Aboveground herbivory can promote exotic plant invasion through intra‐ and interspecific aboveground–belowground interactions
Summary Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant–soil feedbacks (PSFs) remains unclear. To explore how herbivory by the introduced beetle Agasicles hygrophila affects Alternanthera philoxeroides inva...
Saved in:
Published in | The New phytologist Vol. 237; no. 6; pp. 2347 - 2359 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant–soil feedbacks (PSFs) remains unclear.
To explore how herbivory by the introduced beetle Agasicles hygrophila affects Alternanthera philoxeroides invasions in China, we integrated multiyear field surveys and a 2‐yr PSF experiment, in which we examined how herbivory affects PSFs on the performance of native and invasive plants and the introduced beetles.
Despite increased herbivory from A. hygrophila, A. philoxeroides dominance over co‐occurring congeneric native Alternanthera sessilis remained constant from 2014 to 2019. While occurring at lower abundances, A. sessilis experienced similar herbivore damage, suggesting apparent competitive effects. Our experiments revealed that herbivory on A. philoxeroides altered soil microbial communities, prolonged its negative PSF on A. sessilis, and decreased A. hygrophila larvae performance on the next‐generation invasive plants. Consequently, A. hygrophila larvae performed better on leaves of natives than those of invasives when grown in soils conditioned by invasive plants defoliated by the introduced beetles.
Our findings suggest that aboveground herbivory might promote rather than suppress A. philoxeroides invasion by enhancing its soil‐mediated self‐reinforcement, providing a novel mechanistic understanding of plant invasions. These findings highlight the need to incorporate an aboveground–belowground perspective during the assessment of potential biocontrol agents.
See also the Commentary on this article by Antunes, 237: 1941–1942. |
---|---|
AbstractList | Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant-soil feedbacks (PSFs) remains unclear. To explore how herbivory by the introduced beetle Agasicles hygrophila affects Alternanthera philoxeroides invasions in China, we integrated multiyear field surveys and a 2-yr PSF experiment, in which we examined how herbivory affects PSFs on the performance of native and invasive plants and the introduced beetles. Despite increased herbivory from A. hygrophila, A. philoxeroides dominance over co-occurring congeneric native Alternanthera sessilis remained constant from 2014 to 2019. While occurring at lower abundances, A. sessilis experienced similar herbivore damage, suggesting apparent competitive effects. Our experiments revealed that herbivory on A. philoxeroides altered soil microbial communities, prolonged its negative PSF on A. sessilis, and decreased A. hygrophila larvae performance on the next-generation invasive plants. Consequently, A. hygrophila larvae performed better on leaves of natives than those of invasives when grown in soils conditioned by invasive plants defoliated by the introduced beetles. Our findings suggest that aboveground herbivory might promote rather than suppress A. philoxeroides invasion by enhancing its soil-mediated self-reinforcement, providing a novel mechanistic understanding of plant invasions. These findings highlight the need to incorporate an aboveground-belowground perspective during the assessment of potential biocontrol agents. Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant-soil feedbacks (PSFs) remains unclear. To explore how herbivory by the introduced beetle Agasicles hygrophila affects Alternanthera philoxeroides invasions in China, we integrated multiyear field surveys and a 2-yr PSF experiment, in which we examined how herbivory affects PSFs on the performance of native and invasive plants and the introduced beetles. Despite increased herbivory from A. hygrophila, A. philoxeroides dominance over co-occurring congeneric native Alternanthera sessilis remained constant from 2014 to 2019. While occurring at lower abundances, A. sessilis experienced similar herbivore damage, suggesting apparent competitive effects. Our experiments revealed that herbivory on A. philoxeroides altered soil microbial communities, prolonged its negative PSF on A. sessilis, and decreased A. hygrophila larvae performance on the next-generation invasive plants. Consequently, A. hygrophila larvae performed better on leaves of natives than those of invasives when grown in soils conditioned by invasive plants defoliated by the introduced beetles. Our findings suggest that aboveground herbivory might promote rather than suppress A. philoxeroides invasion by enhancing its soil-mediated self-reinforcement, providing a novel mechanistic understanding of plant invasions. These findings highlight the need to incorporate an aboveground-belowground perspective during the assessment of potential biocontrol agents.Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant-soil feedbacks (PSFs) remains unclear. To explore how herbivory by the introduced beetle Agasicles hygrophila affects Alternanthera philoxeroides invasions in China, we integrated multiyear field surveys and a 2-yr PSF experiment, in which we examined how herbivory affects PSFs on the performance of native and invasive plants and the introduced beetles. Despite increased herbivory from A. hygrophila, A. philoxeroides dominance over co-occurring congeneric native Alternanthera sessilis remained constant from 2014 to 2019. While occurring at lower abundances, A. sessilis experienced similar herbivore damage, suggesting apparent competitive effects. Our experiments revealed that herbivory on A. philoxeroides altered soil microbial communities, prolonged its negative PSF on A. sessilis, and decreased A. hygrophila larvae performance on the next-generation invasive plants. Consequently, A. hygrophila larvae performed better on leaves of natives than those of invasives when grown in soils conditioned by invasive plants defoliated by the introduced beetles. Our findings suggest that aboveground herbivory might promote rather than suppress A. philoxeroides invasion by enhancing its soil-mediated self-reinforcement, providing a novel mechanistic understanding of plant invasions. These findings highlight the need to incorporate an aboveground-belowground perspective during the assessment of potential biocontrol agents. Summary Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant–soil feedbacks (PSFs) remains unclear. To explore how herbivory by the introduced beetle Agasicles hygrophila affects Alternanthera philoxeroides invasions in China, we integrated multiyear field surveys and a 2‐yr PSF experiment, in which we examined how herbivory affects PSFs on the performance of native and invasive plants and the introduced beetles. Despite increased herbivory from A. hygrophila, A. philoxeroides dominance over co‐occurring congeneric native Alternanthera sessilis remained constant from 2014 to 2019. While occurring at lower abundances, A. sessilis experienced similar herbivore damage, suggesting apparent competitive effects. Our experiments revealed that herbivory on A. philoxeroides altered soil microbial communities, prolonged its negative PSF on A. sessilis, and decreased A. hygrophila larvae performance on the next‐generation invasive plants. Consequently, A. hygrophila larvae performed better on leaves of natives than those of invasives when grown in soils conditioned by invasive plants defoliated by the introduced beetles. Our findings suggest that aboveground herbivory might promote rather than suppress A. philoxeroides invasion by enhancing its soil‐mediated self‐reinforcement, providing a novel mechanistic understanding of plant invasions. These findings highlight the need to incorporate an aboveground–belowground perspective during the assessment of potential biocontrol agents. See also the Commentary on this article by Antunes, 237: 1941–1942. Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant–soil feedbacks (PSFs) remains unclear. To explore how herbivory by the introduced beetle Agasicles hygrophila affects Alternanthera philoxeroides invasions in China, we integrated multiyear field surveys and a 2‐yr PSF experiment, in which we examined how herbivory affects PSFs on the performance of native and invasive plants and the introduced beetles. Despite increased herbivory from A. hygrophila, A. philoxeroides dominance over co‐occurring congeneric native Alternanthera sessilis remained constant from 2014 to 2019. While occurring at lower abundances, A. sessilis experienced similar herbivore damage, suggesting apparent competitive effects. Our experiments revealed that herbivory on A. philoxeroides altered soil microbial communities, prolonged its negative PSF on A. sessilis, and decreased A. hygrophila larvae performance on the next‐generation invasive plants. Consequently, A. hygrophila larvae performed better on leaves of natives than those of invasives when grown in soils conditioned by invasive plants defoliated by the introduced beetles. Our findings suggest that aboveground herbivory might promote rather than suppress A. philoxeroides invasion by enhancing its soil‐mediated self‐reinforcement, providing a novel mechanistic understanding of plant invasions. These findings highlight the need to incorporate an aboveground–belowground perspective during the assessment of potential biocontrol agents. Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant–soil feedbacks (PSFs) remains unclear. To explore how herbivory by the introduced beetle Agasicles hygrophila affects Alternanthera philoxeroides invasions in China, we integrated multiyear field surveys and a 2‐yr PSF experiment, in which we examined how herbivory affects PSFs on the performance of native and invasive plants and the introduced beetles. Despite increased herbivory from A. hygrophila , A. philoxeroides dominance over co‐occurring congeneric native Alternanthera sessilis remained constant from 2014 to 2019 . While occurring at lower abundances, A. sessilis experienced similar herbivore damage, suggesting apparent competitive effects. Our experiments revealed that herbivory on A. philoxeroides altered soil microbial communities, prolonged its negative PSF on A. sessilis , and decreased A. hygrophila larvae performance on the next‐generation invasive plants. Consequently, A. hygrophila larvae performed better on leaves of natives than those of invasives when grown in soils conditioned by invasive plants defoliated by the introduced beetles. Our findings suggest that aboveground herbivory might promote rather than suppress A. philoxeroides invasion by enhancing its soil‐mediated self‐reinforcement, providing a novel mechanistic understanding of plant invasions. These findings highlight the need to incorporate an aboveground–belowground perspective during the assessment of potential biocontrol agents. See also the Commentary on this article by Antunes, 237 : 1941–1942. |
Author | Wei, Chunqiang Chen, Wei Xu, Hao Tang, Xuefei Wu, Yuqing Gao, Lunlun Wilschut, Rutger A. Lu, Xinmin He, Yifan |
Author_xml | – sequence: 1 givenname: Lunlun orcidid: 0000-0002-4361-2790 surname: Gao fullname: Gao, Lunlun organization: Huazhong Agricultural University – sequence: 2 givenname: Chunqiang orcidid: 0000-0002-0648-5139 surname: Wei fullname: Wei, Chunqiang organization: Chinese Academy of Science – sequence: 3 givenname: Yifan orcidid: 0000-0003-1973-3901 surname: He fullname: He, Yifan organization: Huazhong Agricultural University – sequence: 4 givenname: Xuefei orcidid: 0000-0002-6137-2567 surname: Tang fullname: Tang, Xuefei organization: Huazhong Agricultural University – sequence: 5 givenname: Wei orcidid: 0000-0001-9405-8497 surname: Chen fullname: Chen, Wei organization: Huazhong Agricultural University – sequence: 6 givenname: Hao orcidid: 0000-0002-7752-4369 surname: Xu fullname: Xu, Hao organization: Huazhong Agricultural University – sequence: 7 givenname: Yuqing orcidid: 0000-0002-7376-4971 surname: Wu fullname: Wu, Yuqing organization: Henan Academy of Agricultural Sciences – sequence: 8 givenname: Rutger A. orcidid: 0000-0002-2559-9799 surname: Wilschut fullname: Wilschut, Rutger A. organization: Wageningen University and Research – sequence: 9 givenname: Xinmin orcidid: 0000-0001-8776-7869 surname: Lu fullname: Lu, Xinmin email: lxm3412@mail.hzau.edu.cn organization: Huazhong Agricultural University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36200166$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd9qFDEUxoNU7LZ64QvIgDd6MW3-bSa5LEWtUNQLBe9CkjnbTZmdjMnM1r2rbyD4hn0ST7tbhKKYm5Dw-77Dd74DstenHgh5zugRw3PcD8sjpuecPiIzJpWpNRPNHplRynWtpPq6Tw5KuaSUmrniT8i-UJxSptSM_DjxaQ0XOU19Wy0h-7hOeVMF11dDTqs0QgXf0xhDNXSuH6vYr12Jqa_GJWoulvgxZndz_bNyaIAPyGWAEBeocH-sb65_eejS1W7QHefCiEblKXm8cF2BZ7v7kHx5--bz6Vl9_vHd-9OT8zoIrWgtMRdtJfAglRNOQBsMdVItjDYCgjbS-KC8BwDn5NwL34g2SENN43lLgzgkr7a-mOvbBGW0q1gCdBgL0lQs14wZrYXQ_0cbzgUTcs4QffkAvUxT7jEIUk1D0U5TpF7sqMmvoLVDjiuXN_a-BwSOt0DIqZQMCxvi6G73g9uNnWXU3jZtsWl71zQqXj9Q3Jv-jd25X8UONv8G7YdPZ1vFb8R7vHI |
CitedBy_id | crossref_primary_10_3390_microorganisms12122438 crossref_primary_10_1007_s11104_024_07078_8 crossref_primary_10_1111_1365_2745_14398 crossref_primary_10_1111_1365_2745_14157 crossref_primary_10_1111_nph_18721 crossref_primary_10_1016_j_scienta_2025_113985 crossref_primary_10_1111_nph_20160 crossref_primary_10_1016_j_apsoil_2025_105899 |
Cites_doi | 10.1111/nph.17193 10.1016/j.biocon.2010.03.004 10.1007/s00442-009-1351-8 10.1111/ele.12391 10.1111/nph.15485 10.1016/j.funeco.2015.06.006 10.1890/07-0646.1 10.1146/annurev.ento.43.1.369 10.1073/pnas.2013751117 10.1046/j.1461-0248.2001.00251.x 10.1111/nph.18118 10.1038/ismej.2009.72 10.1111/j.1365-2664.2012.02209.x 10.1023/A:1022453129662 10.1093/aob/mcaa191 10.1111/nph.16430 10.1111/gcb.12244 10.1016/j.tree.2019.01.008 10.1126/science.1094875 10.1111/j.1467-9868.2010.00749.x 10.1038/s41396-018-0219-5 10.1038/s41467-021-23030-1 10.1111/1365-2745.12601 10.1034/j.1600-0706.2001.950301.x 10.1111/j.1461-0248.2004.00713.x 10.1016/j.envexpbot.2006.06.003 10.1111/nph.16768 10.1111/nph.15603 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 10.1016/S0169-5347(02)02499-0 10.1111/j.2006.0030-1299.14625.x 10.1111/1365-2745.12778 10.1038/s41477-020-0656-9 10.1126/science.1256688 10.1007/s00442-018-4245-9 10.1111/1365-2745.12045 10.1104/pp.111.190777 10.1111/nph.13976 10.1890/05-0219 10.1111/nph.17479 10.1126/science.aaw9285 10.1016/j.tplants.2020.10.006 10.1111/1365-2745.13975 10.1111/brv.12627 10.1007/s10530-011-0106-8 10.1038/s41586-021-03405-6 10.1038/s41559-020-01311-0 10.1002/ecm.1216 10.1111/j.1461-0248.2012.01801.x 10.1146/annurev-micro-092412-155650 |
ContentType | Journal Article |
Copyright | 2022 The Authors. © 2022 New Phytologist Foundation 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation. Copyright © 2023 New Phytologist Trust |
Copyright_xml | – notice: 2022 The Authors. © 2022 New Phytologist Foundation – notice: 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation. – notice: Copyright © 2023 New Phytologist Trust |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.18520 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 2359 |
ExternalDocumentID | 36200166 10_1111_nph_18520 NPH18520 |
Genre | researchArticle Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Key R&D program of China funderid: 2021YFC2600401 – fundername: Fundamental Research Funds for the Central Universities funderid: 2662020ZKPY007; 2662021JC011 – fundername: National Natural Science Foundation of China funderid: 31872034; 32171585 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AASVR AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABLJU ABPLY ABPVW ABTLG ABVKB ABXSQ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPNFZ IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT AAYXX ABGDZ ABSQW ADXHL AEYWJ AGHNM AGUYK AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3860-44690d4e2c46a3a3edc90a46f9893ec8949bc6bbeeeaa45b3b73dc49097b2d0c3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:28:18 EDT 2025 Thu Jul 10 22:01:26 EDT 2025 Fri Jul 25 12:15:05 EDT 2025 Thu Apr 03 07:07:04 EDT 2025 Thu Apr 24 23:04:17 EDT 2025 Tue Jul 01 02:28:43 EDT 2025 Wed Jan 22 16:23:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | aboveground-belowground interactions soil biota invasive plant biological control herbivore plant-soil feedback plant invasions |
Language | English |
License | 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3860-44690d4e2c46a3a3edc90a46f9893ec8949bc6bbeeeaa45b3b73dc49097b2d0c3 |
Notes | These authors contributed equally to this work. 1941–1942. Antunes 237 See also the Commentary on this article by ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7376-4971 0000-0002-6137-2567 0000-0001-8776-7869 0000-0002-0648-5139 0000-0002-4361-2790 0000-0002-7752-4369 0000-0001-9405-8497 0000-0002-2559-9799 0000-0003-1973-3901 |
PMID | 36200166 |
PQID | 2777033880 |
PQPubID | 2026848 |
PageCount | 2359 |
ParticipantIDs | proquest_miscellaneous_2811988338 proquest_miscellaneous_2722313451 proquest_journals_2777033880 pubmed_primary_36200166 crossref_citationtrail_10_1111_nph_18520 crossref_primary_10_1111_nph_18520 wiley_primary_10_1111_nph_18520_NPH18520 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2023 2023-03-00 20230301 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2002; 17 2021; 26 2013; 67 1995; 33 2010; 143 2020; 127 2019; 366 2016; 104 2012; 15 2012; 14 1999; 80 1998; 43 2003; 12 2013; 19 2020; 6 2020; 4 2020; 95 2011; 73 2016; 86 2009; 161 2007; 60 2021; 230 2021; 592 2021; 231 2009; 19 2001; 95 2018; 188 2022; 110 2015; 18 2019; 34 2013; 101 2020; 226 2005; 86 2020; 228 2004; 304 2019; 221 2019; 222 2006; 114 2022; 234 1988; 4 2021; 12 2001; 4 2020 2005; 8 2016; 211 2016; 20 2020; 117 2012; 49 2009; 3 2012; 158 2018; 12 2017; 105 2014; 346 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 Julien MH (e_1_2_9_20_1) 1995; 33 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Wang R (e_1_2_9_45_1) 1988; 4 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 36795473 - New Phytol. 2023 Mar;237(6):1941-1942 |
References_xml | – volume: 6 start-page: 483 year: 2020 end-page: 491 article-title: Organic management promotes natural pest control through altered plant resistance to insects publication-title: Nature Plants – volume: 230 start-page: 845 year: 2021 end-page: 856 article-title: Rapid evolution of latitudinal clines in growth and defence of an invasive weed publication-title: New Phytologist – volume: 19 start-page: 709 year: 2009 end-page: 721 article-title: Population‐level compensation by an invasive thistle thwarts biological control from seed predators publication-title: Ecological Applications – volume: 222 start-page: 91 year: 2019 end-page: 96 article-title: Mechanisms of plant–soil feedback: interactions among biotic and abiotic drivers publication-title: New Phytologist – volume: 101 start-page: 325 year: 2013 end-page: 333 article-title: Above‐ and below‐ground herbivory effects on below‐ground plant–fungus interactions and plant–soil feedback responses publication-title: Journal of Ecology – volume: 117 start-page: 26849 year: 2020 end-page: 26853 article-title: Phylogenetic escape from pests reduces pesticides on some crop plants publication-title: Proceedings of the National Academy of Sciences, USA – volume: 18 start-page: 48 year: 2015 end-page: 56 article-title: Climate warming increases biological control agent impact on a non‐target species publication-title: Ecology Letters – volume: 14 start-page: 649 year: 2012 end-page: 658 article-title: History of exposure to herbivores increases the compensatory ability of an invasive plant publication-title: Biological Invasions – volume: 8 start-page: 209 year: 2005 end-page: 217 article-title: Insect herbivory stimulates allelopathic exudation by an invasive plant and the suppression of natives publication-title: Ecology Letters – volume: 211 start-page: 1371 year: 2016 end-page: 1381 article-title: Warming benefits a native species competing with an invasive congener in the presence of a biocontrol beetle publication-title: New Phytologist – volume: 19 start-page: 2339 year: 2013 end-page: 2347 article-title: Climate warming affects biological invasions by shifting interactions of plants and herbivores publication-title: Global Change Biology – volume: 60 start-page: 20 year: 2007 end-page: 25 article-title: Rapid response to shoot removal by the invasive wetland plant, alligator weed ( ) publication-title: Environmental and Experimental Botany – volume: 110 start-page: 2649 year: 2022 end-page: 2660 article-title: Soil microbiota explain differences in herbivore resistance between native and invasive populations of a perennial herb publication-title: Journal of Ecology – volume: 188 start-page: 801 year: 2018 end-page: 811 article-title: Species‐specific plant–soil feedbacks alter herbivore‐induced gene expression and defense chemistry in publication-title: Oecologia – volume: 228 start-page: 1440 year: 2020 end-page: 1449 article-title: Phylogenetic signals and predictability in plant–soil feedbacks publication-title: New Phytologist – volume: 127 start-page: 327 year: 2020 end-page: 336 article-title: An invasive plant rapidly increased the similarity of soil fungal pathogen communities publication-title: Annals of Botany – volume: 86 start-page: 373 year: 2016 end-page: 390 article-title: Carbon content and climate variability drive global soil bacterial diversity patterns publication-title: Ecological Monographs – volume: 12 start-page: 637 year: 2003 end-page: 645 article-title: Genetic diversity of alligator weed in China by RAPD analysis publication-title: Biodiversity and Conservation – volume: 67 start-page: 399 year: 2013 end-page: 416 article-title: pathogenomics publication-title: Annual Review of Microbiology – volume: 4 start-page: 1612 year: 2020 end-page: 1621 article-title: Soil‐microorganism‐mediated invasional meltdown in plants publication-title: Nature Ecology & Evolution – volume: 49 start-page: 1287 year: 2012 end-page: 1295 article-title: The effectiveness of classical biological control of invasive plants publication-title: Journal of Applied Ecology – volume: 161 start-page: 1 year: 2009 end-page: 14 article-title: Empirical and theoretical challenges in aboveground–belowground ecology publication-title: Oecologia – volume: 592 start-page: 571 year: 2021 end-page: 576 article-title: High and rising economic costs of biological invasions worldwide publication-title: Nature – volume: 143 start-page: 2251 year: 2010 end-page: 2259 article-title: Interactions between invasive plants and insect herbivores: a plea for a multitrophic perspective publication-title: Biological Conservation – volume: 43 start-page: 369 year: 1998 end-page: 393 article-title: Biological control of weeds publication-title: Annual Review of Entomology – volume: 34 start-page: 447 year: 2019 end-page: 458 article-title: Simulated herbivory: the key to disentangling plant defence responses publication-title: Trends in Ecology & Evolution – volume: 346 year: 2014 article-title: Global diversity and geography of soil fungi publication-title: Science – volume: 221 start-page: 1478 year: 2019 end-page: 1491 article-title: Removal of soil biota alters soil feedback effects on plant growth and defense chemistry publication-title: New Phytologist – volume: 114 start-page: 168 year: 2006 end-page: 176 article-title: Accumulation of local pathogens: a new hypothesis to explain exotic plant invasions publication-title: Oikos – volume: 231 start-page: 1559 year: 2021 end-page: 1569 article-title: Latitudinal variation in the diversity and composition of various organisms associated with an exotic plant: the role of climate and plant invasion publication-title: New Phytologist – volume: 80 start-page: 1150 year: 1999 end-page: 1156 article-title: The meta‐analysis of response ratios in experimental ecology publication-title: Ecology – volume: 226 start-page: 1144 year: 2020 end-page: 1157 article-title: Shifts in plant–microbe interactions over community succession and their effects on plant resistance to herbivores publication-title: New Phytologist – volume: 95 start-page: 1511 year: 2020 end-page: 1534 article-title: Scientists' warning on invasive alien species publication-title: Biological Reviews – volume: 86 start-page: 2979 year: 2005 end-page: 2989 article-title: Enemy release? An experiment with congeneric plant pairs and diverse above‐ and belowground enemies publication-title: Ecology – volume: 15 start-page: 813 year: 2012 end-page: 821 article-title: Legacy effects of aboveground–belowground interactions publication-title: Ecology Letters – volume: 3 start-page: 1314 year: 2009 end-page: 1317 article-title: Systematic artifacts in metagenomes from complex microbial communities publication-title: The ISME Journal – volume: 158 start-page: 1107 year: 2012 end-page: 1114 article-title: Exotic plant invasion in the context of plant defense against herbivores publication-title: Plant Physiology – volume: 33 start-page: 55 year: 1995 end-page: 60 article-title: Potential geographical distribution of alligator weed and its biological control by publication-title: Journal of Aquatic Plant Management – volume: 12 start-page: 2696 year: 2021 article-title: Exotic plants accumulate and share herbivores yet dominate communities via rapid growth publication-title: Nature Communications – volume: 4 start-page: 429 year: 2001 end-page: 433 article-title: Compensatory growth and competitive ability of an invasive weed are enhanced by soil fungi and native neighbours publication-title: Ecology Letters – volume: 234 start-page: 1929 year: 2022 end-page: 1944 article-title: Deciphering the role of specialist and generalist plant–microbial interactions as drivers of plant–soil feedback publication-title: New Phytologist – volume: 17 start-page: 164 year: 2002 end-page: 170 article-title: Exotic plant invasions and the enemy release hypothesis publication-title: Trends in Ecology & Evolution – volume: 73 start-page: 3 year: 2011 end-page: 36 article-title: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – volume: 105 start-page: 1534 year: 2017 end-page: 1546 article-title: Manipulating two olfactory cues causes a biological control beetle to shift to non‐target plant species publication-title: Journal of Ecology – volume: 26 start-page: 237 year: 2021 end-page: 247 article-title: Nematodes as drivers of plant performance in natural systems publication-title: Trends in Plant Science – volume: 95 start-page: 361 year: 2001 end-page: 373 article-title: When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses publication-title: Oikos – volume: 104 start-page: 1233 year: 2016 end-page: 1242 article-title: Alien and native plant establishment in grassland communities is more strongly affected by disturbance than above‐ and below‐ground enemies publication-title: Journal of Ecology – volume: 304 start-page: 1629 year: 2004 end-page: 1633 article-title: Ecological linkages between aboveground and belowground biota publication-title: Science – year: 2020 – volume: 4 start-page: 14 year: 1988 end-page: 17 article-title: Host specificity tests for [Col: Chrysomelidae], a biocontrol agent of alligator weed publication-title: Chinese Journal of Biological Control – volume: 12 start-page: 2811 year: 2018 end-page: 2822 article-title: Latitudinal variation in soil biota: testing the biotic interaction hypothesis with an invasive plant and a native congener publication-title: The ISME Journal – volume: 366 start-page: 606 year: 2019 end-page: 612 article-title: Pathogen‐induced activation of disease‐suppressive functions in the endophytic root microbiome publication-title: Science – volume: 20 start-page: 241 year: 2016 end-page: 248 article-title: FUNG : an open annotation tool for parsing fungal community datasets by ecological guild publication-title: Fungal Ecology – ident: e_1_2_9_52_1 doi: 10.1111/nph.17193 – ident: e_1_2_9_16_1 doi: 10.1016/j.biocon.2010.03.004 – ident: e_1_2_9_37_1 doi: 10.1007/s00442-009-1351-8 – ident: e_1_2_9_27_1 doi: 10.1111/ele.12391 – ident: e_1_2_9_43_1 doi: 10.1111/nph.15485 – ident: e_1_2_9_34_1 doi: 10.1016/j.funeco.2015.06.006 – ident: e_1_2_9_14_1 doi: 10.1890/07-0646.1 – ident: e_1_2_9_32_1 doi: 10.1146/annurev.ento.43.1.369 – ident: e_1_2_9_36_1 doi: 10.1073/pnas.2013751117 – ident: e_1_2_9_7_1 doi: 10.1046/j.1461-0248.2001.00251.x – ident: e_1_2_9_39_1 doi: 10.1111/nph.18118 – ident: e_1_2_9_15_1 doi: 10.1038/ismej.2009.72 – ident: e_1_2_9_35_1 – ident: e_1_2_9_9_1 doi: 10.1111/j.1365-2664.2012.02209.x – ident: e_1_2_9_51_1 doi: 10.1023/A:1022453129662 – ident: e_1_2_9_44_1 doi: 10.1093/aob/mcaa191 – ident: e_1_2_9_18_1 doi: 10.1111/nph.16430 – volume: 33 start-page: 55 year: 1995 ident: e_1_2_9_20_1 article-title: Potential geographical distribution of alligator weed and its biological control by Agasicles hygrophila publication-title: Journal of Aquatic Plant Management – ident: e_1_2_9_29_1 doi: 10.1111/gcb.12244 – ident: e_1_2_9_47_1 doi: 10.1016/j.tree.2019.01.008 – ident: e_1_2_9_46_1 doi: 10.1126/science.1094875 – ident: e_1_2_9_50_1 doi: 10.1111/j.1467-9868.2010.00749.x – ident: e_1_2_9_26_1 doi: 10.1038/s41396-018-0219-5 – ident: e_1_2_9_3_1 doi: 10.1038/s41467-021-23030-1 – ident: e_1_2_9_33_1 doi: 10.1111/1365-2745.12601 – ident: e_1_2_9_31_1 doi: 10.1034/j.1600-0706.2001.950301.x – ident: e_1_2_9_41_1 doi: 10.1111/j.1461-0248.2004.00713.x – ident: e_1_2_9_49_1 doi: 10.1016/j.envexpbot.2006.06.003 – ident: e_1_2_9_42_1 doi: 10.1111/nph.16768 – ident: e_1_2_9_4_1 doi: 10.1111/nph.15603 – volume: 4 start-page: 14 year: 1988 ident: e_1_2_9_45_1 article-title: Host specificity tests for Agasicles hygrophila [Col: Chrysomelidae], a biocontrol agent of alligator weed publication-title: Chinese Journal of Biological Control – ident: e_1_2_9_17_1 doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 – ident: e_1_2_9_22_1 doi: 10.1016/S0169-5347(02)02499-0 – ident: e_1_2_9_12_1 doi: 10.1111/j.2006.0030-1299.14625.x – ident: e_1_2_9_24_1 doi: 10.1111/1365-2745.12778 – ident: e_1_2_9_6_1 doi: 10.1038/s41477-020-0656-9 – ident: e_1_2_9_40_1 doi: 10.1126/science.1256688 – ident: e_1_2_9_54_1 doi: 10.1007/s00442-018-4245-9 – ident: e_1_2_9_5_1 doi: 10.1111/1365-2745.12045 – ident: e_1_2_9_19_1 doi: 10.1104/pp.111.190777 – ident: e_1_2_9_28_1 doi: 10.1111/nph.13976 – ident: e_1_2_9_2_1 doi: 10.1890/05-0219 – ident: e_1_2_9_13_1 doi: 10.1111/nph.17479 – ident: e_1_2_9_8_1 doi: 10.1126/science.aaw9285 – ident: e_1_2_9_48_1 doi: 10.1016/j.tplants.2020.10.006 – ident: e_1_2_9_21_1 doi: 10.1111/1365-2745.13975 – ident: e_1_2_9_38_1 doi: 10.1111/brv.12627 – ident: e_1_2_9_25_1 doi: 10.1007/s10530-011-0106-8 – ident: e_1_2_9_11_1 doi: 10.1038/s41586-021-03405-6 – ident: e_1_2_9_53_1 doi: 10.1038/s41559-020-01311-0 – ident: e_1_2_9_10_1 doi: 10.1002/ecm.1216 – ident: e_1_2_9_23_1 doi: 10.1111/j.1461-0248.2012.01801.x – ident: e_1_2_9_30_1 doi: 10.1146/annurev-micro-092412-155650 – reference: 36795473 - New Phytol. 2023 Mar;237(6):1941-1942 |
SSID | ssj0009562 |
Score | 2.4662106 |
Snippet | Summary
Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant–soil... Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant–soil feedbacks... Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant-soil feedbacks... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2347 |
SubjectTerms | aboveground–belowground interactions Agasicles hygrophila Alternanthera philoxeroides Alternanthera sessilis Amaranthaceae Animals Beetles Biological control Biological invasions Biota China Coleoptera ecological invasion herbivore Herbivores Herbivory Introduced plants Introduced Species invasive plant Invasive plants invasive species Larva Larvae Microbial activity Microorganisms plant invasions Plants plant–soil feedback Soil soil biota Soil conditions Soil microorganisms Soils |
Title | Aboveground herbivory can promote exotic plant invasion through intra‐ and interspecific aboveground–belowground interactions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.18520 https://www.ncbi.nlm.nih.gov/pubmed/36200166 https://www.proquest.com/docview/2777033880 https://www.proquest.com/docview/2722313451 https://www.proquest.com/docview/2811988338 |
Volume | 237 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYh9NBL349t0qKUHHrxspZl2aKnpDQsgYRSEthDwegxS0MWe9lXm5zSf1DoP8wvyYz8aNK0pfRm7LEse2akT_LMN4xtj1OTez_OIhBaRFL4ODKxxMFQGK_BZy4NuVUHh2p4LPdH6WiNvW1zYWp-iG7DjTwjjNfk4MbOrzl5Of3cp8xfWq9TrBYBoo_iGuGuEi0Ds5Jq1LAKURRPd-fNuegWwLyJV8OEs3effWq7WseZnPaXC9t357-wOP7nuzxg9xogyndqy3nI1qB8xO7sVggWzx6zbzu2WgGlfJSeo1rtyaqanXHUA5-GAD7g8LXCW_l0grrhJ-XK0L4bb-r-4InFzFxefOcGGyBOipDTSXFJ3Pxs-vLih4VJ9aV5UJCrMy3mT9jx3vujd8OoqdYQuSRXg0jSQttLEE4qk5gEvNMDI9VYIyQCl2uprVPWAoAxMrWJzRLvpB7ozAo_cMlTtl5WJTxnXPuYfuBChthDepdYNCZhgAru5amXtsfetHorXENlThU1JkW7pMEPWoQP2mOvO9Fpzd_xO6HNVvlF48LzQmQZjobEldNjW91ldD76o2JKqJYkg-gqTmQa_0Umj2NNJZ3zHntWG1bXE0QPhLkVvlAwjz93sTj8MAwHL_5ddIPdFQjJ6oi5Tba-mC3hJUKohX0VfOUKCXkcow |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VBQku5Q1bChjEgUtWG8dxYolLQVQLtCuEWmkvKPJrRcUqWW13F8qp_AMk_mF_CTPOg5aXELcomSR2xuN8Y898A_B4kurcuUkWea54JLiLIx0LnAy5dsq7zKYht2pvJIcH4tU4Ha_B0zYXpuaH6BbcyDLCfE0GTgvSZ6y8nL3vU-ovOuwXqKJ3cKje8jOUu5K3HMxSyHHDK0RxPN2t5_9Gv0DM84g1_HJ2rsC7trF1pMmH_nJh-vbzTzyO_9ubq7DRYFG2XQ-ea7Dmy-tw8VmFePH4BnzZNtXKU9ZH6Rhq1hyuqvkxQ1WwWYjh88x_qvBWNpuiethhudK09Maa0j94YjHXpydfmcYHEC1FSOuk0CSmfzz69OSb8dPqY_OiIFcnWxzdhIOdF_vPh1FTsCGySS4HkSBf2wnPrZA60Yl3Vg20kBOFqMjbXAllrDTGe6-1SE1issRZoQYqM9wNbHIL1suq9HeAKRfTHq7PEH4IZxOD44lrTzX38tQJ04MnreIK27CZU1GNadF6NfhBi_BBe_CoE53VFB6_E9pqtV80VnxU8CzDCZHocnrwsLuM9kebKrr01ZJkEGDFiUjjv8jkcayoqnPeg9v1yOpaggCCYLfEDoXx8ecmFqM3w3Cw-e-iD-DScH9vt9h9OXp9Fy5zRGh1AN0WrC_mS38PEdXC3A-G8x2prSC- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VBSEuPMproQUXceCSVeI4TixOpe1qoWVVISrtASnya0XFKom2uwvlVP4BEv-wv6Rj50HLS4hblEwSOzPjfLZnvgF4NklkZswkDSwVNGDURIGMGA6GVBphTaoTn1v1ZsSHh-z1OBmvwIs2F6bmh-gW3Jxn-PHaOXhlJhecvKg-9F3mL87XrzAeZs6kd97SC4y7nLYUzJzxcUMr5MJ4ulsv_4x-QZiXAav_4wxuwvu2rXWgycf-Yq76-stPNI7_2ZlbcKNBomSrNp3bsGKLNbj6skS0eHIHvm6pcmldzkdhCOpVHS3L2QlBRZDKR_BZYj-XeCuppqgcclQspVt4I03hHzwxn8mz029E4gMcKYVP6nSBSUT-ePTZ6Xdlp-Wn5kVerk61OL4Lh4Pdd9vDoCnXEOg442HA3EzbMEs14zKWsTVahJLxiUBMZHUmmFCaK2WtlZIlKlZpbDQToUgVNaGO78FqURb2ARBhIreDa1MEH8zoWKE1UWldxb0sMUz14Hmrt1w3XOaupMY0b-c0-EFz_0F78LQTrWoCj98JrbfKzxsfPs5pmuJw6MhyerDZXUbvc1sqsrDlwskgvIpilkR_kcmiSLiazlkP7teG1bUE4YMD3Rw75M3jz03MRwdDf_Dw30WfwLWDnUG-_2q09wiuU4RndfTcOqzOZwu7gXBqrh57tzkHXPsfdg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aboveground+herbivory+can+promote+exotic+plant+invasion+through+intra%E2%80%90+and+interspecific+aboveground%E2%80%93belowground+interactions&rft.jtitle=The+New+phytologist&rft.au=Gao%2C+Lunlun&rft.au=Chunqiang+Wei&rft.au=He%2C+Yifan&rft.au=Tang%2C+Xuefei&rft.date=2023-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=237&rft.issue=6&rft.spage=2347&rft.epage=2359&rft_id=info:doi/10.1111%2Fnph.18520&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |