4, plays overlapping and differential roles in N acquisition and NUE, and modulates NUE and the grain yield increase promoted by N fertilizer. Therefore, OsNLP3 is a promising candidate gene for the genetic improvement of grain yield and NUE in rice. Nitrogen (N) is an essential macronutrient for crop growth and yield. Improving the N use efficiency (NUE) of crops is important to agriculture. However, the molecular mechanisms underlying NUE regulation remain largely elusive. Here we report that the OsNLP3 (NIN‐like protein 3) regulates NUE and grain yield in rice under N sufficient conditions. OsNLP3 transcript level is significantly induced by N starvation and its protein nucleocytosolic shuttling is specifically regulated by nitrate. Loss‐of‐function of OsNLP3 reduces plant growth, grain yield, and NUE under sufficient nitrate conditions, whereas under low nitrate or different ammonium conditions, osnlp3 mutants show no clear difference from the wild type. Importantly, under sufficient N conditions in the field, OsNLP3 overexpression lines display improved grain yield and NUE compared with the wild type. OsNLP3 orchestrates the expression of multiple N uptake and assimilation genes by directly binding to the nitrate‐responsive cis ‐elements in their promoters. Overall, our study demonstrates that OsNLP3, together with OsNLP1 and OsNLP4, plays overlapping and differential roles in N acquisition and NUE, and modulates NUE and the grain yield increase promoted by N fertilizer. Therefore, OsNLP3 is a promising candidate gene for the genetic improvement of grain yield and NUE in rice. Crop nitrogen use efficiency (NUE) is an important agronomic trait. But the molecular mechanisms underlying NUE regulation are not well understood. This study reveals that rice NIN‐like protein 3 (OsNLP3) regulates NUE and grain yield especially under N sufficient conditions and is a promising candidate gene for improving grain yield and NUE in rice. Nitrogen (N) is an essential macronutrient for crop growth and yield. Improving the N use efficiency (NUE) of crops is important to agriculture. However, the molecular mechanisms underlying NUE regulation remain largely elusive. Here we report that the OsNLP3 (NIN-like protein 3) regulates NUE and grain yield in rice under N sufficient conditions. OsNLP3 transcript level is significantly induced by N starvation and its protein nucleocytosolic shuttling is specifically regulated by nitrate. Loss-of-function of OsNLP3 reduces plant growth, grain yield, and NUE under sufficient nitrate conditions, whereas under low nitrate or different ammonium conditions, osnlp3 mutants show no clear difference from the wild type. Importantly, under sufficient N conditions in the field, OsNLP3 overexpression lines display improved grain yield and NUE compared with the wild type. OsNLP3 orchestrates the expression of multiple N uptake and assimilation genes by directly binding to the nitrate-responsive cis-elements in their promoters. Overall, our study demonstrates that OsNLP3, together with OsNLP1 and OsNLP4, plays overlapping and differential roles in N acquisition and NUE, and modulates NUE and the grain yield increase promoted by N fertilizer. Therefore, OsNLP3 is a promising candidate gene for the genetic improvement of grain yield and NUE in rice.Nitrogen (N) is an essential macronutrient for crop growth and yield. Improving the N use efficiency (NUE) of crops is important to agriculture. However, the molecular mechanisms underlying NUE regulation remain largely elusive. Here we report that the OsNLP3 (NIN-like protein 3) regulates NUE and grain yield in rice under N sufficient conditions. OsNLP3 transcript level is significantly induced by N starvation and its protein nucleocytosolic shuttling is specifically regulated by nitrate. Loss-of-function of OsNLP3 reduces plant growth, grain yield, and NUE under sufficient nitrate conditions, whereas under low nitrate or different ammonium conditions, osnlp3 mutants show no clear difference from the wild type. Importantly, under sufficient N conditions in the field, OsNLP3 overexpression lines display improved grain yield and NUE compared with the wild type. OsNLP3 orchestrates the expression of multiple N uptake and assimilation genes by directly binding to the nitrate-responsive cis-elements in their promoters. Overall, our study demonstrates that OsNLP3, together with OsNLP1 and OsNLP4, plays overlapping and differential roles in N acquisition and NUE, and modulates NUE and the grain yield increase promoted by N fertilizer. Therefore, OsNLP3 is a promising candidate gene for the genetic improvement of grain yield and NUE in rice. Nitrogen (N) is an essential macronutrient for crop growth and yield. Improving the N use efficiency (NUE) of crops is important to agriculture. However, the molecular mechanisms underlying NUE regulation remain largely elusive. Here we report that the OsNLP3 (NIN‐like protein 3) regulates NUE and grain yield in rice under N sufficient conditions. OsNLP3 transcript level is significantly induced by N starvation and its protein nucleocytosolic shuttling is specifically regulated by nitrate. Loss‐of‐function of OsNLP3 reduces plant growth, grain yield, and NUE under sufficient nitrate conditions, whereas under low nitrate or different ammonium conditions, osnlp3 mutants show no clear difference from the wild type. Importantly, under sufficient N conditions in the field, OsNLP3 overexpression lines display improved grain yield and NUE compared with the wild type. OsNLP3 orchestrates the expression of multiple N uptake and assimilation genes by directly binding to the nitrate‐responsive cis‐elements in their promoters. Overall, our study demonstrates that OsNLP3, together with OsNLP1 and OsNLP4, plays overlapping and differential roles in N acquisition and NUE, and modulates NUE and the grain yield increase promoted by N fertilizer. Therefore, OsNLP3 is a promising candidate gene for the genetic improvement of grain yield and NUE in rice. Summary Statement Crop nitrogen use efficiency (NUE) is an important agronomic trait. But the molecular mechanisms underlying NUE regulation are not well understood. This study reveals that rice NIN‐like protein 3 (OsNLP3) regulates NUE and grain yield especially under N sufficient conditions and is a promising candidate gene for improving grain yield and NUE in rice. |
Author | Alfatih, Alamin Wan, Guang‐Yu Li, Shi‐Gui Yu, Lin‐Hui Zhang, Guo‐Hua Sun, Liang‐Qi Zhang, Zi‐Sheng Xia, Jin‐Qiu Xiang, Cheng‐Bin Song, Ying Wang, Shi‐Mei Wu, Jie Wang, Yu‐Ping Qin, Peng Huang, Yi‐Jie Hu, Bin‐Hua |
Author_xml | – sequence: 1 givenname: Zi‐Sheng surname: Zhang fullname: Zhang, Zi‐Sheng organization: Chinese Academy of Sciences – sequence: 2 givenname: Jin‐Qiu surname: Xia fullname: Xia, Jin‐Qiu organization: Chinese Academy of Sciences – sequence: 3 givenname: Alamin surname: Alfatih fullname: Alfatih, Alamin organization: Chinese Academy of Sciences – sequence: 4 givenname: Ying surname: Song fullname: Song, Ying organization: Chinese Academy of Sciences – sequence: 5 givenname: Yi‐Jie surname: Huang fullname: Huang, Yi‐Jie organization: Chinese Academy of Sciences – sequence: 6 givenname: Liang‐Qi surname: Sun fullname: Sun, Liang‐Qi organization: Chinese Academy of Sciences – sequence: 7 givenname: Guang‐Yu surname: Wan fullname: Wan, Guang‐Yu organization: Chinese Academy of Sciences – sequence: 8 givenname: Shi‐Mei surname: Wang fullname: Wang, Shi‐Mei organization: Anhui Academy of Agricultural Sciences – sequence: 9 givenname: Yu‐Ping surname: Wang fullname: Wang, Yu‐Ping organization: Sichuan Agricultural University – sequence: 10 givenname: Bin‐Hua surname: Hu fullname: Hu, Bin‐Hua organization: Sichuan Agricultural University – sequence: 11 givenname: Guo‐Hua surname: Zhang fullname: Zhang, Guo‐Hua organization: Sichuan Agricultural University – sequence: 12 givenname: Peng surname: Qin fullname: Qin, Peng organization: Sichuan Agricultural University – sequence: 13 givenname: Shi‐Gui surname: Li fullname: Li, Shi‐Gui organization: Sichuan Agricultural University – sequence: 14 givenname: Lin‐Hui surname: Yu fullname: Yu, Lin‐Hui email: yulh@ustc.edu.cn organization: Northwest A&F University – sequence: 15 givenname: Jie surname: Wu fullname: Wu, Jie email: wujie199104@163.com organization: Chinese Academy of Sciences – sequence: 16 givenname: Cheng‐Bin surname: Xiang fullname: Xiang, Cheng‐Bin email: xiangcb@ustc.edu.cn organization: Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35150141$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1qGzEUhUVJaZy0i75AEXTTLibR3_wti3FaU-OEkK6F5upOUBhLjjRD8a6P0GfMk1SJnU1oodJCQnznXHTOCTnywSMh7zk743mdbwHPuBKtekVmXFZlIZliR2TGuGJFXbf8mJykdMdYfqjbN-RYlrzMdz4j99cOkK6X64dfv1fL7wt6dX15s1iuqaSbYKfBjJiod2MMt-jplJBi3ztw6GFHjbf0Nhrn6c7hYOnkLcYnOsuyYZoO7EgheOtGF3x6S173Zkj47nCekh8Xi5v5t2J1-XU5_7IqQDaVKlTXGdb30Jcd1Ir3ohLKAoAoTd6daGTfgW1YJU2jOLSmk5WCBlpRo7HGylPyae-7jeF-wjTqjUuAw2A8hilpUVU8J1Ip-R9oHsdYK9qMfnyB3oUp-vyRTKm6LJkSKlMfDtTUbdDqbXQbE3f6OfcMnO8BiCGliL0GN5rHfHJ2btCc6cdmdW5WPzWbFZ9fKJ5N_8Ye3H-6AXf_BvXVfLFX_AF6GbND |
CitedBy_id | crossref_primary_10_1007_s11104_022_05655_3 crossref_primary_10_1016_j_xplc_2024_100999 crossref_primary_10_1111_ppl_70069 crossref_primary_10_1016_j_jia_2023_05_032 crossref_primary_10_1073_pnas_2416345122 crossref_primary_10_1111_nph_19129 crossref_primary_10_1016_j_molp_2023_09_004 crossref_primary_10_3389_fpls_2023_1156514 crossref_primary_10_1111_jipb_13832 crossref_primary_10_3389_fpls_2024_1408356 crossref_primary_10_1016_j_xplc_2022_100353 crossref_primary_10_1111_pbi_14185 crossref_primary_10_1007_s11738_025_03791_8 crossref_primary_10_1016_j_agwat_2022_108066 crossref_primary_10_1111_ppl_14486 crossref_primary_10_1111_tpj_70010 crossref_primary_10_48130_forres_0024_0014 crossref_primary_10_1007_s00299_025_03447_4 crossref_primary_10_1016_j_jia_2023_12_037 crossref_primary_10_3390_life12101653 crossref_primary_10_1016_j_agrcom_2024_100031 crossref_primary_10_1016_j_jgg_2024_11_016 crossref_primary_10_1093_plcell_koae184 crossref_primary_10_1016_j_ncrops_2024_100047 crossref_primary_10_3390_agronomy13071834 crossref_primary_10_1007_s42729_023_01398_x crossref_primary_10_1016_j_indcrop_2022_115368 crossref_primary_10_1016_j_plantsci_2023_111842 crossref_primary_10_3390_ijms24076080 crossref_primary_10_3390_plants12010085 crossref_primary_10_1016_j_rsci_2023_03_006 crossref_primary_10_3390_plants12122276 crossref_primary_10_1111_pce_15275 crossref_primary_10_1016_j_pbi_2022_102327 crossref_primary_10_1038_s41477_025_01934_w crossref_primary_10_1007_s10142_024_01503_y crossref_primary_10_1007_s42994_024_00193_1 crossref_primary_10_1111_nph_19318 crossref_primary_10_1021_acs_jafc_2c08051 crossref_primary_10_1186_s12284_025_00768_6 crossref_primary_10_3390_agronomy14122888 |
Cites_doi | 10.1073/pnas.1404657111 10.1016/j.molp.2017.06.007 10.1016/j.pbi.2010.08.005 10.1038/srep09635 10.1093/jxb/ert458 10.1104/pp.102.016071 10.1093/jxb/erq419 10.3389/fpls.2017.01703 10.1038/s41467-019-13110-8 10.1111/pbi.13475 10.1093/jxb/eru425 10.1104/pp.117.1.293 10.1093/jxb/eru261 10.1126/science.abg5945 10.1111/j.1365-3040.2011.02335.x 10.1126/science.aaz2046 10.1105/tpc.15.00567 10.1016/j.tplants.2004.10.008 10.1088/1748-9326/9/5/054002 10.1111/j.1365-313X.2008.03695.x 10.3390/su3091452 10.1021/acs.jmedchem.0c00897 10.1111/tpj.12618 10.1146/annurev-arplant-042811-105532 10.1104/pp.16.00891 10.1105/tpc.17.00809 10.1093/jxb/eraa292 10.1126/science.279.5349.407 10.1126/science.aba0196 10.1186/s12870-019-1692-3 10.1038/s41467-018-02831-x 10.1146/annurev-arplant-042817-040056 10.3390/ijms16059037 10.1093/aob/mci216 10.1093/jxb/eru001 10.1146/annurev-genet-112414-055037 10.1073/pnas.1615676114 10.1186/1746-4811-1-13 10.2134/jeq2010.0292 10.1007/s00299-008-0665-z 10.1111/tpj.14628 10.1038/nature22077 10.3390/ijms19082270 10.1111/j.1365-3040.2009.02046.x 10.1038/srep27795 10.1111/j.1744-7909.2007.00442.x 10.1111/ppl.12696 10.1038/s41477-018-0261-3 10.1111/pbi.12031 10.1038/ncomms13179 10.1038/ncomms2621 10.1038/s41467-020-14979-6 10.1038/ncomms6833 10.1038/s41586-018-0415-5 10.1111/j.1467-7652.2012.00700.x 10.1038/s41467-019-13187-1 10.1080/00103627509366547 10.1038/ng.3337 10.1038/ncomms2650 10.1104/pp.106.093021 10.1073/pnas.0909571107 10.1007/s00018-019-03164-8 10.1093/plcell/koab103 10.1105/tpc.109.067041 10.1073/pnas.1101419108 10.1016/j.pbi.2020.03.006 |
ContentType | Journal Article |
Copyright | 2022 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7ST C1K SOI 7X8 7S9 L.6 |
DOI | 10.1111/pce.14294 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE CrossRef AGRICOLA MEDLINE - Academic Calcium & Calcified Tissue Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Botany |
EISSN | 1365-3040 |
EndPage | 1536 |
ExternalDocumentID | 35150141 10_1111_pce_14294 PCE14294 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 3157110003; 31572183 – fundername: The National Key R & D Program of China funderid: 2016YFD0100701 – fundername: Fundamental Research Funds for the Central Universities funderid: WK6030000122 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 186 1OB 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BIYOS BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FIJ FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW YNT ZZTAW ~02 ~IA ~KM ~WT AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QP 7ST C1K SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3864-4bba0ffcf5bc741f2624dccc25a5a5b283fbcd8063a841c9ab364c8c927eadad3 |
IEDL.DBID | DR2 |
ISSN | 0140-7791 1365-3040 |
IngestDate | Fri Jul 11 18:31:58 EDT 2025 Fri Jul 11 00:59:04 EDT 2025 Fri Jul 25 10:56:28 EDT 2025 Mon Jul 21 06:00:33 EDT 2025 Tue Jul 01 04:28:47 EDT 2025 Thu Apr 24 23:01:02 EDT 2025 Wed Jan 22 16:26:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | rice (Oryza sativa L.) nitrogen availability rice NIN-like protein 3 (OsNLP3) grain yield nitrogen use efficiency (NUE) |
Language | English |
License | 2022 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3864-4bba0ffcf5bc741f2624dccc25a5a5b283fbcd8063a841c9ab364c8c927eadad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 35150141 |
PQID | 2647550424 |
PQPubID | 37957 |
PageCount | 0 |
ParticipantIDs | proquest_miscellaneous_2661000643 proquest_miscellaneous_2628300929 proquest_journals_2647550424 pubmed_primary_35150141 crossref_citationtrail_10_1111_pce_14294 crossref_primary_10_1111_pce_14294 wiley_primary_10_1111_pce_14294_PCE14294 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Plant, cell and environment |
PublicationTitleAlternate | Plant Cell Environ |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 560 2017; 8 2021; 64 2013; 4 2010; 13 2010; 107 2018c; 163 2019; 10 2007; 144 2011; 62 2004; 9 2020; 368 2019; 19 1998; 279 2020; 11 1998; 117 2020; 367 2020; 55 2017; 114 2012; 10 2014; 65 2018; 9 2009; 57 2015; 47 2014; 5 2015; 49 2018; 4 2021; 33 2013; 11 2014; 9 1975; 6 2012; 63 2010; 33 2015; 16 2015; 5 2009; 21 2019; 76 2011; 40 2018b; 69 2011; 34 2020; 102 2018a; 30 2011; 3 2014; 111 2003; 131 2009; 28 1995; 7 2018; 19 2016; 6 2016; 7 2014; 80 2011; 108 2020; 71 2017; 10 2015; 66 2021; 19 2005; 96 2018 2005; 1 2021; 374 2016; 28 2017; 545 2007; 49 2016; 172 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 Crawford N.M. (e_1_2_9_16_1) 1995; 7 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 65 start-page: 5577 year: 2014 end-page: 5587 article-title: The plant RWP‐RK transcription factors: key regulators of nitrogen responses and of gametophyte development publication-title: Journal of Experimental Botany – volume: 107 start-page: 4477 year: 2010 end-page: 4482 article-title: Nitrate‐responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 47 start-page: 834 year: 2015 end-page: 838 article-title: Variation in NRT1.1B contributes to nitrate‐use divergence between rice subspecies publication-title: Nature Genetics – volume: 28 start-page: 485 year: 2016 end-page: 504 article-title: The arabidopsis NRG2 protein mediates nitrate signaling and interacts with and regulates key nitrate regulators publication-title: Plant Cell – volume: 9 start-page: 499 year: 2018 article-title: A NIN‐LIKE PROTEIN mediates nitrate‐induced control of root nodule symbiosis in Lotus japonicus publication-title: Nature Communications – volume: 40 start-page: 1051 year: 2011 end-page: 1057 article-title: Integrated soil‐crop system management: reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China publication-title: Journal of Environmental Quality – volume: 65 start-page: 789 year: 2014 end-page: 798 article-title: Nitrate transport and signalling in Arabidopsis publication-title: Journal of Experimental Botany – volume: 34 start-page: 1360 year: 2011 end-page: 1372 article-title: Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges publication-title: Plant, Cell & Environment – volume: 10 start-page: 5279 year: 2019 article-title: Genome‐wide associated study identifies NAC42‐activated nitrate transporter conferring high nitrogen use efficiency in rice publication-title: Nature Communications – volume: 144 start-page: 324 year: 2007 end-page: 335 article-title: Medicago truncatula NIN is essential for rhizobial‐independent nodule organogenesis induced by autoactive calcium/calmodulin‐dependent protein kinase publication-title: Plant Physiology – volume: 13 start-page: 604 year: 2010 end-page: 610 article-title: Nitrate, ammonium, and potassium sensing and signaling publication-title: Current Opinion in Plant Biology – volume: 279 start-page: 407 year: 1998 end-page: 409 article-title: An Arabidopsis MADS box gene that controls nutrient‐induced changes in root architecture publication-title: Science – volume: 19 start-page: 448 year: 2021 end-page: 461 article-title: Rice NIN‐LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency publication-title: Plant Biotechnology Journal – volume: 111 start-page: 10371 year: 2014 end-page: 10376 article-title: Hit‐and‐run transcriptional control by bZIP1 mediates rapid nutrient signaling in Arabidopsis publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 374 start-page: 625 year: 2021 end-page: 628 article-title: NIN‐like protein transcription factors regulate leghemoglobin genes in legume nodules publication-title: Science – volume: 368 start-page: 368 year: 2020 article-title: A plant's diet, surviving in a variable nutrient environment publication-title: Science – volume: 8 start-page: 1703 year: 2017 article-title: Overexpression of the Maize ZmNLP6 and ZmNLP8 can complement the arabidopsis nitrate regulatory mutant nlp7 by restoring nitrate signaling and assimilation publication-title: Frontiers in Plant Science – volume: 163 start-page: 269 year: 2018c end-page: 281 article-title: Phylogenetic, expression and functional characterizations of the maize NLP transcription factor family reveal a role in nitrate assimilation and signaling publication-title: Physiologia Plantarum – volume: 28 start-page: 527 year: 2009 end-page: 537 article-title: Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice publication-title: Plant Cell Reports – volume: 3 start-page: 1452 year: 2011 end-page: 1485 article-title: Improving nitrogen use efficiency in crops for sustainable agriculture publication-title: Sustainability – volume: 4 start-page: 1713 year: 2013 article-title: Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants publication-title: Nature Communications – volume: 96 start-page: 639 year: 2005 end-page: 646 article-title: The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study publication-title: Annals Botany – volume: 10 start-page: 1242 year: 2017 end-page: 1245 article-title: Genome‐wide Targeted mutagenesis in rice using the CRISPR/Cas9 System publication-title: Molecular Plant – volume: 30 start-page: 638 year: 2018a end-page: 651 article-title: Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice publication-title: Plant Cell – volume: 57 start-page: 426 year: 2009 end-page: 435 article-title: The nodule inception‐like protein 7 modulates nitrate sensing and metabolism in Arabidopsis publication-title: The Plant Journal – volume: 55 start-page: 60 year: 2020 end-page: 65 article-title: Towards understanding the hierarchical nitrogen signalling network in plants publication-title: Current Opinion in Plant Biology – volume: 172 start-page: 479 year: 2016 end-page: 488 article-title: The DELLA‐CONSTANS transcription factor cascade integrates gibberellic acid and photoperiod signaling to regulate flowering publication-title: Plant Physiology – volume: 7 start-page: 859 year: 1995 end-page: 868 article-title: Nitrate: nutrient and signal for plant growth publication-title: Plant Cell – volume: 19 start-page: 90 year: 2019 article-title: The role of protein‐protein interactions mediated by the PB1 domain of NLP transcription factors in nitrate‐inducible gene expression publication-title: BMC Plant Biology – volume: 65 start-page: 965 year: 2014 end-page: 979 article-title: AMT1;1 transgenic rice plants with enhanced NH4(+) permeability show superior growth and higher yield under optimal and suboptimal NH4(+) conditions publication-title: Journal of Experimental Botany – volume: 69 start-page: 85 year: 2018b end-page: 122 article-title: Nitrate transport, signaling, and use efficiency publication-title: Annual Review of Plant Biology – volume: 5 start-page: 9635 year: 2015 article-title: Disruption of the rice nitrate transporter OsNPF2.2 hinders root‐to‐shoot nitrate transport and vascular development publication-title: Scientific Reports – volume: 63 start-page: 153 year: 2012 end-page: 182 article-title: Plant nitrogen assimilation and use efficiency publication-title: Annual Review of Plant Biology – volume: 108 start-page: 6399 year: 2011 end-page: 6404 article-title: Integrated soil‐crop system management for food security publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 10 start-page: 5207 year: 2019 article-title: The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency publication-title: Nature Communications – volume: 102 start-page: 353 year: 2020 end-page: 368 article-title: The NIN‐like protein 5 (ZmNLP5) transcription factor is involved in modulating the nitrogen response in maize publication-title: The Plant Journal – volume: 16 start-page: 9037 year: 2015 end-page: 9063 article-title: Overexpressing of OsAMT1‐3, a high affinity ammonium transporter gene, modifies rice growth and carbon‐nitrogen metabolic status publication-title: International Journal of Molecular Sciences – volume: 33 start-page: 23 year: 2010 end-page: 34 article-title: Optimization of ammonium acquisition and metabolism by potassium in rice (Oryza sativa L. cv. IR‐72) publication-title: Plant, Cell & Environment – volume: 9 year: 2014 article-title: A tradeoff frontier for global nitrogen use and cereal production publication-title: Environmental Research Letters – volume: 62 start-page: 2299 year: 2011 end-page: 2308 article-title: Nitrate transceptor(s) in plants publication-title: Journal of Experimental Botany – volume: 9 start-page: 597 year: 2004 end-page: 605 article-title: Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? publication-title: Trends in Plant Science – volume: 117 start-page: 293 year: 1998 end-page: 302 article-title: Overexpression of nitrate reductase in tobacco delays drought‐induced decreases in nitrate reductase activity and mRNA publication-title: Plant Physiology – volume: 64 start-page: 4450 year: 2021 end-page: 4461 article-title: Targeting colorectal cancer with conjugates of a glucose transporter inhibitor and 5‐fluorouracil publication-title: Journal of Medicinal Chemistry – volume: 1 start-page: 13 year: 2005 article-title: Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants publication-title: Plant Methods – volume: 131 start-page: 1009 year: 2003 end-page: 1017 article-title: The Sym35 gene required for root nodule development in pea is an ortholog of Nin from Lotus japonicus publication-title: Plant Physiology – volume: 21 start-page: 3567 year: 2009 end-page: 3584 article-title: Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis publication-title: Plant Cell – volume: 6 year: 2016 article-title: Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen‐limiting and ‐sufficient conditions by enhancing nitrogen and carbon assimilation publication-title: Scientific Reports – volume: 49 start-page: 556 issue: 4 year: 2007 end-page: 567 article-title: High‐throughput binary vectors for plant gene function analysis publication-title: Journal of Integrative Plant Biology – volume: 4 start-page: 1617 year: 2013 article-title: Arabidopsis NIN‐like transcription factors have a central role in nitrate signalling publication-title: Nature Communications – volume: 66 start-page: 317 year: 2015 end-page: 331 article-title: Rice nitrate transporter OsNPF2.4 functions in low‐affinity acquisition and long‐distance transport publication-title: Journal of Experimental Botany – volume: 11 start-page: 446 year: 2013 end-page: 458 article-title: Altered expression of the PTR/NRT1 homologue OsPTR9 affects nitrogen utilization efficiency, growth and grain yield in rice publication-title: Plant Biotechnology Journal – volume: 114 start-page: 2419 year: 2017 end-page: 2424 article-title: Interacting TCP and NLP transcription factors control plant responses to nitrate availability publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 80 start-page: 1 year: 2014 end-page: 13 article-title: Systems approach identifies TGA1 and TGA4 transcription factors as important regulatory components of the nitrate response of Arabidopsis thaliana roots publication-title: The Plant Journal – volume: 33 start-page: 2340 year: 2021 end-page: 2359 article-title: Different DNA‐binding specificities of NLP and NIN transcription factors underlie nitrate‐induced control of root nodulation publication-title: The Plant cell – volume: 6 start-page: 71 year: 1975 end-page: 80 article-title: Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid publication-title: Communications in Soil Science and Plant Analysis – volume: 367 start-page: 367 year: 2020 article-title: Enhanced sustainable green revolution yield via nitrogen‐responsive chromatin modulation in rice publication-title: Science – volume: 5 start-page: 5833 year: 2014 article-title: Arabidopsis ERF109 mediates cross‐talk between jasmonic acid and auxin biosynthesis during lateral root formation publication-title: Nature Communications – volume: 545 start-page: 311 year: 2017 end-page: 316 article-title: Discovery of nitrate‐CPK‐NLP signalling in central nutrient‐growth networks publication-title: Nature – volume: 4 start-page: 942 year: 2018 end-page: 952 article-title: NIN interacts with NLPs to mediate nitrate inhibition of nodulation in Medicago truncatula publication-title: Nature Plants – volume: 560 start-page: 595 year: 2018 end-page: 600 article-title: Modulating plant growth‐metabolism coordination for sustainable agriculture publication-title: Nature – volume: 10 start-page: 1011 year: 2012 end-page: 1025 article-title: Engineering nitrogen use efficient crop plants: the current status publication-title: Plant Biotechnology Journal – volume: 11 start-page: 1157 year: 2020 article-title: Transient genome‐wide interactions of the master transcription factor NLP7 initiate a rapid nitrogen‐response cascade publication-title: Nature Communications – volume: 19 start-page: 2270 year: 2018 article-title: Genome‐wide identification and characterization of NODULE‐INCEPTION‐Like Protein (NLP) family genes in Brassica napus publication-title: International Journal of Molecular Sciences – volume: 71 start-page: 6032 year: 2020 end-page: 6042 article-title: Rice NIN‐LIKE PROTEIN 1 rapidly responds to nitrogen deficiency and improves yield and nitrogen use efficiency publication-title: Journal of Experimental Botany – volume: 76 start-page: 3753 year: 2019 end-page: 3764 article-title: Evolutionary analyses of NIN‐like proteins in plants and their roles in nitrate signaling publication-title: Cellular and Molecular Life Sciences – volume: 49 start-page: 269 year: 2015 end-page: 289 article-title: The genetics of nitrogen use efficiency in crop plants publication-title: Annual Review of Genetics. – start-page: 77 year: 2018 end-page: 93 – volume: 7 year: 2016 article-title: NIN‐like protein 8 is a master regulator of nitrate‐promoted seed germination in Arabidopsis publication-title: Nature Communications – ident: e_1_2_9_49_1 doi: 10.1073/pnas.1404657111 – ident: e_1_2_9_39_1 doi: 10.1016/j.molp.2017.06.007 – ident: e_1_2_9_26_1 doi: 10.1016/j.pbi.2010.08.005 – ident: e_1_2_9_35_1 doi: 10.1038/srep09635 – ident: e_1_2_9_50_1 doi: 10.1093/jxb/ert458 – ident: e_1_2_9_7_1 doi: 10.1104/pp.102.016071 – ident: e_1_2_9_20_1 doi: 10.1093/jxb/erq419 – ident: e_1_2_9_10_1 doi: 10.3389/fpls.2017.01703 – ident: e_1_2_9_18_1 doi: 10.1038/s41467-019-13110-8 – ident: e_1_2_9_59_1 doi: 10.1111/pbi.13475 – ident: e_1_2_9_61_1 doi: 10.1093/jxb/eru425 – ident: e_1_2_9_52_1 doi: 10.1104/pp.117.1.293 – ident: e_1_2_9_14_1 doi: 10.1093/jxb/eru261 – ident: e_1_2_9_28_1 doi: 10.1126/science.abg5945 – ident: e_1_2_9_65_1 doi: 10.1111/j.1365-3040.2011.02335.x – ident: e_1_2_9_60_1 doi: 10.1126/science.aaz2046 – ident: e_1_2_9_63_1 doi: 10.1105/tpc.15.00567 – ident: e_1_2_9_21_1 doi: 10.1016/j.tplants.2004.10.008 – ident: e_1_2_9_45_1 doi: 10.1088/1748-9326/9/5/054002 – ident: e_1_2_9_11_1 doi: 10.1111/j.1365-313X.2008.03695.x – ident: e_1_2_9_25_1 doi: 10.3390/su3091452 – ident: e_1_2_9_13_1 doi: 10.1021/acs.jmedchem.0c00897 – ident: e_1_2_9_4_1 doi: 10.1111/tpj.12618 – ident: e_1_2_9_62_1 doi: 10.1146/annurev-arplant-042811-105532 – ident: e_1_2_9_55_1 doi: 10.1104/pp.16.00891 – ident: e_1_2_9_56_1 doi: 10.1105/tpc.17.00809 – ident: e_1_2_9_2_1 doi: 10.1093/jxb/eraa292 – ident: e_1_2_9_68_1 doi: 10.1126/science.279.5349.407 – ident: e_1_2_9_48_1 doi: 10.1126/science.aba0196 – ident: e_1_2_9_31_1 doi: 10.1186/s12870-019-1692-3 – ident: e_1_2_9_46_1 doi: 10.1038/s41467-018-02831-x – ident: e_1_2_9_57_1 doi: 10.1146/annurev-arplant-042817-040056 – ident: e_1_2_9_6_1 doi: 10.3390/ijms16059037 – ident: e_1_2_9_29_1 doi: 10.1093/aob/mci216 – ident: e_1_2_9_32_1 doi: 10.1093/jxb/eru001 – ident: e_1_2_9_23_1 doi: 10.1146/annurev-genet-112414-055037 – ident: e_1_2_9_22_1 doi: 10.1073/pnas.1615676114 – ident: e_1_2_9_24_1 doi: 10.1186/1746-4811-1-13 – ident: e_1_2_9_67_1 doi: 10.2134/jeq2010.0292 – ident: e_1_2_9_8_1 doi: 10.1007/s00299-008-0665-z – ident: e_1_2_9_19_1 doi: 10.1111/tpj.14628 – ident: e_1_2_9_37_1 doi: 10.1038/nature22077 – ident: e_1_2_9_38_1 doi: 10.3390/ijms19082270 – ident: e_1_2_9_5_1 doi: 10.1111/j.1365-3040.2009.02046.x – ident: e_1_2_9_66_1 doi: 10.1038/srep27795 – ident: e_1_2_9_33_1 doi: 10.1111/j.1744-7909.2007.00442.x – ident: e_1_2_9_58_1 doi: 10.1111/ppl.12696 – ident: e_1_2_9_40_1 – ident: e_1_2_9_36_1 doi: 10.1038/s41477-018-0261-3 – ident: e_1_2_9_17_1 doi: 10.1111/pbi.12031 – ident: e_1_2_9_64_1 doi: 10.1038/ncomms13179 – ident: e_1_2_9_30_1 doi: 10.1038/ncomms2621 – ident: e_1_2_9_3_1 doi: 10.1038/s41467-020-14979-6 – ident: e_1_2_9_9_1 doi: 10.1038/ncomms6833 – ident: e_1_2_9_34_1 doi: 10.1038/s41586-018-0415-5 – ident: e_1_2_9_43_1 doi: 10.1111/j.1467-7652.2012.00700.x – ident: e_1_2_9_53_1 doi: 10.1038/s41467-019-13187-1 – ident: e_1_2_9_12_1 doi: 10.1080/00103627509366547 – ident: e_1_2_9_27_1 doi: 10.1038/ng.3337 – ident: e_1_2_9_41_1 doi: 10.1038/ncomms2650 – ident: e_1_2_9_42_1 doi: 10.1104/pp.106.093021 – ident: e_1_2_9_54_1 doi: 10.1073/pnas.0909571107 – ident: e_1_2_9_44_1 doi: 10.1007/s00018-019-03164-8 – ident: e_1_2_9_47_1 doi: 10.1093/plcell/koab103 – volume: 7 start-page: 859 year: 1995 ident: e_1_2_9_16_1 article-title: Nitrate: nutrient and signal for plant growth publication-title: Plant Cell – ident: e_1_2_9_51_1 doi: 10.1105/tpc.109.067041 – ident: e_1_2_9_15_1 doi: 10.1073/pnas.1101419108 – ident: e_1_2_9_69_1 doi: 10.1016/j.pbi.2020.03.006 |
SSID | ssj0001479 |
Score | 2.5634327 |
Snippet | Nitrogen (N) is an essential macronutrient for crop growth and yield. Improving the N use efficiency (NUE) of crops is important to agriculture. However, the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1520 |
SubjectTerms | Ammonium Crop growth Crop yield Edible Grain - metabolism environment Fertilizers genes Genetic improvement Grain grain yield loss-of-function mutation Molecular modelling Nitrates Nitrates - metabolism Nitrogen Nitrogen - metabolism nitrogen availability nitrogen fertilizers nitrogen use efficiency (NUE) nutrient use efficiency Oryza - genetics Oryza - metabolism Plant growth Proteins Rice rice (Oryza sativa L.) rice NIN‐like protein 3 (OsNLP3) starvation Transcription |
Title | Rice NIN‐LIKE PROTEIN 3 modulates nitrogen use efficiency and grain yield under nitrate‐sufficient conditions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14294 https://www.ncbi.nlm.nih.gov/pubmed/35150141 https://www.proquest.com/docview/2647550424 https://www.proquest.com/docview/2628300929 https://www.proquest.com/docview/2661000643 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hVKReeLWly0su6qGXoDy8eainghaxULZoBRKHSpHtOD20JLDZHLan_gR-I7-kM3YSHn0IoVwiZRzZ8Yz9jTPzDcB7GSnceOifOufC4XGiHCE5-jyuFHmQ5G6S0TnkySg8POdHF_2LOfjY5sJYfojuwI0sw6zXZOBCVveM_EppNHM_IS5QitUiQDS-o47yuOXZo_DFKEq8hlWIoni6lg_3oj8A5kO8ajacgyX42nbVxpl8362nclf9fMTi-MyxLMNiA0TZJ6s5KzCni1VYsKUpZ6vwYq9E2Dh7BddjXErYaDi6_XXzeXg8YKfjL2eD4YgF7LLMqPiXrhiuC5MSVZHVlWbasFJQSicTRca-UREKNqNIOUYZaxMjjc3whVXdyE4Z-uWZDR97DecHg7P9Q6ep0-CoIA65w6UUbp6rvC8VApTcD32eKaX8vsBLIoDJpcpiBEMi5p5KhAxCrmKV-BHqsciCNzBflIV-C0wQeZAbZa7mmgseoobhi2Wo0FPPvb7swYd2xlLVkJhTLY0faevM4KdMzafswU4nemWZO_4mtNlOe9oYb5UiRozQceM-Pn7XPUazo38potBlTTLEnOYiuPyfTOhZzNeDNatSXU8CxJEUY4sDMorx7y6mp_sDc7P-dNENeOlTmoYJzNyE-emk1lsInqZy21jJb4aRFrE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61BVQu0JYCC4WaqgcuqfLw5iFxgWqr3XYbqtVW6gVFtuNwKCRld3NYTvwEfiO_hBk7CZSXUJVLJE8sO5mxv3FmvgHYl5HCjYf-qXMuHB4nyhGSo8_jSlEESeEmOZ1Dnqbh8JwfX_QvVuBVmwtj-SG6AzeyDLNek4HTgfRPVn6lNNq5n_BVuEUVvY1DNflBHuVxy7RHAYxRlHgNrxDF8XSPXt-NfoOY1xGr2XKO7sO7drA20uTyoF7IA_X5Fx7Hm85mA-41WJS9tsqzCSu63II7tjrlcgtuv6kQOS4fwKcJriYsHaXfvnwdj04G7GzydjoYpSxgH6uc6n_pOcOlYVahNrJ6rpk2xBSU1clEmbP3VIeCLSlYjlHS2sxI42PY4bxuZBcMXfPcRpBtw_nRYHo4dJpSDY4K4pA7XErhFoUq-lIhRin80Oe5UsrvC7wkYphCqjxGPCRi7qlEyCDkKlaJH6Eqizx4CGtlVerHwATxB7lR7mquueAhKhl2LEOFznrh9WUPXrafLFMNjzmV0_iQtf4MvsrMvMoe7HWiV5a8409CO-13zxr7nWcIEyP03biPzS-6ZrQ8-p0iSl3VJEPkaS7iy3_JhJ6FfT14ZHWqG0mAUJLCbHFCRjP-PsTs7HBgbp78v-gurA-np-NsPEpPnsJdn7I2TJzmDqwtZrV-hlhqIZ8bk_kO1rwazA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V8hAXHuW1UMAgDlxS5eHNQ5yg3VWXlrBatVIPSJHt2D0UkmV3c1hO_AR-I7-EGTsJlJcQyiVSxpEdz9jfODPfADyTicKNh_6pcy48nmbKE5Kjz-NLYaLM-FlJ55Bv8nj_mL8-GZ5swIsuF8bxQ_QHbmQZdr0mA5-X5gcjnyuNZh5m_AJc5LGfkkrvzb5zRwXcEe1R_GKSZEFLK0RhPH3T85vRLwjzPGC1O874Orzr-uoCTc52mpXcUZ9-onH8z8HcgGstEmUvnerchA1dbcFlV5tyvQWXXtWIG9e34OMM1xKWT_Kvn78cTg5GbDp7ezSa5CxiH-qSqn_pJcOFYVGjLrJmqZm2tBSU08lEVbJTqkLB1hQqxyhlbWGlsRm-cNm0siuGjnnp4sduw_F4dLS777WFGjwVpTH3uJTCN0aZoVSIUEwYh7xUSoVDgZdEBGOkKlNEQyLlgcqEjGKuUpWFCSqyKKM7sFnVlb4HTBB7kJ-UvuaaCx6jiuGLZazQVTfBUA7geTdjhWpZzKmYxvui82bwUxb2Uw7gaS86d9QdvxPa7qa9aK13WSBITNBz4yE-ftI_Rrujnymi0nVDMkSd5iO6_JtMHDjQN4C7TqX6nkQIJCnIFgdkFePPXSymuyN7c__fRR_DleneuDic5AcP4GpIKRs2SHMbNleLRj9EILWSj6zBfAOWkRmE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rice+NIN%E2%80%90LIKE+PROTEIN+3+modulates+nitrogen+use+efficiency+and+grain+yield+under+nitrate%E2%80%90sufficient+conditions&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Zhang%2C+Zi%E2%80%90Sheng&rft.au=Xia%2C+Jin%E2%80%90Qiu&rft.au=Alfatih%2C+Alamin&rft.au=Song%2C+Ying&rft.date=2022-05-01&rft.issn=0140-7791&rft.volume=45&rft.issue=5+p.1520-1536&rft.spage=1520&rft.epage=1536&rft_id=info:doi/10.1111%2Fpce.14294&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon |