Comparison of the effectiveness of variable selection method for creating a diagnostic panel of biomarkers for mass spectrometric lipidome analysis

Hundreds of compounds are detected during untargeted lipidomics analysis. The potential efficacy of lipids as disease markers makes it important to select the species with the most discriminative potential. Datasets based on a selected class of lipids allow the development of a high‐quality diagnost...

Full description

Saved in:
Bibliographic Details
Published inJournal of mass spectrometry. Vol. 56; no. 3; pp. e4702 - n/a
Main Authors Tokareva, Alisa O., Chagovets, Vitaliy V., Kononikhin, Alexey S., Starodubtseva, Natalia L., Nikolaev, Evgeny N., Frankevich, Vladimir E.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hundreds of compounds are detected during untargeted lipidomics analysis. The potential efficacy of lipids as disease markers makes it important to select the species with the most discriminative potential. Datasets based on a selected class of lipids allow the development of a high‐quality diagnostic model using orthogonal projection on latent structure. The combination of selection of lipids by variable importance in projection and by Akaike information criteria makes it possible to build a reliable diagnostic model based on logistic regression.
AbstractList Hundreds of compounds are detected during untargeted lipidomics analysis. The potential efficacy of lipids as disease markers makes it important to select the species with the most discriminative potential. Datasets based on a selected class of lipids allow the development of a high‐quality diagnostic model using orthogonal projection on latent structure. The combination of selection of lipids by variable importance in projection and by Akaike information criteria makes it possible to build a reliable diagnostic model based on logistic regression.
Abstract Hundreds of compounds are detected during untargeted lipidomics analysis. The potential efficacy of lipids as disease markers makes it important to select the species with the most discriminative potential. Datasets based on a selected class of lipids allow the development of a high‐quality diagnostic model using orthogonal projection on latent structure. The combination of selection of lipids by variable importance in projection and by Akaike information criteria makes it possible to build a reliable diagnostic model based on logistic regression.
Author Chagovets, Vitaliy V.
Frankevich, Vladimir E.
Nikolaev, Evgeny N.
Starodubtseva, Natalia L.
Tokareva, Alisa O.
Kononikhin, Alexey S.
Author_xml – sequence: 1
  givenname: Alisa O.
  surname: Tokareva
  fullname: Tokareva, Alisa O.
  organization: Russian Academy of Sciences
– sequence: 2
  givenname: Vitaliy V.
  surname: Chagovets
  fullname: Chagovets, Vitaliy V.
  organization: Healthcare of Russian Federation
– sequence: 3
  givenname: Alexey S.
  surname: Kononikhin
  fullname: Kononikhin, Alexey S.
  organization: Skolkovo Institute of Science and Technology
– sequence: 4
  givenname: Natalia L.
  surname: Starodubtseva
  fullname: Starodubtseva, Natalia L.
  organization: Healthcare of Russian Federation
– sequence: 5
  givenname: Evgeny N.
  surname: Nikolaev
  fullname: Nikolaev, Evgeny N.
  organization: Skolkovo Institute of Science and Technology
– sequence: 6
  givenname: Vladimir E.
  surname: Frankevich
  fullname: Frankevich, Vladimir E.
  email: vfrankevich@gmail.com
  organization: Healthcare of Russian Federation
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33629457$$D View this record in MEDLINE/PubMed
BookMark eNp1kctu1TAQhi1URC8g8QTIEhs2aX13skRH0IJasQDWkZOMWx-cOHhyis5z9IXrtAUkJFb2zHz-NNZ_TA6mNAEhrzk75YyJs-2Ip8oy8YwccdaYqqnr-mC9W1NpbtUhOUbcMsaaRpkX5FBKIxql7RG526RxdjlgmmjydLkBCt5Dv4RbmABxbd6WuesiUIS4Tgo6wnKTBupTpn0Gt4Tpmjo6BHc9JVxCT2c3QVwfdyGNLv-AjA_06IoT56LJqUhyQWOYw1AK6iYX9xjwJXnuXUR49XSekO8fP3zbXFSXX84_bd5fVr2sjai0UzB4xbRrPPOqEazjpVJagOy4F44JPXAnau6M72qjjOql630tO-m09fKEvHv0zjn93AEu7RiwhxjL7mmHrVCNVKqx1hb07T_oNu1y2bdQmgkhaqPtX2GfE2IG3845lN_vW87aNai2BNWuQRX0zZNw140w_AF_J1OA6hH4FSLs_ytqP199fRDeA3oYoLk
CitedBy_id crossref_primary_10_3390_biomedicines11071786
crossref_primary_10_3390_metabo12090883
crossref_primary_10_3390_children10101693
crossref_primary_10_3390_diagnostics13010102
crossref_primary_10_3390_ijms242316832
Cites_doi 10.1016/j.bbadis.2012.05.008
10.1371/journal.pone.0095328
10.18637/jss.v033.i01
10.1371/journal.pone.0224365
10.1371/journal.pone.0164173
10.1136/bmjopen-2016-012799
10.1023/A:1010933404324
10.1002/jms.4457
10.1016/j.chemolab.2015.05.001
10.18565/aig.2019.11.136-151
10.1021/acs.jafc.8b04375
10.1038/nrendo.2016.98
10.1186/s12859-017-1744-3
10.1016/j.trac.2011.04.019
10.1002/cem.695
10.1016/j.aca.2015.02.012
10.1161/ATVBAHA.111.234096
10.1186/1471-2105-10-213
10.1023/A:1009715923555
10.1111/j.2517-6161.1996.tb02080.x
10.3390/ijms21124568
10.1016/j.jsat.2017.02.015
10.1109/TAC.1974.1100705
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
DBID NPM
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7U7
8BQ
8FD
C1K
F1W
F28
FR3
H8D
H8G
H97
JG9
JQ2
K9.
KR7
L.G
L7M
L~C
L~D
P64
7X8
DOI 10.1002/jms.4702
DatabaseName PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-9888
EndPage n/a
ExternalDocumentID 10_1002_jms_4702
33629457
JMS4702
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
UQL
V2E
VH1
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
ZCG
ZZTAW
~02
~IA
~KM
~WT
NPM
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7U7
8BQ
8FD
C1K
F1W
F28
FR3
H8D
H8G
H97
JG9
JQ2
K9.
KR7
L.G
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c3862-5a4edf405a9f0f4920b1405452e3b1f2a025d1a281a6fb86464c3acf83b3a57f3
IEDL.DBID DR2
ISSN 1076-5174
IngestDate Sat Aug 17 00:25:51 EDT 2024
Thu Oct 10 16:50:23 EDT 2024
Wed Aug 28 12:33:44 EDT 2024
Sat Sep 28 08:34:51 EDT 2024
Sat Aug 24 01:07:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords mass spectrometry
AIC
logistic regression
biomarkers
feature selection
LASSO
Language English
License 2021 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3862-5a4edf405a9f0f4920b1405452e3b1f2a025d1a281a6fb86464c3acf83b3a57f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 33629457
PQID 2502228657
PQPubID 1006399
PageCount 5
ParticipantIDs proquest_miscellaneous_2493449777
proquest_journals_2502228657
crossref_primary_10_1002_jms_4702
pubmed_primary_33629457
wiley_primary_10_1002_jms_4702_JMS4702
PublicationCentury 2000
PublicationDate March 2021
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bognor Regis
PublicationTitle Journal of mass spectrometry.
PublicationTitleAlternate J Mass Spectrom
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 16
2010; 33
2015; 146
2012; 1822
2019; 14
2011; 31
2011; 30
2006
2020; 55
2012; 16
1996; 58
2018; 66
2001; 45
1974; 19
2016; 12
2016; 11
2018; 19
2016; 6
2009; 10
2019; 20
2017; 77
2019
2017
2015; 879
2016
1998; 2
2017; 18
2014
2020; 21
2014; 9
e_1_2_6_10_1
e_1_2_6_31_1
Hla T (e_1_2_6_30_1) 2012; 16
Bishop CM (e_1_2_6_13_1) 2006
Umetrics (e_1_2_6_28_1) 2016
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
Almasi A (e_1_2_6_12_1) 2018; 19
e_1_2_6_21_1
Mertens BJA (e_1_2_6_3_1) 2017
e_1_2_6_20_1
Ranasinghe L (e_1_2_6_19_1) 2019; 20
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
Tibshirani R (e_1_2_6_16_1) 1996; 58
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
Liebeke M (e_1_2_6_5_1) 2014
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 77
  start-page: 1
  year: 2017
  end-page: 5
  article-title: Plasma metabolic biomarkers for discriminating individuals with alcohol use disorders from social drinkers and alcohol‐naive subjects
  publication-title: J Subst Abuse Treat
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Mach Learn
– volume: 18
  start-page: 1
  year: 2017
  end-page: 11
  article-title: LipidMatch: an automated workflow for rule‐based lipid identification using untargeted high‐resolution tandem mass spectrometry data
  publication-title: BMC Bioinformatics
– volume: 1822
  start-page: 1442
  issue: 9
  year: 2012
  end-page: 1452
  article-title: Functions of plasmalogen lipids in health and disease
  publication-title: Biochim Biophys Acta ‐ Mol Basis Dis
– volume: 146
  start-page: 297
  year: 2015
  end-page: 304
  article-title: Variable influence on projection (VIP) for OPLS models and its applicability in multivariate time series analysis
  publication-title: Chemom Intel Lab Syst
– volume: 55
  start-page: 2
  year: 2020
  article-title: Feature selection for OPLS discriminant analysis of cancer tissue lipidomics data
  publication-title: J Mass Spectrom
– start-page: 213
  year: 2017
  end-page: 238
– start-page: 136
  year: 2019
  end-page: 151
  article-title: Possibilities for predicting recurrent uterine myoma by plasma lipidomic analysis
  publication-title: Akusherstvo I Ginekol (Russian Fed)
– volume: 31
  start-page: 2723
  issue: 11
  year: 2011
  end-page: 2732
  article-title: Plasma lipidomic analysis of stable and unstable coronary artery disease
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 9
  start-page: 1
  year: 2014
  end-page: 7
  article-title: Plasma lipidomic profiling of treated HIV‐positive individuals and the implications for cardiovascular risk prediction
  publication-title: PLoS One
– volume: 20
  start-page: 1
  year: 2019
  end-page: 4
  article-title: Relationship between serum markers and volume of liver metastases in castration‐resistant prostate cancer
  publication-title: Cancer Treat Res Commun
– year: 2014
– start-page: 1
  year: 2016
  end-page: 9
  article-title: Analysis, multivariate questions, frequently asked
  publication-title: Umetrics Knowl Base
– volume: 30
  start-page: 1685
  issue: 10
  year: 2011
  end-page: 1698
  article-title: Data‐processing strategies for metabolomics studies
  publication-title: TrAC‐Trends Anal Chem
– volume: 14
  start-page: 1
  year: 2019
  end-page: 20
  article-title: Machine learning algorithm validation with a limited sample size
  publication-title: PLoS One
– volume: 19
  start-page: 1
  year: 2018
  end-page: 5
  article-title: Penalized regression versus random forest model in analyzing high dimensional proteomic data: diagnosis of IgA nephropathy
  publication-title: Shiraz E Med J
– volume: 19
  start-page: 716
  issue: 6
  year: 1974
  end-page: 723
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans Automat Contr
– volume: 10
  start-page: 1
  year: 2009
  end-page: 16
  article-title: A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data
  publication-title: BMC Bioinformatics
– volume: 879
  start-page: 10
  year: 2015
  end-page: 23
  article-title: A tutorial review: metabolomics and partial least squares‐discriminant analysis—a marriage of convenience or a shotgun wedding
  publication-title: Anal Chim Acta
– start-page: 326
  year: 2006
  end-page: 344
– volume: 16
  start-page: 119
  issue: 3
  year: 2002
  end-page: 128
  article-title: Orthogonal projections to latent structures (O‐PLS)
  publication-title: J Chemometr
– volume: 16
  start-page: 420
  year: 2012
  end-page: 434
  article-title: Review Sphingolipid signaling in metabolic disorders
  publication-title: Cmet
– volume: 6
  start-page: 1
  year: 2016
  end-page: 17
  article-title: STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration
  publication-title: BMJ Open
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  end-page: 167
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min Knowl Discov
– volume: 11
  start-page: 1
  year: 2016
  end-page: 16
  article-title: Detection of independent associations of plasma lipidomic parameters with insulin sensitivity indices using data mining methodology
  publication-title: PLoS One
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J R Stat Soc Ser B
– volume: 33
  start-page: 1
  issue: 1
  year: 2010
  end-page: 22
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J Stat Softw
– volume: 12
  start-page: 668
  issue: 11
  year: 2016
  end-page: 679
  article-title: Lipidomics for studying metabolism
  publication-title: Nat Rev Endocrinol
– volume: 66
  start-page: 10567
  issue: 40
  year: 2018
  end-page: 10574
  article-title: Identification of peptide biomarkers for discrimination of shrimp species through SWATH‐MS‐based proteomics and Chemometrics
  publication-title: J Agric Food Chem
– volume: 21
  start-page: 1
  year: 2020
  end-page: 11
  article-title: Validation of breast cancer margins by tissue spray mass spectrometry
  publication-title: Int J Mol Sci
– ident: e_1_2_6_31_1
  doi: 10.1016/j.bbadis.2012.05.008
– volume: 16
  start-page: 420
  year: 2012
  ident: e_1_2_6_30_1
  article-title: Review Sphingolipid signaling in metabolic disorders
  publication-title: Cmet
  contributor:
    fullname: Hla T
– ident: e_1_2_6_22_1
  doi: 10.1371/journal.pone.0095328
– ident: e_1_2_6_17_1
  doi: 10.18637/jss.v033.i01
– start-page: 326
  volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: e_1_2_6_13_1
  contributor:
    fullname: Bishop CM
– ident: e_1_2_6_27_1
  doi: 10.1371/journal.pone.0224365
– ident: e_1_2_6_20_1
  doi: 10.1371/journal.pone.0164173
– start-page: 213
  volume-title: Statistical Analysis of Proteomics
  year: 2017
  ident: e_1_2_6_3_1
  contributor:
    fullname: Mertens BJA
– ident: e_1_2_6_4_1
  doi: 10.1136/bmjopen-2016-012799
– volume-title: Mass Spectrometry in Metabolomics
  year: 2014
  ident: e_1_2_6_5_1
  contributor:
    fullname: Liebeke M
– ident: e_1_2_6_10_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_6_25_1
  doi: 10.1002/jms.4457
– ident: e_1_2_6_7_1
  doi: 10.1016/j.chemolab.2015.05.001
– ident: e_1_2_6_23_1
  doi: 10.18565/aig.2019.11.136-151
– start-page: 1
  year: 2016
  ident: e_1_2_6_28_1
  article-title: Analysis, multivariate questions, frequently asked
  publication-title: Umetrics Knowl Base
  contributor:
    fullname: Umetrics
– volume: 20
  start-page: 1
  year: 2019
  ident: e_1_2_6_19_1
  article-title: Relationship between serum markers and volume of liver metastases in castration‐resistant prostate cancer
  publication-title: Cancer Treat Res Commun
  contributor:
    fullname: Ranasinghe L
– volume: 19
  start-page: 1
  year: 2018
  ident: e_1_2_6_12_1
  article-title: Penalized regression versus random forest model in analyzing high dimensional proteomic data: diagnosis of IgA nephropathy
  publication-title: Shiraz E Med J
  contributor:
    fullname: Almasi A
– ident: e_1_2_6_8_1
  doi: 10.1021/acs.jafc.8b04375
– ident: e_1_2_6_29_1
  doi: 10.1038/nrendo.2016.98
– ident: e_1_2_6_26_1
  doi: 10.1186/s12859-017-1744-3
– ident: e_1_2_6_2_1
  doi: 10.1016/j.trac.2011.04.019
– ident: e_1_2_6_6_1
  doi: 10.1002/cem.695
– ident: e_1_2_6_15_1
  doi: 10.1016/j.aca.2015.02.012
– ident: e_1_2_6_21_1
  doi: 10.1161/ATVBAHA.111.234096
– ident: e_1_2_6_11_1
  doi: 10.1186/1471-2105-10-213
– ident: e_1_2_6_14_1
  doi: 10.1023/A:1009715923555
– volume: 58
  start-page: 267
  year: 1996
  ident: e_1_2_6_16_1
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
  contributor:
    fullname: Tibshirani R
– ident: e_1_2_6_24_1
  doi: 10.3390/ijms21124568
– ident: e_1_2_6_9_1
  doi: 10.1016/j.jsat.2017.02.015
– ident: e_1_2_6_18_1
  doi: 10.1109/TAC.1974.1100705
SSID ssj0009946
Score 2.4082186
Snippet Hundreds of compounds are detected during untargeted lipidomics analysis. The potential efficacy of lipids as disease markers makes it important to select the...
Abstract Hundreds of compounds are detected during untargeted lipidomics analysis. The potential efficacy of lipids as disease markers makes it important to...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e4702
SubjectTerms AIC
Biomarkers
Diagnostic systems
feature selection
LASSO
Lipids
logistic regression
mass spectrometry
Regression analysis
Regression models
Spectrometry
Title Comparison of the effectiveness of variable selection method for creating a diagnostic panel of biomarkers for mass spectrometric lipidome analysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjms.4702
https://www.ncbi.nlm.nih.gov/pubmed/33629457
https://www.proquest.com/docview/2502228657
https://search.proquest.com/docview/2493449777
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZQOcCF90JhqYyEuKWtH3Hi426XqlppOcBWqsQhshN7Vei2q6blsH9j_zAzdtKqi5AQpyiJJ07G9vizM_MNIR-dUaWXuUqUT8tEMicSK1KWpBX3kpWacYP7HRdf1GQqz2fprPGqxFiYyA-x23DDkRHsNQ5wY-vBnjT0x3Xdl1ngkWQiQ2-us6975iitY2ARLNMTJGNueWeHfNAKHs5Ef8DLQ7QappvxU_K9fdHoZfKzv93Yfnl7j8Px_77kGXnSoFB6ErvNc_LALV-QR6M2-dtLcjfa5SekK08BJdLo-dEYR7z4C-5j4BWtQy4daGAa81FTAMI0otHlFTW0iu58UBcF2-MWKIxh_-gZtK5D6WvA8DREfSJ9AmYNoIv5zbyCE2oa3pRXZDr-fDmaJE3-hqQUsFBKUiNd5QERGu2HXmo-tLCcw6TmTljmuQG8VTHDc2aUt7mSSpbClD4XVpg08-KIdJarpXtDqE6HFdOl1lxZmXthXO4sqMyCHFjIvEs-tG1Z3ESajiISMvMC1FugervkuG3kohmodQEIEPfAVJrBI3a3Qdn43wRUstpCGamFlACUoczr2Dl2lQgAAFqi9KfQxH-tvTi_-IbHt_9a8B15zNF_Jvi7HZPOZr117wEAbWyPPDw5PTsd90KX_w3f-AY1
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQHODCvm9GQtxSGttxY3FCBVSWcmCROCBFdmKjAl1EWw78Bj_MTJwUAUJCnKIknjiZ8fLszLwhZNdqmToRy0C6KA1EaHlgeBQGUcacCFMVMo37Hc1L2bgVZ3fR3Rg5KGNhPD_EaMMNe0Y-XmMHxw3p_U_W0Md2vyJqSCQ5Ab2dY96Go6tP7iilfGgRLNQDpGMumWerbL-U_DoX_QCYX_FqPuGczJD78lW9n8lTZTgwlfTtG4vjP79llkwXQJQe-pYzR8ZsZ55M1sv8bwvkvT5KUUi7jgJQpN75oxgf8eIr3MfYK9rP0-mAjalPSU0BC1MPSDsPVNPMe_RBXRSGH_uMwhj5j85BL_28dBtgPM0DP5FBARMH0OdWr5XBCdUFdcoiuT05vqk3giKFQ5ByWCsFkRY2cwAKtXJVJxSrGljRYV5zy03omAbIlYWaxaGWzsRSSJFynbqYG66jmuNLZLzT7dgVQlVUzUKVKsWkEbHj2sbWgMoMyMEgGa-SndKYSc8zdSSek5kloN4E1btKNkorJ0Vf7ScAAnEbTEY1eMToNigbf52ASrpDKCMUFwKwMpRZ9q1jVAkHDKAESu_lNv619uSseY3Htb8W3CaTjZvmRXJxenm-TqYYutPk7m8bZHzwMrSbgIcGZitv9x_dgAjb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQSMCFfd-MhLilNLbjxkdUqNiKEIuExCGyExuxtRVtOfAb_DAzcVJUEBLiFCXxxMnYHj87M28I2bFapk7EMpAuSgMRWh4YHoVBlDEnwlSFTON-R_NcHt2Ik9votvCqxFgYzw8x2HDDkZHbaxzgncztfZGGPr50K6KGPJJjQgLwRUB0-UUdpZSPLIJ1eoBszCXxbJXtlZLDU9EPfDkMV_P5pjFN7so39W4mT5V-z1TS928kjv_7lBkyVcBQuu_7zSwZsa05MlEvs7_Nk4_6IEEhbTsKMJF614_COuLFN7iPkVe0myfTgRamPiE1BSRMPRxt3VNNM-_PB3VRMD72GYUx7h9dg167eekXAPE0D_tE_gRMG0CfHzoPGZxQXRCnLJCbxuF1_SgoEjgEKYeVUhBpYTMHkFArV3VCsaqB9RxmNbfchI5pAFxZqFkcaulMLIUUKdepi7nhOqo5vkhGW-2WXSZURdUsVKlSTBoRO65tbA2ozIAcmMh4hWyXbZl0PE9H4hmZWQLqTVC9K2S9bOSkGKndBCAgboLJqAaPGNwGZeOPE1BJuw9lhOJCAFKGMku-cwwq4YAAlEDp3byJf609OWle4XH1rwW3yPjFQSM5Oz4_XSOTDH1pct-3dTLae-3bDQBDPbOZ9_pPyqQHig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+the+effectiveness+of+variable+selection+method+for+creating+a+diagnostic+panel+of+biomarkers+for+mass+spectrometric+lipidome+analysis&rft.jtitle=Journal+of+mass+spectrometry.&rft.au=Tokareva%2C+Alisa+O.&rft.au=Chagovets%2C+Vitaliy+V.&rft.au=Kononikhin%2C+Alexey+S.&rft.au=Starodubtseva%2C+Natalia+L.&rft.date=2021-03-01&rft.issn=1076-5174&rft.eissn=1096-9888&rft.volume=56&rft.issue=3&rft_id=info:doi/10.1002%2Fjms.4702&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jms_4702
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-5174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-5174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-5174&client=summon