Comparison of the effectiveness of variable selection method for creating a diagnostic panel of biomarkers for mass spectrometric lipidome analysis
Hundreds of compounds are detected during untargeted lipidomics analysis. The potential efficacy of lipids as disease markers makes it important to select the species with the most discriminative potential. Datasets based on a selected class of lipids allow the development of a high‐quality diagnost...
Saved in:
Published in | Journal of mass spectrometry. Vol. 56; no. 3; pp. e4702 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hundreds of compounds are detected during untargeted lipidomics analysis. The potential efficacy of lipids as disease markers makes it important to select the species with the most discriminative potential. Datasets based on a selected class of lipids allow the development of a high‐quality diagnostic model using orthogonal projection on latent structure. The combination of selection of lipids by variable importance in projection and by Akaike information criteria makes it possible to build a reliable diagnostic model based on logistic regression. |
---|---|
AbstractList | Hundreds of compounds are detected during untargeted lipidomics analysis. The potential efficacy of lipids as disease markers makes it important to select the species with the most discriminative potential. Datasets based on a selected class of lipids allow the development of a high‐quality diagnostic model using orthogonal projection on latent structure. The combination of selection of lipids by variable importance in projection and by Akaike information criteria makes it possible to build a reliable diagnostic model based on logistic regression. Abstract Hundreds of compounds are detected during untargeted lipidomics analysis. The potential efficacy of lipids as disease markers makes it important to select the species with the most discriminative potential. Datasets based on a selected class of lipids allow the development of a high‐quality diagnostic model using orthogonal projection on latent structure. The combination of selection of lipids by variable importance in projection and by Akaike information criteria makes it possible to build a reliable diagnostic model based on logistic regression. |
Author | Chagovets, Vitaliy V. Frankevich, Vladimir E. Nikolaev, Evgeny N. Starodubtseva, Natalia L. Tokareva, Alisa O. Kononikhin, Alexey S. |
Author_xml | – sequence: 1 givenname: Alisa O. surname: Tokareva fullname: Tokareva, Alisa O. organization: Russian Academy of Sciences – sequence: 2 givenname: Vitaliy V. surname: Chagovets fullname: Chagovets, Vitaliy V. organization: Healthcare of Russian Federation – sequence: 3 givenname: Alexey S. surname: Kononikhin fullname: Kononikhin, Alexey S. organization: Skolkovo Institute of Science and Technology – sequence: 4 givenname: Natalia L. surname: Starodubtseva fullname: Starodubtseva, Natalia L. organization: Healthcare of Russian Federation – sequence: 5 givenname: Evgeny N. surname: Nikolaev fullname: Nikolaev, Evgeny N. organization: Skolkovo Institute of Science and Technology – sequence: 6 givenname: Vladimir E. surname: Frankevich fullname: Frankevich, Vladimir E. email: vfrankevich@gmail.com organization: Healthcare of Russian Federation |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33629457$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctu1TAQhi1URC8g8QTIEhs2aX13skRH0IJasQDWkZOMWx-cOHhyis5z9IXrtAUkJFb2zHz-NNZ_TA6mNAEhrzk75YyJs-2Ip8oy8YwccdaYqqnr-mC9W1NpbtUhOUbcMsaaRpkX5FBKIxql7RG526RxdjlgmmjydLkBCt5Dv4RbmABxbd6WuesiUIS4Tgo6wnKTBupTpn0Gt4Tpmjo6BHc9JVxCT2c3QVwfdyGNLv-AjA_06IoT56LJqUhyQWOYw1AK6iYX9xjwJXnuXUR49XSekO8fP3zbXFSXX84_bd5fVr2sjai0UzB4xbRrPPOqEazjpVJagOy4F44JPXAnau6M72qjjOql630tO-m09fKEvHv0zjn93AEu7RiwhxjL7mmHrVCNVKqx1hb07T_oNu1y2bdQmgkhaqPtX2GfE2IG3845lN_vW87aNai2BNWuQRX0zZNw140w_AF_J1OA6hH4FSLs_ytqP199fRDeA3oYoLk |
CitedBy_id | crossref_primary_10_3390_biomedicines11071786 crossref_primary_10_3390_metabo12090883 crossref_primary_10_3390_children10101693 crossref_primary_10_3390_diagnostics13010102 crossref_primary_10_3390_ijms242316832 |
Cites_doi | 10.1016/j.bbadis.2012.05.008 10.1371/journal.pone.0095328 10.18637/jss.v033.i01 10.1371/journal.pone.0224365 10.1371/journal.pone.0164173 10.1136/bmjopen-2016-012799 10.1023/A:1010933404324 10.1002/jms.4457 10.1016/j.chemolab.2015.05.001 10.18565/aig.2019.11.136-151 10.1021/acs.jafc.8b04375 10.1038/nrendo.2016.98 10.1186/s12859-017-1744-3 10.1016/j.trac.2011.04.019 10.1002/cem.695 10.1016/j.aca.2015.02.012 10.1161/ATVBAHA.111.234096 10.1186/1471-2105-10-213 10.1023/A:1009715923555 10.1111/j.2517-6161.1996.tb02080.x 10.3390/ijms21124568 10.1016/j.jsat.2017.02.015 10.1109/TAC.1974.1100705 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2021 John Wiley & Sons, Ltd. |
DBID | NPM AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7U7 8BQ 8FD C1K F1W F28 FR3 H8D H8G H97 JG9 JQ2 K9. KR7 L.G L7M L~C L~D P64 7X8 |
DOI | 10.1002/jms.4702 |
DatabaseName | PubMed CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional ASFA: Aquatic Sciences and Fisheries Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1096-9888 |
EndPage | n/a |
ExternalDocumentID | 10_1002_jms_4702 33629457 JMS4702 |
Genre | article Journal Article |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AQPKS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 TUS UB1 UQL V2E VH1 W8V W99 WBFHL WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WRJ WXSBR WYISQ XG1 XPP XV2 ZCG ZZTAW ~02 ~IA ~KM ~WT NPM AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7U7 8BQ 8FD C1K F1W F28 FR3 H8D H8G H97 JG9 JQ2 K9. KR7 L.G L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c3862-5a4edf405a9f0f4920b1405452e3b1f2a025d1a281a6fb86464c3acf83b3a57f3 |
IEDL.DBID | DR2 |
ISSN | 1076-5174 |
IngestDate | Sat Aug 17 00:25:51 EDT 2024 Thu Oct 10 16:50:23 EDT 2024 Wed Aug 28 12:33:44 EDT 2024 Sat Sep 28 08:34:51 EDT 2024 Sat Aug 24 01:07:12 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | mass spectrometry AIC logistic regression biomarkers feature selection LASSO |
Language | English |
License | 2021 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3862-5a4edf405a9f0f4920b1405452e3b1f2a025d1a281a6fb86464c3acf83b3a57f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 33629457 |
PQID | 2502228657 |
PQPubID | 1006399 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2493449777 proquest_journals_2502228657 crossref_primary_10_1002_jms_4702 pubmed_primary_33629457 wiley_primary_10_1002_jms_4702_JMS4702 |
PublicationCentury | 2000 |
PublicationDate | March 2021 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Bognor Regis |
PublicationTitle | Journal of mass spectrometry. |
PublicationTitleAlternate | J Mass Spectrom |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2002; 16 2010; 33 2015; 146 2012; 1822 2019; 14 2011; 31 2011; 30 2006 2020; 55 2012; 16 1996; 58 2018; 66 2001; 45 1974; 19 2016; 12 2016; 11 2018; 19 2016; 6 2009; 10 2019; 20 2017; 77 2019 2017 2015; 879 2016 1998; 2 2017; 18 2014 2020; 21 2014; 9 e_1_2_6_10_1 e_1_2_6_31_1 Hla T (e_1_2_6_30_1) 2012; 16 Bishop CM (e_1_2_6_13_1) 2006 Umetrics (e_1_2_6_28_1) 2016 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 Almasi A (e_1_2_6_12_1) 2018; 19 e_1_2_6_21_1 Mertens BJA (e_1_2_6_3_1) 2017 e_1_2_6_20_1 Ranasinghe L (e_1_2_6_19_1) 2019; 20 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 Tibshirani R (e_1_2_6_16_1) 1996; 58 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 Liebeke M (e_1_2_6_5_1) 2014 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 77 start-page: 1 year: 2017 end-page: 5 article-title: Plasma metabolic biomarkers for discriminating individuals with alcohol use disorders from social drinkers and alcohol‐naive subjects publication-title: J Subst Abuse Treat – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random forests publication-title: Mach Learn – volume: 18 start-page: 1 year: 2017 end-page: 11 article-title: LipidMatch: an automated workflow for rule‐based lipid identification using untargeted high‐resolution tandem mass spectrometry data publication-title: BMC Bioinformatics – volume: 1822 start-page: 1442 issue: 9 year: 2012 end-page: 1452 article-title: Functions of plasmalogen lipids in health and disease publication-title: Biochim Biophys Acta ‐ Mol Basis Dis – volume: 146 start-page: 297 year: 2015 end-page: 304 article-title: Variable influence on projection (VIP) for OPLS models and its applicability in multivariate time series analysis publication-title: Chemom Intel Lab Syst – volume: 55 start-page: 2 year: 2020 article-title: Feature selection for OPLS discriminant analysis of cancer tissue lipidomics data publication-title: J Mass Spectrom – start-page: 213 year: 2017 end-page: 238 – start-page: 136 year: 2019 end-page: 151 article-title: Possibilities for predicting recurrent uterine myoma by plasma lipidomic analysis publication-title: Akusherstvo I Ginekol (Russian Fed) – volume: 31 start-page: 2723 issue: 11 year: 2011 end-page: 2732 article-title: Plasma lipidomic analysis of stable and unstable coronary artery disease publication-title: Arterioscler Thromb Vasc Biol – volume: 9 start-page: 1 year: 2014 end-page: 7 article-title: Plasma lipidomic profiling of treated HIV‐positive individuals and the implications for cardiovascular risk prediction publication-title: PLoS One – volume: 20 start-page: 1 year: 2019 end-page: 4 article-title: Relationship between serum markers and volume of liver metastases in castration‐resistant prostate cancer publication-title: Cancer Treat Res Commun – year: 2014 – start-page: 1 year: 2016 end-page: 9 article-title: Analysis, multivariate questions, frequently asked publication-title: Umetrics Knowl Base – volume: 30 start-page: 1685 issue: 10 year: 2011 end-page: 1698 article-title: Data‐processing strategies for metabolomics studies publication-title: TrAC‐Trends Anal Chem – volume: 14 start-page: 1 year: 2019 end-page: 20 article-title: Machine learning algorithm validation with a limited sample size publication-title: PLoS One – volume: 19 start-page: 1 year: 2018 end-page: 5 article-title: Penalized regression versus random forest model in analyzing high dimensional proteomic data: diagnosis of IgA nephropathy publication-title: Shiraz E Med J – volume: 19 start-page: 716 issue: 6 year: 1974 end-page: 723 article-title: A new look at the statistical model identification publication-title: IEEE Trans Automat Contr – volume: 10 start-page: 1 year: 2009 end-page: 16 article-title: A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data publication-title: BMC Bioinformatics – volume: 879 start-page: 10 year: 2015 end-page: 23 article-title: A tutorial review: metabolomics and partial least squares‐discriminant analysis—a marriage of convenience or a shotgun wedding publication-title: Anal Chim Acta – start-page: 326 year: 2006 end-page: 344 – volume: 16 start-page: 119 issue: 3 year: 2002 end-page: 128 article-title: Orthogonal projections to latent structures (O‐PLS) publication-title: J Chemometr – volume: 16 start-page: 420 year: 2012 end-page: 434 article-title: Review Sphingolipid signaling in metabolic disorders publication-title: Cmet – volume: 6 start-page: 1 year: 2016 end-page: 17 article-title: STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration publication-title: BMJ Open – volume: 2 start-page: 121 issue: 2 year: 1998 end-page: 167 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min Knowl Discov – volume: 11 start-page: 1 year: 2016 end-page: 16 article-title: Detection of independent associations of plasma lipidomic parameters with insulin sensitivity indices using data mining methodology publication-title: PLoS One – volume: 58 start-page: 267 year: 1996 end-page: 288 article-title: Regression shrinkage and selection via the Lasso publication-title: J R Stat Soc Ser B – volume: 33 start-page: 1 issue: 1 year: 2010 end-page: 22 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J Stat Softw – volume: 12 start-page: 668 issue: 11 year: 2016 end-page: 679 article-title: Lipidomics for studying metabolism publication-title: Nat Rev Endocrinol – volume: 66 start-page: 10567 issue: 40 year: 2018 end-page: 10574 article-title: Identification of peptide biomarkers for discrimination of shrimp species through SWATH‐MS‐based proteomics and Chemometrics publication-title: J Agric Food Chem – volume: 21 start-page: 1 year: 2020 end-page: 11 article-title: Validation of breast cancer margins by tissue spray mass spectrometry publication-title: Int J Mol Sci – ident: e_1_2_6_31_1 doi: 10.1016/j.bbadis.2012.05.008 – volume: 16 start-page: 420 year: 2012 ident: e_1_2_6_30_1 article-title: Review Sphingolipid signaling in metabolic disorders publication-title: Cmet contributor: fullname: Hla T – ident: e_1_2_6_22_1 doi: 10.1371/journal.pone.0095328 – ident: e_1_2_6_17_1 doi: 10.18637/jss.v033.i01 – start-page: 326 volume-title: Pattern Recognition and Machine Learning year: 2006 ident: e_1_2_6_13_1 contributor: fullname: Bishop CM – ident: e_1_2_6_27_1 doi: 10.1371/journal.pone.0224365 – ident: e_1_2_6_20_1 doi: 10.1371/journal.pone.0164173 – start-page: 213 volume-title: Statistical Analysis of Proteomics year: 2017 ident: e_1_2_6_3_1 contributor: fullname: Mertens BJA – ident: e_1_2_6_4_1 doi: 10.1136/bmjopen-2016-012799 – volume-title: Mass Spectrometry in Metabolomics year: 2014 ident: e_1_2_6_5_1 contributor: fullname: Liebeke M – ident: e_1_2_6_10_1 doi: 10.1023/A:1010933404324 – ident: e_1_2_6_25_1 doi: 10.1002/jms.4457 – ident: e_1_2_6_7_1 doi: 10.1016/j.chemolab.2015.05.001 – ident: e_1_2_6_23_1 doi: 10.18565/aig.2019.11.136-151 – start-page: 1 year: 2016 ident: e_1_2_6_28_1 article-title: Analysis, multivariate questions, frequently asked publication-title: Umetrics Knowl Base contributor: fullname: Umetrics – volume: 20 start-page: 1 year: 2019 ident: e_1_2_6_19_1 article-title: Relationship between serum markers and volume of liver metastases in castration‐resistant prostate cancer publication-title: Cancer Treat Res Commun contributor: fullname: Ranasinghe L – volume: 19 start-page: 1 year: 2018 ident: e_1_2_6_12_1 article-title: Penalized regression versus random forest model in analyzing high dimensional proteomic data: diagnosis of IgA nephropathy publication-title: Shiraz E Med J contributor: fullname: Almasi A – ident: e_1_2_6_8_1 doi: 10.1021/acs.jafc.8b04375 – ident: e_1_2_6_29_1 doi: 10.1038/nrendo.2016.98 – ident: e_1_2_6_26_1 doi: 10.1186/s12859-017-1744-3 – ident: e_1_2_6_2_1 doi: 10.1016/j.trac.2011.04.019 – ident: e_1_2_6_6_1 doi: 10.1002/cem.695 – ident: e_1_2_6_15_1 doi: 10.1016/j.aca.2015.02.012 – ident: e_1_2_6_21_1 doi: 10.1161/ATVBAHA.111.234096 – ident: e_1_2_6_11_1 doi: 10.1186/1471-2105-10-213 – ident: e_1_2_6_14_1 doi: 10.1023/A:1009715923555 – volume: 58 start-page: 267 year: 1996 ident: e_1_2_6_16_1 article-title: Regression shrinkage and selection via the Lasso publication-title: J R Stat Soc Ser B doi: 10.1111/j.2517-6161.1996.tb02080.x contributor: fullname: Tibshirani R – ident: e_1_2_6_24_1 doi: 10.3390/ijms21124568 – ident: e_1_2_6_9_1 doi: 10.1016/j.jsat.2017.02.015 – ident: e_1_2_6_18_1 doi: 10.1109/TAC.1974.1100705 |
SSID | ssj0009946 |
Score | 2.4082186 |
Snippet | Hundreds of compounds are detected during untargeted lipidomics analysis. The potential efficacy of lipids as disease markers makes it important to select the... Abstract Hundreds of compounds are detected during untargeted lipidomics analysis. The potential efficacy of lipids as disease markers makes it important to... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e4702 |
SubjectTerms | AIC Biomarkers Diagnostic systems feature selection LASSO Lipids logistic regression mass spectrometry Regression analysis Regression models Spectrometry |
Title | Comparison of the effectiveness of variable selection method for creating a diagnostic panel of biomarkers for mass spectrometric lipidome analysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjms.4702 https://www.ncbi.nlm.nih.gov/pubmed/33629457 https://www.proquest.com/docview/2502228657 https://search.proquest.com/docview/2493449777 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZQOcCF90JhqYyEuKWtH3Hi426XqlppOcBWqsQhshN7Vei2q6blsH9j_zAzdtKqi5AQpyiJJ07G9vizM_MNIR-dUaWXuUqUT8tEMicSK1KWpBX3kpWacYP7HRdf1GQqz2fprPGqxFiYyA-x23DDkRHsNQ5wY-vBnjT0x3Xdl1ngkWQiQ2-us6975iitY2ARLNMTJGNueWeHfNAKHs5Ef8DLQ7QappvxU_K9fdHoZfKzv93Yfnl7j8Px_77kGXnSoFB6ErvNc_LALV-QR6M2-dtLcjfa5SekK08BJdLo-dEYR7z4C-5j4BWtQy4daGAa81FTAMI0otHlFTW0iu58UBcF2-MWKIxh_-gZtK5D6WvA8DREfSJ9AmYNoIv5zbyCE2oa3pRXZDr-fDmaJE3-hqQUsFBKUiNd5QERGu2HXmo-tLCcw6TmTljmuQG8VTHDc2aUt7mSSpbClD4XVpg08-KIdJarpXtDqE6HFdOl1lxZmXthXO4sqMyCHFjIvEs-tG1Z3ESajiISMvMC1FugervkuG3kohmodQEIEPfAVJrBI3a3Qdn43wRUstpCGamFlACUoczr2Dl2lQgAAFqi9KfQxH-tvTi_-IbHt_9a8B15zNF_Jvi7HZPOZr117wEAbWyPPDw5PTsd90KX_w3f-AY1 |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQHODCvm9GQtxSGttxY3FCBVSWcmCROCBFdmKjAl1EWw78Bj_MTJwUAUJCnKIknjiZ8fLszLwhZNdqmToRy0C6KA1EaHlgeBQGUcacCFMVMo37Hc1L2bgVZ3fR3Rg5KGNhPD_EaMMNe0Y-XmMHxw3p_U_W0Md2vyJqSCQ5Ab2dY96Go6tP7iilfGgRLNQDpGMumWerbL-U_DoX_QCYX_FqPuGczJD78lW9n8lTZTgwlfTtG4vjP79llkwXQJQe-pYzR8ZsZ55M1sv8bwvkvT5KUUi7jgJQpN75oxgf8eIr3MfYK9rP0-mAjalPSU0BC1MPSDsPVNPMe_RBXRSGH_uMwhj5j85BL_28dBtgPM0DP5FBARMH0OdWr5XBCdUFdcoiuT05vqk3giKFQ5ByWCsFkRY2cwAKtXJVJxSrGljRYV5zy03omAbIlYWaxaGWzsRSSJFynbqYG66jmuNLZLzT7dgVQlVUzUKVKsWkEbHj2sbWgMoMyMEgGa-SndKYSc8zdSSek5kloN4E1btKNkorJ0Vf7ScAAnEbTEY1eMToNigbf52ASrpDKCMUFwKwMpRZ9q1jVAkHDKAESu_lNv619uSseY3Htb8W3CaTjZvmRXJxenm-TqYYutPk7m8bZHzwMrSbgIcGZitv9x_dgAjb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQSMCFfd-MhLilNLbjxkdUqNiKEIuExCGyExuxtRVtOfAb_DAzcVJUEBLiFCXxxMnYHj87M28I2bFapk7EMpAuSgMRWh4YHoVBlDEnwlSFTON-R_NcHt2Ik9votvCqxFgYzw8x2HDDkZHbaxzgncztfZGGPr50K6KGPJJjQgLwRUB0-UUdpZSPLIJ1eoBszCXxbJXtlZLDU9EPfDkMV_P5pjFN7so39W4mT5V-z1TS928kjv_7lBkyVcBQuu_7zSwZsa05MlEvs7_Nk4_6IEEhbTsKMJF614_COuLFN7iPkVe0myfTgRamPiE1BSRMPRxt3VNNM-_PB3VRMD72GYUx7h9dg167eekXAPE0D_tE_gRMG0CfHzoPGZxQXRCnLJCbxuF1_SgoEjgEKYeVUhBpYTMHkFArV3VCsaqB9RxmNbfchI5pAFxZqFkcaulMLIUUKdepi7nhOqo5vkhGW-2WXSZURdUsVKlSTBoRO65tbA2ozIAcmMh4hWyXbZl0PE9H4hmZWQLqTVC9K2S9bOSkGKndBCAgboLJqAaPGNwGZeOPE1BJuw9lhOJCAFKGMku-cwwq4YAAlEDp3byJf609OWle4XH1rwW3yPjFQSM5Oz4_XSOTDH1pct-3dTLae-3bDQBDPbOZ9_pPyqQHig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+the+effectiveness+of+variable+selection+method+for+creating+a+diagnostic+panel+of+biomarkers+for+mass+spectrometric+lipidome+analysis&rft.jtitle=Journal+of+mass+spectrometry.&rft.au=Tokareva%2C+Alisa+O.&rft.au=Chagovets%2C+Vitaliy+V.&rft.au=Kononikhin%2C+Alexey+S.&rft.au=Starodubtseva%2C+Natalia+L.&rft.date=2021-03-01&rft.issn=1076-5174&rft.eissn=1096-9888&rft.volume=56&rft.issue=3&rft_id=info:doi/10.1002%2Fjms.4702&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jms_4702 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-5174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-5174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-5174&client=summon |