Fractal Deformation Using Displacement Vectors Based on Extended Iterated Shuffle Transformation

In this paper, we propose a framework of “fractal deformation” using displacement vectors based on “extended Iterated Shuffle Transformation (ext-IST)”. An ext-unit-IST is a one-to-one and onto mapping that is extended from a unit-IST, which we have proposed, and is basically defined on a code space...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Society for Art and Science Vol. 1; no. 3; pp. 134 - 146
Main Authors Ohno, Yoshio, Fujimoto, Tadahiro, Muraoka, Kazunobu, Chiba, Norishige
Format Journal Article
LanguageEnglish
Japanese
Published The Society for Art and Science 2002
Subjects
Online AccessGet full text
ISSN1347-2267
1347-2267
DOI10.3756/artsci.1.134

Cover

Abstract In this paper, we propose a framework of “fractal deformation” using displacement vectors based on “extended Iterated Shuffle Transformation (ext-IST)”. An ext-unit-IST is a one-to-one and onto mapping that is extended from a unit-IST, which we have proposed, and is basically defined on a code space. When the mapping is applied on a geometric space, a fractal-like repeated structure, which is referred to as “local resemblance in space/scale directions”, is constructed on the relationship between points on the domain and those on the range. By applying the mapping to displacement vectors given on a geometric shape, the shape can be deformed in the fractal-like repeated manner. This fractal deformation is easy to control by changing the displacement vectors intuitively. In addition, a continuous transition between a continuous deformation and a fractal deformation can be realized. We demonstrate how the fractal deformation technique produces attractive results by showing various examples.
AbstractList In this paper, we propose a framework of “fractal deformation” using displacement vectors based on “extended Iterated Shuffle Transformation (ext-IST)”. An ext-unit-IST is a one-to-one and onto mapping that is extended from a unit-IST, which we have proposed, and is basically defined on a code space. When the mapping is applied on a geometric space, a fractal-like repeated structure, which is referred to as “local resemblance in space/scale directions”, is constructed on the relationship between points on the domain and those on the range. By applying the mapping to displacement vectors given on a geometric shape, the shape can be deformed in the fractal-like repeated manner. This fractal deformation is easy to control by changing the displacement vectors intuitively. In addition, a continuous transition between a continuous deformation and a fractal deformation can be realized. We demonstrate how the fractal deformation technique produces attractive results by showing various examples.
Author Muraoka, Kazunobu
Chiba, Norishige
Fujimoto, Tadahiro
Ohno, Yoshio
Author_xml – sequence: 1
  fullname: Ohno, Yoshio
  organization: Keio University
– sequence: 1
  fullname: Fujimoto, Tadahiro
  organization: Iwate University
– sequence: 1
  fullname: Muraoka, Kazunobu
  organization: Iwate University
– sequence: 1
  fullname: Chiba, Norishige
  organization: Iwate University
BookMark eNp1kNtKAzEQhoNUsK3e-QD7AG7NYTdp79QetFDwwtbbNU0mbco2W5II-vZGV6oIXszMD_PNgb-HOq5xgNAlwQMmSn4tfQzKDsiAsOIEdVMWOaVcdH7pM9QLYYcxHxGCu-hl5qWKss4mYBq_l9E2LlsF6zbZxIZDLRXswcXsGVRsfMjuZACdJWb6FsHppOcRvIxJPG1fjakhW3rpwnHZOTo1sg5w8V37aDWbLscP-eLxfj6-XeSKDXmRU0MZ1rhkfFhAKY02lBo-JJqSUhjNCi0IYKmEWgsz4uVaJUIJQYjWoqQF66Ordq_yTQgeTHXwdi_9e0Vw9elO1bpTkSp5kXD6B1c2fj0cvbT1f0M37dAuRLmB44UEWVXDD8zaYMWxpbbSV-DYB2zxhik
CitedBy_id crossref_primary_10_7583_JKGS_2016_16_1_119
Cites_doi 10.1145/15886.15903
10.1007/BF01893434
10.1111/1467-8659.1530269
10.1201/9781439864708
10.1016/S0097-8493(98)00014-4
10.1006/jmaa.1993.1232
10.1016/0097-8493(94)00131-H
10.1016/0022-247X(90)90257-G
10.1007/s003710050053
10.1145/378456.378502
10.1145/325165.325245
ContentType Journal Article
Copyright 2002 Fujimoto, Tadahiro, Ohno, Yoshio, Muraoka, Kazunobu and Chiba, Norishige
Copyright_xml – notice: 2002 Fujimoto, Tadahiro, Ohno, Yoshio, Muraoka, Kazunobu and Chiba, Norishige
DBID AAYXX
CITATION
DOI 10.3756/artsci.1.134
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1347-2267
EndPage 146
ExternalDocumentID 10_3756_artsci_1_134
article_artsci_1_3_1_3_134_article_char_en
GroupedDBID ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
RJT
AAYXX
CITATION
ID FETCH-LOGICAL-c3864-2f230d053684e5afdf22f681d2157fd34d71e0ac7cb7f965bcdf2c7711dd75243
ISSN 1347-2267
IngestDate Tue Jul 01 03:27:39 EDT 2025
Thu Apr 24 22:52:15 EDT 2025
Wed Sep 03 06:29:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 3
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3864-2f230d053684e5afdf22f681d2157fd34d71e0ac7cb7f965bcdf2c7711dd75243
OpenAccessLink https://www.jstage.jst.go.jp/article/artsci/1/3/1_3_134/_article/-char/en
PageCount 13
ParticipantIDs crossref_primary_10_3756_artsci_1_134
crossref_citationtrail_10_3756_artsci_1_134
jstage_primary_article_artsci_1_3_1_3_134_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20020000
PublicationDateYYYYMMDD 2002-01-01
PublicationDate_xml – year: 2002
  text: 20020000
PublicationDecade 2000
PublicationTitle Journal of the Society for Art and Science
PublicationTitleAlternate The Journal of the Society for Art and Science
PublicationYear 2002
Publisher The Society for Art and Science
Publisher_xml – name: The Society for Art and Science
References [7] Fujimoto, T. and Ohno, Y., Formalization and Superposed Construction of Wrinkly Surface, Transactions of Information Processing Society of Japan, Vol.41, No.9, pp.2518-2535, 2000 (in Japanese).
[17] Zair, C. E. and Tosan, E., Fractal Modeling Using Free Form Techniques, EUROGRAPHICS ′96, Vol.15, No.3, pp.269-278, 1996.
[13] Massopust, P. R., Fractal Surfaces, Journal of Mathematical Analysis and Applications, 151, pp.275-290, 1990.
[18] Zair, C. E. and Tosan, E., Unified IFS-based Model to Generate Smooth or Fractal Forms, Surface Fitting and Multiresolution Methods, Vanderbilt University Press, pp.345-354, 1997.
[16] Sederberg, T. and Parry, S., Free-Form Deformation of Solid Geometric Models, Computer Graphics (SIGGRAPH ″86), Vol.20, No.4, pp.151-160, 1986.
[9] Fujimoto, T., Ohno, Y., Muraoka, K., and Chiba, N., Fractal Deformation Based on Extended Iterated Shuffle Transformation, NICOGRAPH International 2002, pp.79-84, 2002.
[5] Burch, B. and Hart, J. C., Linear Fractal Shape Interpolation, Graphics Interface ′97, pp.155-162, 1997.
[14] Montiel, M. E., Aguado, A. S., and Zaluska, E. J., Topology in Fractals, Chaos, Solitons and Fractals, Vol.7, No.8, pp.1187-1207, 1996.
[8] Fujimoto, T., Ohno, Y., Muraoka, K., and Chiba, N., Wrinkly Surface Generated on Irregular Mesh by Using IST Generalized on Code Space and Multi-Dimensional Space : Unification of Interpolation Surface and Fractal, IEICE Transactions on Information and Systems, to appear.
[2] Barnsley, M. F., Jacquin, A., Malassenet, F., Reuter, L., and Sloan, A. D., Harnessing Chaos for Image Synthesis, Computer Graphics (SIGGRAPH ′88), Vol.22, No.4, pp.131-140, 1988.
[19] Zair, C. E. and Tosan, E., Computer Aided Geometric Design with IFS Techniques, Fractal Frontiers (Proc. Fractals ′97), pp.443-452, 1997.
[20] Zhao, N., Construction and Application of Fractal Interpolation Surfaces, The Visual Computer, 12, pp.132-146, 1996.
[3] Barnsley, M. F., Fractals Everywhere, 2nd ed., Academic Press, Boston, 1993.
[1] Barnsley, M. F., Fractal Functions and Interpolation, Constructive Approximation, 2, pp.303-329, 1986.
[15] Peruggia, M., Discrete Iterated Function Systems, A K Peters, 1993.
[11] Gomes, J., Darsa, L., Costa, B., and Velho, L., Warping and Morphing of Graphical Objects, Morgan Kaufmann, 1999.
[10] Geronimo, J. S. and Hardin, D., Fractal Interpolation Surfaces and a Related 2-D Multiresolution Analysis, Journal of Mathematical Analysis and Applications, 176, pp.561-586, 1993.
[4] Bowman, R. L., Fractal Metamorphosis: a Brief StudentTutorial, Computers &amp Graphics, Vol.19, No.1, pp.157-164, 1995.
[6] Demko, S., Construction of Fractal Objects with Iterated Function Systems, Computer Graphics (SIGGRAPH ′85), Vol.19, No.3, pp.271-278, 1985.
[12] Gonzalez, J. A., A Tutorial and Recipe for Moving Fractal Trees, Computers &amp Graphics, Vol.22, No.2-3, pp.301-305, 1998.
11
12
13
14
15
16
17
18
19
FUJIMOTO TADAHIRO (7) 2000; 41
1
2
3
4
5
6
8
9
20
10
References_xml – reference: [2] Barnsley, M. F., Jacquin, A., Malassenet, F., Reuter, L., and Sloan, A. D., Harnessing Chaos for Image Synthesis, Computer Graphics (SIGGRAPH ′88), Vol.22, No.4, pp.131-140, 1988.
– reference: [9] Fujimoto, T., Ohno, Y., Muraoka, K., and Chiba, N., Fractal Deformation Based on Extended Iterated Shuffle Transformation, NICOGRAPH International 2002, pp.79-84, 2002.
– reference: [1] Barnsley, M. F., Fractal Functions and Interpolation, Constructive Approximation, 2, pp.303-329, 1986.
– reference: [20] Zhao, N., Construction and Application of Fractal Interpolation Surfaces, The Visual Computer, 12, pp.132-146, 1996.
– reference: [16] Sederberg, T. and Parry, S., Free-Form Deformation of Solid Geometric Models, Computer Graphics (SIGGRAPH ″86), Vol.20, No.4, pp.151-160, 1986.
– reference: [17] Zair, C. E. and Tosan, E., Fractal Modeling Using Free Form Techniques, EUROGRAPHICS ′96, Vol.15, No.3, pp.269-278, 1996.
– reference: [8] Fujimoto, T., Ohno, Y., Muraoka, K., and Chiba, N., Wrinkly Surface Generated on Irregular Mesh by Using IST Generalized on Code Space and Multi-Dimensional Space : Unification of Interpolation Surface and Fractal, IEICE Transactions on Information and Systems, to appear.
– reference: [11] Gomes, J., Darsa, L., Costa, B., and Velho, L., Warping and Morphing of Graphical Objects, Morgan Kaufmann, 1999.
– reference: [12] Gonzalez, J. A., A Tutorial and Recipe for Moving Fractal Trees, Computers &amp Graphics, Vol.22, No.2-3, pp.301-305, 1998.
– reference: [18] Zair, C. E. and Tosan, E., Unified IFS-based Model to Generate Smooth or Fractal Forms, Surface Fitting and Multiresolution Methods, Vanderbilt University Press, pp.345-354, 1997.
– reference: [5] Burch, B. and Hart, J. C., Linear Fractal Shape Interpolation, Graphics Interface ′97, pp.155-162, 1997.
– reference: [7] Fujimoto, T. and Ohno, Y., Formalization and Superposed Construction of Wrinkly Surface, Transactions of Information Processing Society of Japan, Vol.41, No.9, pp.2518-2535, 2000 (in Japanese).
– reference: [10] Geronimo, J. S. and Hardin, D., Fractal Interpolation Surfaces and a Related 2-D Multiresolution Analysis, Journal of Mathematical Analysis and Applications, 176, pp.561-586, 1993.
– reference: [13] Massopust, P. R., Fractal Surfaces, Journal of Mathematical Analysis and Applications, 151, pp.275-290, 1990.
– reference: [3] Barnsley, M. F., Fractals Everywhere, 2nd ed., Academic Press, Boston, 1993.
– reference: [15] Peruggia, M., Discrete Iterated Function Systems, A K Peters, 1993.
– reference: [14] Montiel, M. E., Aguado, A. S., and Zaluska, E. J., Topology in Fractals, Chaos, Solitons and Fractals, Vol.7, No.8, pp.1187-1207, 1996.
– reference: [4] Bowman, R. L., Fractal Metamorphosis: a Brief StudentTutorial, Computers &amp Graphics, Vol.19, No.1, pp.157-164, 1995.
– reference: [19] Zair, C. E. and Tosan, E., Computer Aided Geometric Design with IFS Techniques, Fractal Frontiers (Proc. Fractals ′97), pp.443-452, 1997.
– reference: [6] Demko, S., Construction of Fractal Objects with Iterated Function Systems, Computer Graphics (SIGGRAPH ′85), Vol.19, No.3, pp.271-278, 1985.
– ident: 3
– ident: 18
– ident: 16
  doi: 10.1145/15886.15903
– ident: 1
  doi: 10.1007/BF01893434
– ident: 5
– ident: 17
  doi: 10.1111/1467-8659.1530269
– ident: 11
– ident: 19
– ident: 15
  doi: 10.1201/9781439864708
– ident: 14
– ident: 12
  doi: 10.1016/S0097-8493(98)00014-4
– ident: 10
  doi: 10.1006/jmaa.1993.1232
– ident: 4
  doi: 10.1016/0097-8493(94)00131-H
– ident: 9
– ident: 13
  doi: 10.1016/0022-247X(90)90257-G
– ident: 8
– volume: 41
  start-page: 2518
  issn: 0387-5806
  issue: 9
  year: 2000
  ident: 7
– ident: 20
  doi: 10.1007/s003710050053
– ident: 2
  doi: 10.1145/378456.378502
– ident: 6
  doi: 10.1145/325165.325245
SSID ssj0069110
Score 1.2986839
Snippet In this paper, we propose a framework of “fractal deformation” using displacement vectors based on “extended Iterated Shuffle Transformation (ext-IST)”. An...
SourceID crossref
jstage
SourceType Enrichment Source
Index Database
Publisher
StartPage 134
SubjectTerms attractor
computer graphics (CG)
fractal
geometric model
Iterated Function System (IFS)
Iterated Shuffle Transformation (IST)
shape deformation
Title Fractal Deformation Using Displacement Vectors Based on Extended Iterated Shuffle Transformation
URI https://www.jstage.jst.go.jp/article/artsci/1/3/1_3_134/_article/-char/en
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX The Journal of the Society for Art and Science, 2002, Vol.1(3), pp.134-146
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6FwgEOqLzUAkV7gFPk4LXXXudYoFUFAgkprcrJrPehpEQxSuJL_xZ_kNmHNxtEpRQOsaL1-KGdzzOzs_NA6DVVUoNW5MlYS5FQwXRSVfBdEaEq3uS8pHa74POX8uycfrwsLgeDX1HUUrduRuL6r3kl_8JVGAO-mizZW3A23BQG4D_wF47AYTjuxONTk-Jk5JYKOYhDFwPwYbay0VZ2q_9CuZ4670BjSbM7cOI938ZRb0pFgM057bSeK1frPNwstlw3OWTzPq4gjvg8XrpQdS8rgu92alt7D7-1q6mL-LJg6a4MROyZCZd8Olu2Eed5-8Mnql13i7bpNiEIs4b7zSbjOvNhTL3PYrO2nezwcspJ4tyUkMhcr44gqiNE5pHYJd4h6jS4d2r-qRxyVtiqyMs1GBcjMgoXbZXb9sysHVlN6tz9clr3p0w-HMDvDrqbMUZMHOmnr2HrqgTtkboMC_PAt_Hjtmyfe1dg_vehg9aameyjh56R-Ng96xEaqMVj9OBiturc6OoJ-u7RhSN0YYsuHKMLe3Rhiy4MND26cI8u7NGFt9H1FJ2fnkzenyW-H0ci8qqkSaZhvSpBapcVVQXX8JVnuoQFD5iNTMucSkZUygUTDdPjsmgEUAiYIiIlKzKaP0N7i3ahDhBOleSlFopQzqgkoDVoRsuUgjmdyVTxQzTsZ6oWvli96Zkyr2HRauZ1wx-Y10P0JlD_dEVabqAbu0kPVLtz-_l_XPsC3bdNhKzn7iXaWy87dQS27Lp5ZbHzG1DKsik
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractal+Deformation+Using+Displacement+Vectors+Based+on+Extended+Iterated+Shuffle+Transformation&rft.jtitle=The+Journal+of+the+Society+for+Art+and+Science&rft.au=Ohno%2C+Yoshio&rft.au=Fujimoto%2C+Tadahiro&rft.au=Muraoka%2C+Kazunobu&rft.au=Chiba%2C+Norishige&rft.date=2002&rft.pub=The+Society+for+Art+and+Science&rft.eissn=1347-2267&rft.volume=1&rft.issue=3&rft.spage=134&rft.epage=146&rft_id=info:doi/10.3756%2Fartsci.1.134&rft.externalDocID=article_artsci_1_3_1_3_134_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-2267&client=summon