Phytosterol‐based oleogels self‐assembled with monoglyceride for controlled volatile release

BACKGROUND Oleogels have recently emerged as a subject of growing interest among industrial and academic researchers as an alternative to saturated/trans‐fat and delivery of functional ingredients. Phytosterols, comprising plant‐derived natural steroid compounds, are preferred for oleogel production...

Full description

Saved in:
Bibliographic Details
Published inJournal of the science of food and agriculture Vol. 98; no. 2; pp. 582 - 589
Main Authors Yang, Dan‐Xia, Chen, Xiao‐Wei, Yang, Xiao‐Quan
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.01.2018
John Wiley and Sons, Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BACKGROUND Oleogels have recently emerged as a subject of growing interest among industrial and academic researchers as an alternative to saturated/trans‐fat and delivery of functional ingredients. Phytosterols, comprising plant‐derived natural steroid compounds, are preferred for oleogel production because they are both natural and healthy. In the present study, phytosterol‐based oleogels self‐assembled with monoglyceride were studied with respect to tuning volatile release. RESULTS Microscopy images of the bicomponent oleogels of β‐sitosterol and monoglyceride showed the formation of a new three‐dimensional network of entangled crystals and a controllable microstructure. Our analysis from differential scanning calorimetry and small angle X‐ray scattering results suggests the self‐assembly of β‐sitosterol and monoglyceride via intermolecular hydrogen bonds into spherulitic microstructures. The results showed that the release rate (v0), maximum headspace concentrations (Cmax) and partition coefficients (ka/o) for oleogels showed a significantly controlled release and were tunable via the microstructure of phytosterol‐based oleogels under both dynamic and static conditions. In addition, the solid‐like oleogels had interesting thixotropic and thermoresponsive behaviors, probably as a result of intermolecular hydrogen bonding. CONCLUSION The self‐assembly of phytosterol‐based oleogels with monoglyceride was attributed to intermolecular hydrogen and is demonstrated to be a promising tunable and functional strategy for delivering flavor compounds. © 2017 Society of Chemical Industry
AbstractList BACKGROUND Oleogels have recently emerged as a subject of growing interest among industrial and academic researchers as an alternative to saturated/trans‐fat and delivery of functional ingredients. Phytosterols, comprising plant‐derived natural steroid compounds, are preferred for oleogel production because they are both natural and healthy. In the present study, phytosterol‐based oleogels self‐assembled with monoglyceride were studied with respect to tuning volatile release. RESULTS Microscopy images of the bicomponent oleogels of β‐sitosterol and monoglyceride showed the formation of a new three‐dimensional network of entangled crystals and a controllable microstructure. Our analysis from differential scanning calorimetry and small angle X‐ray scattering results suggests the self‐assembly of β‐sitosterol and monoglyceride via intermolecular hydrogen bonds into spherulitic microstructures. The results showed that the release rate (v0), maximum headspace concentrations (Cmax) and partition coefficients (ka/o) for oleogels showed a significantly controlled release and were tunable via the microstructure of phytosterol‐based oleogels under both dynamic and static conditions. In addition, the solid‐like oleogels had interesting thixotropic and thermoresponsive behaviors, probably as a result of intermolecular hydrogen bonding. CONCLUSION The self‐assembly of phytosterol‐based oleogels with monoglyceride was attributed to intermolecular hydrogen and is demonstrated to be a promising tunable and functional strategy for delivering flavor compounds. © 2017 Society of Chemical Industry
BACKGROUND Oleogels have recently emerged as a subject of growing interest among industrial and academic researchers as an alternative to saturated/trans-fat and delivery of functional ingredients. Phytosterols, comprising plant-derived natural steroid compounds, are preferred for oleogel production because they are both natural and healthy. In the present study, phytosterol-based oleogels self-assembled with monoglyceride were studied with respect to tuning volatile release. RESULTS Microscopy images of the bicomponent oleogels of [beta]-sitosterol and monoglyceride showed the formation of a new three-dimensional network of entangled crystals and a controllable microstructure. Our analysis from differential scanning calorimetry and small angle X-ray scattering results suggests the self-assembly of [beta]-sitosterol and monoglyceride via intermolecular hydrogen bonds into spherulitic microstructures. The results showed that the release rate (v0), maximum headspace concentrations (Cmax) and partition coefficients (ka/o) for oleogels showed a significantly controlled release and were tunable via the microstructure of phytosterol-based oleogels under both dynamic and static conditions. In addition, the solid-like oleogels had interesting thixotropic and thermoresponsive behaviors, probably as a result of intermolecular hydrogen bonding. CONCLUSION The self-assembly of phytosterol-based oleogels with monoglyceride was attributed to intermolecular hydrogen and is demonstrated to be a promising tunable and functional strategy for delivering flavor compounds. © 2017 Society of Chemical Industry
BACKGROUND: Oleogels have recently emerged as a subject of growing interest among industrial and academic researchers as an alternative to saturated/trans‐fat and delivery of functional ingredients. Phytosterols, comprising plant‐derived natural steroid compounds, are preferred for oleogel production because they are both natural and healthy. In the present study, phytosterol‐based oleogels self‐assembled with monoglyceride were studied with respect to tuning volatile release. RESULTS: Microscopy images of the bicomponent oleogels of β‐sitosterol and monoglyceride showed the formation of a new three‐dimensional network of entangled crystals and a controllable microstructure. Our analysis from differential scanning calorimetry and small angle X‐ray scattering results suggests the self‐assembly of β‐sitosterol and monoglyceride via intermolecular hydrogen bonds into spherulitic microstructures. The results showed that the release rate (v₀), maximum headspace concentrations (Cₘₐₓ) and partition coefficients (kₐ/ₒ) for oleogels showed a significantly controlled release and were tunable via the microstructure of phytosterol‐based oleogels under both dynamic and static conditions. In addition, the solid‐like oleogels had interesting thixotropic and thermoresponsive behaviors, probably as a result of intermolecular hydrogen bonding. CONCLUSION: The self‐assembly of phytosterol‐based oleogels with monoglyceride was attributed to intermolecular hydrogen and is demonstrated to be a promising tunable and functional strategy for delivering flavor compounds. © 2017 Society of Chemical Industry
Oleogels have recently emerged as a subject of growing interest among industrial and academic researchers as an alternative to saturated/trans-fat and delivery of functional ingredients. Phytosterols, comprising plant-derived natural steroid compounds, are preferred for oleogel production because they are both natural and healthy. In the present study, phytosterol-based oleogels self-assembled with monoglyceride were studied with respect to tuning volatile release. Microscopy images of the bicomponent oleogels of β-sitosterol and monoglyceride showed the formation of a new three-dimensional network of entangled crystals and a controllable microstructure. Our analysis from differential scanning calorimetry and small angle X-ray scattering results suggests the self-assembly of β-sitosterol and monoglyceride via intermolecular hydrogen bonds into spherulitic microstructures. The results showed that the release rate (v ), maximum headspace concentrations (C ) and partition coefficients (k ) for oleogels showed a significantly controlled release and were tunable via the microstructure of phytosterol-based oleogels under both dynamic and static conditions. In addition, the solid-like oleogels had interesting thixotropic and thermoresponsive behaviors, probably as a result of intermolecular hydrogen bonding. The self-assembly of phytosterol-based oleogels with monoglyceride was attributed to intermolecular hydrogen and is demonstrated to be a promising tunable and functional strategy for delivering flavor compounds. © 2017 Society of Chemical Industry.
Oleogels have recently emerged as a subject of growing interest among industrial and academic researchers as an alternative to saturated/trans-fat and delivery of functional ingredients. Phytosterols, comprising plant-derived natural steroid compounds, are preferred for oleogel production because they are both natural and healthy. In the present study, phytosterol-based oleogels self-assembled with monoglyceride were studied with respect to tuning volatile release.BACKGROUNDOleogels have recently emerged as a subject of growing interest among industrial and academic researchers as an alternative to saturated/trans-fat and delivery of functional ingredients. Phytosterols, comprising plant-derived natural steroid compounds, are preferred for oleogel production because they are both natural and healthy. In the present study, phytosterol-based oleogels self-assembled with monoglyceride were studied with respect to tuning volatile release.Microscopy images of the bicomponent oleogels of β-sitosterol and monoglyceride showed the formation of a new three-dimensional network of entangled crystals and a controllable microstructure. Our analysis from differential scanning calorimetry and small angle X-ray scattering results suggests the self-assembly of β-sitosterol and monoglyceride via intermolecular hydrogen bonds into spherulitic microstructures. The results showed that the release rate (v0 ), maximum headspace concentrations (Cmax ) and partition coefficients (ka/o ) for oleogels showed a significantly controlled release and were tunable via the microstructure of phytosterol-based oleogels under both dynamic and static conditions. In addition, the solid-like oleogels had interesting thixotropic and thermoresponsive behaviors, probably as a result of intermolecular hydrogen bonding.RESULTSMicroscopy images of the bicomponent oleogels of β-sitosterol and monoglyceride showed the formation of a new three-dimensional network of entangled crystals and a controllable microstructure. Our analysis from differential scanning calorimetry and small angle X-ray scattering results suggests the self-assembly of β-sitosterol and monoglyceride via intermolecular hydrogen bonds into spherulitic microstructures. The results showed that the release rate (v0 ), maximum headspace concentrations (Cmax ) and partition coefficients (ka/o ) for oleogels showed a significantly controlled release and were tunable via the microstructure of phytosterol-based oleogels under both dynamic and static conditions. In addition, the solid-like oleogels had interesting thixotropic and thermoresponsive behaviors, probably as a result of intermolecular hydrogen bonding.The self-assembly of phytosterol-based oleogels with monoglyceride was attributed to intermolecular hydrogen and is demonstrated to be a promising tunable and functional strategy for delivering flavor compounds. © 2017 Society of Chemical Industry.CONCLUSIONThe self-assembly of phytosterol-based oleogels with monoglyceride was attributed to intermolecular hydrogen and is demonstrated to be a promising tunable and functional strategy for delivering flavor compounds. © 2017 Society of Chemical Industry.
Author Yang, Xiao‐Quan
Chen, Xiao‐Wei
Yang, Dan‐Xia
Author_xml – sequence: 1
  givenname: Dan‐Xia
  surname: Yang
  fullname: Yang, Dan‐Xia
  organization: Department of Food Science and Engineering, South China University of Technology
– sequence: 2
  givenname: Xiao‐Wei
  surname: Chen
  fullname: Chen, Xiao‐Wei
  organization: Department of Food Science and Engineering, South China University of Technology
– sequence: 3
  givenname: Xiao‐Quan
  orcidid: 0000-0002-0492-8987
  surname: Yang
  fullname: Yang, Xiao‐Quan
  email: fexqyang@scut.edu.cn, fexqyang@163.com
  organization: South China University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28653331$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1O3DAURq0K1Bkoi75AFYkNXYS5_klsLxGCtggJJNp16kmuISMnpnYGNLs-Qp-RJ8FhgMVIhZUl33OPdL9vh2z1vkdCPlM4pABstojWHKoC4AOZUtAyB6CwRaZpxvKCCjYhOzEuAEDrsvxIJkyVBeecTsnvy5vV4OOAwbuHv__mJmKTeYf-Gl3MIjqbfk2M2M1dmty3w03W-d5fu1WNoW0wsz5kte-HJBiJO-_M0DrMAjpMtk9k2xoXce_53SW_Tk9-Hn_Pzy--_Tg-Os9rrkrICwFWCwnSlo0sGsNEQTlXUEBDBacN1aZkc0EVs1YzqsGahAnG09VKKst3ycHaexv8nyXGoeraWKNzpke_jBUDUUglk-xdlOoUmaagyoTub6ALvwx9OiRRknNBQY7CL8_Uct5hU92GtjNhVb3EnICva6AOPsaA9hWhUI0VVmOF1VhhYmcbbN0OKdIxYtO6tzbuU-6r_6urs6vTo6eNR5PerWk
CitedBy_id crossref_primary_10_1080_10408398_2022_2027339
crossref_primary_10_1016_j_foodchem_2021_129275
crossref_primary_10_1039_C9FO02180A
crossref_primary_10_1016_j_foodchem_2023_136506
crossref_primary_10_1039_C9RA06950J
crossref_primary_10_1002_mame_202200276
crossref_primary_10_1016_j_foodchem_2022_133953
crossref_primary_10_1016_j_lwt_2021_112815
crossref_primary_10_1088_1755_1315_475_1_012032
crossref_primary_10_3390_molecules28186526
crossref_primary_10_1016_j_foodres_2024_114478
crossref_primary_10_1039_D1FO01607E
crossref_primary_10_1016_j_porgcoat_2021_106417
crossref_primary_10_3390_app13095312
crossref_primary_10_1021_acs_jafc_1c03780
crossref_primary_10_1016_j_foodres_2019_04_006
crossref_primary_10_1111_1750_3841_15589
crossref_primary_10_1016_j_foostr_2025_100408
crossref_primary_10_1002_jsfa_11841
crossref_primary_10_1002_advs_202403388
crossref_primary_10_1002_aocs_12617
crossref_primary_10_1016_j_foodchem_2024_139821
crossref_primary_10_1016_j_ifset_2021_102763
crossref_primary_10_1016_j_foodchem_2022_134970
crossref_primary_10_1016_j_foodchem_2023_136895
crossref_primary_10_1002_aocs_12884
crossref_primary_10_1002_aocs_12745
crossref_primary_10_1080_87559129_2020_1742153
crossref_primary_10_1016_j_colsurfa_2024_134758
crossref_primary_10_1002_jsfa_12122
crossref_primary_10_1016_j_cis_2020_102279
crossref_primary_10_1016_j_fochx_2024_102067
crossref_primary_10_3390_gels7030086
crossref_primary_10_1016_j_fbio_2021_100923
crossref_primary_10_1016_j_lwt_2019_02_042
Cites_doi 10.1016/j.cofs.2017.02.013
10.1007/s11746-008-1298-7
10.1007/s11746-015-2719-z
10.1007/s11746-007-1135-4
10.1002/lite.201200205
10.1016/j.cocis.2007.07.002
10.1007/s11746-006-1234-7
10.1088/1742-6596/247/1/012025
10.1007/s11746-014-2434-1
10.1016/j.jconrel.2007.09.014
10.1016/S0928-0987(01)00223-8
10.1146/annurev.nutr.22.020702.075220
10.1021/jf0624289
10.1016/j.ijpharm.2011.09.022
10.1002/adma.201101760
10.1016/j.tifs.2016.08.018
10.1016/j.cofs.2015.08.006
10.1111/1750-3841.12992
10.1080/10408390902841529
10.1039/C3RA46584E
10.1039/C4RA06130F
10.1002/ejlt.201100395
10.1007/s11746-014-2526-y
10.1021/acs.langmuir.5b03660
10.1021/jf062643p
10.1021/acs.langmuir.5b00053
10.1016/j.cocis.2011.05.005
10.1016/j.foodhyd.2015.11.035
10.1002/ejlt.201500517
ContentType Journal Article
Copyright 2017 Society of Chemical Industry
2017 Society of Chemical Industry.
2018 Society of Chemical Industry
Copyright_xml – notice: 2017 Society of Chemical Industry
– notice: 2017 Society of Chemical Industry.
– notice: 2018 Society of Chemical Industry
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QL
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7ST
7T5
7T7
7TA
7TB
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
M7N
P64
SOI
7X8
7S9
L.6
DOI 10.1002/jsfa.8500
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Bacteriology Abstracts (Microbiology B)
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Immunology Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Materials Research Database
AGRICOLA
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Agriculture
Diet & Clinical Nutrition
EISSN 1097-0010
EndPage 589
ExternalDocumentID 28653331
10_1002_jsfa_8500
JSFA8500
Genre article
Journal Article
GrantInformation_xml – fundername: National High Technology Research and Development Program of China (863 Program)
  funderid: 2013AA102208‐3
– fundername: Chinese National Natural Science Foundation
  funderid: 31371744
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29L
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIKC
AAMNL
AAMNW
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DROCM
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WWF
WXSBR
WYISQ
XG1
XPP
XV2
Y6R
ZZTAW
~IA
~KM
~WT
.GJ
.Y3
3-9
31~
53G
AANHP
AAYXX
ABEML
ACBWZ
ACKIV
ACRPL
ACSCC
ACYXJ
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
AI.
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
FEDTE
HF~
HVGLF
M64
PALCI
RIG
RIWAO
RJQFR
SAMSI
VH1
XOL
ZCG
ZXP
ZY4
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QL
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7ST
7T5
7T7
7TA
7TB
7TM
7U5
7U9
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
M7N
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c3860-540f94707f6d75da2451338050d1431d19a62b4182ff92190fa75d423500878f3
IEDL.DBID DR2
ISSN 0022-5142
1097-0010
IngestDate Fri Jul 11 18:38:21 EDT 2025
Thu Jul 10 19:02:27 EDT 2025
Mon Jul 07 12:40:53 EDT 2025
Tue Apr 29 04:32:12 EDT 2025
Tue Jul 01 04:14:59 EDT 2025
Thu Apr 24 23:09:17 EDT 2025
Wed Jan 22 16:58:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords monoglyceride
self-assembly
phytosterols
oleogels
volatile release
Language English
License 2017 Society of Chemical Industry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3860-540f94707f6d75da2451338050d1431d19a62b4182ff92190fa75d423500878f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0492-8987
PMID 28653331
PQID 1973341073
PQPubID 37930
PageCount 8
ParticipantIDs proquest_miscellaneous_2045787143
proquest_miscellaneous_1914291086
proquest_journals_1973341073
pubmed_primary_28653331
crossref_primary_10_1002_jsfa_8500
crossref_citationtrail_10_1002_jsfa_8500
wiley_primary_10_1002_jsfa_8500_JSFA8500
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Jan
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-Jan
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: London
PublicationTitle Journal of the science of food and agriculture
PublicationTitleAlternate J Sci Food Agric
PublicationYear 2018
Publisher John Wiley & Sons, Ltd
John Wiley and Sons, Limited
Publisher_xml – name: John Wiley & Sons, Ltd
– name: John Wiley and Sons, Limited
References 2002; 15
2014; 91
2016b; 56
2015; 92
2015; 31
2010; 247
2008; 125
2015; 80
2011; 16
2007; 55
2007; 12
2009; 49
2016; 57
2017; 118
2016; 7
2011; 421
2014; 4
2006; 83
2013; 115
2002; 22
2017
2011; 23
2008; 85
2007; 84
2016a; 15
2012; 24
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
Chen XW (e_1_2_6_18_1) 2016; 15
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 115
  start-page: 295
  year: 2013
  end-page: 300
  article-title: The influence of the type of oil phase on the self‐assembly process of ‐oryzanol + sitosterol tubules in organogel systems
  publication-title: Eur J Lipid Sci Tech
– volume: 31
  start-page: 1670
  year: 2015
  end-page: 1674
  article-title: Monoglyceride‐based organogelator for broad‐range oil uptake with high capacity
  publication-title: Langmuir
– volume: 24
  start-page: 151
  year: 2012
  end-page: 154
  article-title: Edible oleogels in food products to help maximize health benefits and improve nutritional profiles
  publication-title: Lipid Tech
– volume: 16
  start-page: 432
  year: 2011
  end-page: 439
  article-title: Formation of oleogels based on edible lipid materials
  publication-title: Curr Opin Colloid In
– volume: 22
  start-page: 533
  year: 2002
  end-page: 549
  article-title: Phytosterols in human nutrition
  publication-title: Annu Rev Nutr
– volume: 80
  start-page: 2035
  year: 2015
  end-page: 2044
  article-title: Physical properties, volatiles compositions and sensory descriptions of the aromatized hazelnut oil‐wax organogels
  publication-title: J Food Sci
– volume: 15
  start-page: 1491
  year: 2016a
  end-page: 1498
  article-title: Tunable volatile release from organogel‐emulsions based on the self‐assembly of ‐sitosterol and ‐oryzanol
  publication-title: Food Chem
– volume: 15
  start-page: 261
  year: 2002
  end-page: 269
  article-title: A novel method of producing a microcrystalline ‐sitosterol suspension in oil
  publication-title: Eur J Pharm Sci
– volume: 55
  start-page: 1790
  year: 2007
  end-page: 1798
  article-title: Phase transitions, solubility, and crystallization kinetics of phytosterols and phytosterol oil blends
  publication-title: J Agr Food Chem
– volume: 57
  start-page: 59
  year: 2016
  end-page: 73
  article-title: Edible oleogels for the oral delivery of lipid soluble molecules: composition and structural design considerations
  publication-title: Trends Food Sci Tech
– volume: 247
  start-page: 12
  year: 2010
  end-page: 25
  article-title: Effect of water on self‐assembled tubules in ‐sitosterol + ‐oryzanol‐based organogels
  publication-title: J Phys Conf Ser
– volume: 92
  start-page: 1429
  year: 2015
  end-page: 1443
  article-title: Influence of storage on physicochemical and volatile features of enriched and aromatized wax organogels
  publication-title: J Am Oil Chem Soc
– volume: 84
  start-page: 1001
  year: 2007
  end-page: 1014
  article-title: Aroma release from solid droplet emulsions: effect of lipid type
  publication-title: J Am Oil Chem Soc
– volume: 125
  start-page: 179
  year: 2008
  end-page: 192
  article-title: Organogels and their use in drug delivery – a review
  publication-title: J Control Release
– volume: 421
  start-page: 176
  year: 2011
  end-page: 182
  article-title: Evaluating the link between self‐assembled mesophase structure and drug release
  publication-title: Int J Pharm
– volume: 49
  start-page: 577
  year: 2009
  end-page: 606
  article-title: Structural design principles for delivery of bioactive components in nutraceuticals and functional foods
  publication-title: Crit Rev Food Sci
– volume: 118
  start-page: 1500517
  year: 2017
  article-title: Oil structuring properties of monoglycerides and phytosterols mixtures
  publication-title: Eur J Lipid Sci Tech
– volume: 23
  start-page: 3932
  year: 2011
  end-page: 3937
  article-title: Macroscopic alignment of lyotropic liquid crystals using magnetic nanoparticles
  publication-title: Adv Mater
– volume: 55
  start-page: 1915
  year: 2007
  end-page: 1922
  article-title: Model studies on the release of aroma compounds from structured and nonstructured oil systems using proton‐transfer reaction mass spectrometry
  publication-title: J Agr Food Chem
– volume: 91
  start-page: 1783
  year: 2014
  end-page: 1792
  article-title: Structure and physical properties of organogels developed by sitosterol and lecithin with sunflower oil
  publication-title: J Am Oil Chem Soc
– volume: 83
  start-page: 513
  year: 2006
  end-page: 521
  article-title: Structuring of edible oils by mixtures of ‐oryzanol with ‐sitosterol or related phytosterols
  publication-title: J Am Oil Chem Soc
– volume: 31
  start-page: 13501
  year: 2015
  end-page: 13510
  article-title: Smart nonaqueous foams from lipid‐based oleogel
  publication-title: Langmuir
– volume: 91
  start-page: 1007
  year: 2014
  end-page: 1017
  article-title: Properties and stability of hazelnut oil organogels with beeswax and monoglyceride
  publication-title: J Am Oil Chem Soc
– volume: 4
  start-page: 2466
  year: 2014
  end-page: 2473
  article-title: Self‐assemblies of lecithin and ‐tocopherol as gelators of lipid material
  publication-title: RSC Adv
– volume: 7
  start-page: 27
  year: 2016
  end-page: 34
  article-title: Novel fat replacement strategies
  publication-title: Curr Opin Food Sci
– volume: 85
  start-page: 1127
  year: 2008
  end-page: 1134
  article-title: Fibrils of ‐oryzanol + ‐sitosterol in edible oil organogels
  publication-title: J Am Oil Chem Soc
– volume: 4
  start-page: 35484
  year: 2014
  end-page: 35488
  article-title: Creation of thixotropic multicomponent alkylamide organogels containing non‐volatile oil as potential drug release host materials
  publication-title: RSC Adv
– volume: 12
  start-page: 221
  year: 2007
  end-page: 231
  article-title: Structuring of edible oils by alternatives to crystalline fat
  publication-title: Curr Opin Colloid In
– volume: 56
  start-page: 170
  year: 2016b
  end-page: 179
  article-title: Controlled volatile release of structured emulsions based on phytosterols crystallization
  publication-title: Food Hydrocolloids
– year: 2017
  article-title: A colloidal gel perspective for understanding oleogelation
  publication-title: Curr Opin Food Sci
– ident: e_1_2_6_5_1
  doi: 10.1016/j.cofs.2017.02.013
– ident: e_1_2_6_13_1
  doi: 10.1007/s11746-008-1298-7
– ident: e_1_2_6_20_1
  doi: 10.1007/s11746-015-2719-z
– ident: e_1_2_6_30_1
  doi: 10.1007/s11746-007-1135-4
– ident: e_1_2_6_17_1
  doi: 10.1002/lite.201200205
– ident: e_1_2_6_11_1
  doi: 10.1016/j.cocis.2007.07.002
– ident: e_1_2_6_12_1
  doi: 10.1007/s11746-006-1234-7
– ident: e_1_2_6_27_1
  doi: 10.1088/1742-6596/247/1/012025
– ident: e_1_2_6_28_1
  doi: 10.1007/s11746-014-2434-1
– ident: e_1_2_6_3_1
  doi: 10.1016/j.jconrel.2007.09.014
– ident: e_1_2_6_23_1
  doi: 10.1016/S0928-0987(01)00223-8
– ident: e_1_2_6_8_1
  doi: 10.1146/annurev.nutr.22.020702.075220
– ident: e_1_2_6_9_1
  doi: 10.1021/jf0624289
– ident: e_1_2_6_25_1
  doi: 10.1016/j.ijpharm.2011.09.022
– ident: e_1_2_6_29_1
  doi: 10.1002/adma.201101760
– ident: e_1_2_6_2_1
  doi: 10.1016/j.tifs.2016.08.018
– ident: e_1_2_6_6_1
  doi: 10.1016/j.cofs.2015.08.006
– ident: e_1_2_6_4_1
  doi: 10.1111/1750-3841.12992
– ident: e_1_2_6_16_1
  doi: 10.1080/10408390902841529
– ident: e_1_2_6_24_1
  doi: 10.1039/C3RA46584E
– ident: e_1_2_6_10_1
  doi: 10.1039/C4RA06130F
– volume: 15
  start-page: 1491
  year: 2016
  ident: e_1_2_6_18_1
  article-title: Tunable volatile release from organogel‐emulsions based on the self‐assembly of β‐sitosterol and γ‐oryzanol
  publication-title: Food Chem
– ident: e_1_2_6_14_1
  doi: 10.1002/ejlt.201100395
– ident: e_1_2_6_15_1
  doi: 10.1007/s11746-014-2526-y
– ident: e_1_2_6_31_1
  doi: 10.1021/acs.langmuir.5b03660
– ident: e_1_2_6_19_1
  doi: 10.1021/jf062643p
– ident: e_1_2_6_26_1
  doi: 10.1021/acs.langmuir.5b00053
– ident: e_1_2_6_7_1
  doi: 10.1016/j.cocis.2011.05.005
– ident: e_1_2_6_21_1
  doi: 10.1016/j.foodhyd.2015.11.035
– ident: e_1_2_6_22_1
  doi: 10.1002/ejlt.201500517
SSID ssj0009966
Score 2.3955252
Snippet BACKGROUND Oleogels have recently emerged as a subject of growing interest among industrial and academic researchers as an alternative to saturated/trans‐fat...
Oleogels have recently emerged as a subject of growing interest among industrial and academic researchers as an alternative to saturated/trans-fat and delivery...
BACKGROUND Oleogels have recently emerged as a subject of growing interest among industrial and academic researchers as an alternative to saturated/trans-fat...
BACKGROUND: Oleogels have recently emerged as a subject of growing interest among industrial and academic researchers as an alternative to saturated/trans‐fat...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 582
SubjectTerms Beta rays
beta-sitosterol
Calorimetry
Calorimetry, Differential Scanning
Chemical compounds
Controlled release
Crystals
Differential scanning calorimetry
Flavor compounds
functional foods
Glycerides - chemistry
Headspace
headspace analysis
Hydrogen
Hydrogen Bonding
Hydrogen bonds
microscopy
Microstructure
monoacylglycerols
monoglyceride
Monoglycerides - chemistry
oleogels
Organic Chemicals - chemistry
partition coefficients
Phytosterols
Phytosterols - chemistry
Plants
researchers
Self-assembly
Small angle X ray scattering
Stability
volatile release
Volatilization
X-radiation
X-ray scattering
Title Phytosterol‐based oleogels self‐assembled with monoglyceride for controlled volatile release
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjsfa.8500
https://www.ncbi.nlm.nih.gov/pubmed/28653331
https://www.proquest.com/docview/1973341073
https://www.proquest.com/docview/1914291086
https://www.proquest.com/docview/2045787143
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VvbQcaLvlEWiRQQhxydZ52-K0AlZVJaoKqNQDUnBie4GGDdpkD-2pP6G_sb-EmbyqUiohDpGieBL5MY_Pjv0NwEuZKyuEkm6YxJkbCp67KhGhm2N8FTrSym-STXw4jPePw4OT6GQF3vRnYVp-iGHBjSyj8ddk4Cqr9q5JQ39UVo1FxGm-Tnu1CBB9vKaOIhzfM4UjKPB7ViHu7w1v3oxFtwDmTbzaBJzpBnzpq9ruMzkdL-tsnJ__weL4n23ZhPsdEGWTVnO2YMXMR3BvMlt0ZBxmBM6776Zmr1jHHVqww566fwRr_Ynmahu-Hn07q-mwyKIsri4uKTBqVhamnGHgZZUpLD5FkG5-ZgWW0NIvQ-0vZ8VZjgagDUPkzLpN8ySBLhMVpjCMMrrg1x7A8fT957f7bpe5wc0DEXPabWFlmPDExjqhAQ8pjYzgEdeIzzztSRX7WYhzG2sl-kxuFYohsouIIk_Y4CGszsu5eQwsCXM_8azSUnn4RZ7FAhGXlsLjGq_Ygdf9GKZ5R2tO2TWKtCVk9lPq3JQ614EXg-ivlsvjb0I7vSKknTlXqSeTAMM9ukMHng_FaIj0d0XNTbkkGdQySYmr7pYh7n_0kNgHDjxqlWyoCR0RDoLAwwY1qnJ3FdODT9MJ3Tz5d9GnsI5QT7SLRzuwWi-WZhfhVJ09a-zmNxsYHD0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH6qyqFwYBm2tAUMQohLps5uS1xGlNFQ2hGCVuoFBSe2hyWdVDOZQznxE_iN_BLey1YVqIQ4RIril8jLWz479vcAnspcWSGUdMMkztxQ8NxViQjdHOOr0JFWfp1s4mAaT47CvePoeA1edGdhGn6IfsGNLKP212TgtCC9c84a-mVp1VBEHCfsVyijNzHn7747J48iJN9xhWOp3_EKcX-nf_ViNPoDYl5ErHXIGd-AD11lm50mX4erKhvm337jcfzf1tyE6y0WZaNGeW7BmpkP4Npotmj5OMwAnN3PpmLPWEsfWrBpx94_gI3uUPPyNnx8--msovMii7L4-f0HxUbNysKUM4y9bGkKi08Rp5uTrMASWv1laADlrDjL0Qa0YQieWbtvniTQa6LOFIZRUhf82h04Gr86fDlx2-QNbh6ImNOGCyvDhCc21gmNeUiZZASPuEaI5mlPqtjPQpzeWCvRbXKrUAzBXUQsecIGd2F9Xs7NfWBJmPuJZ5WWysMv8iwWCLq0FB7XeMUOPO8GMc1bZnNKsFGkDSezn1LnptS5DjzpRU8bOo-_CW13mpC2Fr1MPZkEGPHRIzrwuC9GW6QfLGpuyhXJoJpJyl11uQzR_6OTxD5w4F6jZX1N6JRwEAQeNqjWlcurmO69H4_oZvPfRR_BxuTwYD_dfz19swVXEfmJZi1pG9arxco8QHRVZQ9rI_oFxywgWQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH6qisRyYBm2tAUMQohLps5ui9OIYVQKjCqgUg-VghPbAzSdVDOZQznxE_iN_BLey1YVqIQ4RIril8jLWz479vcAnspcWSGUdMMkztxQ8NxViQjdHOOr0JFWfp1s4t003tkPdw-igzV40Z2Fafgh-gU3sozaX5OBn2i7fUYa-nVp1VBEHOfrl8KYS8rbMH5_xh1FQL6jCkdU4He0Qtzf7l89H4z-QJjnAWsdcSY34LCra7PR5Gi4qrJh_u03Gsf_bMxNuN4iUTZqVOcWrJn5AK6NZouWjcMMwBl_MRV7xlry0IJNO-7-AVzpjjQvb8Onvc-nFZ0WWZTFz-8_KDJqVhamnGHkZUtTWHyKKN0cZwWW0NovQ_UvZ8VpjhagDUPozNpd8ySBPhM1pjCMUrrg1-7A_uTVx5c7bpu6wc0DEXPabmFlmPDExjqhEQ8pj4zgEdcI0DztSRX7WYiTG2slOk1uFYohtIuII0_Y4C6sz8u5uQ8sCXM_8azSUnn4RZ7FAiGXlsLjGq_YgefdGKZ5y2tO6TWKtGFk9lPq3JQ614EnvehJQ-bxN6GtThHS1p6XqSeTAOM9-kMHHvfFaIn0e0XNTbkiGdQySZmrLpYh8n90kdgHDtxrlKyvCZ0RDoLAwwbVqnJxFdPdD5MR3Wz8u-gjuLw3nqRvX0_fbMJVhH2iWUjagvVqsTIPEFpV2cPahH4BUtUfCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phytosterol%E2%80%90based+oleogels+self%E2%80%90assembled+with+monoglyceride+for+controlled+volatile+release&rft.jtitle=Journal+of+the+science+of+food+and+agriculture&rft.au=Yang%2C+Dan%E2%80%90Xia&rft.au=Chen%2C+Xiao%E2%80%90Wei&rft.au=Yang%2C+Xiao%E2%80%90Quan&rft.date=2018-01-01&rft.issn=0022-5142&rft.eissn=1097-0010&rft.volume=98&rft.issue=2&rft.spage=582&rft.epage=589&rft_id=info:doi/10.1002%2Fjsfa.8500&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jsfa_8500
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5142&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5142&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5142&client=summon