Exogenous melatonin enhances the reactive oxygen species metabolism, antioxidant defense‐related gene expression, and photosynthetic capacity of Phaseolus vulgaris L. to confer salt stress tolerance
Melatonin (MT) has been reported to regulate certain plant physiological processes and promote tolerance to different environmental stresses such as salinity. Green bean (Phaseolus vulgaris L. cv. Royal Nel) seedlings were exposed to 200 mM NaCl with or without pre‐treatment with 150 μM MT. Salt str...
Saved in:
Published in | Physiologia plantarum Vol. 173; no. 4; pp. 1369 - 1381 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.12.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Melatonin (MT) has been reported to regulate certain plant physiological processes and promote tolerance to different environmental stresses such as salinity. Green bean (Phaseolus vulgaris L. cv. Royal Nel) seedlings were exposed to 200 mM NaCl with or without pre‐treatment with 150 μM MT. Salt stress led to a lower chlorophyll content, a reduced photosynthetic activity, increased reactive oxygen species (ROS) contents, and decreased photosystem II (PSII) activity. The application of exogenous MT to green bean seedlings under salt stress improved photosynthetic activity and alleviated the oxidative damages by enhancing the activity of antioxidant enzymes. The expression of catalase (CAT1), glutathione reductase (GR), superoxide dismutase (CuZnSOD1), ascorbate peroxidase (APX), Peroxiredoxin Q (PrxQ), and 2‐cysteine peroxiredoxin (2‐Cys‐Prx) encoding genes was significantly increased under salt stress in green bean seedling compared with the untreated control. However, plants treated with exogenous MT and NaCl had 28.8, 21.1, 26.1, 20, 26.2, and 22.4% higher CuZnSOD, CAT1, APX, GR, PrxQ, and 2‐Cys‐Prx transcript levels, respectively, compared to NaCl stress alone. Our study revealed the protective mechanisms mediated by exogenous MT application in NaCl stress alleviation and our findings could be used in the management of green bean cultivation in salinity‐prone soils. |
---|---|
AbstractList | Melatonin (MT) has been reported to regulate certain plant physiological processes and promote tolerance to different environmental stresses such as salinity. Green bean (
Phaseolus vulgaris
L. cv. Royal Nel) seedlings were exposed to 200 mM NaCl with or without pre‐treatment with 150 μM MT. Salt stress led to a lower chlorophyll content, a reduced photosynthetic activity, increased reactive oxygen species (ROS) contents, and decreased photosystem II (PSII) activity. The application of exogenous MT to green bean seedlings under salt stress improved photosynthetic activity and alleviated the oxidative damages by enhancing the activity of antioxidant enzymes. The expression of catalase (
CAT1
), glutathione reductase (
GR
), superoxide dismutase (
CuZnSOD1
), ascorbate peroxidase (
APX
), Peroxiredoxin Q (
PrxQ
), and 2‐cysteine peroxiredoxin (
2‐Cys‐Prx
) encoding genes was significantly increased under salt stress in green bean seedling compared with the untreated control. However, plants treated with exogenous MT and NaCl had 28.8, 21.1, 26.1, 20, 26.2, and 22.4% higher
CuZnSOD
,
CAT1
,
APX
,
GR
,
PrxQ
, and
2‐Cys‐Prx
transcript levels, respectively, compared to NaCl stress alone. Our study revealed the protective mechanisms mediated by exogenous MT application in NaCl stress alleviation and our findings could be used in the management of green bean cultivation in salinity‐prone soils. Melatonin (MT) has been reported to regulate certain plant physiological processes and promote tolerance to different environmental stresses such as salinity. Green bean (Phaseolus vulgaris L. cv. Royal Nel) seedlings were exposed to 200 mM NaCl with or without pre‐treatment with 150 μM MT. Salt stress led to a lower chlorophyll content, a reduced photosynthetic activity, increased reactive oxygen species (ROS) contents, and decreased photosystem II (PSII) activity. The application of exogenous MT to green bean seedlings under salt stress improved photosynthetic activity and alleviated the oxidative damages by enhancing the activity of antioxidant enzymes. The expression of catalase (CAT1), glutathione reductase (GR), superoxide dismutase (CuZnSOD1), ascorbate peroxidase (APX), Peroxiredoxin Q (PrxQ), and 2‐cysteine peroxiredoxin (2‐Cys‐Prx) encoding genes was significantly increased under salt stress in green bean seedling compared with the untreated control. However, plants treated with exogenous MT and NaCl had 28.8, 21.1, 26.1, 20, 26.2, and 22.4% higher CuZnSOD, CAT1, APX, GR, PrxQ, and 2‐Cys‐Prx transcript levels, respectively, compared to NaCl stress alone. Our study revealed the protective mechanisms mediated by exogenous MT application in NaCl stress alleviation and our findings could be used in the management of green bean cultivation in salinity‐prone soils. Melatonin (MT) has been reported to regulate certain plant physiological processes and promote tolerance to different environmental stresses such as salinity. Green bean (Phaseolus vulgaris L. cv. Royal Nel) seedlings were exposed to 200 mM NaCl with or without pre-treatment with 150 μM MT. Salt stress led to a lower chlorophyll content, a reduced photosynthetic activity, increased reactive oxygen species (ROS) contents, and decreased photosystem II (PSII) activity. The application of exogenous MT to green bean seedlings under salt stress improved photosynthetic activity and alleviated the oxidative damages by enhancing the activity of antioxidant enzymes. The expression of catalase (CAT1), glutathione reductase (GR), superoxide dismutase (CuZnSOD1), ascorbate peroxidase (APX), Peroxiredoxin Q (PrxQ), and 2-cysteine peroxiredoxin (2-Cys-Prx) encoding genes was significantly increased under salt stress in green bean seedling compared with the untreated control. However, plants treated with exogenous MT and NaCl had 28.8, 21.1, 26.1, 20, 26.2, and 22.4% higher CuZnSOD, CAT1, APX, GR, PrxQ, and 2-Cys-Prx transcript levels, respectively, compared to NaCl stress alone. Our study revealed the protective mechanisms mediated by exogenous MT application in NaCl stress alleviation and our findings could be used in the management of green bean cultivation in salinity-prone soils.Melatonin (MT) has been reported to regulate certain plant physiological processes and promote tolerance to different environmental stresses such as salinity. Green bean (Phaseolus vulgaris L. cv. Royal Nel) seedlings were exposed to 200 mM NaCl with or without pre-treatment with 150 μM MT. Salt stress led to a lower chlorophyll content, a reduced photosynthetic activity, increased reactive oxygen species (ROS) contents, and decreased photosystem II (PSII) activity. The application of exogenous MT to green bean seedlings under salt stress improved photosynthetic activity and alleviated the oxidative damages by enhancing the activity of antioxidant enzymes. The expression of catalase (CAT1), glutathione reductase (GR), superoxide dismutase (CuZnSOD1), ascorbate peroxidase (APX), Peroxiredoxin Q (PrxQ), and 2-cysteine peroxiredoxin (2-Cys-Prx) encoding genes was significantly increased under salt stress in green bean seedling compared with the untreated control. However, plants treated with exogenous MT and NaCl had 28.8, 21.1, 26.1, 20, 26.2, and 22.4% higher CuZnSOD, CAT1, APX, GR, PrxQ, and 2-Cys-Prx transcript levels, respectively, compared to NaCl stress alone. Our study revealed the protective mechanisms mediated by exogenous MT application in NaCl stress alleviation and our findings could be used in the management of green bean cultivation in salinity-prone soils. |
Author | ElSayed, Abdelaleim Ismail Rafudeen, Mohammed Suhail Gomaa, Ayman M. Hasanuzzaman, Mirza |
Author_xml | – sequence: 1 givenname: Abdelaleim Ismail surname: ElSayed fullname: ElSayed, Abdelaleim Ismail organization: Zagazig University – sequence: 2 givenname: Mohammed Suhail surname: Rafudeen fullname: Rafudeen, Mohammed Suhail organization: University of Cape Town – sequence: 3 givenname: Ayman M. surname: Gomaa fullname: Gomaa, Ayman M. organization: Zagazig University – sequence: 4 givenname: Mirza orcidid: 0000-0002-0461-8743 surname: Hasanuzzaman fullname: Hasanuzzaman, Mirza email: mhzsauag@yahoo.com organization: Sher‐e‐Bangla Agricultural University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33619766$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1u1DAQxy1URLeFAy-ALHEBiWztOHHWR1SVD2kl9gDnyLEnXVeOHWynbG48Ao_Fc_AkOGzhUAnwZeTxb_4znpkzdOK8A4SeUrKm-VyMo11TxpryAVpRJkTBSF2doBUhjBaC0eYUncV4QwjlnJaP0CljnIqG8xX6fnXw1-D8FPEAVibvjMPg9tIpiDjtAQeQKplbwP4wZxLHEZSBBU-y89bE4RWWLhl_MDpbrKEHF-HH129hEQSNcxRgOIwBYjTeLbjG494nH2eXUySjsJKjVCbN2Pd4t5cRvM0l3U72WgYT8XaNk8fKux4CjtImHNMil70WwlLsY_SwlzbCkzt7jj69ufp4-a7Yfnj7_vL1tlBsw8tCNL3Q1aaBTjW03CipOVQd1awHLfquZyXratZpUteEl_mRsEoIkLXseaPz7Ry9OOqOwX-eIKZ2MFGBtdJB7mJbcsY3rKqZ-D9aiZLzshYso8_voTd-Ci5_JAsSJspNzZfcz-6oqRtAt2Mwgwxz-3ucGXh5BFTwMQbo_yCUtMuqtHlV2l-rktmLe2zuv8xzdClIY_8V8cVYmP8u3e5222PETxDS1bI |
CitedBy_id | crossref_primary_10_1016_j_scienta_2023_112720 crossref_primary_10_1371_journal_pone_0269028 crossref_primary_10_1016_j_eja_2022_126656 crossref_primary_10_1016_j_plaphy_2023_108270 crossref_primary_10_3390_genes15081077 crossref_primary_10_1016_j_jplph_2025_154448 crossref_primary_10_1016_j_scienta_2023_112526 crossref_primary_10_3390_plants14050824 crossref_primary_10_3390_ijms25052521 crossref_primary_10_3390_genes15060693 crossref_primary_10_1080_1354750X_2021_2023220 crossref_primary_10_1186_s12870_022_03907_z crossref_primary_10_1007_s42729_024_01779_w crossref_primary_10_1007_s00344_024_11257_3 crossref_primary_10_3389_fpls_2021_693690 crossref_primary_10_1007_s00344_023_10946_9 crossref_primary_10_3390_horticulturae9060711 crossref_primary_10_1016_j_scienta_2021_110779 crossref_primary_10_1080_17429145_2022_2146771 crossref_primary_10_1016_j_plaphy_2024_108639 crossref_primary_10_3390_f12101404 crossref_primary_10_1111_ppl_13592 crossref_primary_10_1371_journal_pone_0279192 crossref_primary_10_1016_j_plaphy_2023_01_035 crossref_primary_10_1186_s12870_024_04723_3 crossref_primary_10_1016_j_stress_2024_100718 crossref_primary_10_1016_j_scienta_2023_112432 crossref_primary_10_1007_s00344_023_10980_7 crossref_primary_10_3390_horticulturae8030257 crossref_primary_10_1016_j_scienta_2023_112270 crossref_primary_10_1016_j_stress_2024_100685 crossref_primary_10_3389_fpls_2024_1379756 crossref_primary_10_1016_j_scienta_2025_114016 crossref_primary_10_1071_FP21126 crossref_primary_10_3390_ijms23179966 crossref_primary_10_1016_j_scienta_2023_112594 crossref_primary_10_1111_ppl_14413 crossref_primary_10_1016_j_scienta_2023_112390 crossref_primary_10_3390_horticulturae11030229 crossref_primary_10_1007_s00344_022_10633_1 crossref_primary_10_3390_agronomy11112302 crossref_primary_10_1007_s00344_022_10766_3 crossref_primary_10_1007_s10725_023_01011_2 crossref_primary_10_3389_fpls_2024_1385785 crossref_primary_10_3390_ijms24010734 crossref_primary_10_1016_j_stress_2023_100293 crossref_primary_10_1016_j_chemosphere_2024_141120 crossref_primary_10_3389_fpls_2024_1406092 crossref_primary_10_1016_j_sajb_2023_08_057 crossref_primary_10_1016_j_ecoenv_2022_113622 crossref_primary_10_1007_s10725_024_01231_0 crossref_primary_10_1016_j_sajb_2023_07_014 crossref_primary_10_3390_ijms23169456 crossref_primary_10_1007_s10343_024_01099_0 crossref_primary_10_1038_s41598_022_05866_9 crossref_primary_10_3390_life12091327 crossref_primary_10_3389_fpls_2021_787062 crossref_primary_10_3390_plants12051129 crossref_primary_10_3390_agronomy15020270 crossref_primary_10_3390_agronomy13112777 crossref_primary_10_3390_ijms25126799 crossref_primary_10_1007_s10343_023_00873_w crossref_primary_10_3390_plants12162948 crossref_primary_10_3390_agronomy13092375 crossref_primary_10_3389_fpls_2022_1006617 crossref_primary_10_3390_plants11111459 crossref_primary_10_3390_plants11121610 crossref_primary_10_1186_s12870_022_03728_0 crossref_primary_10_1016_j_rhisph_2024_100848 crossref_primary_10_1016_j_plaphy_2023_107876 crossref_primary_10_3389_fpls_2023_1108507 |
Cites_doi | 10.1016/j.plaphy.2010.08.016 10.1111/j.1600-079X.2012.00999.x 10.1104/pp.119.4.1407 10.1016/0076-6879(87)48036-1 10.11648/j.jps.20140206.13 10.3390/antiox9080681 10.1007/s10535-012-0143-x 10.1093/jxb/eru373 10.1023/A:1024146710611 10.1016/0003-2697(76)90527-3 10.1111/j.1600-079X.2011.00966.x 10.1155/2012/217037 10.1007/s004250050524 10.1134/S1021443715010112 10.1111/j.1600-079X.2006.00337.x 10.1016/j.tplants.2008.01.005 10.1111/j.1365-3040.2005.01488.x 10.1007/s00425-006-0242-z 10.1007/s11099-009-0059-7 10.1007/s10725-008-9254-y 10.1016/j.tplants.2018.10.010 10.1093/jxb/erx019 10.1007/s11120-008-9331-0 10.1007/s13562-012-0107-4 10.1023/A:1022421515027 10.1016/j.plaphy.2019.07.020 10.1111/jpi.12017 10.1016/j.tplants.2014.07.006 10.1073/pnas.072644999 10.1034/j.1399-3054.2003.00051.x 10.1007/s11099-009-0089-1 10.1111/jpi.12165 10.1111/j.1600-079X.2008.00660.x 10.1093/jxb/44.1.127 10.3390/plants9070854 10.1093/jxb/err356 10.1042/bj2100899 10.1016/j.ecoenv.2004.06.010 10.3390/agronomy9090545 10.1111/plb.12598 10.1111/j.1600-079X.2005.00234.x 10.1007/s10725-015-0066-6 10.1002/clen.201200310 10.1093/jxb/eru336 10.1007/s11103-007-9253-9 10.1016/j.tplants.2015.06.008 10.1111/jpi.12253 10.1111/jpi.12162 10.1111/ppl.12737 10.1007/s11099-015-0140-3 10.3390/antiox8090384 10.1111/jpi.12055 10.1016/S0003-9861(03)00171-1 10.1093/jxb/eru392 10.1104/pp.109.2.421 10.1111/jpi.12026 10.1111/jpi.12169 10.1111/j.1600-079X.2010.00770.x 10.1111/j.1600-079X.2012.01015.x 10.1111/jpi.12115 10.1111/jpi.12038 10.1046/j.1365-3040.2001.00778.x 10.1104/pp.110.167569 10.1006/meth.2001.1262 10.1111/jpi.12088 |
ContentType | Journal Article |
Copyright | 2021 Scandinavian Plant Physiology Society 2021 Scandinavian Plant Physiology Society. |
Copyright_xml | – notice: 2021 Scandinavian Plant Physiology Society – notice: 2021 Scandinavian Plant Physiology Society. |
DBID | AAYXX CITATION NPM 7SN 7ST 8FD C1K FR3 P64 RC3 SOI 7X8 7S9 L.6 |
DOI | 10.1111/ppl.13372 |
DatabaseName | CrossRef PubMed Ecology Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Technology Research Database Engineering Research Database Ecology Abstracts Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Genetics Abstracts PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1399-3054 |
EndPage | 1381 |
ExternalDocumentID | 33619766 10_1111_ppl_13372 PPL13372 |
Genre | article Journal Article |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29O 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBTR ACBWZ ACCFJ ACCZN ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ H~9 IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OHT OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 TWZ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT ZCG ZZTAW ~02 ~IA ~KM ~WT AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7SN 7ST 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 RC3 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3862-97f9d487ebc7128cad6e4b1d3fed9fbf323b53bd055062d6e03499ea5af67de03 |
IEDL.DBID | DR2 |
ISSN | 0031-9317 1399-3054 |
IngestDate | Fri Jul 11 18:31:01 EDT 2025 Thu Jul 10 23:05:11 EDT 2025 Fri Jul 25 12:22:50 EDT 2025 Wed Feb 19 02:28:29 EST 2025 Tue Jul 01 03:00:51 EDT 2025 Thu Apr 24 22:53:10 EDT 2025 Wed Jan 22 16:26:57 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | 2021 Scandinavian Plant Physiology Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3862-97f9d487ebc7128cad6e4b1d3fed9fbf323b53bd055062d6e03499ea5af67de03 |
Notes | Edited by A.K. Srivastava ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0461-8743 |
PMID | 33619766 |
PQID | 2603928560 |
PQPubID | 1096353 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2636834539 proquest_miscellaneous_2492662593 proquest_journals_2603928560 pubmed_primary_33619766 crossref_primary_10_1111_ppl_13372 crossref_citationtrail_10_1111_ppl_13372 wiley_primary_10_1111_ppl_13372_PPL13372 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Denmark – name: Malden |
PublicationTitle | Physiologia plantarum |
PublicationTitleAlternate | Physiol Plant |
PublicationYear | 2021 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | 2018; 164 2009; 47 2009; 46 2017; 8 2012; 2012 2013a; 55 2003; 117 2013; 22 1987; 148 2015; 77 2002; 99 2019; 14 2002; 159 2005; 60 2012; 56 2011; 155 2012; 53 1999; 207 2014; 2 2013; 55 2019; 63 2013; 54 1976; 72 2020; 9 2007; 6 2006; 29 2014; 57 2014; 19 2008; 66 2014; 18 2005; 39 2014; 56 2012; 63 2019; 8 2015; 59 2019; 9 1983; 210 2003; 414 1993; 44 2017; 68 2016; 54 2008; 13 2008; 98 2008; 55 2001; 24 2001; 25 2003; 75 2003; 252 2019; 142 2018; 24 2014; 42 2006; 41 2010; 49 2010; 48 2015; 62 2015; 20 2015; 66 1995; 109 2017; 19 1999; 119 2006; 224 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 Yin Z. (e_1_2_9_68_1) 2019; 14 e_1_2_9_14_1 El Sayed A.I. (e_1_2_9_18_1) 2019; 63 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_70_1 Gupta B. (e_1_2_9_24_1) 2014; 18 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_59_1 e_1_2_9_19_1 Li H. (e_1_2_9_39_1) 2017; 8 e_1_2_9_42_1 e_1_2_9_63_1 Lee D.H. (e_1_2_9_36_1) 2002; 159 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 Gama P.B.S. (e_1_2_9_21_1) 2007; 6 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 2 start-page: 276 year: 2014 end-page: 281 article-title: Salicylic acid mediated alleviation of cadmium toxicity in maize leaves publication-title: Journal of Plant Science – volume: 148 start-page: 350 year: 1987 end-page: 382 article-title: Chlorophylls and carotenoids, the pigments of photosynthetic biomembranes publication-title: Methamphetamine Enzyme – volume: 18 year: 2014 article-title: Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization publication-title: International Journal of Genetics and Genomics – volume: 39 start-page: 185 year: 2005 end-page: 194 article-title: Interactions between melatonin and nicotinamide nucleotide: NADH preservation in cells and in cell‐free systems by melatonin publication-title: Journal of Pineal Research – volume: 54 start-page: 15 year: 2013 end-page: 23 article-title: Melatonin promotes water stress tolerance, lateral root formation, and seed germination in cucumber ( L.) publication-title: Journal of Pineal Research – volume: 55 start-page: 409 year: 2013 end-page: 415 article-title: Functional analyses of three ASMT gene family members in rice plants publication-title: Journal of Pineal Research – volume: 98 start-page: 541 year: 2008 end-page: 550 article-title: Heat stress: an overview of molecular responses in photosynthesis publication-title: Photosynthesis Research – volume: 19 start-page: 683 year: 2017 end-page: 688 article-title: Mechanisms of inhibitory effects of polycyclic aromatic hydrocarbons in photosynthetic primary processes in pea leaves and thylakoid preparations publication-title: Plant Biology – volume: 47 start-page: 381 year: 2009 end-page: 387 article-title: Photosynthetic response of salt‐tolerant and sensitive soybean varieties publication-title: Photosynthetica – volume: 24 start-page: 38 year: 2018 end-page: 48 article-title: Melatonin: a new plant hormone and/or a plant master regulator publication-title: Trends in Plant Science – volume: 2012 start-page: 1 year: 2012 end-page: 26 article-title: Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions publication-title: Journal of Botany – volume: 159 start-page: 78 year: 2002 end-page: 85 article-title: Chilling stress‐induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays publication-title: Plant Science – volume: 164 start-page: 349 year: 2018 end-page: 363 article-title: Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity publication-title: Physiologia Plantarum – volume: 29 start-page: 331 year: 2006 end-page: 339 article-title: Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle publication-title: Plant, Cell and Environment – volume: 22 start-page: 27 year: 2013 end-page: 34 article-title: Salinity induce doxidative stress and antioxidant system in salt‐tolerant and salt‐sensitive cultivars of rice ( L.) publication-title: Journal of Plant Biochemistry and Biotechnology – volume: 109 start-page: 421 year: 1995 end-page: 432 article-title: Amelioration of ozone‐induced oxidative damage in wheat plants grown under high carbon dioxide (role of antioxidant enzymes) publication-title: Plant Physiology – volume: 66 start-page: 681 year: 2015 end-page: 694 article-title: Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [ (L). Pers.] by exogenous melatonin publication-title: Journal of Experimental Botany – volume: 55 start-page: 29 year: 2008 end-page: 34 article-title: Melatonin stimulates the expansion of etiolated lupin cotyledons publication-title: Plant Growth Regulation – volume: 66 start-page: 647 year: 2015 end-page: 656 article-title: Roles of melatonin in abiotic stress resistance in plants publication-title: Journal of Experimental Botany – volume: 54 start-page: 127 year: 2013 end-page: 138 article-title: Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin's primary function and evolution in eukaryotes publication-title: Journal of Pineal Research – volume: 53 start-page: 298 year: 2012 end-page: 306 article-title: The mitigation effects of exogenous melatonin on salinity‐induced stress in publication-title: Journal of Pineal Research – volume: 19 start-page: 789 year: 2014 end-page: 797 article-title: Melatonin: plant growth regulator and/or biostimulator during stress publication-title: Trends in Plant Science – volume: 99 start-page: 5738 year: 2002 end-page: 5743 article-title: The plant‐specific function of 2‐Cys peroxiredoxin mediated detoxification of peroxides in the redox hierarchy of photosynthetic electron flux publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 56 start-page: 238 year: 2014 end-page: 245 article-title: Role of melatonin in alleviating cold stress in publication-title: Journal of Pineal Research – volume: 75 start-page: 1 year: 2003 end-page: 10 article-title: The Calvin cycle revisited publication-title: Photosynthesis Research – volume: 25 start-page: 402 year: 2001 end-page: 408 article-title: Analysis of relative gene expression data using real‐time quantitative PCR and the 2 543 method publication-title: Methods – volume: 48 start-page: 909 year: 2010 end-page: 930 article-title: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants publication-title: Plant Physiology and Biochemistry – volume: 54 start-page: 19 year: 2016 end-page: 27 article-title: Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity‐induced stress publication-title: Photosynthetica – volume: 46 start-page: 295 year: 2009 end-page: 299 article-title: Chemical stress by different agents affects the melatonin content of barley roots publication-title: Journal of Pineal Research – volume: 119 start-page: 1407 year: 1999 end-page: 1414 article-title: Protective function of chloroplast 2‐cysteine peroxiredoxin in photosynthesis. Evidence from transgenic publication-title: Plant Physiology – volume: 6 start-page: 79 year: 2007 end-page: 88 article-title: Physiological response of common bean ( L.) seedlings to salinity stress publication-title: African Journal of Biotechnology – volume: 9 start-page: 545 year: 2019 article-title: Effect of salinity stress and microbial inoculations on Glomalin production and plant growth parameters of snap bean ( ) publication-title: Agronomy – volume: 53 start-page: 11 year: 2012 end-page: 20 article-title: Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate‐glutathione cycle publication-title: Journal of Pineal Research – volume: 49 start-page: 86 year: 2010 end-page: 94 article-title: Melatonin protects against nickel‐induced neurotoxicity in vitro by reducing oxidative stress and maintaining mitochondrial function publication-title: Journal of Pineal Research – volume: 47 start-page: 621 year: 2009 end-page: 629 article-title: Relationship between Rubisco activase isoform levels and photosynthetic rate in different leaf positions of rice plant publication-title: Photosynthetica – volume: 66 start-page: 73 year: 2008 end-page: 6686 article-title: Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants publication-title: Plant Molecular Biology – volume: 224 start-page: 545 year: 2006 end-page: 555 article-title: Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton‐pump and Na+/H+ antiport in the tonoplast publication-title: Planta – volume: 55 start-page: 149 year: 2013a end-page: 155 article-title: Growth conditions determine different melatonin levels in L. publication-title: Journal of Pineal Research – volume: 9 start-page: 854 year: 2020 article-title: Melatonin regulatory mechanisms and phylogenetic analyses of melatonin biosynthesis related genes extracted from peanut under salinity stress publication-title: Plants – volume: 9 start-page: 681 year: 2020 article-title: Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator publication-title: Antioxidants – volume: 60 start-page: 324 year: 2005 end-page: 349 article-title: Salt tolerance and salinity effects on plants: a review publication-title: Ecotoxicology and Environmental Safety – volume: 57 start-page: 131 year: 2014 end-page: 146 article-title: Melatonin: a well‐documented antioxidant with conditional pro‐oxidant actions publication-title: Journal of Pineal Research – volume: 56 start-page: 693 year: 2012 end-page: 698 article-title: Cu/Zn superoxide dismutase activity and respective gene expression during cold acclimation and freezing stress in barley cultivars publication-title: Biologia Plantarum – volume: 155 start-page: 2 year: 2011 end-page: 18 article-title: Ascorbate and glutathione: the heart of the redox hub publication-title: Plant Physiology – volume: 44 start-page: 127 year: 1993 end-page: 132 article-title: Activities of hydrogen peroxide scavenging enzymes in germinated wheat seeds publication-title: Journal of Experimental Botany – volume: 252 start-page: 55 year: 2003 end-page: 128 article-title: Beans ( spp.) model food legumes publication-title: Plant and Soil – volume: 66 start-page: 695 year: 2015 end-page: 707 article-title: Melatonin enhances plant growth and abiotic stress tolerance in soybean plants publication-title: Journal of Experimental Botany – volume: 14 start-page: 453 year: 2019 end-page: 463 article-title: Exogenous melatonin improves salt tolerance in tomato by regulating photosynthetic electron flux and the ascorbate–glutathione cycle publication-title: International Journal of Plant Sciences – volume: 117 start-page: 508 year: 2003 end-page: 520 article-title: Tolerance of crop plants to oxygen deficiency stress: fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia publication-title: Physiologia Plantarum – volume: 24 start-page: 1337 year: 2001 end-page: 1344 article-title: The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat publication-title: Plant, Cell and Environment – volume: 59 start-page: 133 year: 2015 end-page: 150 article-title: Functions of melatonin in plants: a review publication-title: Journal of Pineal Research – volume: 72 start-page: 248 year: 1976 end-page: 254 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding publication-title: Analytical Biochemistry – volume: 63 start-page: 1297 year: 2012 end-page: 1313 article-title: Efficient acclimation of the chloroplast antioxidant defence of leaves in response to a 10‐or 100‐fold light increment and the possible involvement of retrograde signals publication-title: Journal of Experimental Botany – volume: 42 start-page: 88 year: 2014 end-page: 97 article-title: The alleviative effects of salicylic acid on the activities of catalase and superoxide dismutase in malting barley ( L.) seedling leaves stressed by heavy metals publication-title: Clean: Soil, Air, Water – volume: 68 start-page: 1283 year: 2017 end-page: 1298 article-title: Redox and reactive oxygen species network in acclimation for salinity tolerance in sugar beet publication-title: Journal of Experimental Botany – volume: 20 start-page: 586 year: 2015 end-page: 594 article-title: Tuning plant signalling and growth to survive salt publication-title: Trends in Plant Science – volume: 142 start-page: 292 year: 2019 end-page: 302 article-title: Stimulating antioxidant defenses, antioxidant gene expression, and salt tolerance in seedling by pre‐treatment using licorice root extract (LRE) as an organic biostimulant publication-title: Plant Physiology and Biochemistry – volume: 414 start-page: 141 year: 2003 end-page: 149 article-title: Role of the small subunit in ribulose‐1,5‐bisphosphate carboxylase/oxygenase publication-title: Archives of Biochemistry and Biophysics – volume: 207 start-page: 604 year: 1999 end-page: 611 article-title: Improving the thiobarbituric acid‐reactive‐substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds publication-title: Planta – volume: 8 start-page: 384 year: 2019 article-title: Regulation of ascorbate‐glutathione pathway in mitigating oxidative damage in plants under abiotic stress publication-title: Antioxidants – volume: 77 start-page: 317 year: 2015 end-page: 326 article-title: Exogenous melatonin improves seedling health index and drought tolerance in tomato publication-title: Plant Growth Regulation – volume: 54 start-page: 426 year: 2013 end-page: 434 article-title: Exogenous melatonin improves resistance to Marssonina apple blotch publication-title: Journal of Pineal Research – volume: 8 start-page: 295 year: 2017 article-title: Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis publication-title: Frontiers in Plant Sciences – volume: 54 start-page: 292 year: 2013 end-page: 302 article-title: Long‐term exogenous application of melatonin delays drought‐induced leaf senescence in apple publication-title: Journal of Pineal Research – volume: 62 start-page: 71 year: 2015 end-page: 79 article-title: Content of proline and flavonoids in the shoots of halophytes inhabiting the south Urals publication-title: Russian Journal of Plant Physiology – volume: 41 start-page: 108 year: 2006 end-page: 115 article-title: Melatonin in : response of plant roots to spectral quality of light and UV‐B radiation publication-title: Journal of Pineal Research – volume: 210 start-page: 899 year: 1983 end-page: 903 article-title: Glutathione and ascorbic acid in spinach ( ) chloroplasts. The effect of hydrogen peroxide and of paraquat publication-title: The Biochemical Journal – volume: 13 start-page: 178 year: 2008 end-page: 182 article-title: How do environmental stresses accelerate photo inhibition? publication-title: Trends in Plant Science – volume: 57 start-page: 262 year: 2014 end-page: 268 article-title: Melatonin as a signal molecule triggering defense responses against pathogen attack in and tobacco publication-title: Journal of Pineal Research – volume: 63 start-page: 511 year: 2019 end-page: 518 article-title: Exogenous spermidine enhances expression of Calvin cycle genes and photosynthetic efficiency in sweet sorghum seedlings under salt stress publication-title: Biologia Plantarum – volume: 57 start-page: 291 year: 2014 end-page: 307 article-title: Melatonin regulates proteomic changes during leaf senescence in publication-title: Journal of Pineal Research – ident: e_1_2_9_23_1 doi: 10.1016/j.plaphy.2010.08.016 – ident: e_1_2_9_38_1 doi: 10.1111/j.1600-079X.2012.00999.x – ident: e_1_2_9_10_1 doi: 10.1104/pp.119.4.1407 – ident: e_1_2_9_40_1 doi: 10.1016/0076-6879(87)48036-1 – volume: 63 start-page: 511 year: 2019 ident: e_1_2_9_18_1 article-title: Exogenous spermidine enhances expression of Calvin cycle genes and photosynthetic efficiency in sweet sorghum seedlings under salt stress publication-title: Biologia Plantarum – ident: e_1_2_9_32_1 doi: 10.11648/j.jps.20140206.13 – ident: e_1_2_9_25_1 doi: 10.3390/antiox9080681 – ident: e_1_2_9_31_1 doi: 10.1007/s10535-012-0143-x – ident: e_1_2_9_53_1 doi: 10.1093/jxb/eru373 – ident: e_1_2_9_13_1 doi: 10.1023/A:1024146710611 – ident: e_1_2_9_12_1 doi: 10.1016/0003-2697(76)90527-3 – volume: 6 start-page: 79 year: 2007 ident: e_1_2_9_21_1 article-title: Physiological response of common bean (Phaseolus vulgaris L.) seedlings to salinity stress publication-title: African Journal of Biotechnology – ident: e_1_2_9_63_1 doi: 10.1111/j.1600-079X.2011.00966.x – ident: e_1_2_9_52_1 doi: 10.1155/2012/217037 – ident: e_1_2_9_28_1 doi: 10.1007/s004250050524 – ident: e_1_2_9_50_1 doi: 10.1134/S1021443715010112 – ident: e_1_2_9_2_1 doi: 10.1111/j.1600-079X.2006.00337.x – ident: e_1_2_9_56_1 doi: 10.1016/j.tplants.2008.01.005 – ident: e_1_2_9_49_1 doi: 10.1111/j.1365-3040.2005.01488.x – ident: e_1_2_9_72_1 doi: 10.1007/s00425-006-0242-z – volume: 8 start-page: 295 year: 2017 ident: e_1_2_9_39_1 article-title: Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis publication-title: Frontiers in Plant Sciences – ident: e_1_2_9_43_1 doi: 10.1007/s11099-009-0059-7 – ident: e_1_2_9_27_1 doi: 10.1007/s10725-008-9254-y – ident: e_1_2_9_9_1 doi: 10.1016/j.tplants.2018.10.010 – ident: e_1_2_9_29_1 doi: 10.1093/jxb/erx019 – ident: e_1_2_9_4_1 doi: 10.1007/s11120-008-9331-0 – ident: e_1_2_9_15_1 doi: 10.1007/s13562-012-0107-4 – ident: e_1_2_9_48_1 doi: 10.1023/A:1022421515027 – ident: e_1_2_9_17_1 doi: 10.1016/j.plaphy.2019.07.020 – ident: e_1_2_9_61_1 doi: 10.1111/jpi.12017 – ident: e_1_2_9_7_1 doi: 10.1016/j.tplants.2014.07.006 – ident: e_1_2_9_33_1 doi: 10.1073/pnas.072644999 – ident: e_1_2_9_44_1 doi: 10.1034/j.1399-3054.2003.00051.x – ident: e_1_2_9_59_1 doi: 10.1007/s11099-009-0089-1 – ident: e_1_2_9_37_1 doi: 10.1111/jpi.12165 – ident: e_1_2_9_5_1 doi: 10.1111/j.1600-079X.2008.00660.x – ident: e_1_2_9_14_1 doi: 10.1093/jxb/44.1.127 – ident: e_1_2_9_19_1 doi: 10.3390/plants9070854 – ident: e_1_2_9_45_1 doi: 10.1093/jxb/err356 – ident: e_1_2_9_35_1 doi: 10.1042/bj2100899 – ident: e_1_2_9_46_1 doi: 10.1016/j.ecoenv.2004.06.010 – ident: e_1_2_9_22_1 doi: 10.3390/agronomy9090545 – ident: e_1_2_9_34_1 doi: 10.1111/plb.12598 – ident: e_1_2_9_58_1 doi: 10.1111/j.1600-079X.2005.00234.x – ident: e_1_2_9_41_1 doi: 10.1007/s10725-015-0066-6 – ident: e_1_2_9_54_1 doi: 10.1002/clen.201200310 – ident: e_1_2_9_70_1 doi: 10.1093/jxb/eru336 – ident: e_1_2_9_66_1 doi: 10.1007/s11103-007-9253-9 – ident: e_1_2_9_30_1 doi: 10.1016/j.tplants.2015.06.008 – ident: e_1_2_9_8_1 doi: 10.1111/jpi.12253 – volume: 14 start-page: 453 year: 2019 ident: e_1_2_9_68_1 article-title: Exogenous melatonin improves salt tolerance in tomato by regulating photosynthetic electron flux and the ascorbate–glutathione cycle publication-title: International Journal of Plant Sciences – ident: e_1_2_9_69_1 doi: 10.1111/jpi.12162 – ident: e_1_2_9_16_1 doi: 10.1111/ppl.12737 – ident: e_1_2_9_60_1 doi: 10.1007/s11099-015-0140-3 – ident: e_1_2_9_26_1 doi: 10.3390/antiox8090384 – ident: e_1_2_9_6_1 doi: 10.1111/jpi.12055 – ident: e_1_2_9_55_1 doi: 10.1016/S0003-9861(03)00171-1 – ident: e_1_2_9_64_1 doi: 10.1093/jxb/eru392 – ident: e_1_2_9_51_1 doi: 10.1104/pp.109.2.421 – ident: e_1_2_9_57_1 doi: 10.1111/jpi.12026 – ident: e_1_2_9_62_1 doi: 10.1111/jpi.12169 – ident: e_1_2_9_65_1 doi: 10.1111/j.1600-079X.2010.00770.x – ident: e_1_2_9_71_1 doi: 10.1111/j.1600-079X.2012.01015.x – ident: e_1_2_9_11_1 doi: 10.1111/jpi.12115 – ident: e_1_2_9_67_1 doi: 10.1111/jpi.12038 – ident: e_1_2_9_3_1 doi: 10.1046/j.1365-3040.2001.00778.x – volume: 18 year: 2014 ident: e_1_2_9_24_1 article-title: Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization publication-title: International Journal of Genetics and Genomics – ident: e_1_2_9_20_1 doi: 10.1104/pp.110.167569 – ident: e_1_2_9_42_1 doi: 10.1006/meth.2001.1262 – ident: e_1_2_9_47_1 doi: 10.1111/jpi.12088 – volume: 159 start-page: 78 year: 2002 ident: e_1_2_9_36_1 article-title: Chilling stress‐induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays publication-title: Plant Science |
SSID | ssj0016612 |
Score | 2.599911 |
Snippet | Melatonin (MT) has been reported to regulate certain plant physiological processes and promote tolerance to different environmental stresses such as salinity.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1369 |
SubjectTerms | Abiotic stress Antioxidants ascorbate peroxidase Ascorbic acid Beans Catalase Chlorophyll Environmental stress French beans Gene expression Glutathione Glutathione reductase glutathione-disulfide reductase green beans L-Ascorbate peroxidase Melatonin pathogenesis-related proteins Peroxidase Peroxiredoxin Phaseolus vulgaris Photosynthesis Photosystem II Reactive oxygen species Reductases Salinity Salinity effects Salinity tolerance salt stress Salts Seedlings Sodium chloride stress tolerance Superoxide dismutase Transcription |
Title | Exogenous melatonin enhances the reactive oxygen species metabolism, antioxidant defense‐related gene expression, and photosynthetic capacity of Phaseolus vulgaris L. to confer salt stress tolerance |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fppl.13372 https://www.ncbi.nlm.nih.gov/pubmed/33619766 https://www.proquest.com/docview/2603928560 https://www.proquest.com/docview/2492662593 https://www.proquest.com/docview/2636834539 |
Volume | 173 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbhNBEG1FEQcu7ItJQAXiwIGxbPes4gQoUYQCshCRckAaTW-yhTMTMePI4cQn8Fl8B1_Cq55FhE2Ik8eeGrtHXdX13rjqtRCPkfFcmOoimCk9CcJMhQEOwgBxJzOdKj3zWnqv38QHR-Gr4-h4Szzre2FafYjhgRtHhl-vOcALVf8Q5ABpYxCshNdfrtViQPR2kI6aIu-0SuFyGmRIkp2qEFfxDFdezEW_AMyLeNUnnP2r4n0_1LbO5MN43aix_vSTiuN_3ss1caUDovS89ZzrYsuWN8SlFxXA4vlN8XVvU7XyrXTC5XL80JZsuWAfqQmgkQA2_VJJGB4siVs2wbph3sCvVsv65CkVXEq5WRq8krEOjNl--_zFt89YQ7jKkt10lbglmxs6XVRNVZ-X-AkMjDRyuQZRoMrRfIGMi0ip6WzNDSjLmg7H1FSkfdci1cWqobb3BZ-uLG8ZYm-Jo_29dy8Pgm7Th0BLsKsgS1xmwKKs0glypy5MbEM1NdJZkznl5EyqSCozAbWKZzjJAjuZLaLCxYnBu9tiu6xKe1dQlE4seLY2No0Z-CkTGccSfZNCOXzJSDzppz_XnSI6b8yxyntmhHnJ_byMxKPB9LSVAfmd0W7vQ3m3EtQ5-CIgaApgORIPh9OIYf5jpigtJjL3qo1MROVfbGIZpzKMZDYSd1r_HEYiJWhwEse4Ie9lfx5iPp8f-oN7_266Iy7PuJDH1_Dsiu3m49reBxJr1AMfct8BKf01tQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF1VBQleuFMCBQbEAw84SrK2Y0u8cGkVIK0i1Ep9QZb3YiUitSvsoJQnPoHP4jv4Es6sL6LchHiKE4-TtXZm5xxn5qwQj5DxMj_SqTdSeuD5sfI9HPge4k7GOlJ65LT09vbDyaH_-ig42hBP216YWh-ie-DGkeHWaw5wfiD9Q5QDpfXBsMZYgM_xjt6snP_ybSceNUTmqbXC5dCLkSYbXSGu4-kuPZuNfoGYZxGrSzm7l8W7drB1pcn7_qpSff3pJx3H_72bK-JSg0XpWe08V8WGza-J888L4MXT6-LrzrqoFVzpmCvm-Lkt2XzOblIScCMBb7rVkjA-WBJ3bYJ4w7yCay0X5fETSrmacr0weCVjM5Bm--3zF9dBYw3hKkt23RTj5mxu6GReVEV5muMnMDDSSOcaXIGKjGZzJF0ES0kfV9yDsihp2qeqIO0aF6lMlxXV7S_4dGl51xB7Qxzu7hy8mHjNvg-eliBYXjzOYgMiZZUeI33q1ITWV0MjM2viTGVyJFUglRmAXYUjnGSNndimQZqFY4N3N8VmXuT2lqAgGlhQbW1sFDL2UyYwGav0DVKV4Ut64nE7_4luRNF5b45l0pIjzEvi5qUnHnamJ7USyO-MtlsnSprFoExAGYFCI2DLnnjQnUYY838zaW4xkYkTbmQuKv9iE8owkn4g457Yqh20G4mUYMLjMMQNOTf78xCT2WzqDm7_u-l9cWFysDdNpq_239wRF0dc1-NKerbFZvVhZe8CmFXqnou_704QOdE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JjtNAEG2NBoS4sC-BAQrEgQOOHLdXcQJmogHCKEKMNAcky70pERk7wg7KcOIT-Cy-gy_hdduxGDYhTnHictJWV3W951S9ZuwhMp4JU1l4gZC-F2Yi9HAQeog7nslUyMBp6b0-iPcPw5dH0dEWe7LphWn1IfoHbjYy3HptA3ypzA9BDpA2BMFKsP6eCWM_s_s27L7ptaNGSDytVDgfeRmyZCcrZMt4-ktPJ6NfEOZpwOoyzvgie7cZa1to8n64asRQfvpJxvE_b-YSu9AhUXraus5ltqXLK-zsswpo8eQq-7q3rlr9Vjq29XL2qS3pcmadpCagRgLadGslYXiwJNuzCdoN8waOtZjXx4-psLWU67nCKyltQJn1t89fXP-MVoSrNOl1V4pbWnNFy1nVVPVJiZ_AwEgimUswBaoMTWdIuQiVmj6ubAfKvKbJkJqKpGtbpLpYNNQ2v-DThbZ7huhr7HC89_b5vtft-uBJDnrlZYnJFGiUFjJB8pSFinUoRoobrTIjDA-4iLhQPrhVHOCkVdjJdBEVJk4U3l1n22VV6puMotTXINpS6TS2yE-oSBmr0ecXwuBLBuzRZvpz2Umi2505FvmGGmFecjcvA_agN122OiC_M9rZ-FDeLQV1DsIIDJoCWQ7Y_f40gtj-M1OUGhOZO9lGy0T5X2xiHqc8jHg2YDda_-xHwjl4cBLHuCHnZX8eYj6dTtzBrX83vcfOTXfH-eTFwavb7Hxgi3pcPc8O224-rPQdoLJG3HXR9x2IBziA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exogenous+melatonin+enhances+the+reactive+oxygen+species+metabolism%2C+antioxidant+defense-related+gene+expression%2C+and+photosynthetic+capacity+of+Phaseolus+vulgaris+L.+to+confer+salt+stress+tolerance&rft.jtitle=Physiologia+plantarum&rft.au=ElSayed%2C+Abdelaleim+Ismail&rft.au=Rafudeen%2C+Mohammed+Suhail&rft.au=Gomaa%2C+Ayman+M&rft.au=Hasanuzzaman%2C+Mirza&rft.date=2021-12-01&rft.eissn=1399-3054&rft_id=info:doi/10.1111%2Fppl.13372&rft_id=info%3Apmid%2F33619766&rft.externalDocID=33619766 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9317&client=summon |