Fractal Deformation Using Displacement Vectors Based on Extended Iterated Shuffle Transformation
In this paper, we propose a framework of “fractal deformation” using displacement vectors based on “extended Iterated Shuffle Transformation (ext-IST)”. An ext-unit-IST is a one-to-one and onto mapping that is extended from a unit-IST, which we have proposed, and is basically defined on a code space...
Saved in:
Published in | Journal of the Society for Art and Science Vol. 1; no. 3; pp. 134 - 146 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English Japanese |
Published |
The Society for Art and Science
2002
|
Subjects | |
Online Access | Get full text |
ISSN | 1347-2267 1347-2267 |
DOI | 10.3756/artsci.1.134 |
Cover
Abstract | In this paper, we propose a framework of “fractal deformation” using displacement vectors based on “extended Iterated Shuffle Transformation (ext-IST)”. An ext-unit-IST is a one-to-one and onto mapping that is extended from a unit-IST, which we have proposed, and is basically defined on a code space. When the mapping is applied on a geometric space, a fractal-like repeated structure, which is referred to as “local resemblance in space/scale directions”, is constructed on the relationship between points on the domain and those on the range. By applying the mapping to displacement vectors given on a geometric shape, the shape can be deformed in the fractal-like repeated manner. This fractal deformation is easy to control by changing the displacement vectors intuitively. In addition, a continuous transition between a continuous deformation and a fractal deformation can be realized. We demonstrate how the fractal deformation technique produces attractive results by showing various examples. |
---|---|
AbstractList | In this paper, we propose a framework of “fractal deformation” using displacement vectors based on “extended Iterated Shuffle Transformation (ext-IST)”. An ext-unit-IST is a one-to-one and onto mapping that is extended from a unit-IST, which we have proposed, and is basically defined on a code space. When the mapping is applied on a geometric space, a fractal-like repeated structure, which is referred to as “local resemblance in space/scale directions”, is constructed on the relationship between points on the domain and those on the range. By applying the mapping to displacement vectors given on a geometric shape, the shape can be deformed in the fractal-like repeated manner. This fractal deformation is easy to control by changing the displacement vectors intuitively. In addition, a continuous transition between a continuous deformation and a fractal deformation can be realized. We demonstrate how the fractal deformation technique produces attractive results by showing various examples. |
Author | Muraoka, Kazunobu Chiba, Norishige Fujimoto, Tadahiro Ohno, Yoshio |
Author_xml | – sequence: 1 fullname: Ohno, Yoshio organization: Keio University – sequence: 1 fullname: Fujimoto, Tadahiro organization: Iwate University – sequence: 1 fullname: Muraoka, Kazunobu organization: Iwate University – sequence: 1 fullname: Chiba, Norishige organization: Iwate University |
BookMark | eNp1kNtKAzEQhoNUsK3e-QD7AG7NYTdp79QetFDwwtbbNU0mbco2W5II-vZGV6oIXszMD_PNgb-HOq5xgNAlwQMmSn4tfQzKDsiAsOIEdVMWOaVcdH7pM9QLYYcxHxGCu-hl5qWKss4mYBq_l9E2LlsF6zbZxIZDLRXswcXsGVRsfMjuZACdJWb6FsHppOcRvIxJPG1fjakhW3rpwnHZOTo1sg5w8V37aDWbLscP-eLxfj6-XeSKDXmRU0MZ1rhkfFhAKY02lBo-JJqSUhjNCi0IYKmEWgsz4uVaJUIJQYjWoqQF66Ordq_yTQgeTHXwdi_9e0Vw9elO1bpTkSp5kXD6B1c2fj0cvbT1f0M37dAuRLmB44UEWVXDD8zaYMWxpbbSV-DYB2zxhik |
CitedBy_id | crossref_primary_10_7583_JKGS_2016_16_1_119 |
Cites_doi | 10.1145/15886.15903 10.1007/BF01893434 10.1111/1467-8659.1530269 10.1201/9781439864708 10.1016/S0097-8493(98)00014-4 10.1006/jmaa.1993.1232 10.1016/0097-8493(94)00131-H 10.1016/0022-247X(90)90257-G 10.1007/s003710050053 10.1145/378456.378502 10.1145/325165.325245 |
ContentType | Journal Article |
Copyright | 2002 Fujimoto, Tadahiro, Ohno, Yoshio, Muraoka, Kazunobu and Chiba, Norishige |
Copyright_xml | – notice: 2002 Fujimoto, Tadahiro, Ohno, Yoshio, Muraoka, Kazunobu and Chiba, Norishige |
DBID | AAYXX CITATION |
DOI | 10.3756/artsci.1.134 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1347-2267 |
EndPage | 146 |
ExternalDocumentID | 10_3756_artsci_1_134 article_artsci_1_3_1_3_134_article_char_en |
GroupedDBID | ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS JSF KQ8 RJT AAYXX CITATION |
ID | FETCH-LOGICAL-c3864-2f230d053684e5afdf22f681d2157fd34d71e0ac7cb7f965bcdf2c7711dd75243 |
ISSN | 1347-2267 |
IngestDate | Tue Jul 01 03:27:39 EDT 2025 Thu Apr 24 22:52:15 EDT 2025 Wed Sep 03 06:29:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 3 |
Language | English Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3864-2f230d053684e5afdf22f681d2157fd34d71e0ac7cb7f965bcdf2c7711dd75243 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/artsci/1/3/1_3_134/_article/-char/en |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_3756_artsci_1_134 crossref_citationtrail_10_3756_artsci_1_134 jstage_primary_article_artsci_1_3_1_3_134_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20020000 |
PublicationDateYYYYMMDD | 2002-01-01 |
PublicationDate_xml | – year: 2002 text: 20020000 |
PublicationDecade | 2000 |
PublicationTitle | Journal of the Society for Art and Science |
PublicationTitleAlternate | The Journal of the Society for Art and Science |
PublicationYear | 2002 |
Publisher | The Society for Art and Science |
Publisher_xml | – name: The Society for Art and Science |
References | [7] Fujimoto, T. and Ohno, Y., Formalization and Superposed Construction of Wrinkly Surface, Transactions of Information Processing Society of Japan, Vol.41, No.9, pp.2518-2535, 2000 (in Japanese). [17] Zair, C. E. and Tosan, E., Fractal Modeling Using Free Form Techniques, EUROGRAPHICS ′96, Vol.15, No.3, pp.269-278, 1996. [13] Massopust, P. R., Fractal Surfaces, Journal of Mathematical Analysis and Applications, 151, pp.275-290, 1990. [18] Zair, C. E. and Tosan, E., Unified IFS-based Model to Generate Smooth or Fractal Forms, Surface Fitting and Multiresolution Methods, Vanderbilt University Press, pp.345-354, 1997. [16] Sederberg, T. and Parry, S., Free-Form Deformation of Solid Geometric Models, Computer Graphics (SIGGRAPH ″86), Vol.20, No.4, pp.151-160, 1986. [9] Fujimoto, T., Ohno, Y., Muraoka, K., and Chiba, N., Fractal Deformation Based on Extended Iterated Shuffle Transformation, NICOGRAPH International 2002, pp.79-84, 2002. [5] Burch, B. and Hart, J. C., Linear Fractal Shape Interpolation, Graphics Interface ′97, pp.155-162, 1997. [14] Montiel, M. E., Aguado, A. S., and Zaluska, E. J., Topology in Fractals, Chaos, Solitons and Fractals, Vol.7, No.8, pp.1187-1207, 1996. [8] Fujimoto, T., Ohno, Y., Muraoka, K., and Chiba, N., Wrinkly Surface Generated on Irregular Mesh by Using IST Generalized on Code Space and Multi-Dimensional Space : Unification of Interpolation Surface and Fractal, IEICE Transactions on Information and Systems, to appear. [2] Barnsley, M. F., Jacquin, A., Malassenet, F., Reuter, L., and Sloan, A. D., Harnessing Chaos for Image Synthesis, Computer Graphics (SIGGRAPH ′88), Vol.22, No.4, pp.131-140, 1988. [19] Zair, C. E. and Tosan, E., Computer Aided Geometric Design with IFS Techniques, Fractal Frontiers (Proc. Fractals ′97), pp.443-452, 1997. [20] Zhao, N., Construction and Application of Fractal Interpolation Surfaces, The Visual Computer, 12, pp.132-146, 1996. [3] Barnsley, M. F., Fractals Everywhere, 2nd ed., Academic Press, Boston, 1993. [1] Barnsley, M. F., Fractal Functions and Interpolation, Constructive Approximation, 2, pp.303-329, 1986. [15] Peruggia, M., Discrete Iterated Function Systems, A K Peters, 1993. [11] Gomes, J., Darsa, L., Costa, B., and Velho, L., Warping and Morphing of Graphical Objects, Morgan Kaufmann, 1999. [10] Geronimo, J. S. and Hardin, D., Fractal Interpolation Surfaces and a Related 2-D Multiresolution Analysis, Journal of Mathematical Analysis and Applications, 176, pp.561-586, 1993. [4] Bowman, R. L., Fractal Metamorphosis: a Brief StudentTutorial, Computers & Graphics, Vol.19, No.1, pp.157-164, 1995. [6] Demko, S., Construction of Fractal Objects with Iterated Function Systems, Computer Graphics (SIGGRAPH ′85), Vol.19, No.3, pp.271-278, 1985. [12] Gonzalez, J. A., A Tutorial and Recipe for Moving Fractal Trees, Computers & Graphics, Vol.22, No.2-3, pp.301-305, 1998. 11 12 13 14 15 16 17 18 19 FUJIMOTO TADAHIRO (7) 2000; 41 1 2 3 4 5 6 8 9 20 10 |
References_xml | – reference: [2] Barnsley, M. F., Jacquin, A., Malassenet, F., Reuter, L., and Sloan, A. D., Harnessing Chaos for Image Synthesis, Computer Graphics (SIGGRAPH ′88), Vol.22, No.4, pp.131-140, 1988. – reference: [9] Fujimoto, T., Ohno, Y., Muraoka, K., and Chiba, N., Fractal Deformation Based on Extended Iterated Shuffle Transformation, NICOGRAPH International 2002, pp.79-84, 2002. – reference: [1] Barnsley, M. F., Fractal Functions and Interpolation, Constructive Approximation, 2, pp.303-329, 1986. – reference: [20] Zhao, N., Construction and Application of Fractal Interpolation Surfaces, The Visual Computer, 12, pp.132-146, 1996. – reference: [16] Sederberg, T. and Parry, S., Free-Form Deformation of Solid Geometric Models, Computer Graphics (SIGGRAPH ″86), Vol.20, No.4, pp.151-160, 1986. – reference: [17] Zair, C. E. and Tosan, E., Fractal Modeling Using Free Form Techniques, EUROGRAPHICS ′96, Vol.15, No.3, pp.269-278, 1996. – reference: [8] Fujimoto, T., Ohno, Y., Muraoka, K., and Chiba, N., Wrinkly Surface Generated on Irregular Mesh by Using IST Generalized on Code Space and Multi-Dimensional Space : Unification of Interpolation Surface and Fractal, IEICE Transactions on Information and Systems, to appear. – reference: [11] Gomes, J., Darsa, L., Costa, B., and Velho, L., Warping and Morphing of Graphical Objects, Morgan Kaufmann, 1999. – reference: [12] Gonzalez, J. A., A Tutorial and Recipe for Moving Fractal Trees, Computers & Graphics, Vol.22, No.2-3, pp.301-305, 1998. – reference: [18] Zair, C. E. and Tosan, E., Unified IFS-based Model to Generate Smooth or Fractal Forms, Surface Fitting and Multiresolution Methods, Vanderbilt University Press, pp.345-354, 1997. – reference: [5] Burch, B. and Hart, J. C., Linear Fractal Shape Interpolation, Graphics Interface ′97, pp.155-162, 1997. – reference: [7] Fujimoto, T. and Ohno, Y., Formalization and Superposed Construction of Wrinkly Surface, Transactions of Information Processing Society of Japan, Vol.41, No.9, pp.2518-2535, 2000 (in Japanese). – reference: [10] Geronimo, J. S. and Hardin, D., Fractal Interpolation Surfaces and a Related 2-D Multiresolution Analysis, Journal of Mathematical Analysis and Applications, 176, pp.561-586, 1993. – reference: [13] Massopust, P. R., Fractal Surfaces, Journal of Mathematical Analysis and Applications, 151, pp.275-290, 1990. – reference: [3] Barnsley, M. F., Fractals Everywhere, 2nd ed., Academic Press, Boston, 1993. – reference: [15] Peruggia, M., Discrete Iterated Function Systems, A K Peters, 1993. – reference: [14] Montiel, M. E., Aguado, A. S., and Zaluska, E. J., Topology in Fractals, Chaos, Solitons and Fractals, Vol.7, No.8, pp.1187-1207, 1996. – reference: [4] Bowman, R. L., Fractal Metamorphosis: a Brief StudentTutorial, Computers & Graphics, Vol.19, No.1, pp.157-164, 1995. – reference: [19] Zair, C. E. and Tosan, E., Computer Aided Geometric Design with IFS Techniques, Fractal Frontiers (Proc. Fractals ′97), pp.443-452, 1997. – reference: [6] Demko, S., Construction of Fractal Objects with Iterated Function Systems, Computer Graphics (SIGGRAPH ′85), Vol.19, No.3, pp.271-278, 1985. – ident: 3 – ident: 18 – ident: 16 doi: 10.1145/15886.15903 – ident: 1 doi: 10.1007/BF01893434 – ident: 5 – ident: 17 doi: 10.1111/1467-8659.1530269 – ident: 11 – ident: 19 – ident: 15 doi: 10.1201/9781439864708 – ident: 14 – ident: 12 doi: 10.1016/S0097-8493(98)00014-4 – ident: 10 doi: 10.1006/jmaa.1993.1232 – ident: 4 doi: 10.1016/0097-8493(94)00131-H – ident: 9 – ident: 13 doi: 10.1016/0022-247X(90)90257-G – ident: 8 – volume: 41 start-page: 2518 issn: 0387-5806 issue: 9 year: 2000 ident: 7 – ident: 20 doi: 10.1007/s003710050053 – ident: 2 doi: 10.1145/378456.378502 – ident: 6 doi: 10.1145/325165.325245 |
SSID | ssj0069110 |
Score | 1.2986839 |
Snippet | In this paper, we propose a framework of “fractal deformation” using displacement vectors based on “extended Iterated Shuffle Transformation (ext-IST)”. An... |
SourceID | crossref jstage |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 134 |
SubjectTerms | attractor computer graphics (CG) fractal geometric model Iterated Function System (IFS) Iterated Shuffle Transformation (IST) shape deformation |
Title | Fractal Deformation Using Displacement Vectors Based on Extended Iterated Shuffle Transformation |
URI | https://www.jstage.jst.go.jp/article/artsci/1/3/1_3_134/_article/-char/en |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | The Journal of the Society for Art and Science, 2002, Vol.1(3), pp.134-146 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6FwgEOqLzUAkV7gFPk4LXXXudYoFUFAgkprcrJrPehpEQxSuJL_xZ_kNmHNxtEpRQOsaL1-KGdzzOzs_NA6DVVUoNW5MlYS5FQwXRSVfBdEaEq3uS8pHa74POX8uycfrwsLgeDX1HUUrduRuL6r3kl_8JVGAO-mizZW3A23BQG4D_wF47AYTjuxONTk-Jk5JYKOYhDFwPwYbay0VZ2q_9CuZ4670BjSbM7cOI938ZRb0pFgM057bSeK1frPNwstlw3OWTzPq4gjvg8XrpQdS8rgu92alt7D7-1q6mL-LJg6a4MROyZCZd8Olu2Eed5-8Mnql13i7bpNiEIs4b7zSbjOvNhTL3PYrO2nezwcspJ4tyUkMhcr44gqiNE5pHYJd4h6jS4d2r-qRxyVtiqyMs1GBcjMgoXbZXb9sysHVlN6tz9clr3p0w-HMDvDrqbMUZMHOmnr2HrqgTtkboMC_PAt_Hjtmyfe1dg_vehg9aameyjh56R-Ng96xEaqMVj9OBiturc6OoJ-u7RhSN0YYsuHKMLe3Rhiy4MND26cI8u7NGFt9H1FJ2fnkzenyW-H0ci8qqkSaZhvSpBapcVVQXX8JVnuoQFD5iNTMucSkZUygUTDdPjsmgEUAiYIiIlKzKaP0N7i3ahDhBOleSlFopQzqgkoDVoRsuUgjmdyVTxQzTsZ6oWvli96Zkyr2HRauZ1wx-Y10P0JlD_dEVabqAbu0kPVLtz-_l_XPsC3bdNhKzn7iXaWy87dQS27Lp5ZbHzG1DKsik |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractal+Deformation+Using+Displacement+Vectors+Based+on+Extended+Iterated+Shuffle+Transformation&rft.jtitle=The+Journal+of+the+Society+for+Art+and+Science&rft.au=Ohno%2C+Yoshio&rft.au=Fujimoto%2C+Tadahiro&rft.au=Muraoka%2C+Kazunobu&rft.au=Chiba%2C+Norishige&rft.date=2002&rft.pub=The+Society+for+Art+and+Science&rft.eissn=1347-2267&rft.volume=1&rft.issue=3&rft.spage=134&rft.epage=146&rft_id=info:doi/10.3756%2Fartsci.1.134&rft.externalDocID=article_artsci_1_3_1_3_134_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-2267&client=summon |