Pharmacokinetic–pharmacodynamic modelling for the determination of optimal dosing regimen of florfenicol in Nile tilapia (Oreochromis niloticus) at different water temperatures and antimicrobial susceptibility levels

Optimized dosing regimen is key to the effective use of antibacterials and to minimizing drug‐related side effects. The current study established a pharmacokinetic–pharmacodynamic (PK‐PD) model for the determination of optimal antibacterial dosing regimen in fish taken into consideration the tempera...

Full description

Saved in:
Bibliographic Details
Published inJournal of fish diseases Vol. 42; no. 8; pp. 1181 - 1190
Main Authors Rairat, Tirawat, Hsieh, Chia‐Yu, Thongpiam, Wipavee, Chou, Chi‐Chung
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Optimized dosing regimen is key to the effective use of antibacterials and to minimizing drug‐related side effects. The current study established a pharmacokinetic–pharmacodynamic (PK‐PD) model for the determination of optimal antibacterial dosing regimen in fish taken into consideration the temperature‐dependent PK and the pathogen‐dependent antimicrobial susceptibility, using florfenicol (FF) in Nile tilapia as an example. The calculated optimal dosages significantly varied by temperature and target MIC levels, ranging from 2.23 (MIC 1 µg/ml at 24°C) to 34.88 mg kg−1 day−1 (MIC 4 µg/ml at 32°C). The appropriateness of the calculated dosages was successfully verified by the in vivo studies. After 5 days of oral administration of the calculated optimal dosage at 24°C, the predicted plasma drug values were in line with the mean observed Cmin(ss) while at 28 and 32°C underestimation of the Cmin(ss) in a dose‐dependent manner was observed and likely due to the occurrence of non‐linear PK at high dosages. The averaged serum protein binding of FF was 19.1%. Our results demonstrated the appropriateness and clinical applicability of the developed PK‐PD approach for the determination of optimal dosing regimens at given temperatures and MICs. Saturation metabolism and PK non‐linearity of FF in tilapia warrant further study.
AbstractList Optimized dosing regimen is key to the effective use of antibacterials and to minimizing drug‐related side effects. The current study established a pharmacokinetic–pharmacodynamic (PK‐PD) model for the determination of optimal antibacterial dosing regimen in fish taken into consideration the temperature‐dependent PK and the pathogen‐dependent antimicrobial susceptibility, using florfenicol (FF) in Nile tilapia as an example. The calculated optimal dosages significantly varied by temperature and target MIC levels, ranging from 2.23 (MIC 1 µg/ml at 24°C) to 34.88 mg kg−1 day−1 (MIC 4 µg/ml at 32°C). The appropriateness of the calculated dosages was successfully verified by the in vivo studies. After 5 days of oral administration of the calculated optimal dosage at 24°C, the predicted plasma drug values were in line with the mean observed Cmin(ss) while at 28 and 32°C underestimation of the Cmin(ss) in a dose‐dependent manner was observed and likely due to the occurrence of non‐linear PK at high dosages. The averaged serum protein binding of FF was 19.1%. Our results demonstrated the appropriateness and clinical applicability of the developed PK‐PD approach for the determination of optimal dosing regimens at given temperatures and MICs. Saturation metabolism and PK non‐linearity of FF in tilapia warrant further study.
Optimized dosing regimen is key to the effective use of antibacterials and to minimizing drug‐related side effects. The current study established a pharmacokinetic–pharmacodynamic (PK‐PD) model for the determination of optimal antibacterial dosing regimen in fish taken into consideration the temperature‐dependent PK and the pathogen‐dependent antimicrobial susceptibility, using florfenicol (FF) in Nile tilapia as an example. The calculated optimal dosages significantly varied by temperature and target MIC levels, ranging from 2.23 (MIC 1 µg/ml at 24°C) to 34.88 mg kg −1  day −1 (MIC 4 µg/ml at 32°C). The appropriateness of the calculated dosages was successfully verified by the in vivo studies. After 5 days of oral administration of the calculated optimal dosage at 24°C, the predicted plasma drug values were in line with the mean observed C min(ss) while at 28 and 32°C underestimation of the C min(ss) in a dose‐dependent manner was observed and likely due to the occurrence of non‐linear PK at high dosages. The averaged serum protein binding of FF was 19.1%. Our results demonstrated the appropriateness and clinical applicability of the developed PK‐PD approach for the determination of optimal dosing regimens at given temperatures and MICs. Saturation metabolism and PK non‐linearity of FF in tilapia warrant further study.
Optimized dosing regimen is key to the effective use of antibacterials and to minimizing drug‐related side effects. The current study established a pharmacokinetic–pharmacodynamic (PK‐PD) model for the determination of optimal antibacterial dosing regimen in fish taken into consideration the temperature‐dependent PK and the pathogen‐dependent antimicrobial susceptibility, using florfenicol (FF) in Nile tilapia as an example. The calculated optimal dosages significantly varied by temperature and target MIC levels, ranging from 2.23 (MIC 1 µg/ml at 24°C) to 34.88 mg kg−1 day−1 (MIC 4 µg/ml at 32°C). The appropriateness of the calculated dosages was successfully verified by the in vivo studies. After 5 days of oral administration of the calculated optimal dosage at 24°C, the predicted plasma drug values were in line with the mean observed Cmin(ss) while at 28 and 32°C underestimation of the Cmin(ss) in a dose‐dependent manner was observed and likely due to the occurrence of non‐linear PK at high dosages. The averaged serum protein binding of FF was 19.1%. Our results demonstrated the appropriateness and clinical applicability of the developed PK‐PD approach for the determination of optimal dosing regimens at given temperatures and MICs. Saturation metabolism and PK non‐linearity of FF in tilapia warrant further study.
Optimized dosing regimen is key to the effective use of antibacterials and to minimizing drug-related side effects. The current study established a pharmacokinetic-pharmacodynamic (PK-PD) model for the determination of optimal antibacterial dosing regimen in fish taken into consideration the temperature-dependent PK and the pathogen-dependent antimicrobial susceptibility, using florfenicol (FF) in Nile tilapia as an example. The calculated optimal dosages significantly varied by temperature and target MIC levels, ranging from 2.23 (MIC 1 µg/ml at 24°C) to 34.88 mg kg-1 day-1 (MIC 4 µg/ml at 32°C). The appropriateness of the calculated dosages was successfully verified by the in vivo studies. After 5 days of oral administration of the calculated optimal dosage at 24°C, the predicted plasma drug values were in line with the mean observed Cmin(ss) while at 28 and 32°C underestimation of the Cmin(ss) in a dose-dependent manner was observed and likely due to the occurrence of non-linear PK at high dosages. The averaged serum protein binding of FF was 19.1%. Our results demonstrated the appropriateness and clinical applicability of the developed PK-PD approach for the determination of optimal dosing regimens at given temperatures and MICs. Saturation metabolism and PK non-linearity of FF in tilapia warrant further study.Optimized dosing regimen is key to the effective use of antibacterials and to minimizing drug-related side effects. The current study established a pharmacokinetic-pharmacodynamic (PK-PD) model for the determination of optimal antibacterial dosing regimen in fish taken into consideration the temperature-dependent PK and the pathogen-dependent antimicrobial susceptibility, using florfenicol (FF) in Nile tilapia as an example. The calculated optimal dosages significantly varied by temperature and target MIC levels, ranging from 2.23 (MIC 1 µg/ml at 24°C) to 34.88 mg kg-1 day-1 (MIC 4 µg/ml at 32°C). The appropriateness of the calculated dosages was successfully verified by the in vivo studies. After 5 days of oral administration of the calculated optimal dosage at 24°C, the predicted plasma drug values were in line with the mean observed Cmin(ss) while at 28 and 32°C underestimation of the Cmin(ss) in a dose-dependent manner was observed and likely due to the occurrence of non-linear PK at high dosages. The averaged serum protein binding of FF was 19.1%. Our results demonstrated the appropriateness and clinical applicability of the developed PK-PD approach for the determination of optimal dosing regimens at given temperatures and MICs. Saturation metabolism and PK non-linearity of FF in tilapia warrant further study.
Optimized dosing regimen is key to the effective use of antibacterials and to minimizing drug-related side effects. The current study established a pharmacokinetic-pharmacodynamic (PK-PD) model for the determination of optimal antibacterial dosing regimen in fish taken into consideration the temperature-dependent PK and the pathogen-dependent antimicrobial susceptibility, using florfenicol (FF) in Nile tilapia as an example. The calculated optimal dosages significantly varied by temperature and target MIC levels, ranging from 2.23 (MIC 1 µg/ml at 24°C) to 34.88 mg kg  day (MIC 4 µg/ml at 32°C). The appropriateness of the calculated dosages was successfully verified by the in vivo studies. After 5 days of oral administration of the calculated optimal dosage at 24°C, the predicted plasma drug values were in line with the mean observed C while at 28 and 32°C underestimation of the C in a dose-dependent manner was observed and likely due to the occurrence of non-linear PK at high dosages. The averaged serum protein binding of FF was 19.1%. Our results demonstrated the appropriateness and clinical applicability of the developed PK-PD approach for the determination of optimal dosing regimens at given temperatures and MICs. Saturation metabolism and PK non-linearity of FF in tilapia warrant further study.
Optimized dosing regimen is key to the effective use of antibacterials and to minimizing drug‐related side effects. The current study established a pharmacokinetic–pharmacodynamic (PK‐PD) model for the determination of optimal antibacterial dosing regimen in fish taken into consideration the temperature‐dependent PK and the pathogen‐dependent antimicrobial susceptibility, using florfenicol (FF) in Nile tilapia as an example. The calculated optimal dosages significantly varied by temperature and target MIC levels, ranging from 2.23 (MIC 1 µg/ml at 24°C) to 34.88 mg kg⁻¹ day⁻¹ (MIC 4 µg/ml at 32°C). The appropriateness of the calculated dosages was successfully verified by the in vivo studies. After 5 days of oral administration of the calculated optimal dosage at 24°C, the predicted plasma drug values were in line with the mean observed Cₘᵢₙ₍ₛₛ₎ while at 28 and 32°C underestimation of the Cₘᵢₙ₍ₛₛ₎ in a dose‐dependent manner was observed and likely due to the occurrence of non‐linear PK at high dosages. The averaged serum protein binding of FF was 19.1%. Our results demonstrated the appropriateness and clinical applicability of the developed PK‐PD approach for the determination of optimal dosing regimens at given temperatures and MICs. Saturation metabolism and PK non‐linearity of FF in tilapia warrant further study.
Author Rairat, Tirawat
Hsieh, Chia‐Yu
Thongpiam, Wipavee
Chou, Chi‐Chung
Author_xml – sequence: 1
  givenname: Tirawat
  surname: Rairat
  fullname: Rairat, Tirawat
  organization: National Chung Hsing University
– sequence: 2
  givenname: Chia‐Yu
  surname: Hsieh
  fullname: Hsieh, Chia‐Yu
  organization: National Chung Hsing University
– sequence: 3
  givenname: Wipavee
  surname: Thongpiam
  fullname: Thongpiam, Wipavee
  organization: National Chung Hsing University
– sequence: 4
  givenname: Chi‐Chung
  orcidid: 0000-0002-4622-2552
  surname: Chou
  fullname: Chou, Chi‐Chung
  email: ccchou@nchu.edu.tw
  organization: National Chung Hsing University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31157416$$D View this record in MEDLINE/PubMed
BookMark eNqFks1uFSEUx4mpsbfVhS9gSNy0i9vCMAx3lqZaP9JYF7qeAHPo5crACIzN3fkOfbsufRK5H900GkkICfzO_5zD_xyhAx88IPSSkjNa1vnK9GeUkZo8QTPKGj6vREMP0IzQmsyFEPwQHaW0IoQKTptn6JBRykVNmxm6_7KUcZA6fLcestW_f92N-5t-7eVgNR5CD85Zf4NNiDgvAfeQIQ7Wy2yDx8HgMGY7SIf7kDZchBs7wPbFuBANeKuDw9bjz9YBztbJ0Up8ch0h6GUMg03YWxdK_imdYplxb42BCD7jW1ly4QzDCFHmKULC0vdll4xWx6BsyZumpKHUoKyzeY0d_ASXnqOnRroEL_bnMfp2-e7rxYf51fX7jxdvruaaLRoybynndWU0qxRZKMmE6fuqaVmthDJatIRKtaiMNEaBNopIVpue14Zw2WqpCDtGJzvdMYYfE6TclX50-TLpIUypq1gl2lZUbfN_tGJ1vahLPQV9_QhdhSn60kihOG8XvBEbwVd7alID9N0Yiw9x3T0YXIDzHVC-KqUIptM2b33LUVrXUdJtRqgrI9RtR6hEnD6KeBD9G7tXvy2-rv8Ndp8u3-4i_gDsvNzk
CitedBy_id crossref_primary_10_1016_j_aquaculture_2022_738719
crossref_primary_10_1080_19440049_2022_2155710
crossref_primary_10_1111_jvp_13485
crossref_primary_10_1016_j_heliyon_2020_e05716
crossref_primary_10_3389_fvets_2021_755585
crossref_primary_10_1638_2020_0130
crossref_primary_10_3390_ani11061521
crossref_primary_10_1016_j_aquaculture_2019_734794
crossref_primary_10_1016_j_tig_2021_07_002
crossref_primary_10_1111_jfd_13719
crossref_primary_10_1016_j_aquaculture_2021_737372
crossref_primary_10_1016_j_aquaculture_2023_740222
crossref_primary_10_1016_j_aquaculture_2019_734900
crossref_primary_10_1016_j_aquaculture_2023_739978
crossref_primary_10_1016_j_jchromb_2024_124282
crossref_primary_10_1111_jvp_12978
crossref_primary_10_1016_j_fsi_2022_02_034
crossref_primary_10_1080_01652176_2024_2396573
crossref_primary_10_1111_jfd_13480
crossref_primary_10_3389_fvets_2021_679657
crossref_primary_10_1111_jvp_13405
crossref_primary_10_1016_j_etap_2024_104471
crossref_primary_10_1111_jvp_13115
Cites_doi 10.1016/j.jiac.2015.02.001
10.1177/104063870301500612
10.1002/9781118675014.ch39
10.1016/S0195-5616(88)50035-9
10.1111/j.1365-2885.2004.00603.x
10.1111/jvp.12678
10.1016/j.vetmic.2011.07.030
10.1016/0044-8486(95)01225-7
10.1002/9781118786758
10.1111/j.1461-0248.2009.01415.x
10.1002/9781119152125.ch10
10.1111/jfd.12525
10.1046/j.1439-0442.2001.00339.x
10.1016/j.aquaculture.2018.12.081
10.1016/S0034-5288(02)00039-5
10.1023/A:1024406221962
10.1007/BF00588387
10.1111/j.1365-2885.1994.tb00241.x
10.1533/9780857095732.2.161
10.1016/j.aquaculture.2008.08.014
10.1111/jfd.12549
10.3109/00498254.2015.1089453
10.1111/are.12764
10.1111/j.1365-2885.1987.tb00534.x
10.1016/j.aquaculture.2010.07.003
10.1016/0044-8486(93)90153-P
10.1577/1548-8667(1996)008<0292:POFAIM>2.3.CO;2
10.1016/S0924-8579(00)00142-4
10.1080/00071669708418013
10.1111/j.1365-2885.2004.00613.x
10.1186/1746-6148-9-126
10.1086/314059
10.1111/j.1365-2885.2009.01155.x
10.1016/j.idc.2004.04.012
10.1111/j.1365-2761.1987.tb01057.x
10.1016/j.aquaculture.2018.08.023
10.1016/j.aquaculture.2018.04.037
10.1046/j.1365-2656.1999.00337.x
10.1089/mdr.2008.0848
ContentType Journal Article
Copyright 2019 John Wiley & Sons Ltd
2019 John Wiley & Sons Ltd.
Copyright © 2019 John Wiley & Sons Ltd
Copyright_xml – notice: 2019 John Wiley & Sons Ltd
– notice: 2019 John Wiley & Sons Ltd.
– notice: Copyright © 2019 John Wiley & Sons Ltd
DBID AAYXX
CITATION
NPM
7QL
7TN
7U9
8FD
C1K
F1W
FR3
H94
H95
H98
H99
L.F
L.G
M7N
P64
7X8
7S9
L.6
DOI 10.1111/jfd.13040
DatabaseName CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Oceanic Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
ASFA: Marine Biotechnology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Oceanic Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1365-2761
EndPage 1190
ExternalDocumentID 31157416
10_1111_jfd_13040
JFD13040
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29K
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BGJEQ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
D-I
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
UPT
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
YQT
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7QL
7TN
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H94
H95
H98
H99
L.F
L.G
M7N
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-c3860-915542fc32b08ba37fdd26934b7bfc7901ab82faffbecfb0a34fd54f05a9cab03
IEDL.DBID DR2
ISSN 0140-7775
1365-2761
IngestDate Fri Jul 11 18:27:47 EDT 2025
Fri Jul 11 07:36:08 EDT 2025
Fri Jul 25 19:36:57 EDT 2025
Wed Feb 19 02:35:32 EST 2025
Tue Jul 01 00:58:03 EDT 2025
Thu Apr 24 22:51:35 EDT 2025
Wed Jan 22 16:41:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords pharmacokinetic-pharmacodynamic
Nile tilapia
florfenicol
optimal dosing regimen
Language English
License 2019 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3860-915542fc32b08ba37fdd26934b7bfc7901ab82faffbecfb0a34fd54f05a9cab03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4622-2552
PMID 31157416
PQID 2255985676
PQPubID 37796
PageCount 10
ParticipantIDs proquest_miscellaneous_2327997296
proquest_miscellaneous_2234484542
proquest_journals_2255985676
pubmed_primary_31157416
crossref_citationtrail_10_1111_jfd_13040
crossref_primary_10_1111_jfd_13040
wiley_primary_10_1111_jfd_13040_JFD13040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2019
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Journal of fish diseases
PublicationTitleAlternate J Fish Dis
PublicationYear 2019
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2017; 40
2010; 307
2010; 13
2004; 27
2004; 7
2003; 15
2001; 48
2018; 41
1996; 143
2013; 9
2018; 493
2000; 14
2008; 29
1996; 8
2016; 47
2016; 46
2010; 33
1987; 10
2012
1988; 18
2011
2010
2002; 73
1988; 54
1999; 68
2008; 14
1997; 28
2005
2004
2002
2019; 503
2008; 285
2015; 7
1999
2012; 154
2004; 18
2015; 21
2000; 31
2019
2019; 498
2003; 26
2018
1997; 38
2017
2016
2013
1994; 17
2003; 20
1993; 112
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
U.S. FDA (e_1_2_7_53_1) 2018
Wall A. E. (e_1_2_7_55_1) 2005
e_1_2_7_13_1
Thai FDA (e_1_2_7_50_1) 2012
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
EMA (e_1_2_7_15_1) 2011
e_1_2_7_28_1
Riviere J. E. (e_1_2_7_43_1) 2003; 26
Popma T. (e_1_2_7_38_1) 1999
Taiwan Council of Agriculture (e_1_2_7_49_1) 2019
Wang Q. (e_1_2_7_56_1) 2008; 29
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
Intervet (e_1_2_7_22_1) 2013
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
Leary S. (e_1_2_7_25_1) 2016
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_12_1
Oshima Y. (e_1_2_7_36_1) 2004; 7
e_1_2_7_44_1
Lin M. (e_1_2_7_29_1) 2015; 7
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
Riviere J. E. (e_1_2_7_42_1) 1997; 28
EMEA (e_1_2_7_17_1) 2002
e_1_2_7_51_1
e_1_2_7_30_1
EMA (e_1_2_7_16_1) 2016
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
Ritschel W. A. (e_1_2_7_41_1) 2004
Jambhekar S. S. (e_1_2_7_23_1) 2012
References_xml – year: 2011
– volume: 47
  start-page: 3136
  year: 2016
  end-page: 3144
  article-title: Antimicrobial susceptibility and enrofloxacin resistance of streptococcal bacteria from farmed Nile tilapia, (Linnaeus 1758) in Thailand
  publication-title: Aquaculture Research
– volume: 28
  start-page: 3
  year: 1997
  end-page: 19
  article-title: Basic principles and techniques of pharmacokinetic modeling
  publication-title: Journal of Zoo and Wildlife Medicine
– volume: 285
  start-page: 255
  year: 2008
  end-page: 259
  article-title: Patterns of resistance to florfenicol and bicyclomycin in Brazilian strains of motile aeromonads
  publication-title: Aquaculture
– volume: 307
  start-page: 71
  year: 2010
  end-page: 74
  article-title: Plasma and tissue depletion of florfenicol in olive flounder ( ) after oral administration
  publication-title: Aquaculture
– volume: 18
  start-page: 331
  year: 1988
  end-page: 348
  article-title: Fish chemotherapeutics
  publication-title: Veterinary Clinics of North America: Small Animal Practice
– volume: 7
  start-page: 61
  issue: 2
  year: 2004
  end-page: 68
  article-title: Relationship between temperature and pharmacokinetic parameters of florfenicol in carp ( )
  publication-title: Japanese Journal of Environmental Toxicology
– start-page: 645
  year: 2013
  end-page: 661
– start-page: 263
  year: 2017
  end-page: 278
– volume: 503
  start-page: 483
  year: 2019
  end-page: 488
  article-title: Temperature‐dependent pharmacokinetics of florfenicol in Nile tilapia ( ) following single oral and intravenous administration
  publication-title: Aquaculture
– volume: 31
  start-page: S40
  year: 2000
  end-page: S44
  article-title: Clinical pharmacology of the fluoroquinolones: Studies in human dynamic/kinetic models
  publication-title: Clinical Infectious Diseases
– volume: 40
  start-page: 411
  year: 2017
  end-page: 424
  article-title: Pharmacokinetic model of florfenicol in turbot ( ): Establishment of optimal dosage and administration in medicated feed
  publication-title: Journal of Fish Diseases
– volume: 46
  start-page: 522
  year: 2016
  end-page: 529
  article-title: Pharmacokinetics, pharmacokinetic‐pharmacodynamic relationship, and withdrawal period of amoxicillin sodium in olive flounder ( )
  publication-title: Xenobiotica
– year: 2018
– volume: 26
  start-page: 1181
  issue: Suppl 2
  year: 2003
  end-page: 271
  article-title: USP veterinary pharmaceutical information monographs: Antibiotics
  publication-title: Journal of Veterinary Pharmacology and Therapeutics
– volume: 20
  start-page: 1015
  issue: 7
  year: 2003
  end-page: 1021
  article-title: Modulation of nonspecific binding in ultrafiltration protein binding studies
  publication-title: Pharmaceutical Research
– volume: 27
  start-page: 503
  year: 2004
  end-page: 514
  article-title: Pharmacokinetic/pharmacodynamic relationships of antimicrobial drugs used in veterinary medicine
  publication-title: Journal of Veterinary Pharmacology and Therapeutics
– volume: 27
  start-page: 467
  year: 2004
  end-page: 477
  article-title: Integration and modelling of pharmacokinetic and pharmacodynamic data to optimize dosage regimens in veterinary medicine
  publication-title: Journal of Veterinary Pharmacology and Therapeutics
– start-page: 213
  year: 2004
  end-page: 215
– volume: 9
  start-page: 126
  year: 2013
  article-title: Integrated pharmacokinetics/pharmacodynamics parameters‐based dosing guidelines of enrofloxacin in grass carp to minimize selection of drug resistance
  publication-title: BMC Veterinary Research
– volume: 14
  start-page: 311
  year: 2008
  end-page: 316
  article-title: Antimicrobial susceptibility pattern of isolates from natural outbreaks of bacillary necrosis of in Vietnam
  publication-title: Microbial Drug Resistance
– volume: 21
  start-page: 319
  year: 2015
  end-page: 329
  article-title: Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents
  publication-title: Journal of Infection and Chemotherapy
– volume: 8
  start-page: 292
  year: 1996
  end-page: 301
  article-title: Pharmacokinetics of florfenicol and its metabolite florfenicol amine in Atlantic salmon
  publication-title: Journal of Aquatic Animal Health
– year: 2019
– start-page: 161
  year: 2012
  end-page: 189
– volume: 48
  start-page: 129
  year: 2001
  end-page: 136
  article-title: Disposition kinetics of florfenicol in goats by using two analytical methods
  publication-title: Journal of Veterinary Medicine Series A
– volume: 18
  start-page: 451
  year: 2004
  end-page: 465
  article-title: Pharmacodynamics of antimicrobial drugs
  publication-title: Infectious Disease Clinics of North America
– volume: 7
  start-page: 126
  year: 2015
  end-page: 130
  article-title: Comparative pharmacokinetics of florfenicol in Japanese eels at different temperature
  publication-title: Animal Husbandry and Feed Science
– volume: 154
  start-page: 407
  year: 2012
  end-page: 412
  article-title: Genetic analysis and antimicrobial susceptibility of subsp. (syn. ) isolates from fish
  publication-title: Veterinary Microbiology
– volume: 13
  start-page: 184
  year: 2010
  end-page: 193
  article-title: The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature
  publication-title: Ecology Letters
– start-page: 73
  year: 2005
  end-page: 85
– volume: 17
  start-page: 253
  year: 1994
  end-page: 258
  article-title: Pharmacokinetics of florfenicol following intravenous and intramuscular doses to cattle
  publication-title: Journal of Veterinary Pharmacology and Therapeutics
– volume: 73
  start-page: 105
  year: 2002
  end-page: 114
  article-title: The pharmacokinetic‐pharmacodynamic approach to a rational dosage regimen for antibiotics
  publication-title: Research in Veterinary Science
– year: 2016
– year: 2010
– year: 2012
– volume: 14
  start-page: 307
  year: 2000
  end-page: 313
  article-title: Antibiotic treatment for animals: Effect on bacterial population and dosage regimen optimisation
  publication-title: International Journal of Antimicrobial Agents
– start-page: 261
  year: 2012
– volume: 38
  start-page: 425
  year: 1997
  end-page: 428
  article-title: Tissue concentrations and pharmacokinetics of florfenicol in broiler chickens
  publication-title: British Poultry Science
– volume: 112
  start-page: 1181
  year: 1993
  end-page: 11
  article-title: Single dose pharmacokinetic study of florfenicol in Atlantic salmon ( ) in seawater at 11°C
  publication-title: Aquaculture
– year: 2002
– volume: 29
  start-page: 19
  year: 2008
  end-page: 26
  article-title: Residue elimination of florfenicol, oxytetracycline and sulfamonomethoxine in following oral administration
  publication-title: Marine Fisheries Research
– volume: 41
  start-page: 887
  year: 2018
  end-page: 893
  article-title: Pharmacokinetic/pharmacodynamic relationship of enrofloxacin against in crucian carp ( )
  publication-title: Journal of Veterinary Pharmacology and Therapeutics
– volume: 10
  start-page: 153
  year: 1987
  end-page: 163
  article-title: Pharmacokinetics and tissue distribution of oxytetracycline in carp, L., following different routes of administration
  publication-title: Journal of Fish Diseases
– volume: 33
  start-page: 471
  year: 2010
  end-page: 479
  article-title: Pharmacokinetics and tissue depletion of florfenicol in Leghorn and Taiwan Native chickens
  publication-title: Journal of Veterinary Pharmacology and Therapeutics
– volume: 143
  start-page: 33
  year: 1996
  end-page: 42
  article-title: Pharmacokinetic study of oxytetracycline in healthy and vibriosis‐infected ayu ( )
  publication-title: Aquaculture
– volume: 10
  start-page: 233
  year: 1987
  end-page: 240
  article-title: Florfenicol in non‐lactating dairy cows: Pharmacokinetics, binding to plasma proteins, and effects on phagocytosis by blood neutrophils
  publication-title: Journal of Veterinary Pharmacology and Therapeutics
– volume: 40
  start-page: 679
  year: 2017
  end-page: 686
  article-title: Provisional epidemiological cutoff values for standard broth microdilution susceptibility testing of
  publication-title: Journal of Fish Diseases
– volume: 54
  start-page: 509
  issue: 6
  year: 1988
  end-page: 520
  article-title: Columnaris infection among cultured Nile tilapia
  publication-title: Antonie Van Leeuwenhoek
– volume: 68
  start-page: 893
  year: 1999
  end-page: 905
  article-title: Scaling of metabolic rate with body mass and temperature in teleost fish
  publication-title: Journal of Animal Ecology
– volume: 493
  start-page: 51
  year: 2018
  end-page: 60
  article-title: Recurrent infection in Nile tilapia ( ) treated with florfenicol
  publication-title: Aquaculture
– volume: 15
  start-page: 576
  year: 2003
  end-page: 579
  article-title: evaluation of the susceptibility of , etiological agent of enteric septicemia in channel catfish, (Rafinesque), to florfenicol
  publication-title: Journal of Veterinary Diagnostic Investigation
– volume: 498
  start-page: 100
  year: 2019
  end-page: 108
  article-title: Seasonal dynamics of bacterial pathogens of Nile tilapia farmed in a Brazilian reservoir
  publication-title: Aquaculture
– year: 2013
– year: 1999
– ident: e_1_2_7_5_1
  doi: 10.1016/j.jiac.2015.02.001
– ident: e_1_2_7_33_1
  doi: 10.1177/104063870301500612
– ident: e_1_2_7_40_1
  doi: 10.1002/9781118675014.ch39
– volume-title: Guideline for the demonstration of efficacy for veterinary medicinal products containing antimicrobial substances, EMA/CVMP/627/2001‐Rev.1
  year: 2016
  ident: e_1_2_7_16_1
– ident: e_1_2_7_48_1
  doi: 10.1016/S0195-5616(88)50035-9
– ident: e_1_2_7_34_1
  doi: 10.1111/j.1365-2885.2004.00603.x
– ident: e_1_2_7_45_1
  doi: 10.1111/jvp.12678
– ident: e_1_2_7_47_1
  doi: 10.1016/j.vetmic.2011.07.030
– ident: e_1_2_7_54_1
  doi: 10.1016/0044-8486(95)01225-7
– volume: 28
  start-page: 3
  year: 1997
  ident: e_1_2_7_42_1
  article-title: Basic principles and techniques of pharmacokinetic modeling
  publication-title: Journal of Zoo and Wildlife Medicine
– ident: e_1_2_7_35_1
  doi: 10.1002/9781118786758
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1461-0248.2009.01415.x
– volume-title: Tilapia: Life history and biology
  year: 1999
  ident: e_1_2_7_38_1
– start-page: 73
  volume-title: The veterinary formulary
  year: 2005
  ident: e_1_2_7_55_1
– ident: e_1_2_7_7_1
  doi: 10.1002/9781119152125.ch10
– ident: e_1_2_7_11_1
  doi: 10.1111/jfd.12525
– ident: e_1_2_7_6_1
  doi: 10.1046/j.1439-0442.2001.00339.x
– volume-title: Guidelines for the use of animal drugs article 3 annex I: Code of practice for aquatic animal drugs. Council of Agriculture (Executive Yuan), Taiwan
  year: 2019
  ident: e_1_2_7_49_1
– volume-title: Restrictions on antimicrobial use in aquaculture (Ministry of Public Health 1010/4/1762, 20 Feb 2012)
  year: 2012
  ident: e_1_2_7_50_1
– volume-title: Environmental assessment for AQUAFLOR (Florfenicol) 50% type A medicated article fed at a dose up to 15 mg florfenicol/kg body weight/day for control of mortality associated with bacterial Diseases in freshwater‐reared finfish in recirculating aquaculture systems
  year: 2013
  ident: e_1_2_7_22_1
– ident: e_1_2_7_39_1
  doi: 10.1016/j.aquaculture.2018.12.081
– ident: e_1_2_7_51_1
  doi: 10.1016/S0034-5288(02)00039-5
– ident: e_1_2_7_26_1
  doi: 10.1023/A:1024406221962
– ident: e_1_2_7_4_1
  doi: 10.1007/BF00588387
– volume: 29
  start-page: 19
  year: 2008
  ident: e_1_2_7_56_1
  article-title: Residue elimination of florfenicol, oxytetracycline and sulfamonomethoxine in Scophthalmus maximus following oral administration
  publication-title: Marine Fisheries Research
– volume-title: Guideline on demonstration of target animal safety and efficacy of veterinary medicinal products intended for use in farmed finfish, EMA/CVMP/EWP/459868/2008
  year: 2011
  ident: e_1_2_7_15_1
– ident: e_1_2_7_30_1
  doi: 10.1111/j.1365-2885.1994.tb00241.x
– ident: e_1_2_7_46_1
  doi: 10.1533/9780857095732.2.161
– ident: e_1_2_7_19_1
  doi: 10.1016/j.aquaculture.2008.08.014
– ident: e_1_2_7_18_1
  doi: 10.1111/jfd.12549
– ident: e_1_2_7_37_1
  doi: 10.3109/00498254.2015.1089453
– ident: e_1_2_7_31_1
  doi: 10.1111/are.12764
– ident: e_1_2_7_8_1
  doi: 10.1111/j.1365-2885.1987.tb00534.x
– ident: e_1_2_7_28_1
  doi: 10.1016/j.aquaculture.2010.07.003
– volume-title: Approved aquaculture drugs
  year: 2018
  ident: e_1_2_7_53_1
– ident: e_1_2_7_32_1
  doi: 10.1016/0044-8486(93)90153-P
– start-page: 213
  volume-title: Handbook of basic pharmacokinetics… Including clinical applications
  year: 2004
  ident: e_1_2_7_41_1
– ident: e_1_2_7_21_1
  doi: 10.1577/1548-8667(1996)008<0292:POFAIM>2.3.CO;2
– volume: 26
  start-page: 1181
  issue: 2
  year: 2003
  ident: e_1_2_7_43_1
  article-title: USP veterinary pharmaceutical information monographs: Antibiotics
  publication-title: Journal of Veterinary Pharmacology and Therapeutics
– ident: e_1_2_7_3_1
  doi: 10.1016/S0924-8579(00)00142-4
– volume: 7
  start-page: 61
  issue: 2
  year: 2004
  ident: e_1_2_7_36_1
  article-title: Relationship between temperature and pharmacokinetic parameters of florfenicol in carp (Cyprinus carpio)
  publication-title: Japanese Journal of Environmental Toxicology
– ident: e_1_2_7_2_1
  doi: 10.1080/00071669708418013
– ident: e_1_2_7_52_1
  doi: 10.1111/j.1365-2885.2004.00613.x
– volume-title: Florfenicol (Extension to All Food Producing Species), Summary Report (6), EMEA/MRL/822/02‐FINAL
  year: 2002
  ident: e_1_2_7_17_1
– ident: e_1_2_7_57_1
  doi: 10.1186/1746-6148-9-126
– ident: e_1_2_7_44_1
  doi: 10.1086/314059
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1365-2885.2009.01155.x
– ident: e_1_2_7_27_1
  doi: 10.1016/j.idc.2004.04.012
– start-page: 261
  volume-title: Basic pharmacokinetics
  year: 2012
  ident: e_1_2_7_23_1
– ident: e_1_2_7_20_1
  doi: 10.1111/j.1365-2761.1987.tb01057.x
– ident: e_1_2_7_13_1
  doi: 10.1016/j.aquaculture.2018.08.023
– ident: e_1_2_7_12_1
  doi: 10.1016/j.aquaculture.2018.04.037
– volume-title: AVMA guidelines for the humane slaughter of animals
  year: 2016
  ident: e_1_2_7_25_1
– volume: 7
  start-page: 126
  year: 2015
  ident: e_1_2_7_29_1
  article-title: Comparative pharmacokinetics of florfenicol in Japanese eels at different temperature
  publication-title: Animal Husbandry and Feed Science
– ident: e_1_2_7_10_1
  doi: 10.1046/j.1365-2656.1999.00337.x
– ident: e_1_2_7_14_1
  doi: 10.1089/mdr.2008.0848
SSID ssj0017516
Score 2.3648973
Snippet Optimized dosing regimen is key to the effective use of antibacterials and to minimizing drug‐related side effects. The current study established a...
Optimized dosing regimen is key to the effective use of antibacterials and to minimizing drug-related side effects. The current study established a...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1181
SubjectTerms adverse effects
antibiotic resistance
Antibiotics
Antiinfectives and antibacterials
blood proteins
Dosage
dose response
Drug dosages
Drugs
Fish
Florfenicol
Freshwater fishes
In vivo methods and tests
in vivo studies
Linearity
Marine fishes
Metabolism
Minimum inhibitory concentration
Nile tilapia
optimal dosing regimen
Oral administration
Oreochromis niloticus
Pathogens
Pharmacodynamics
Pharmacokinetics
pharmacokinetic–pharmacodynamic
Pharmacology
Ponds
protein binding
Saturation
Serum
Side effects
Temperature
Temperature dependence
Tilapia
Water temperature
Title Pharmacokinetic–pharmacodynamic modelling for the determination of optimal dosing regimen of florfenicol in Nile tilapia (Oreochromis niloticus) at different water temperatures and antimicrobial susceptibility levels
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjfd.13040
https://www.ncbi.nlm.nih.gov/pubmed/31157416
https://www.proquest.com/docview/2255985676
https://www.proquest.com/docview/2234484542
https://www.proquest.com/docview/2327997296
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VPcGB9yNQ0IA4lIMr4117Y3GqgKiqREGISj0gWfssUVNvZTtCcOI_8O848kuYWT9EeQlxiBTFk8w4_nb3W3vmG8YeSeskMgWeWGFNIqwqEsVJyFUbj_TISRXbt708KPYOxf5RfrTBno61ML0-xHTDjUZGnK9pgCvd_jjIvaVWxoL265SrRYTozSQdhatibHsa0xellPmgKhSzeMZvnl-LfiGY5_lqXHAWl9m7MdQ-z-RkZ93pHfPpJxXH_zyXK-zSQERht0fOVbbh6mvs4u5xM4hxuOvs6-tB1_oEHaDZt89fzoZPbN_IHmIjHapoByS_gGQS7JhfQ1ccgoeAk9IperKBbksAdYI4dfGIX4XGu5qwCMsaDjB06JZUXqdg-1XjgnnfBMQh1MtVIJGQ9jGoDsaeLh18QKKMXh1S_14augVVW3yhx2VUmEK_7bqNqTsxC_gjrChLqr3BDhcv3j7bS4ZeEInh8yJNSMZeZN7wTKdzjXDy1mZFyYWW2huJrEbpeeaV9whKr1PFhbe58GmuSqN0ym-yzTrU7jaDTOtSC9ypUU1wkSlVCDcXT7RRuTCK6xnbHlFRmUEonfp1rKppw-RtFS_XjD2cTM96dZDfGW2N0KqGCaKtsqiMnxeymLEH02H8S-l5japdWJMNx80zRpr9xYZnkmqfS_ydWz1sp0iikBISbjyhCL4_h1jtL57HN3f-3fQuu4DkseyTIbfYZtes3T0kaJ2-H0fidwx2Py4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VcgAOvB-BAgsCqRxcmfXaTg4cKkKUvgJCrdSbu8_WamJXtqMqnPgP_A3-Cn-AI7-EmfVDlJe49MAhkhWPvLPjmd2Z9cw3hDyLtYnBUwg8zbXyuBaRJwIEcpXKgntkYuHat-1MovEe39wP95fI57YWpsaH6A7c0DLceo0GjgfSP1q51djLmPtNSuWWWZxCwFa-2hjC233O2OjN7uux1_QU8FTQj3wP4dA5sypg0u9LYMtqzaJBwGUsrYphdxSyz6ywFiZnpS8CbnXIrR-KgRLSD-C5F8hF7CCOSP3D9x1YFezDrtGqS5iM4zhscIxc3lDL6tnd7xeX9qyH7La40TXypRVOndlyvDav5Jr68BNu5P8ivevkauNr0_XaOG6QJZPdJFfWD4sGb8TcIl_fNdDdxzAjIPv28dNJ849eZGKWKup6BWHRPgX_noK_THWbQoRKTXNLc1h3ZzCSzvHkhWKzi5lxd-w0L6zJ0NxomtEJyIpWKVYQCrr6tjC5OipyMDWapdMccVDKF1RUtG1bU9FTiAVgVAPRTY1-XVKRafjBiKkD0YJxy3npspNcovOCTjERrLxN9s5FuHfIcpZn5h6hTMqB5BCMYtlzxISIuOnzl1KJkCsRyB5ZbdUwUQ0WPLYkmSZdTGh14tSjR552pCc1AMrviFZaXU6aNbBMmAP_D6M46pEn3W0QKX6SEpnJ50gTcN4HTtlfaAIWY3n3AJ5zt7aTjhOHFQUxBUzIafufWUw2R0N3cf_fSR-TS-Pdne1ke2Oy9YBcBl95UOd-rpDlqpibh-CPVvKRWwYoOThvy_kOb6igJQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKkRAceD8WChgEUjmkCrYTJwcOFcuqD1gqRKXeUj8h6m6y2mRVLSf-Az-Dv8Iv4MgvYew8RHmJSw8cIkXJKB5PZuyZZOYbhB5xbTh4CjTQTKuAaREHgjogV6ksuEeGC9--7dU43tpnOwfRwQr63NXCNPgQ_Qc3Zxl-vXYGPtP2RyO32rUyZmGbUblrlscQr1XPtofwch8TMnrx9vlW0LYUCBRN4jBwaOiMWEWJDBMJXFmtSZxSJrm0isPmKGRCrLAW5mZlKCizOmI2jESqhAwpPPcMOsviMHV9IoZveqwq2IZ9n1WfL8k5j1oYI5821LF6cvP7xaM96SD7HW50CX3pZNMkthxtLGq5oT78BBv5nwjvMrrYetp4szGNK2jFFFfRhc138xZtxFxDX_da4O4jmBCQffv4adZe0ctCTHOFfacgV7KPwbvH4C1j3SUQOZXGpcUlrLpTGEmX7rsLdq0upsbfsZNybk3hjA3nBR6DqHCdu_pBgddfz02p3s9LMDRc5JPSoaBUT7Cocde0psbHEAnAqAZimwb7usKi0HDAiLmH0IJxq0Xlc5N8mvMST1waWHUd7Z-KcG-g1aIszC2EiZSpZBCKuqLnmAgRM5Owp1KJiClB5QCtd1qYqRYJ3jUkmWR9RGh15tVjgB72pLMG_uR3RGudKmftClhlxEP_RzGPB-hBfxtE6n5IicKUC0dDGUuAU_IXGkq4K-5O4Tk3GzPpOfFIURBRwIS8sv-ZxWxnNPQnt_-d9D46tzccZS-3x7t30HlwlNMm8XMNrdbzhbkLzmgt7_lFAKPD0zac7wJfntQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pharmacokinetic-pharmacodynamic+modelling+for+the+determination+of+optimal+dosing+regimen+of+florfenicol+in+Nile+tilapia+%28Oreochromis+niloticus%29+at+different+water+temperatures+and+antimicrobial+susceptibility+levels&rft.jtitle=Journal+of+fish+diseases&rft.au=Rairat%2C+Tirawat&rft.au=Hsieh%2C+Chia-Yu&rft.au=Thongpiam%2C+Wipavee&rft.au=Chou%2C+Chi-Chung&rft.date=2019-08-01&rft.eissn=1365-2761&rft_id=info:doi/10.1111%2Fjfd.13040&rft_id=info%3Apmid%2F31157416&rft.externalDocID=31157416
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7775&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7775&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7775&client=summon