Mitochondrial dysfunction in osteoarthritis is associated with down‐regulation of superoxide dismutase 2
Objective Superoxide dismutase 2 (SOD2) is down‐ regulated in osteoarthritis (OA). This study was undertaken to investigate the functional effects of this down‐regulation in the context of oxidative damage and mitochondrial dysfunction. Methods Lipid peroxidation in articular cartilage from OA patie...
Saved in:
Published in | Arthritis & rheumatology (Hoboken, N.J.) Vol. 65; no. 2; pp. 378 - 387 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.02.2013
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective
Superoxide dismutase 2 (SOD2) is down‐ regulated in osteoarthritis (OA). This study was undertaken to investigate the functional effects of this down‐regulation in the context of oxidative damage and mitochondrial dysfunction.
Methods
Lipid peroxidation in articular cartilage from OA patients and from lesion‐free control subjects with femoral neck fracture was assessed by measuring malondialdehyde levels using the thiobarbituric acid reactive substances assay. Long‐range polymerase chain reaction amplification and a mitochondrial DNA (mtDNA) strand break assay were used to investigate the presence of somatic large‐scale mtDNA rearrangements in cartilage. Microscale oxygraphy was used to explore possible changes in mitochondrial respiratory activity between OA and control chondrocytes. RNA interference was used to determine the effects of SOD2 depletion on lipid peroxidation, mtDNA damage, and mitochondrial respiration.
Results
OA cartilage had higher levels of lipid peroxidation compared to control cartilage, and lipid peroxidation was similarly elevated in SOD2‐depleted chondrocytes. SOD2 depletion led to a significant increase in mtDNA strand breaks in chondrocytes, but there was no notable difference in the level of strand breaks between OA and control chondrocytes. Furthermore, only very low levels of somatic, large‐scale mtDNA rearrangements were identified in OA cartilage. OA chondrocytes showed less spare respiratory capacity (SRC) and higher proton leak compared to control chondrocytes. SOD2‐depleted chondrocytes also showed less SRC and higher proton leak.
Conclusion
This is the first study to analyze the effects of SOD2 depletion in human articular chondrocytes in terms of changes to oxidation and mitochondrial function. The findings indicate that SOD2 depletion in chondrocytes leads to oxidative damage and mitochondrial dysfunction, suggesting that SOD2 down‐regulation is a potential contributor to the pathogenesis of OA. |
---|---|
AbstractList | Objective Superoxide dismutase 2 (SOD2) is down- regulated in osteoarthritis (OA). This study was undertaken to investigate the functional effects of this down-regulation in the context of oxidative damage and mitochondrial dysfunction. Methods Lipid peroxidation in articular cartilage from OA patients and from lesion-free control subjects with femoral neck fracture was assessed by measuring malondialdehyde levels using the thiobarbituric acid reactive substances assay. Long-range polymerase chain reaction amplification and a mitochondrial DNA (mtDNA) strand break assay were used to investigate the presence of somatic large-scale mtDNA rearrangements in cartilage. Microscale oxygraphy was used to explore possible changes in mitochondrial respiratory activity between OA and control chondrocytes. RNA interference was used to determine the effects of SOD2 depletion on lipid peroxidation, mtDNA damage, and mitochondrial respiration. Results OA cartilage had higher levels of lipid peroxidation compared to control cartilage, and lipid peroxidation was similarly elevated in SOD2-depleted chondrocytes. SOD2 depletion led to a significant increase in mtDNA strand breaks in chondrocytes, but there was no notable difference in the level of strand breaks between OA and control chondrocytes. Furthermore, only very low levels of somatic, large-scale mtDNA rearrangements were identified in OA cartilage. OA chondrocytes showed less spare respiratory capacity (SRC) and higher proton leak compared to control chondrocytes. SOD2-depleted chondrocytes also showed less SRC and higher proton leak. Conclusion This is the first study to analyze the effects of SOD2 depletion in human articular chondrocytes in terms of changes to oxidation and mitochondrial function. The findings indicate that SOD2 depletion in chondrocytes leads to oxidative damage and mitochondrial dysfunction, suggesting that SOD2 down-regulation is a potential contributor to the pathogenesis of OA. [PUBLICATION ABSTRACT] Objective Superoxide dismutase 2 (SOD2) is down- regulated in osteoarthritis (OA). This study was undertaken to investigate the functional effects of this down-regulation in the context of oxidative damage and mitochondrial dysfunction. Methods Lipid peroxidation in articular cartilage from OA patients and from lesion-free control subjects with femoral neck fracture was assessed by measuring malondialdehyde levels using the thiobarbituric acid reactive substances assay. Long-range polymerase chain reaction amplification and a mitochondrial DNA (mtDNA) strand break assay were used to investigate the presence of somatic large-scale mtDNA rearrangements in cartilage. Microscale oxygraphy was used to explore possible changes in mitochondrial respiratory activity between OA and control chondrocytes. RNA interference was used to determine the effects of SOD2 depletion on lipid peroxidation, mtDNA damage, and mitochondrial respiration. Results OA cartilage had higher levels of lipid peroxidation compared to control cartilage, and lipid peroxidation was similarly elevated in SOD2-depleted chondrocytes. SOD2 depletion led to a significant increase in mtDNA strand breaks in chondrocytes, but there was no notable difference in the level of strand breaks between OA and control chondrocytes. Furthermore, only very low levels of somatic, large-scale mtDNA rearrangements were identified in OA cartilage. OA chondrocytes showed less spare respiratory capacity (SRC) and higher proton leak compared to control chondrocytes. SOD2-depleted chondrocytes also showed less SRC and higher proton leak. Conclusion This is the first study to analyze the effects of SOD2 depletion in human articular chondrocytes in terms of changes to oxidation and mitochondrial function. The findings indicate that SOD2 depletion in chondrocytes leads to oxidative damage and mitochondrial dysfunction, suggesting that SOD2 down-regulation is a potential contributor to the pathogenesis of OA. Objective Superoxide dismutase 2 (SOD2) is down‐ regulated in osteoarthritis (OA). This study was undertaken to investigate the functional effects of this down‐regulation in the context of oxidative damage and mitochondrial dysfunction. Methods Lipid peroxidation in articular cartilage from OA patients and from lesion‐free control subjects with femoral neck fracture was assessed by measuring malondialdehyde levels using the thiobarbituric acid reactive substances assay. Long‐range polymerase chain reaction amplification and a mitochondrial DNA (mtDNA) strand break assay were used to investigate the presence of somatic large‐scale mtDNA rearrangements in cartilage. Microscale oxygraphy was used to explore possible changes in mitochondrial respiratory activity between OA and control chondrocytes. RNA interference was used to determine the effects of SOD2 depletion on lipid peroxidation, mtDNA damage, and mitochondrial respiration. Results OA cartilage had higher levels of lipid peroxidation compared to control cartilage, and lipid peroxidation was similarly elevated in SOD2‐depleted chondrocytes. SOD2 depletion led to a significant increase in mtDNA strand breaks in chondrocytes, but there was no notable difference in the level of strand breaks between OA and control chondrocytes. Furthermore, only very low levels of somatic, large‐scale mtDNA rearrangements were identified in OA cartilage. OA chondrocytes showed less spare respiratory capacity (SRC) and higher proton leak compared to control chondrocytes. SOD2‐depleted chondrocytes also showed less SRC and higher proton leak. Conclusion This is the first study to analyze the effects of SOD2 depletion in human articular chondrocytes in terms of changes to oxidation and mitochondrial function. The findings indicate that SOD2 depletion in chondrocytes leads to oxidative damage and mitochondrial dysfunction, suggesting that SOD2 down‐regulation is a potential contributor to the pathogenesis of OA. Superoxide dismutase 2 (SOD2) is down- regulated in osteoarthritis (OA). This study was undertaken to investigate the functional effects of this down-regulation in the context of oxidative damage and mitochondrial dysfunction. Lipid peroxidation in articular cartilage from OA patients and from lesion-free control subjects with femoral neck fracture was assessed by measuring malondialdehyde levels using the thiobarbituric acid reactive substances assay. Long-range polymerase chain reaction amplification and a mitochondrial DNA (mtDNA) strand break assay were used to investigate the presence of somatic large-scale mtDNA rearrangements in cartilage. Microscale oxygraphy was used to explore possible changes in mitochondrial respiratory activity between OA and control chondrocytes. RNA interference was used to determine the effects of SOD2 depletion on lipid peroxidation, mtDNA damage, and mitochondrial respiration. OA cartilage had higher levels of lipid peroxidation compared to control cartilage, and lipid peroxidation was similarly elevated in SOD2-depleted chondrocytes. SOD2 depletion led to a significant increase in mtDNA strand breaks in chondrocytes, but there was no notable difference in the level of strand breaks between OA and control chondrocytes. Furthermore, only very low levels of somatic, large-scale mtDNA rearrangements were identified in OA cartilage. OA chondrocytes showed less spare respiratory capacity (SRC) and higher proton leak compared to control chondrocytes. SOD2-depleted chondrocytes also showed less SRC and higher proton leak. This is the first study to analyze the effects of SOD2 depletion in human articular chondrocytes in terms of changes to oxidation and mitochondrial function. The findings indicate that SOD2 depletion in chondrocytes leads to oxidative damage and mitochondrial dysfunction, suggesting that SOD2 down-regulation is a potential contributor to the pathogenesis of OA. Superoxide dismutase 2 (SOD2) is down- regulated in osteoarthritis (OA). This study was undertaken to investigate the functional effects of this down-regulation in the context of oxidative damage and mitochondrial dysfunction.OBJECTIVESuperoxide dismutase 2 (SOD2) is down- regulated in osteoarthritis (OA). This study was undertaken to investigate the functional effects of this down-regulation in the context of oxidative damage and mitochondrial dysfunction.Lipid peroxidation in articular cartilage from OA patients and from lesion-free control subjects with femoral neck fracture was assessed by measuring malondialdehyde levels using the thiobarbituric acid reactive substances assay. Long-range polymerase chain reaction amplification and a mitochondrial DNA (mtDNA) strand break assay were used to investigate the presence of somatic large-scale mtDNA rearrangements in cartilage. Microscale oxygraphy was used to explore possible changes in mitochondrial respiratory activity between OA and control chondrocytes. RNA interference was used to determine the effects of SOD2 depletion on lipid peroxidation, mtDNA damage, and mitochondrial respiration.METHODSLipid peroxidation in articular cartilage from OA patients and from lesion-free control subjects with femoral neck fracture was assessed by measuring malondialdehyde levels using the thiobarbituric acid reactive substances assay. Long-range polymerase chain reaction amplification and a mitochondrial DNA (mtDNA) strand break assay were used to investigate the presence of somatic large-scale mtDNA rearrangements in cartilage. Microscale oxygraphy was used to explore possible changes in mitochondrial respiratory activity between OA and control chondrocytes. RNA interference was used to determine the effects of SOD2 depletion on lipid peroxidation, mtDNA damage, and mitochondrial respiration.OA cartilage had higher levels of lipid peroxidation compared to control cartilage, and lipid peroxidation was similarly elevated in SOD2-depleted chondrocytes. SOD2 depletion led to a significant increase in mtDNA strand breaks in chondrocytes, but there was no notable difference in the level of strand breaks between OA and control chondrocytes. Furthermore, only very low levels of somatic, large-scale mtDNA rearrangements were identified in OA cartilage. OA chondrocytes showed less spare respiratory capacity (SRC) and higher proton leak compared to control chondrocytes. SOD2-depleted chondrocytes also showed less SRC and higher proton leak.RESULTSOA cartilage had higher levels of lipid peroxidation compared to control cartilage, and lipid peroxidation was similarly elevated in SOD2-depleted chondrocytes. SOD2 depletion led to a significant increase in mtDNA strand breaks in chondrocytes, but there was no notable difference in the level of strand breaks between OA and control chondrocytes. Furthermore, only very low levels of somatic, large-scale mtDNA rearrangements were identified in OA cartilage. OA chondrocytes showed less spare respiratory capacity (SRC) and higher proton leak compared to control chondrocytes. SOD2-depleted chondrocytes also showed less SRC and higher proton leak.This is the first study to analyze the effects of SOD2 depletion in human articular chondrocytes in terms of changes to oxidation and mitochondrial function. The findings indicate that SOD2 depletion in chondrocytes leads to oxidative damage and mitochondrial dysfunction, suggesting that SOD2 down-regulation is a potential contributor to the pathogenesis of OA.CONCLUSIONThis is the first study to analyze the effects of SOD2 depletion in human articular chondrocytes in terms of changes to oxidation and mitochondrial function. The findings indicate that SOD2 depletion in chondrocytes leads to oxidative damage and mitochondrial dysfunction, suggesting that SOD2 down-regulation is a potential contributor to the pathogenesis of OA. |
Author | Gavriilidis, Christos Taylor, Robert W. Young, David A. Miwa, Satomi von Zglinicki, Thomas |
Author_xml | – sequence: 1 givenname: Christos surname: Gavriilidis fullname: Gavriilidis, Christos – sequence: 2 givenname: Satomi surname: Miwa fullname: Miwa, Satomi – sequence: 3 givenname: Thomas surname: von Zglinicki fullname: von Zglinicki, Thomas – sequence: 4 givenname: Robert W. surname: Taylor fullname: Taylor, Robert W. – sequence: 5 givenname: David A. surname: Young fullname: Young, David A. email: d.a.young@ncl.ac.uk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23138846$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1qVDEYhoNU7HR04Q1IwI0uTpufk0zOshSrQkWQug45yXecDGeSMclhOjsvwWvslZjOTDdFMQTCB8_7QN7vDJ2EGACh15ScU0LYhUnlnC8Wij1DMypY1xDK6QmaEULahouOnqKznFd1ZFzwF-iUccqVauUMrb74Eu0yBpe8GbHb5WEKtvgYsA845gKx2pfJF59xvSbnaL0p4PDWlyV2cRvuf_1O8GMazT4WB5ynDaR45x1g5_N6KiYDZi_R88GMGV4d3zn6fv3h9upTc_P14-ery5vGciVZoywQ66jrCXN9K6xVtu1pS7tO9XIhhWTGUjWAWPSCC8cc76UYlISB2jpKPkfvDt5Nij8nyEWvfbYwjiZAnLKmrVCCd4p3_0eZYoq3vJ45evsEXcUphfqRPUVZJ-SD8M2Rmvo1OL1Jfm3STj8WXoGLA2BTzDnBoK0v--JKMn7UlOiHlepaut6vtCbeP0k8Sv_GHu1bP8Lu36C-_HZ7SPwBYzqx7A |
CODEN | ARHEAW |
CitedBy_id | crossref_primary_10_1016_j_freeradbiomed_2013_12_012 crossref_primary_10_1016_j_freeradbiomed_2018_08_038 crossref_primary_10_1186_s11658_023_00489_y crossref_primary_10_3390_antiox6040098 crossref_primary_10_1002_jor_23882 crossref_primary_10_3390_cells10071839 crossref_primary_10_1038_s41401_021_00646_z crossref_primary_10_1186_s13075_015_0792_1 crossref_primary_10_3389_fmed_2020_581402 crossref_primary_10_3390_antiox11122346 crossref_primary_10_3390_antiox8090370 crossref_primary_10_1371_journal_pone_0195864 crossref_primary_10_3389_fimmu_2024_1470907 crossref_primary_10_1155_2018_1368142 crossref_primary_10_1016_j_joca_2018_07_004 crossref_primary_10_1172_JCI95147 crossref_primary_10_1016_j_arr_2017_07_004 crossref_primary_10_3390_cells13110976 crossref_primary_10_1007_s11306_021_01778_3 crossref_primary_10_3390_molecules26226993 crossref_primary_10_1097_GME_0000000000002173 crossref_primary_10_29296_25877313_2024_04_06 crossref_primary_10_1177_1759720X221085952 crossref_primary_10_1097_BOR_0000000000000855 crossref_primary_10_3390_antiox10030419 crossref_primary_10_1016_j_coph_2015_03_004 crossref_primary_10_1016_j_cyto_2018_11_034 crossref_primary_10_1016_j_intimp_2020_106870 crossref_primary_10_3390_ijms23147553 crossref_primary_10_1136_annrheumdis_2016_210783 crossref_primary_10_1016_j_joca_2020_01_011 crossref_primary_10_3390_app12052334 crossref_primary_10_1097_CM9_0000000000000179 crossref_primary_10_1177_0960327120945779 crossref_primary_10_3389_fcell_2021_625497 crossref_primary_10_1074_jbc_M115_693523 crossref_primary_10_1371_journal_pone_0296033 crossref_primary_10_1186_s12891_023_06585_6 crossref_primary_10_1371_journal_pone_0112735 crossref_primary_10_1111_nyas_13407 crossref_primary_10_1371_journal_pone_0108896 crossref_primary_10_1126_scitranslmed_aan5372 crossref_primary_10_1002_jor_23651 crossref_primary_10_1038_s41598_021_94611_9 crossref_primary_10_1016_j_ejr_2018_12_004 crossref_primary_10_1016_j_preghy_2018_06_012 crossref_primary_10_5124_jkma_2024_67_10_620 crossref_primary_10_1177_039463201402700211 crossref_primary_10_1042_BST20150076 crossref_primary_10_1038_s41598_022_25844_5 crossref_primary_10_1016_j_lssr_2024_10_009 crossref_primary_10_3389_fphar_2021_642836 crossref_primary_10_1016_j_msec_2015_12_090 crossref_primary_10_3389_fgene_2019_01335 crossref_primary_10_1016_j_drudis_2021_03_002 crossref_primary_10_1016_j_joca_2021_06_013 crossref_primary_10_1038_s12276_025_01400_9 crossref_primary_10_1002_art_39182 crossref_primary_10_1016_j_freeradbiomed_2019_01_005 crossref_primary_10_1002_art_39460 crossref_primary_10_1002_jor_23327 crossref_primary_10_1016_j_freeradbiomed_2023_11_029 crossref_primary_10_1155_2021_6116890 crossref_primary_10_1155_2017_3619879 crossref_primary_10_1038_s41584_018_0001_0 crossref_primary_10_1016_j_ecoenv_2020_110293 crossref_primary_10_1186_s13023_024_03149_2 crossref_primary_10_1177_03000605221104764 crossref_primary_10_1038_s41413_021_00153_1 crossref_primary_10_33590_emj_10313855 crossref_primary_10_1016_j_clim_2024_110350 crossref_primary_10_1371_journal_pone_0069362 crossref_primary_10_1186_s12891_022_05911_8 crossref_primary_10_1038_s41413_020_00112_2 crossref_primary_10_1016_j_jbspin_2023_105642 crossref_primary_10_1016_j_arr_2022_101635 crossref_primary_10_1016_j_freeradbiomed_2015_05_008 crossref_primary_10_3389_fphys_2024_1290234 crossref_primary_10_1002_jbm_b_33988 crossref_primary_10_3390_antiox11091668 crossref_primary_10_3390_cells9040809 crossref_primary_10_1016_j_phrs_2021_105497 crossref_primary_10_1155_2020_4143802 crossref_primary_10_1016_j_imlet_2015_12_009 crossref_primary_10_1080_14789450_2019_1571918 crossref_primary_10_3390_ijms23031467 crossref_primary_10_1186_s12967_024_05752_0 crossref_primary_10_4110_in_2022_22_e14 crossref_primary_10_3390_antiox9080766 crossref_primary_10_14412_1996_7012_2021_4_7_12 crossref_primary_10_3390_antiox10060985 crossref_primary_10_1038_nrrheum_2017_50 crossref_primary_10_1016_j_joca_2019_05_010 crossref_primary_10_3390_molecules25235738 crossref_primary_10_1186_s13075_025_03509_8 crossref_primary_10_1002_ptr_6425 crossref_primary_10_1038_nrrheum_2014_162 crossref_primary_10_1038_s41467_019_09839_x crossref_primary_10_1007_s11926_013_0323_5 crossref_primary_10_1016_j_joca_2014_12_016 crossref_primary_10_1136_annrheumdis_2014_206295 crossref_primary_10_1016_j_biopha_2020_110003 crossref_primary_10_1186_s13075_015_0566_9 crossref_primary_10_1002_jor_24936 crossref_primary_10_2147_JIR_S373898 crossref_primary_10_3390_biomedicines12092025 crossref_primary_10_3390_molecules25081990 crossref_primary_10_3892_mmr_2017_7124 crossref_primary_10_1002_art_39618 crossref_primary_10_1007_s00018_020_03497_9 |
Cites_doi | 10.1080/09687860500041247 10.1016/j.freeradbiomed.2005.02.009 10.1002/art.23659 10.1016/S0014-5793(03)01386-3 10.1074/jbc.M709273200 10.1074/jbc.M310217200 10.1042/BST0330897 10.1002/art.23644 10.1002/art.10496 10.1016/j.joca.2005.04.002 10.1111/j.1469-7793.2003.00335.x 10.1016/j.joca.2005.06.011 10.1002/art.22174 10.1093/hmg/4.4.751 10.1002/art.21387 10.1136/ard.2009.119966 10.1371/journal.pbio.0050110 10.1074/jbc.273.43.28510 10.1242/jcs.072272 10.1016/S0891-5849(02)00905-X 10.1016/j.exger.2010.01.003 10.1002/art.21239 10.1074/jbc.M804178200 10.1038/ng.f.94 10.1073/pnas.96.3.846 10.1038/nrrheum.2010.213 10.1046/j.1474-9728.2002.00008.x 10.1038/msb.2010.5 10.1042/BJ20110162 10.1002/art.10837 10.1136/ard.2007.079574 10.1002/art.34508 10.1186/1471-2474-12-264 10.1016/j.freeradbiomed.2004.10.016 10.1136/ard.2010.133637 10.1074/mcp.M800292-MCP200 10.1016/j.freeradbiomed.2010.12.030 10.1042/bj3210095 10.1002/art.20149 10.1093/hmg/3.1.13 10.1136/ard.2009.117416 10.1016/j.tig.2010.05.006 10.1074/jbc.M907604199 10.1136/ard.2006.058347 10.1016/0006-291X(92)92300-M 10.1073/pnas.051627098 10.1093/carcin/11.8.1287 10.1136/ard.2008.105254 |
ContentType | Journal Article |
Copyright | Copyright © 2013 by the American College of Rheumatology Copyright © 2013 by the American College of Rheumatology. |
Copyright_xml | – notice: Copyright © 2013 by the American College of Rheumatology – notice: Copyright © 2013 by the American College of Rheumatology. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7T5 7TM 7U7 C1K H94 K9. 7X8 |
DOI | 10.1002/art.37782 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Nucleic Acids Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Toxicology Abstracts Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Calcium & Calcified Tissue Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Toxicology Abstracts Calcium & Calcified Tissue Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1529-0131 2326-5205 |
EndPage | 387 |
ExternalDocumentID | 2876441561 23138846 10_1002_art_37782 ART37782 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: JGWP Patterson Foundation – fundername: NIHR Newcastle Biomedical Research Centre based at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University – fundername: Arthritis Research UK funderid: 18261 – fundername: Biotechnology and Biological Sciences Research Council funderid: BBSRC grant BB/I020748/1 – fundername: Newcastle University Hospitals Special Trustees, UK – fundername: Arthritis Research UK grantid: 18261 – fundername: Medical Research Council grantid: G0601333 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/F010966/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/I020748/1 – fundername: Wellcome Trust grantid: 096919 |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 10A 1CY 1KJ 1L6 1OB 1OC 1ZS 23N 24P 31~ 33P 3O- 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5RE 66C 6J9 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEVG AAHHS AAHQN AAIPD AAKAS AAMNL AANHP AANLZ AAQQT AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACMXC ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBTR ADEOM ADIZJ ADMGS ADNMO ADOZA ADZCM ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN BDRZF BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EBS EJD EMOBN EX3 F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J5H JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LSO LUTES LW6 LYRES M65 MEWTI MJL MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NNB OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q11 QB0 QRW RGB RIWAO RJQFR ROL RWI RX1 RXW RYL SAMSI SJN SUPJJ SV3 TAE TEORI TWZ UB1 V2E V8K V9Y VH1 W8V WH7 WIB WIH WIJ WIK WIN WJL WOW WQJ WRC WUP WXI WXSBR X6Y X7M XG1 XPP XV2 YFH YOC ZGI ZXP ZZTAW ~IA ~WT AAFWJ AAYXX AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 0R~ 3SF 52U 52V 5VS 7QL 7QP 7T5 7TM 7U7 AAESR AASGY ABLJU ABPVW ACGFS ACGOF ACIWK ACPRK ADBBV ADKYN ADXAS ADZMN AENEX AEYWJ AFRAH AHMBA ALAGY ALVPJ AZVAB BFHJK BHBCM BMXJE C1K DIK FUBAC H94 K9. KBYEO NF~ O66 O9- PQQKQ WBKPD WHWMO WOHZO WVDHM 7X8 |
ID | FETCH-LOGICAL-c3862-8ce0cd1db02db45cc8c4b141998b676562ac18fe57b535d2d3b65f86ef1c5d263 |
IEDL.DBID | DR2 |
ISSN | 0004-3591 2326-5191 1529-0131 |
IngestDate | Fri Jul 11 03:31:43 EDT 2025 Fri Jul 11 05:47:55 EDT 2025 Mon Jun 30 10:10:42 EDT 2025 Mon Jul 21 05:29:11 EDT 2025 Tue Jul 01 01:05:22 EDT 2025 Thu Apr 24 23:07:53 EDT 2025 Wed Jan 22 17:04:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2013 by the American College of Rheumatology. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3862-8ce0cd1db02db45cc8c4b141998b676562ac18fe57b535d2d3b65f86ef1c5d263 |
Notes | The views expressed herein are those of the authors and not necessarily those of the National Health Service (NHS), the National Institute for Health Research (NIHR), or the Department of Health. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 23138846 |
PQID | 1282129569 |
PQPubID | 946334 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1458539839 proquest_miscellaneous_1282834333 proquest_journals_1282129569 pubmed_primary_23138846 crossref_citationtrail_10_1002_art_37782 crossref_primary_10_1002_art_37782 wiley_primary_10_1002_art_37782_ART37782 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2013 2013-02-00 2013-Feb 20130201 |
PublicationDateYYYYMMDD | 2013-02-01 |
PublicationDate_xml | – month: 02 year: 2013 text: February 2013 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States – name: Atlanta |
PublicationTitle | Arthritis & rheumatology (Hoboken, N.J.) |
PublicationTitleAlternate | Arthritis Rheum |
PublicationYear | 2013 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley Subscription Services, Inc |
References | 2011; 435 1990; 11 2006; 54 1983; 1 1992; 189 2002; 33 2008; 58 2002; 1 2000; 275 2011; 12 1995; 4 2003; 552 2005; 22 2008; 283 2011; 7 1998; 273 2010; 45 2011; 124 2004; 50 2004; 556 2010; 26 2004; 279 2010; 69 2006; 65 2002; 46 2011; 70 1997; 321 2011; 50 2005; 52 2003; 48 2008; 67 2009; 8 2007; 5 1999; 96 2009; 284 2008; 40 1996; 5 2005; 38 1994; 3 2005; 33 2012; 64 2010; 6 2005; 13 2001; 98 e_1_2_6_51_2 e_1_2_6_30_2 Wang M (e_1_2_6_43_2) 1996; 5 Stockwell RA (e_1_2_6_7_2) 1983 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_28_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_50_2 e_1_2_6_31_2 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_42_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – volume: 50 start-page: 866 year: 2011 end-page: 73 article-title: Impaired spare respiratory capacity in cortical synaptosomes from Sod2 null mice publication-title: Free Radic Biol Med – volume: 279 start-page: 13705 year: 2004 end-page: 10 article-title: Extracellular superoxide dismutase (EC‐SOD) binds to type I collagen and protects against oxidative fragmentation publication-title: J Biol Chem – volume: 1 start-page: 253 year: 1983 end-page: 73 – volume: 46 start-page: 2349 year: 2002 end-page: 57 article-title: Detection of nitrotyrosine in aging and osteoarthritic cartilage: correlation of oxidative damage with the presence of interleukin‐1β and with chondrocyte resistance to insulin‐like growth factor 1 publication-title: Arthritis Rheum – volume: 69 start-page: 910 year: 2010 end-page: 7 article-title: Mitochondrial DNA haplogroups modulate the serum levels of biomarkers in patients with osteoarthritis publication-title: Ann Rheum Dis – volume: 65 start-page: 1261 year: 2006 end-page: 4 article-title: Yet more evidence that osteoarthritis is not a cartilage disease publication-title: Ann Rheum Dis – volume: 40 start-page: 275 year: 2008 end-page: 9 article-title: What causes mitochondrial DNA deletions in human cells? publication-title: Nat Genet – volume: 435 start-page: 297 year: 2011 end-page: 312 article-title: Assessing mitochondrial dysfunction in cells publication-title: Biochem J – volume: 70 start-page: 646 year: 2011 end-page: 52 article-title: Mitochondrial DNA haplogroups and serum levels of proteolytic enzymes in patients with osteoarthritis publication-title: Ann Rheum Dis – volume: 96 start-page: 846 year: 1999 end-page: 51 article-title: Mitochondrial disease in superoxide dismutase 2 mutant mice publication-title: Proc Natl Acad Sci U S A – volume: 1 start-page: 57 year: 2002 end-page: 65 article-title: The role of chondrocyte senescence in osteoarthritis publication-title: Aging Cell – volume: 4 start-page: 751 year: 1995 end-page: 4 article-title: Unusual pattern of mitochondrial DNA deletions in skeletal muscle of an adult human with chronic fatigue syndrome publication-title: Hum Mol Genet – volume: 67 start-page: 1633 year: 2008 end-page: 41 article-title: Differential Toll‐like receptor‐dependent collagenase expression in chondrocytes publication-title: Ann Rheum Dis – volume: 7 start-page: 161 year: 2011 end-page: 9 article-title: The role of mitochondria in osteoarthritis publication-title: Nat Rev Rheumatol – volume: 5 start-page: e110 year: 2007 article-title: Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere‐dependent senescence publication-title: PLoS Biol – volume: 275 start-page: 20069 year: 2000 end-page: 76 article-title: Evidence linking chondrocyte lipid peroxidation to cartilage matrix protein degradation: possible role in cartilage aging and the pathogenesis of osteoarthritis publication-title: J Biol Chem – volume: 58 start-page: 2387 year: 2008 end-page: 96 article-title: Mitochondrial DNA haplogroups: role in the prevalence and severity of knee osteoarthritis publication-title: Arthritis Rheum – volume: 11 start-page: 1287 year: 1990 end-page: 92 article-title: Vinyl chloride‐induced DNA adducts. II. Formation and persistence of 7‐(2'‐oxoethyl)guanine and N ,3‐ethenoguanine in rat tissue DNA publication-title: Carcinogenesis – volume: 52 start-page: 3479 year: 2005 end-page: 91 article-title: Extracellular superoxide dismutase and oxidant damage in osteoarthritis publication-title: Arthritis Rheum – volume: 13 start-page: 643 year: 2005 end-page: 54 article-title: Oxygen and reactive oxygen species in cartilage degradation: friends or foes? publication-title: Osteoarthritis Cartilage – volume: 13 start-page: 1004 year: 2005 end-page: 11 article-title: Accumulation of mitochondrial DNA with 4977‐bp deletion in knee cartilage—an association with idiopathic osteoarthritis publication-title: Osteoarthritis Cartilage – volume: 22 start-page: 87 year: 2005 end-page: 100 article-title: Protein import into mitochondria: origins and functions today publication-title: Mol Membr Biol – volume: 33 start-page: 337 year: 2002 end-page: 49 article-title: Superoxide dismutase multigene family: a comparison of the CuZn‐SOD (SOD1), Mn‐SOD (SOD2), and EC‐SOD (SOD3) gene structures, evolution, and expression publication-title: Free Radic Biol Med – volume: 69 start-page: 210 year: 2010 end-page: 3 article-title: Role of European mitochondrial DNA haplogroups in the prevalence of hip osteoarthritis in Galicia, Northern Spain publication-title: Ann Rheum Dis – volume: 283 start-page: 6058 year: 2008 end-page: 66 article-title: Extracellular superoxide dismutase inhibits inflammation by preventing oxidative fragmentation of hyaluronan publication-title: J Biol Chem – volume: 3 start-page: 13 year: 1994 end-page: 9 article-title: Distribution of wild‐type and common deletion forms of mtDNA in normal and respiration‐deficient muscle fibers from patients with mitochondrial myopathy publication-title: Hum Mol Genet – volume: 45 start-page: 466 year: 2010 end-page: 72 article-title: The sites and topology of mitochondrial superoxide production publication-title: Exp Gerontol – volume: 284 start-page: 9132 year: 2009 end-page: 9 article-title: Effects of hyaluronic acid on mitochondrial function and mitochondria‐driven apoptosis following oxidative stress in human chondrocytes publication-title: J Biol Chem – volume: 98 start-page: 2278 year: 2001 end-page: 83 article-title: Increased mitochondrial oxidative stress in the Sod2 mouse results in the age‐related decline of mitochondrial function culminating in increased apoptosis publication-title: Proc Natl Acad Sci U S A – volume: 556 start-page: 111 year: 2004 end-page: 5 article-title: Production of endogenous matrix superoxide from mitochondrial complex I leads to activation of uncoupling protein 3 publication-title: FEBS Lett – volume: 124 start-page: 348 year: 2011 end-page: 58 article-title: A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells publication-title: J Cell Sci – volume: 48 start-page: 700 year: 2003 end-page: 8 article-title: Mitochondrial respiratory activity is altered in osteoarthritic human articular chondrocytes publication-title: Arthritis Rheum – volume: 64 start-page: 2927 year: 2012 end-page: 36 article-title: Mitochondrial dysfunction increases inflammatory responsiveness to cytokines in normal human chondrocytes publication-title: Arthritis Rheum – volume: 38 start-page: 12 year: 2005 end-page: 23 article-title: Mitochondrial H leak and ROS generation: an odd couple publication-title: Free Radic Biol Med – volume: 58 start-page: 2409 year: 2008 end-page: 19 article-title: Mitochondrial dysfunction activates cyclooxygenase 2 expression in cultured normal human chondrocytes publication-title: Arthritis Rheum – volume: 6 start-page: 347 year: 2010 article-title: Feedback between p21 and reactive oxygen production is necessary for cell senescence publication-title: Mol Syst Biol – volume: 26 start-page: 340 year: 2010 end-page: 3 article-title: Repeats, longevity and the sources of mtDNA deletions: evidence from ‘deletional spectra’ publication-title: Trends Genet – volume: 8 start-page: 172 year: 2009 end-page: 89 article-title: Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics: a decrease in mitochondrial superoxide dismutase points to a redox imbalance publication-title: Mol Cell Proteomics – volume: 38 start-page: 1458 year: 2005 end-page: 70 article-title: Heterozygous deficiency of manganese superoxide dismutase results in severe lipid peroxidation and spontaneous apoptosis in murine myocardium in vivo publication-title: Free Radic Biol Med – volume: 54 start-page: 3533 year: 2006 end-page: 44 article-title: Large‐scale gene expression profiling reveals major pathogenetic pathways of cartilage degeneration in osteoarthritis publication-title: Arthritis Rheum – volume: 273 start-page: 28510 year: 1998 end-page: 5 article-title: Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout mice publication-title: J Biol Chem – volume: 12 start-page: 264 year: 2011 article-title: Mitochondrial DNA (mtDNA) haplogroups and serum levels of anti‐oxidant enzymes in patients with osteoarthritis publication-title: BMC Musculoskelet Disord – volume: 321 start-page: 95 year: 1997 end-page: 102 article-title: Evidence for a negative Pasteur effect in articular cartilage publication-title: Biochem J – volume: 33 start-page: 897 year: 2005 end-page: 904 article-title: The efficiency and plasticity of mitochondrial energy transduction publication-title: Biochem Soc Trans – volume: 552 start-page: 335 year: 2003 end-page: 44 article-title: Mitochondrial formation of reactive oxygen species publication-title: J Physiol – volume: 50 start-page: 1216 year: 2004 end-page: 25 article-title: Mediation of spontaneous knee osteoarthritis by progressive chondrocyte ATP depletion in Hartley guinea pigs publication-title: Arthritis Rheum – volume: 5 start-page: 705 year: 1996 end-page: 10 article-title: Lipid peroxidation‐induced putative malondialdehyde‐DNA adducts in human breast tissues publication-title: Cancer Epidemiol Biomarkers Prev – volume: 69 start-page: 1502 year: 2010 end-page: 10 article-title: Superoxide dismutase downregulation in osteoarthritis progression and end‐stage disease publication-title: Ann Rheum Dis – volume: 189 start-page: 979 year: 1992 end-page: 85 article-title: Age‐associated oxygen damage and mutations in mitochondrial DNA in human hearts publication-title: Biochem Biophys Res Commun – volume: 52 start-page: 2799 year: 2005 end-page: 807 article-title: The presence of molecular markers of in vivo lipid peroxidation in osteoarthritic cartilage: a pathogenic role in osteoarthritis publication-title: Arthritis Rheum – ident: e_1_2_6_2_2 doi: 10.1080/09687860500041247 – ident: e_1_2_6_45_2 doi: 10.1016/j.freeradbiomed.2005.02.009 – ident: e_1_2_6_31_2 doi: 10.1002/art.23659 – ident: e_1_2_6_51_2 doi: 10.1016/S0014-5793(03)01386-3 – ident: e_1_2_6_14_2 doi: 10.1074/jbc.M709273200 – ident: e_1_2_6_15_2 doi: 10.1074/jbc.M310217200 – ident: e_1_2_6_23_2 doi: 10.1042/BST0330897 – ident: e_1_2_6_8_2 doi: 10.1002/art.23644 – ident: e_1_2_6_12_2 doi: 10.1002/art.10496 – ident: e_1_2_6_11_2 doi: 10.1016/j.joca.2005.04.002 – ident: e_1_2_6_3_2 doi: 10.1111/j.1469-7793.2003.00335.x – ident: e_1_2_6_10_2 doi: 10.1016/j.joca.2005.06.011 – ident: e_1_2_6_17_2 doi: 10.1002/art.22174 – ident: e_1_2_6_36_2 doi: 10.1093/hmg/4.4.751 – ident: e_1_2_6_18_2 doi: 10.1002/art.21387 – ident: e_1_2_6_16_2 doi: 10.1136/ard.2009.119966 – ident: e_1_2_6_21_2 doi: 10.1371/journal.pbio.0050110 – ident: e_1_2_6_39_2 doi: 10.1074/jbc.273.43.28510 – ident: e_1_2_6_24_2 doi: 10.1242/jcs.072272 – ident: e_1_2_6_4_2 doi: 10.1016/S0891-5849(02)00905-X – ident: e_1_2_6_32_2 doi: 10.1016/j.exger.2010.01.003 – ident: e_1_2_6_44_2 doi: 10.1002/art.21239 – ident: e_1_2_6_40_2 doi: 10.1074/jbc.M804178200 – ident: e_1_2_6_35_2 doi: 10.1038/ng.f.94 – ident: e_1_2_6_38_2 doi: 10.1073/pnas.96.3.846 – ident: e_1_2_6_25_2 doi: 10.1038/nrrheum.2010.213 – ident: e_1_2_6_49_2 doi: 10.1046/j.1474-9728.2002.00008.x – ident: e_1_2_6_47_2 doi: 10.1038/msb.2010.5 – ident: e_1_2_6_22_2 doi: 10.1042/BJ20110162 – ident: e_1_2_6_9_2 doi: 10.1002/art.10837 – ident: e_1_2_6_20_2 doi: 10.1136/ard.2007.079574 – ident: e_1_2_6_26_2 doi: 10.1002/art.34508 – ident: e_1_2_6_27_2 doi: 10.1186/1471-2474-12-264 – ident: e_1_2_6_50_2 doi: 10.1016/j.freeradbiomed.2004.10.016 – ident: e_1_2_6_30_2 doi: 10.1136/ard.2010.133637 – ident: e_1_2_6_19_2 doi: 10.1074/mcp.M800292-MCP200 – ident: e_1_2_6_46_2 doi: 10.1016/j.freeradbiomed.2010.12.030 – ident: e_1_2_6_6_2 doi: 10.1042/bj3210095 – ident: e_1_2_6_48_2 doi: 10.1002/art.20149 – ident: e_1_2_6_33_2 doi: 10.1093/hmg/3.1.13 – ident: e_1_2_6_29_2 doi: 10.1136/ard.2009.117416 – ident: e_1_2_6_37_2 doi: 10.1016/j.tig.2010.05.006 – ident: e_1_2_6_13_2 doi: 10.1074/jbc.M907604199 – ident: e_1_2_6_5_2 doi: 10.1136/ard.2006.058347 – volume: 5 start-page: 705 year: 1996 ident: e_1_2_6_43_2 article-title: Lipid peroxidation‐induced putative malondialdehyde‐DNA adducts in human breast tissues publication-title: Cancer Epidemiol Biomarkers Prev – start-page: 253 year: 1983 ident: e_1_2_6_7_2 – ident: e_1_2_6_34_2 doi: 10.1016/0006-291X(92)92300-M – ident: e_1_2_6_42_2 doi: 10.1073/pnas.051627098 – ident: e_1_2_6_41_2 doi: 10.1093/carcin/11.8.1287 – ident: e_1_2_6_28_2 doi: 10.1136/ard.2008.105254 |
SSID | ssj0002353 ssj0000970605 |
Score | 2.4474025 |
Snippet | Objective
Superoxide dismutase 2 (SOD2) is down‐ regulated in osteoarthritis (OA). This study was undertaken to investigate the functional effects of this... Superoxide dismutase 2 (SOD2) is down- regulated in osteoarthritis (OA). This study was undertaken to investigate the functional effects of this... Objective Superoxide dismutase 2 (SOD2) is down- regulated in osteoarthritis (OA). This study was undertaken to investigate the functional effects of this... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 378 |
SubjectTerms | Cartilage, Articular - enzymology Cells, Cultured Chondrocytes - enzymology Down-Regulation Humans Lipid Peroxidation Lipids Mitochondria - enzymology Mitochondria - genetics Mitochondrial DNA Osteoarthritis - enzymology Osteoarthritis - genetics Reactive Oxygen Species - metabolism Superoxide Dismutase - genetics Superoxide Dismutase - metabolism |
Title | Mitochondrial dysfunction in osteoarthritis is associated with down‐regulation of superoxide dismutase 2 |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fart.37782 https://www.ncbi.nlm.nih.gov/pubmed/23138846 https://www.proquest.com/docview/1282129569 https://www.proquest.com/docview/1282834333 https://www.proquest.com/docview/1458539839 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hDqiXFvpcoCu36oFLltjjZBP1VFVd0VbLARWJQ6UofkTdFrKI7ErAiZ_Ab-SXdCYvRGmrqtIesso4sjMezzfOzGeAN4XD1GiuzEVrKEApXJArGwYyl-PEcK6F5-Lk6X68d6g_HUVHK_C2q4Vp-CH6DTe2jHq9ZgPPTbV7SxpKb3aEY3JwtP5yrhYDooNb6iiFLQMl7_xHqexYhUK127e864vuAcy7eLV2OJNH8LXrapNn8mO0XJiRvfyFxfE_x7IOD1sgKt41M2cDVnz5GNam7af2J_B9SrZOa2PpeIoKd1GxC2Q1ilkpuDRkTs_7VnMiCfrlrZ69E7y3KxyF9zdX12fNWffcbF6Iasm85Ocz54WbVSecD-6FegqHkw9f3u8F7cEMgUWKgILE-tA66UyonNGRtYnVRmou1zPxmBCiyq1MCh-NTYSRUw5J60US-0Ja-hvjM1gt56V_ASIm_EKCKOPcaY06RWnSRPkwokY29gPY6VSU2Za1nA_POM4avmWV0Viz-t0N4HUvetpQdfxOaLvTc9Zaa5WRjyYPTpFiOoBX_W2yM_54kpd-vmxkEtSI-BcZTcEXpoQ5B_C8mUN9TwhHY0JgjwZUz4Q_dzGjSKa-2Px30S14oOpzOjjPZhtWF2dL_5LQ0sIMySw-fh7WxvETUdUTrg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIgEX_mkDBRYEEhen3h879oEDolQpbXpArdSb8f6YBqiN6kSlnHgEHoRX4SV4EmbstavyJy49IOWQKGNrdj2z-8165huAR4WVqVZUmSuNxgClsEEuTBjwnI8STbkWjoqTJ9vxeFe93Iv2FuBrVwvT8kP0B27kGc16TQ5OB9KrJ6yhOLVDOcIdzqdUbrrjIwzY6qcba_h0Hwux_mLn-TjwPQUCIxG8B4lxobHc6lBYrSJjEqM0V1RppuMRghuRG54ULhrpSEZWWIkKF0nsCm7wZyzxvufgPHUQJ6b-tVcnZFVCes5LetcQpbzjMQrFaq_q6d3vF0h7GiE3W9z6FfjWTU6b2fJuOJ_pofn0E2_k_zJ7V-Gyx9rsWesc12DBldfhwsRnE9yAtxNcznD5Ly15IbPHNe3yZKlsWjKqfqlQ__2G9onhJ_em7Cyj42tmq6Py--cvh-6N74HGqoLVc6Je_zi1jtlpfUAp746Jm7B7JiO9BYtlVbplYDFCNBSUPM6tUlKlkus0ES6M8CITuwE86WwiM56YnfqDvM9aSmmR4Viz5lkN4GEv-qFlI_md0EpnWJlfkOoMYQiCFAyG0wE86P_GpYTeD-Wlq-atTCKVlPIvMgrjS5kirB7AUmu0vSYYKsgE8SwOqDG9P6uYYbDWfLn976L34eJ4Z7KVbW1sb96BS6JpS0JpRSuwODucu7sIDmf6XuOTDF6ftRn_AAgKcSc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIlVcyj8ECiwIJC5OvT927AMHRIhaSiqEqNSb8f4YUsCu6kSlnHgE3oNX4Sl4EmbstavyJy49IOWQKJNodj0z-4098w3A_cLKVCvqzJVGY4JS2CAXJgx4zkeJploLR83J0-14Y0c92412l-Br1wvT8kP0N9zIM5p4TQ6-b4v1Y9JQ3NmhHOEB5ysqt9zRIeZr9aPNMV7cB0JMnr56shH4kQKBkYjdg8S40FhudSisVpExiVGaK2o00_EIsY3IDU8KF410JCMrrER9iyR2BTf4MZb4v2fgrIrDlOZEjF8ec1UJ6Skv6VFDlPKOxigU672qJw-_XxDtSYDcnHCT8_Ct25u2sOXdcDHXQ_PpJ9rI_2TzLsCqR9rscesaF2HJlZdgZeprCS7D3hSDGQb_0pIPMntU0xlPdspmJaPelwr1f9uQPjF85d6QnWV085rZ6rD8_vnLgXvjJ6CxqmD1gojXP86sY3ZWf6CCd8fEFdg5lZVeheWyKt11YDECNBSUPM6tUlKlkus0ES6M8EcmdgN42JlEZjwtO00HeZ-1hNIiw7VmzbUawL1edL_lIvmd0FpnV5kPR3WGIAQhCqbC6QDu9l9jIKGnQ3npqkUrk0glpfyLjMLsUqYIqgdwrbXZXhNMFGSCaBYX1Fjen1XMMFVr3tz4d9E7sPJiPMmeb25v3YRzoplJQjVFa7A8P1i4W4gM5_p245EMXp-2Ff8AOBxv1g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+dysfunction+in+osteoarthritis+is+associated+with+down-regulation+of+superoxide+dismutase+2&rft.jtitle=Arthritis+%26+rheumatology+%28Hoboken%2C+N.J.%29&rft.au=Gavriilidis%2C+Christos&rft.au=Miwa%2C+Satomi&rft.au=von+Zglinicki%2C+Thomas&rft.au=Taylor%2C+Robert+W&rft.date=2013-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=2326-5191&rft.eissn=2326-5205&rft.volume=65&rft.issue=2&rft.spage=378&rft_id=info:doi/10.1002%2Fart.37782&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2876441561 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-3591&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-3591&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-3591&client=summon |