Mitochondrial dysfunction in osteoarthritis is associated with down‐regulation of superoxide dismutase 2

Objective Superoxide dismutase 2 (SOD2) is down‐ regulated in osteoarthritis (OA). This study was undertaken to investigate the functional effects of this down‐regulation in the context of oxidative damage and mitochondrial dysfunction. Methods Lipid peroxidation in articular cartilage from OA patie...

Full description

Saved in:
Bibliographic Details
Published inArthritis & rheumatology (Hoboken, N.J.) Vol. 65; no. 2; pp. 378 - 387
Main Authors Gavriilidis, Christos, Miwa, Satomi, von Zglinicki, Thomas, Taylor, Robert W., Young, David A.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.02.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective Superoxide dismutase 2 (SOD2) is down‐ regulated in osteoarthritis (OA). This study was undertaken to investigate the functional effects of this down‐regulation in the context of oxidative damage and mitochondrial dysfunction. Methods Lipid peroxidation in articular cartilage from OA patients and from lesion‐free control subjects with femoral neck fracture was assessed by measuring malondialdehyde levels using the thiobarbituric acid reactive substances assay. Long‐range polymerase chain reaction amplification and a mitochondrial DNA (mtDNA) strand break assay were used to investigate the presence of somatic large‐scale mtDNA rearrangements in cartilage. Microscale oxygraphy was used to explore possible changes in mitochondrial respiratory activity between OA and control chondrocytes. RNA interference was used to determine the effects of SOD2 depletion on lipid peroxidation, mtDNA damage, and mitochondrial respiration. Results OA cartilage had higher levels of lipid peroxidation compared to control cartilage, and lipid peroxidation was similarly elevated in SOD2‐depleted chondrocytes. SOD2 depletion led to a significant increase in mtDNA strand breaks in chondrocytes, but there was no notable difference in the level of strand breaks between OA and control chondrocytes. Furthermore, only very low levels of somatic, large‐scale mtDNA rearrangements were identified in OA cartilage. OA chondrocytes showed less spare respiratory capacity (SRC) and higher proton leak compared to control chondrocytes. SOD2‐depleted chondrocytes also showed less SRC and higher proton leak. Conclusion This is the first study to analyze the effects of SOD2 depletion in human articular chondrocytes in terms of changes to oxidation and mitochondrial function. The findings indicate that SOD2 depletion in chondrocytes leads to oxidative damage and mitochondrial dysfunction, suggesting that SOD2 down‐regulation is a potential contributor to the pathogenesis of OA.
AbstractList Objective Superoxide dismutase 2 (SOD2) is down- regulated in osteoarthritis (OA). This study was undertaken to investigate the functional effects of this down-regulation in the context of oxidative damage and mitochondrial dysfunction. Methods Lipid peroxidation in articular cartilage from OA patients and from lesion-free control subjects with femoral neck fracture was assessed by measuring malondialdehyde levels using the thiobarbituric acid reactive substances assay. Long-range polymerase chain reaction amplification and a mitochondrial DNA (mtDNA) strand break assay were used to investigate the presence of somatic large-scale mtDNA rearrangements in cartilage. Microscale oxygraphy was used to explore possible changes in mitochondrial respiratory activity between OA and control chondrocytes. RNA interference was used to determine the effects of SOD2 depletion on lipid peroxidation, mtDNA damage, and mitochondrial respiration. Results OA cartilage had higher levels of lipid peroxidation compared to control cartilage, and lipid peroxidation was similarly elevated in SOD2-depleted chondrocytes. SOD2 depletion led to a significant increase in mtDNA strand breaks in chondrocytes, but there was no notable difference in the level of strand breaks between OA and control chondrocytes. Furthermore, only very low levels of somatic, large-scale mtDNA rearrangements were identified in OA cartilage. OA chondrocytes showed less spare respiratory capacity (SRC) and higher proton leak compared to control chondrocytes. SOD2-depleted chondrocytes also showed less SRC and higher proton leak. Conclusion This is the first study to analyze the effects of SOD2 depletion in human articular chondrocytes in terms of changes to oxidation and mitochondrial function. The findings indicate that SOD2 depletion in chondrocytes leads to oxidative damage and mitochondrial dysfunction, suggesting that SOD2 down-regulation is a potential contributor to the pathogenesis of OA. [PUBLICATION ABSTRACT]
Objective Superoxide dismutase 2 (SOD2) is down- regulated in osteoarthritis (OA). This study was undertaken to investigate the functional effects of this down-regulation in the context of oxidative damage and mitochondrial dysfunction. Methods Lipid peroxidation in articular cartilage from OA patients and from lesion-free control subjects with femoral neck fracture was assessed by measuring malondialdehyde levels using the thiobarbituric acid reactive substances assay. Long-range polymerase chain reaction amplification and a mitochondrial DNA (mtDNA) strand break assay were used to investigate the presence of somatic large-scale mtDNA rearrangements in cartilage. Microscale oxygraphy was used to explore possible changes in mitochondrial respiratory activity between OA and control chondrocytes. RNA interference was used to determine the effects of SOD2 depletion on lipid peroxidation, mtDNA damage, and mitochondrial respiration. Results OA cartilage had higher levels of lipid peroxidation compared to control cartilage, and lipid peroxidation was similarly elevated in SOD2-depleted chondrocytes. SOD2 depletion led to a significant increase in mtDNA strand breaks in chondrocytes, but there was no notable difference in the level of strand breaks between OA and control chondrocytes. Furthermore, only very low levels of somatic, large-scale mtDNA rearrangements were identified in OA cartilage. OA chondrocytes showed less spare respiratory capacity (SRC) and higher proton leak compared to control chondrocytes. SOD2-depleted chondrocytes also showed less SRC and higher proton leak. Conclusion This is the first study to analyze the effects of SOD2 depletion in human articular chondrocytes in terms of changes to oxidation and mitochondrial function. The findings indicate that SOD2 depletion in chondrocytes leads to oxidative damage and mitochondrial dysfunction, suggesting that SOD2 down-regulation is a potential contributor to the pathogenesis of OA.
Objective Superoxide dismutase 2 (SOD2) is down‐ regulated in osteoarthritis (OA). This study was undertaken to investigate the functional effects of this down‐regulation in the context of oxidative damage and mitochondrial dysfunction. Methods Lipid peroxidation in articular cartilage from OA patients and from lesion‐free control subjects with femoral neck fracture was assessed by measuring malondialdehyde levels using the thiobarbituric acid reactive substances assay. Long‐range polymerase chain reaction amplification and a mitochondrial DNA (mtDNA) strand break assay were used to investigate the presence of somatic large‐scale mtDNA rearrangements in cartilage. Microscale oxygraphy was used to explore possible changes in mitochondrial respiratory activity between OA and control chondrocytes. RNA interference was used to determine the effects of SOD2 depletion on lipid peroxidation, mtDNA damage, and mitochondrial respiration. Results OA cartilage had higher levels of lipid peroxidation compared to control cartilage, and lipid peroxidation was similarly elevated in SOD2‐depleted chondrocytes. SOD2 depletion led to a significant increase in mtDNA strand breaks in chondrocytes, but there was no notable difference in the level of strand breaks between OA and control chondrocytes. Furthermore, only very low levels of somatic, large‐scale mtDNA rearrangements were identified in OA cartilage. OA chondrocytes showed less spare respiratory capacity (SRC) and higher proton leak compared to control chondrocytes. SOD2‐depleted chondrocytes also showed less SRC and higher proton leak. Conclusion This is the first study to analyze the effects of SOD2 depletion in human articular chondrocytes in terms of changes to oxidation and mitochondrial function. The findings indicate that SOD2 depletion in chondrocytes leads to oxidative damage and mitochondrial dysfunction, suggesting that SOD2 down‐regulation is a potential contributor to the pathogenesis of OA.
Superoxide dismutase 2 (SOD2) is down- regulated in osteoarthritis (OA). This study was undertaken to investigate the functional effects of this down-regulation in the context of oxidative damage and mitochondrial dysfunction. Lipid peroxidation in articular cartilage from OA patients and from lesion-free control subjects with femoral neck fracture was assessed by measuring malondialdehyde levels using the thiobarbituric acid reactive substances assay. Long-range polymerase chain reaction amplification and a mitochondrial DNA (mtDNA) strand break assay were used to investigate the presence of somatic large-scale mtDNA rearrangements in cartilage. Microscale oxygraphy was used to explore possible changes in mitochondrial respiratory activity between OA and control chondrocytes. RNA interference was used to determine the effects of SOD2 depletion on lipid peroxidation, mtDNA damage, and mitochondrial respiration. OA cartilage had higher levels of lipid peroxidation compared to control cartilage, and lipid peroxidation was similarly elevated in SOD2-depleted chondrocytes. SOD2 depletion led to a significant increase in mtDNA strand breaks in chondrocytes, but there was no notable difference in the level of strand breaks between OA and control chondrocytes. Furthermore, only very low levels of somatic, large-scale mtDNA rearrangements were identified in OA cartilage. OA chondrocytes showed less spare respiratory capacity (SRC) and higher proton leak compared to control chondrocytes. SOD2-depleted chondrocytes also showed less SRC and higher proton leak. This is the first study to analyze the effects of SOD2 depletion in human articular chondrocytes in terms of changes to oxidation and mitochondrial function. The findings indicate that SOD2 depletion in chondrocytes leads to oxidative damage and mitochondrial dysfunction, suggesting that SOD2 down-regulation is a potential contributor to the pathogenesis of OA.
Superoxide dismutase 2 (SOD2) is down- regulated in osteoarthritis (OA). This study was undertaken to investigate the functional effects of this down-regulation in the context of oxidative damage and mitochondrial dysfunction.OBJECTIVESuperoxide dismutase 2 (SOD2) is down- regulated in osteoarthritis (OA). This study was undertaken to investigate the functional effects of this down-regulation in the context of oxidative damage and mitochondrial dysfunction.Lipid peroxidation in articular cartilage from OA patients and from lesion-free control subjects with femoral neck fracture was assessed by measuring malondialdehyde levels using the thiobarbituric acid reactive substances assay. Long-range polymerase chain reaction amplification and a mitochondrial DNA (mtDNA) strand break assay were used to investigate the presence of somatic large-scale mtDNA rearrangements in cartilage. Microscale oxygraphy was used to explore possible changes in mitochondrial respiratory activity between OA and control chondrocytes. RNA interference was used to determine the effects of SOD2 depletion on lipid peroxidation, mtDNA damage, and mitochondrial respiration.METHODSLipid peroxidation in articular cartilage from OA patients and from lesion-free control subjects with femoral neck fracture was assessed by measuring malondialdehyde levels using the thiobarbituric acid reactive substances assay. Long-range polymerase chain reaction amplification and a mitochondrial DNA (mtDNA) strand break assay were used to investigate the presence of somatic large-scale mtDNA rearrangements in cartilage. Microscale oxygraphy was used to explore possible changes in mitochondrial respiratory activity between OA and control chondrocytes. RNA interference was used to determine the effects of SOD2 depletion on lipid peroxidation, mtDNA damage, and mitochondrial respiration.OA cartilage had higher levels of lipid peroxidation compared to control cartilage, and lipid peroxidation was similarly elevated in SOD2-depleted chondrocytes. SOD2 depletion led to a significant increase in mtDNA strand breaks in chondrocytes, but there was no notable difference in the level of strand breaks between OA and control chondrocytes. Furthermore, only very low levels of somatic, large-scale mtDNA rearrangements were identified in OA cartilage. OA chondrocytes showed less spare respiratory capacity (SRC) and higher proton leak compared to control chondrocytes. SOD2-depleted chondrocytes also showed less SRC and higher proton leak.RESULTSOA cartilage had higher levels of lipid peroxidation compared to control cartilage, and lipid peroxidation was similarly elevated in SOD2-depleted chondrocytes. SOD2 depletion led to a significant increase in mtDNA strand breaks in chondrocytes, but there was no notable difference in the level of strand breaks between OA and control chondrocytes. Furthermore, only very low levels of somatic, large-scale mtDNA rearrangements were identified in OA cartilage. OA chondrocytes showed less spare respiratory capacity (SRC) and higher proton leak compared to control chondrocytes. SOD2-depleted chondrocytes also showed less SRC and higher proton leak.This is the first study to analyze the effects of SOD2 depletion in human articular chondrocytes in terms of changes to oxidation and mitochondrial function. The findings indicate that SOD2 depletion in chondrocytes leads to oxidative damage and mitochondrial dysfunction, suggesting that SOD2 down-regulation is a potential contributor to the pathogenesis of OA.CONCLUSIONThis is the first study to analyze the effects of SOD2 depletion in human articular chondrocytes in terms of changes to oxidation and mitochondrial function. The findings indicate that SOD2 depletion in chondrocytes leads to oxidative damage and mitochondrial dysfunction, suggesting that SOD2 down-regulation is a potential contributor to the pathogenesis of OA.
Author Gavriilidis, Christos
Taylor, Robert W.
Young, David A.
Miwa, Satomi
von Zglinicki, Thomas
Author_xml – sequence: 1
  givenname: Christos
  surname: Gavriilidis
  fullname: Gavriilidis, Christos
– sequence: 2
  givenname: Satomi
  surname: Miwa
  fullname: Miwa, Satomi
– sequence: 3
  givenname: Thomas
  surname: von Zglinicki
  fullname: von Zglinicki, Thomas
– sequence: 4
  givenname: Robert W.
  surname: Taylor
  fullname: Taylor, Robert W.
– sequence: 5
  givenname: David A.
  surname: Young
  fullname: Young, David A.
  email: d.a.young@ncl.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23138846$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1qVDEYhoNU7HR04Q1IwI0uTpufk0zOshSrQkWQug45yXecDGeSMclhOjsvwWvslZjOTDdFMQTCB8_7QN7vDJ2EGACh15ScU0LYhUnlnC8Wij1DMypY1xDK6QmaEULahouOnqKznFd1ZFzwF-iUccqVauUMrb74Eu0yBpe8GbHb5WEKtvgYsA845gKx2pfJF59xvSbnaL0p4PDWlyV2cRvuf_1O8GMazT4WB5ynDaR45x1g5_N6KiYDZi_R88GMGV4d3zn6fv3h9upTc_P14-ery5vGciVZoywQ66jrCXN9K6xVtu1pS7tO9XIhhWTGUjWAWPSCC8cc76UYlISB2jpKPkfvDt5Nij8nyEWvfbYwjiZAnLKmrVCCd4p3_0eZYoq3vJ45evsEXcUphfqRPUVZJ-SD8M2Rmvo1OL1Jfm3STj8WXoGLA2BTzDnBoK0v--JKMn7UlOiHlepaut6vtCbeP0k8Sv_GHu1bP8Lu36C-_HZ7SPwBYzqx7A
CODEN ARHEAW
CitedBy_id crossref_primary_10_1016_j_freeradbiomed_2013_12_012
crossref_primary_10_1016_j_freeradbiomed_2018_08_038
crossref_primary_10_1186_s11658_023_00489_y
crossref_primary_10_3390_antiox6040098
crossref_primary_10_1002_jor_23882
crossref_primary_10_3390_cells10071839
crossref_primary_10_1038_s41401_021_00646_z
crossref_primary_10_1186_s13075_015_0792_1
crossref_primary_10_3389_fmed_2020_581402
crossref_primary_10_3390_antiox11122346
crossref_primary_10_3390_antiox8090370
crossref_primary_10_1371_journal_pone_0195864
crossref_primary_10_3389_fimmu_2024_1470907
crossref_primary_10_1155_2018_1368142
crossref_primary_10_1016_j_joca_2018_07_004
crossref_primary_10_1172_JCI95147
crossref_primary_10_1016_j_arr_2017_07_004
crossref_primary_10_3390_cells13110976
crossref_primary_10_1007_s11306_021_01778_3
crossref_primary_10_3390_molecules26226993
crossref_primary_10_1097_GME_0000000000002173
crossref_primary_10_29296_25877313_2024_04_06
crossref_primary_10_1177_1759720X221085952
crossref_primary_10_1097_BOR_0000000000000855
crossref_primary_10_3390_antiox10030419
crossref_primary_10_1016_j_coph_2015_03_004
crossref_primary_10_1016_j_cyto_2018_11_034
crossref_primary_10_1016_j_intimp_2020_106870
crossref_primary_10_3390_ijms23147553
crossref_primary_10_1136_annrheumdis_2016_210783
crossref_primary_10_1016_j_joca_2020_01_011
crossref_primary_10_3390_app12052334
crossref_primary_10_1097_CM9_0000000000000179
crossref_primary_10_1177_0960327120945779
crossref_primary_10_3389_fcell_2021_625497
crossref_primary_10_1074_jbc_M115_693523
crossref_primary_10_1371_journal_pone_0296033
crossref_primary_10_1186_s12891_023_06585_6
crossref_primary_10_1371_journal_pone_0112735
crossref_primary_10_1111_nyas_13407
crossref_primary_10_1371_journal_pone_0108896
crossref_primary_10_1126_scitranslmed_aan5372
crossref_primary_10_1002_jor_23651
crossref_primary_10_1038_s41598_021_94611_9
crossref_primary_10_1016_j_ejr_2018_12_004
crossref_primary_10_1016_j_preghy_2018_06_012
crossref_primary_10_5124_jkma_2024_67_10_620
crossref_primary_10_1177_039463201402700211
crossref_primary_10_1042_BST20150076
crossref_primary_10_1038_s41598_022_25844_5
crossref_primary_10_1016_j_lssr_2024_10_009
crossref_primary_10_3389_fphar_2021_642836
crossref_primary_10_1016_j_msec_2015_12_090
crossref_primary_10_3389_fgene_2019_01335
crossref_primary_10_1016_j_drudis_2021_03_002
crossref_primary_10_1016_j_joca_2021_06_013
crossref_primary_10_1038_s12276_025_01400_9
crossref_primary_10_1002_art_39182
crossref_primary_10_1016_j_freeradbiomed_2019_01_005
crossref_primary_10_1002_art_39460
crossref_primary_10_1002_jor_23327
crossref_primary_10_1016_j_freeradbiomed_2023_11_029
crossref_primary_10_1155_2021_6116890
crossref_primary_10_1155_2017_3619879
crossref_primary_10_1038_s41584_018_0001_0
crossref_primary_10_1016_j_ecoenv_2020_110293
crossref_primary_10_1186_s13023_024_03149_2
crossref_primary_10_1177_03000605221104764
crossref_primary_10_1038_s41413_021_00153_1
crossref_primary_10_33590_emj_10313855
crossref_primary_10_1016_j_clim_2024_110350
crossref_primary_10_1371_journal_pone_0069362
crossref_primary_10_1186_s12891_022_05911_8
crossref_primary_10_1038_s41413_020_00112_2
crossref_primary_10_1016_j_jbspin_2023_105642
crossref_primary_10_1016_j_arr_2022_101635
crossref_primary_10_1016_j_freeradbiomed_2015_05_008
crossref_primary_10_3389_fphys_2024_1290234
crossref_primary_10_1002_jbm_b_33988
crossref_primary_10_3390_antiox11091668
crossref_primary_10_3390_cells9040809
crossref_primary_10_1016_j_phrs_2021_105497
crossref_primary_10_1155_2020_4143802
crossref_primary_10_1016_j_imlet_2015_12_009
crossref_primary_10_1080_14789450_2019_1571918
crossref_primary_10_3390_ijms23031467
crossref_primary_10_1186_s12967_024_05752_0
crossref_primary_10_4110_in_2022_22_e14
crossref_primary_10_3390_antiox9080766
crossref_primary_10_14412_1996_7012_2021_4_7_12
crossref_primary_10_3390_antiox10060985
crossref_primary_10_1038_nrrheum_2017_50
crossref_primary_10_1016_j_joca_2019_05_010
crossref_primary_10_3390_molecules25235738
crossref_primary_10_1186_s13075_025_03509_8
crossref_primary_10_1002_ptr_6425
crossref_primary_10_1038_nrrheum_2014_162
crossref_primary_10_1038_s41467_019_09839_x
crossref_primary_10_1007_s11926_013_0323_5
crossref_primary_10_1016_j_joca_2014_12_016
crossref_primary_10_1136_annrheumdis_2014_206295
crossref_primary_10_1016_j_biopha_2020_110003
crossref_primary_10_1186_s13075_015_0566_9
crossref_primary_10_1002_jor_24936
crossref_primary_10_2147_JIR_S373898
crossref_primary_10_3390_biomedicines12092025
crossref_primary_10_3390_molecules25081990
crossref_primary_10_3892_mmr_2017_7124
crossref_primary_10_1002_art_39618
crossref_primary_10_1007_s00018_020_03497_9
Cites_doi 10.1080/09687860500041247
10.1016/j.freeradbiomed.2005.02.009
10.1002/art.23659
10.1016/S0014-5793(03)01386-3
10.1074/jbc.M709273200
10.1074/jbc.M310217200
10.1042/BST0330897
10.1002/art.23644
10.1002/art.10496
10.1016/j.joca.2005.04.002
10.1111/j.1469-7793.2003.00335.x
10.1016/j.joca.2005.06.011
10.1002/art.22174
10.1093/hmg/4.4.751
10.1002/art.21387
10.1136/ard.2009.119966
10.1371/journal.pbio.0050110
10.1074/jbc.273.43.28510
10.1242/jcs.072272
10.1016/S0891-5849(02)00905-X
10.1016/j.exger.2010.01.003
10.1002/art.21239
10.1074/jbc.M804178200
10.1038/ng.f.94
10.1073/pnas.96.3.846
10.1038/nrrheum.2010.213
10.1046/j.1474-9728.2002.00008.x
10.1038/msb.2010.5
10.1042/BJ20110162
10.1002/art.10837
10.1136/ard.2007.079574
10.1002/art.34508
10.1186/1471-2474-12-264
10.1016/j.freeradbiomed.2004.10.016
10.1136/ard.2010.133637
10.1074/mcp.M800292-MCP200
10.1016/j.freeradbiomed.2010.12.030
10.1042/bj3210095
10.1002/art.20149
10.1093/hmg/3.1.13
10.1136/ard.2009.117416
10.1016/j.tig.2010.05.006
10.1074/jbc.M907604199
10.1136/ard.2006.058347
10.1016/0006-291X(92)92300-M
10.1073/pnas.051627098
10.1093/carcin/11.8.1287
10.1136/ard.2008.105254
ContentType Journal Article
Copyright Copyright © 2013 by the American College of Rheumatology
Copyright © 2013 by the American College of Rheumatology.
Copyright_xml – notice: Copyright © 2013 by the American College of Rheumatology
– notice: Copyright © 2013 by the American College of Rheumatology.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7T5
7TM
7U7
C1K
H94
K9.
7X8
DOI 10.1002/art.37782
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Toxicology Abstracts
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Calcium & Calcified Tissue Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Toxicology Abstracts
Calcium & Calcified Tissue Abstracts

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1529-0131
2326-5205
EndPage 387
ExternalDocumentID 2876441561
23138846
10_1002_art_37782
ART37782
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: JGWP Patterson Foundation
– fundername: NIHR Newcastle Biomedical Research Centre based at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University
– fundername: Arthritis Research UK
  funderid: 18261
– fundername: Biotechnology and Biological Sciences Research Council
  funderid: BBSRC grant BB/I020748/1
– fundername: Newcastle University Hospitals Special Trustees, UK
– fundername: Arthritis Research UK
  grantid: 18261
– fundername: Medical Research Council
  grantid: G0601333
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/F010966/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/I020748/1
– fundername: Wellcome Trust
  grantid: 096919
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
10A
1CY
1KJ
1L6
1OB
1OC
1ZS
23N
24P
31~
33P
3O-
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52W
52X
53G
5GY
5RE
66C
6J9
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEVG
AAHHS
AAHQN
AAIPD
AAKAS
AAMNL
AANHP
AANLZ
AAQQT
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACMXC
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBTR
ADEOM
ADIZJ
ADMGS
ADNMO
ADOZA
ADZCM
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
BDRZF
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J5H
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LSO
LUTES
LW6
LYRES
M65
MEWTI
MJL
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NNB
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q11
QB0
QRW
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RXW
RYL
SAMSI
SJN
SUPJJ
SV3
TAE
TEORI
TWZ
UB1
V2E
V8K
V9Y
VH1
W8V
WH7
WIB
WIH
WIJ
WIK
WIN
WJL
WOW
WQJ
WRC
WUP
WXI
WXSBR
X6Y
X7M
XG1
XPP
XV2
YFH
YOC
ZGI
ZXP
ZZTAW
~IA
~WT
AAFWJ
AAYXX
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
0R~
3SF
52U
52V
5VS
7QL
7QP
7T5
7TM
7U7
AAESR
AASGY
ABLJU
ABPVW
ACGFS
ACGOF
ACIWK
ACPRK
ADBBV
ADKYN
ADXAS
ADZMN
AENEX
AEYWJ
AFRAH
AHMBA
ALAGY
ALVPJ
AZVAB
BFHJK
BHBCM
BMXJE
C1K
DIK
FUBAC
H94
K9.
KBYEO
NF~
O66
O9-
PQQKQ
WBKPD
WHWMO
WOHZO
WVDHM
7X8
ID FETCH-LOGICAL-c3862-8ce0cd1db02db45cc8c4b141998b676562ac18fe57b535d2d3b65f86ef1c5d263
IEDL.DBID DR2
ISSN 0004-3591
2326-5191
1529-0131
IngestDate Fri Jul 11 03:31:43 EDT 2025
Fri Jul 11 05:47:55 EDT 2025
Mon Jun 30 10:10:42 EDT 2025
Mon Jul 21 05:29:11 EDT 2025
Tue Jul 01 01:05:22 EDT 2025
Thu Apr 24 23:07:53 EDT 2025
Wed Jan 22 17:04:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2013 by the American College of Rheumatology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3862-8ce0cd1db02db45cc8c4b141998b676562ac18fe57b535d2d3b65f86ef1c5d263
Notes The views expressed herein are those of the authors and not necessarily those of the National Health Service (NHS), the National Institute for Health Research (NIHR), or the Department of Health.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 23138846
PQID 1282129569
PQPubID 946334
PageCount 10
ParticipantIDs proquest_miscellaneous_1458539839
proquest_miscellaneous_1282834333
proquest_journals_1282129569
pubmed_primary_23138846
crossref_citationtrail_10_1002_art_37782
crossref_primary_10_1002_art_37782
wiley_primary_10_1002_art_37782_ART37782
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2013
2013-02-00
2013-Feb
20130201
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: February 2013
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
– name: Atlanta
PublicationTitle Arthritis & rheumatology (Hoboken, N.J.)
PublicationTitleAlternate Arthritis Rheum
PublicationYear 2013
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Subscription Services, Inc
References 2011; 435
1990; 11
2006; 54
1983; 1
1992; 189
2002; 33
2008; 58
2002; 1
2000; 275
2011; 12
1995; 4
2003; 552
2005; 22
2008; 283
2011; 7
1998; 273
2010; 45
2011; 124
2004; 50
2004; 556
2010; 26
2004; 279
2010; 69
2006; 65
2002; 46
2011; 70
1997; 321
2011; 50
2005; 52
2003; 48
2008; 67
2009; 8
2007; 5
1999; 96
2009; 284
2008; 40
1996; 5
2005; 38
1994; 3
2005; 33
2012; 64
2010; 6
2005; 13
2001; 98
e_1_2_6_51_2
e_1_2_6_30_2
Wang M (e_1_2_6_43_2) 1996; 5
Stockwell RA (e_1_2_6_7_2) 1983
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_28_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_50_2
e_1_2_6_31_2
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_42_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 50
  start-page: 866
  year: 2011
  end-page: 73
  article-title: Impaired spare respiratory capacity in cortical synaptosomes from Sod2 null mice
  publication-title: Free Radic Biol Med
– volume: 279
  start-page: 13705
  year: 2004
  end-page: 10
  article-title: Extracellular superoxide dismutase (EC‐SOD) binds to type I collagen and protects against oxidative fragmentation
  publication-title: J Biol Chem
– volume: 1
  start-page: 253
  year: 1983
  end-page: 73
– volume: 46
  start-page: 2349
  year: 2002
  end-page: 57
  article-title: Detection of nitrotyrosine in aging and osteoarthritic cartilage: correlation of oxidative damage with the presence of interleukin‐1β and with chondrocyte resistance to insulin‐like growth factor 1
  publication-title: Arthritis Rheum
– volume: 69
  start-page: 910
  year: 2010
  end-page: 7
  article-title: Mitochondrial DNA haplogroups modulate the serum levels of biomarkers in patients with osteoarthritis
  publication-title: Ann Rheum Dis
– volume: 65
  start-page: 1261
  year: 2006
  end-page: 4
  article-title: Yet more evidence that osteoarthritis is not a cartilage disease
  publication-title: Ann Rheum Dis
– volume: 40
  start-page: 275
  year: 2008
  end-page: 9
  article-title: What causes mitochondrial DNA deletions in human cells?
  publication-title: Nat Genet
– volume: 435
  start-page: 297
  year: 2011
  end-page: 312
  article-title: Assessing mitochondrial dysfunction in cells
  publication-title: Biochem J
– volume: 70
  start-page: 646
  year: 2011
  end-page: 52
  article-title: Mitochondrial DNA haplogroups and serum levels of proteolytic enzymes in patients with osteoarthritis
  publication-title: Ann Rheum Dis
– volume: 96
  start-page: 846
  year: 1999
  end-page: 51
  article-title: Mitochondrial disease in superoxide dismutase 2 mutant mice
  publication-title: Proc Natl Acad Sci U S A
– volume: 1
  start-page: 57
  year: 2002
  end-page: 65
  article-title: The role of chondrocyte senescence in osteoarthritis
  publication-title: Aging Cell
– volume: 4
  start-page: 751
  year: 1995
  end-page: 4
  article-title: Unusual pattern of mitochondrial DNA deletions in skeletal muscle of an adult human with chronic fatigue syndrome
  publication-title: Hum Mol Genet
– volume: 67
  start-page: 1633
  year: 2008
  end-page: 41
  article-title: Differential Toll‐like receptor‐dependent collagenase expression in chondrocytes
  publication-title: Ann Rheum Dis
– volume: 7
  start-page: 161
  year: 2011
  end-page: 9
  article-title: The role of mitochondria in osteoarthritis
  publication-title: Nat Rev Rheumatol
– volume: 5
  start-page: e110
  year: 2007
  article-title: Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere‐dependent senescence
  publication-title: PLoS Biol
– volume: 275
  start-page: 20069
  year: 2000
  end-page: 76
  article-title: Evidence linking chondrocyte lipid peroxidation to cartilage matrix protein degradation: possible role in cartilage aging and the pathogenesis of osteoarthritis
  publication-title: J Biol Chem
– volume: 58
  start-page: 2387
  year: 2008
  end-page: 96
  article-title: Mitochondrial DNA haplogroups: role in the prevalence and severity of knee osteoarthritis
  publication-title: Arthritis Rheum
– volume: 11
  start-page: 1287
  year: 1990
  end-page: 92
  article-title: Vinyl chloride‐induced DNA adducts. II. Formation and persistence of 7‐(2'‐oxoethyl)guanine and N ,3‐ethenoguanine in rat tissue DNA
  publication-title: Carcinogenesis
– volume: 52
  start-page: 3479
  year: 2005
  end-page: 91
  article-title: Extracellular superoxide dismutase and oxidant damage in osteoarthritis
  publication-title: Arthritis Rheum
– volume: 13
  start-page: 643
  year: 2005
  end-page: 54
  article-title: Oxygen and reactive oxygen species in cartilage degradation: friends or foes?
  publication-title: Osteoarthritis Cartilage
– volume: 13
  start-page: 1004
  year: 2005
  end-page: 11
  article-title: Accumulation of mitochondrial DNA with 4977‐bp deletion in knee cartilage—an association with idiopathic osteoarthritis
  publication-title: Osteoarthritis Cartilage
– volume: 22
  start-page: 87
  year: 2005
  end-page: 100
  article-title: Protein import into mitochondria: origins and functions today
  publication-title: Mol Membr Biol
– volume: 33
  start-page: 337
  year: 2002
  end-page: 49
  article-title: Superoxide dismutase multigene family: a comparison of the CuZn‐SOD (SOD1), Mn‐SOD (SOD2), and EC‐SOD (SOD3) gene structures, evolution, and expression
  publication-title: Free Radic Biol Med
– volume: 69
  start-page: 210
  year: 2010
  end-page: 3
  article-title: Role of European mitochondrial DNA haplogroups in the prevalence of hip osteoarthritis in Galicia, Northern Spain
  publication-title: Ann Rheum Dis
– volume: 283
  start-page: 6058
  year: 2008
  end-page: 66
  article-title: Extracellular superoxide dismutase inhibits inflammation by preventing oxidative fragmentation of hyaluronan
  publication-title: J Biol Chem
– volume: 3
  start-page: 13
  year: 1994
  end-page: 9
  article-title: Distribution of wild‐type and common deletion forms of mtDNA in normal and respiration‐deficient muscle fibers from patients with mitochondrial myopathy
  publication-title: Hum Mol Genet
– volume: 45
  start-page: 466
  year: 2010
  end-page: 72
  article-title: The sites and topology of mitochondrial superoxide production
  publication-title: Exp Gerontol
– volume: 284
  start-page: 9132
  year: 2009
  end-page: 9
  article-title: Effects of hyaluronic acid on mitochondrial function and mitochondria‐driven apoptosis following oxidative stress in human chondrocytes
  publication-title: J Biol Chem
– volume: 98
  start-page: 2278
  year: 2001
  end-page: 83
  article-title: Increased mitochondrial oxidative stress in the Sod2 mouse results in the age‐related decline of mitochondrial function culminating in increased apoptosis
  publication-title: Proc Natl Acad Sci U S A
– volume: 556
  start-page: 111
  year: 2004
  end-page: 5
  article-title: Production of endogenous matrix superoxide from mitochondrial complex I leads to activation of uncoupling protein 3
  publication-title: FEBS Lett
– volume: 124
  start-page: 348
  year: 2011
  end-page: 58
  article-title: A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells
  publication-title: J Cell Sci
– volume: 48
  start-page: 700
  year: 2003
  end-page: 8
  article-title: Mitochondrial respiratory activity is altered in osteoarthritic human articular chondrocytes
  publication-title: Arthritis Rheum
– volume: 64
  start-page: 2927
  year: 2012
  end-page: 36
  article-title: Mitochondrial dysfunction increases inflammatory responsiveness to cytokines in normal human chondrocytes
  publication-title: Arthritis Rheum
– volume: 38
  start-page: 12
  year: 2005
  end-page: 23
  article-title: Mitochondrial H leak and ROS generation: an odd couple
  publication-title: Free Radic Biol Med
– volume: 58
  start-page: 2409
  year: 2008
  end-page: 19
  article-title: Mitochondrial dysfunction activates cyclooxygenase 2 expression in cultured normal human chondrocytes
  publication-title: Arthritis Rheum
– volume: 6
  start-page: 347
  year: 2010
  article-title: Feedback between p21 and reactive oxygen production is necessary for cell senescence
  publication-title: Mol Syst Biol
– volume: 26
  start-page: 340
  year: 2010
  end-page: 3
  article-title: Repeats, longevity and the sources of mtDNA deletions: evidence from ‘deletional spectra’
  publication-title: Trends Genet
– volume: 8
  start-page: 172
  year: 2009
  end-page: 89
  article-title: Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics: a decrease in mitochondrial superoxide dismutase points to a redox imbalance
  publication-title: Mol Cell Proteomics
– volume: 38
  start-page: 1458
  year: 2005
  end-page: 70
  article-title: Heterozygous deficiency of manganese superoxide dismutase results in severe lipid peroxidation and spontaneous apoptosis in murine myocardium in vivo
  publication-title: Free Radic Biol Med
– volume: 54
  start-page: 3533
  year: 2006
  end-page: 44
  article-title: Large‐scale gene expression profiling reveals major pathogenetic pathways of cartilage degeneration in osteoarthritis
  publication-title: Arthritis Rheum
– volume: 273
  start-page: 28510
  year: 1998
  end-page: 5
  article-title: Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout mice
  publication-title: J Biol Chem
– volume: 12
  start-page: 264
  year: 2011
  article-title: Mitochondrial DNA (mtDNA) haplogroups and serum levels of anti‐oxidant enzymes in patients with osteoarthritis
  publication-title: BMC Musculoskelet Disord
– volume: 321
  start-page: 95
  year: 1997
  end-page: 102
  article-title: Evidence for a negative Pasteur effect in articular cartilage
  publication-title: Biochem J
– volume: 33
  start-page: 897
  year: 2005
  end-page: 904
  article-title: The efficiency and plasticity of mitochondrial energy transduction
  publication-title: Biochem Soc Trans
– volume: 552
  start-page: 335
  year: 2003
  end-page: 44
  article-title: Mitochondrial formation of reactive oxygen species
  publication-title: J Physiol
– volume: 50
  start-page: 1216
  year: 2004
  end-page: 25
  article-title: Mediation of spontaneous knee osteoarthritis by progressive chondrocyte ATP depletion in Hartley guinea pigs
  publication-title: Arthritis Rheum
– volume: 5
  start-page: 705
  year: 1996
  end-page: 10
  article-title: Lipid peroxidation‐induced putative malondialdehyde‐DNA adducts in human breast tissues
  publication-title: Cancer Epidemiol Biomarkers Prev
– volume: 69
  start-page: 1502
  year: 2010
  end-page: 10
  article-title: Superoxide dismutase downregulation in osteoarthritis progression and end‐stage disease
  publication-title: Ann Rheum Dis
– volume: 189
  start-page: 979
  year: 1992
  end-page: 85
  article-title: Age‐associated oxygen damage and mutations in mitochondrial DNA in human hearts
  publication-title: Biochem Biophys Res Commun
– volume: 52
  start-page: 2799
  year: 2005
  end-page: 807
  article-title: The presence of molecular markers of in vivo lipid peroxidation in osteoarthritic cartilage: a pathogenic role in osteoarthritis
  publication-title: Arthritis Rheum
– ident: e_1_2_6_2_2
  doi: 10.1080/09687860500041247
– ident: e_1_2_6_45_2
  doi: 10.1016/j.freeradbiomed.2005.02.009
– ident: e_1_2_6_31_2
  doi: 10.1002/art.23659
– ident: e_1_2_6_51_2
  doi: 10.1016/S0014-5793(03)01386-3
– ident: e_1_2_6_14_2
  doi: 10.1074/jbc.M709273200
– ident: e_1_2_6_15_2
  doi: 10.1074/jbc.M310217200
– ident: e_1_2_6_23_2
  doi: 10.1042/BST0330897
– ident: e_1_2_6_8_2
  doi: 10.1002/art.23644
– ident: e_1_2_6_12_2
  doi: 10.1002/art.10496
– ident: e_1_2_6_11_2
  doi: 10.1016/j.joca.2005.04.002
– ident: e_1_2_6_3_2
  doi: 10.1111/j.1469-7793.2003.00335.x
– ident: e_1_2_6_10_2
  doi: 10.1016/j.joca.2005.06.011
– ident: e_1_2_6_17_2
  doi: 10.1002/art.22174
– ident: e_1_2_6_36_2
  doi: 10.1093/hmg/4.4.751
– ident: e_1_2_6_18_2
  doi: 10.1002/art.21387
– ident: e_1_2_6_16_2
  doi: 10.1136/ard.2009.119966
– ident: e_1_2_6_21_2
  doi: 10.1371/journal.pbio.0050110
– ident: e_1_2_6_39_2
  doi: 10.1074/jbc.273.43.28510
– ident: e_1_2_6_24_2
  doi: 10.1242/jcs.072272
– ident: e_1_2_6_4_2
  doi: 10.1016/S0891-5849(02)00905-X
– ident: e_1_2_6_32_2
  doi: 10.1016/j.exger.2010.01.003
– ident: e_1_2_6_44_2
  doi: 10.1002/art.21239
– ident: e_1_2_6_40_2
  doi: 10.1074/jbc.M804178200
– ident: e_1_2_6_35_2
  doi: 10.1038/ng.f.94
– ident: e_1_2_6_38_2
  doi: 10.1073/pnas.96.3.846
– ident: e_1_2_6_25_2
  doi: 10.1038/nrrheum.2010.213
– ident: e_1_2_6_49_2
  doi: 10.1046/j.1474-9728.2002.00008.x
– ident: e_1_2_6_47_2
  doi: 10.1038/msb.2010.5
– ident: e_1_2_6_22_2
  doi: 10.1042/BJ20110162
– ident: e_1_2_6_9_2
  doi: 10.1002/art.10837
– ident: e_1_2_6_20_2
  doi: 10.1136/ard.2007.079574
– ident: e_1_2_6_26_2
  doi: 10.1002/art.34508
– ident: e_1_2_6_27_2
  doi: 10.1186/1471-2474-12-264
– ident: e_1_2_6_50_2
  doi: 10.1016/j.freeradbiomed.2004.10.016
– ident: e_1_2_6_30_2
  doi: 10.1136/ard.2010.133637
– ident: e_1_2_6_19_2
  doi: 10.1074/mcp.M800292-MCP200
– ident: e_1_2_6_46_2
  doi: 10.1016/j.freeradbiomed.2010.12.030
– ident: e_1_2_6_6_2
  doi: 10.1042/bj3210095
– ident: e_1_2_6_48_2
  doi: 10.1002/art.20149
– ident: e_1_2_6_33_2
  doi: 10.1093/hmg/3.1.13
– ident: e_1_2_6_29_2
  doi: 10.1136/ard.2009.117416
– ident: e_1_2_6_37_2
  doi: 10.1016/j.tig.2010.05.006
– ident: e_1_2_6_13_2
  doi: 10.1074/jbc.M907604199
– ident: e_1_2_6_5_2
  doi: 10.1136/ard.2006.058347
– volume: 5
  start-page: 705
  year: 1996
  ident: e_1_2_6_43_2
  article-title: Lipid peroxidation‐induced putative malondialdehyde‐DNA adducts in human breast tissues
  publication-title: Cancer Epidemiol Biomarkers Prev
– start-page: 253
  year: 1983
  ident: e_1_2_6_7_2
– ident: e_1_2_6_34_2
  doi: 10.1016/0006-291X(92)92300-M
– ident: e_1_2_6_42_2
  doi: 10.1073/pnas.051627098
– ident: e_1_2_6_41_2
  doi: 10.1093/carcin/11.8.1287
– ident: e_1_2_6_28_2
  doi: 10.1136/ard.2008.105254
SSID ssj0002353
ssj0000970605
Score 2.4474025
Snippet Objective Superoxide dismutase 2 (SOD2) is down‐ regulated in osteoarthritis (OA). This study was undertaken to investigate the functional effects of this...
Superoxide dismutase 2 (SOD2) is down- regulated in osteoarthritis (OA). This study was undertaken to investigate the functional effects of this...
Objective Superoxide dismutase 2 (SOD2) is down- regulated in osteoarthritis (OA). This study was undertaken to investigate the functional effects of this...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 378
SubjectTerms Cartilage, Articular - enzymology
Cells, Cultured
Chondrocytes - enzymology
Down-Regulation
Humans
Lipid Peroxidation
Lipids
Mitochondria - enzymology
Mitochondria - genetics
Mitochondrial DNA
Osteoarthritis - enzymology
Osteoarthritis - genetics
Reactive Oxygen Species - metabolism
Superoxide Dismutase - genetics
Superoxide Dismutase - metabolism
Title Mitochondrial dysfunction in osteoarthritis is associated with down‐regulation of superoxide dismutase 2
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fart.37782
https://www.ncbi.nlm.nih.gov/pubmed/23138846
https://www.proquest.com/docview/1282129569
https://www.proquest.com/docview/1282834333
https://www.proquest.com/docview/1458539839
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hDqiXFvpcoCu36oFLltjjZBP1VFVd0VbLARWJQ6UofkTdFrKI7ErAiZ_Ab-SXdCYvRGmrqtIesso4sjMezzfOzGeAN4XD1GiuzEVrKEApXJArGwYyl-PEcK6F5-Lk6X68d6g_HUVHK_C2q4Vp-CH6DTe2jHq9ZgPPTbV7SxpKb3aEY3JwtP5yrhYDooNb6iiFLQMl7_xHqexYhUK127e864vuAcy7eLV2OJNH8LXrapNn8mO0XJiRvfyFxfE_x7IOD1sgKt41M2cDVnz5GNam7af2J_B9SrZOa2PpeIoKd1GxC2Q1ilkpuDRkTs_7VnMiCfrlrZ69E7y3KxyF9zdX12fNWffcbF6Iasm85Ocz54WbVSecD-6FegqHkw9f3u8F7cEMgUWKgILE-tA66UyonNGRtYnVRmou1zPxmBCiyq1MCh-NTYSRUw5J60US-0Ja-hvjM1gt56V_ASIm_EKCKOPcaY06RWnSRPkwokY29gPY6VSU2Za1nA_POM4avmWV0Viz-t0N4HUvetpQdfxOaLvTc9Zaa5WRjyYPTpFiOoBX_W2yM_54kpd-vmxkEtSI-BcZTcEXpoQ5B_C8mUN9TwhHY0JgjwZUz4Q_dzGjSKa-2Px30S14oOpzOjjPZhtWF2dL_5LQ0sIMySw-fh7WxvETUdUTrg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIgEX_mkDBRYEEhen3h879oEDolQpbXpArdSb8f6YBqiN6kSlnHgEHoRX4SV4EmbstavyJy49IOWQKGNrdj2z-8165huAR4WVqVZUmSuNxgClsEEuTBjwnI8STbkWjoqTJ9vxeFe93Iv2FuBrVwvT8kP0B27kGc16TQ5OB9KrJ6yhOLVDOcIdzqdUbrrjIwzY6qcba_h0Hwux_mLn-TjwPQUCIxG8B4lxobHc6lBYrSJjEqM0V1RppuMRghuRG54ULhrpSEZWWIkKF0nsCm7wZyzxvufgPHUQJ6b-tVcnZFVCes5LetcQpbzjMQrFaq_q6d3vF0h7GiE3W9z6FfjWTU6b2fJuOJ_pofn0E2_k_zJ7V-Gyx9rsWesc12DBldfhwsRnE9yAtxNcznD5Ly15IbPHNe3yZKlsWjKqfqlQ__2G9onhJ_em7Cyj42tmq6Py--cvh-6N74HGqoLVc6Je_zi1jtlpfUAp746Jm7B7JiO9BYtlVbplYDFCNBSUPM6tUlKlkus0ES6M8CITuwE86WwiM56YnfqDvM9aSmmR4Viz5lkN4GEv-qFlI_md0EpnWJlfkOoMYQiCFAyG0wE86P_GpYTeD-Wlq-atTCKVlPIvMgrjS5kirB7AUmu0vSYYKsgE8SwOqDG9P6uYYbDWfLn976L34eJ4Z7KVbW1sb96BS6JpS0JpRSuwODucu7sIDmf6XuOTDF6ftRn_AAgKcSc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIlVcyj8ECiwIJC5OvT927AMHRIhaSiqEqNSb8f4YUsCu6kSlnHgE3oNX4Sl4EmbstavyJy49IOWQKJNodj0z-4098w3A_cLKVCvqzJVGY4JS2CAXJgx4zkeJploLR83J0-14Y0c92412l-Br1wvT8kP0N9zIM5p4TQ6-b4v1Y9JQ3NmhHOEB5ysqt9zRIeZr9aPNMV7cB0JMnr56shH4kQKBkYjdg8S40FhudSisVpExiVGaK2o00_EIsY3IDU8KF410JCMrrER9iyR2BTf4MZb4v2fgrIrDlOZEjF8ec1UJ6Skv6VFDlPKOxigU672qJw-_XxDtSYDcnHCT8_Ct25u2sOXdcDHXQ_PpJ9rI_2TzLsCqR9rscesaF2HJlZdgZeprCS7D3hSDGQb_0pIPMntU0xlPdspmJaPelwr1f9uQPjF85d6QnWV085rZ6rD8_vnLgXvjJ6CxqmD1gojXP86sY3ZWf6CCd8fEFdg5lZVeheWyKt11YDECNBSUPM6tUlKlkus0ES6M8EcmdgN42JlEZjwtO00HeZ-1hNIiw7VmzbUawL1edL_lIvmd0FpnV5kPR3WGIAQhCqbC6QDu9l9jIKGnQ3npqkUrk0glpfyLjMLsUqYIqgdwrbXZXhNMFGSCaBYX1Fjen1XMMFVr3tz4d9E7sPJiPMmeb25v3YRzoplJQjVFa7A8P1i4W4gM5_p245EMXp-2Ff8AOBxv1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+dysfunction+in+osteoarthritis+is+associated+with+down-regulation+of+superoxide+dismutase+2&rft.jtitle=Arthritis+%26+rheumatology+%28Hoboken%2C+N.J.%29&rft.au=Gavriilidis%2C+Christos&rft.au=Miwa%2C+Satomi&rft.au=von+Zglinicki%2C+Thomas&rft.au=Taylor%2C+Robert+W&rft.date=2013-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=2326-5191&rft.eissn=2326-5205&rft.volume=65&rft.issue=2&rft.spage=378&rft_id=info:doi/10.1002%2Fart.37782&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2876441561
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-3591&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-3591&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-3591&client=summon