Aboveground herbivory can promote exotic plant invasion through intra‐ and interspecific aboveground–belowground interactions

Summary Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant–soil feedbacks (PSFs) remains unclear. To explore how herbivory by the introduced beetle Agasicles hygrophila affects Alternanthera philoxeroides inva...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 237; no. 6; pp. 2347 - 2359
Main Authors Gao, Lunlun, Wei, Chunqiang, He, Yifan, Tang, Xuefei, Chen, Wei, Xu, Hao, Wu, Yuqing, Wilschut, Rutger A., Lu, Xinmin
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant–soil feedbacks (PSFs) remains unclear. To explore how herbivory by the introduced beetle Agasicles hygrophila affects Alternanthera philoxeroides invasions in China, we integrated multiyear field surveys and a 2‐yr PSF experiment, in which we examined how herbivory affects PSFs on the performance of native and invasive plants and the introduced beetles. Despite increased herbivory from A. hygrophila, A. philoxeroides dominance over co‐occurring congeneric native Alternanthera sessilis remained constant from 2014 to 2019. While occurring at lower abundances, A. sessilis experienced similar herbivore damage, suggesting apparent competitive effects. Our experiments revealed that herbivory on A. philoxeroides altered soil microbial communities, prolonged its negative PSF on A. sessilis, and decreased A. hygrophila larvae performance on the next‐generation invasive plants. Consequently, A. hygrophila larvae performed better on leaves of natives than those of invasives when grown in soils conditioned by invasive plants defoliated by the introduced beetles. Our findings suggest that aboveground herbivory might promote rather than suppress A. philoxeroides invasion by enhancing its soil‐mediated self‐reinforcement, providing a novel mechanistic understanding of plant invasions. These findings highlight the need to incorporate an aboveground–belowground perspective during the assessment of potential biocontrol agents. See also the Commentary on this article by Antunes, 237: 1941–1942.
AbstractList Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant-soil feedbacks (PSFs) remains unclear. To explore how herbivory by the introduced beetle Agasicles hygrophila affects Alternanthera philoxeroides invasions in China, we integrated multiyear field surveys and a 2-yr PSF experiment, in which we examined how herbivory affects PSFs on the performance of native and invasive plants and the introduced beetles. Despite increased herbivory from A. hygrophila, A. philoxeroides dominance over co-occurring congeneric native Alternanthera sessilis remained constant from 2014 to 2019. While occurring at lower abundances, A. sessilis experienced similar herbivore damage, suggesting apparent competitive effects. Our experiments revealed that herbivory on A. philoxeroides altered soil microbial communities, prolonged its negative PSF on A. sessilis, and decreased A. hygrophila larvae performance on the next-generation invasive plants. Consequently, A. hygrophila larvae performed better on leaves of natives than those of invasives when grown in soils conditioned by invasive plants defoliated by the introduced beetles. Our findings suggest that aboveground herbivory might promote rather than suppress A. philoxeroides invasion by enhancing its soil-mediated self-reinforcement, providing a novel mechanistic understanding of plant invasions. These findings highlight the need to incorporate an aboveground-belowground perspective during the assessment of potential biocontrol agents.
Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant-soil feedbacks (PSFs) remains unclear. To explore how herbivory by the introduced beetle Agasicles hygrophila affects Alternanthera philoxeroides invasions in China, we integrated multiyear field surveys and a 2-yr PSF experiment, in which we examined how herbivory affects PSFs on the performance of native and invasive plants and the introduced beetles. Despite increased herbivory from A. hygrophila, A. philoxeroides dominance over co-occurring congeneric native Alternanthera sessilis remained constant from 2014 to 2019. While occurring at lower abundances, A. sessilis experienced similar herbivore damage, suggesting apparent competitive effects. Our experiments revealed that herbivory on A. philoxeroides altered soil microbial communities, prolonged its negative PSF on A. sessilis, and decreased A. hygrophila larvae performance on the next-generation invasive plants. Consequently, A. hygrophila larvae performed better on leaves of natives than those of invasives when grown in soils conditioned by invasive plants defoliated by the introduced beetles. Our findings suggest that aboveground herbivory might promote rather than suppress A. philoxeroides invasion by enhancing its soil-mediated self-reinforcement, providing a novel mechanistic understanding of plant invasions. These findings highlight the need to incorporate an aboveground-belowground perspective during the assessment of potential biocontrol agents.Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant-soil feedbacks (PSFs) remains unclear. To explore how herbivory by the introduced beetle Agasicles hygrophila affects Alternanthera philoxeroides invasions in China, we integrated multiyear field surveys and a 2-yr PSF experiment, in which we examined how herbivory affects PSFs on the performance of native and invasive plants and the introduced beetles. Despite increased herbivory from A. hygrophila, A. philoxeroides dominance over co-occurring congeneric native Alternanthera sessilis remained constant from 2014 to 2019. While occurring at lower abundances, A. sessilis experienced similar herbivore damage, suggesting apparent competitive effects. Our experiments revealed that herbivory on A. philoxeroides altered soil microbial communities, prolonged its negative PSF on A. sessilis, and decreased A. hygrophila larvae performance on the next-generation invasive plants. Consequently, A. hygrophila larvae performed better on leaves of natives than those of invasives when grown in soils conditioned by invasive plants defoliated by the introduced beetles. Our findings suggest that aboveground herbivory might promote rather than suppress A. philoxeroides invasion by enhancing its soil-mediated self-reinforcement, providing a novel mechanistic understanding of plant invasions. These findings highlight the need to incorporate an aboveground-belowground perspective during the assessment of potential biocontrol agents.
Summary Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant–soil feedbacks (PSFs) remains unclear. To explore how herbivory by the introduced beetle Agasicles hygrophila affects Alternanthera philoxeroides invasions in China, we integrated multiyear field surveys and a 2‐yr PSF experiment, in which we examined how herbivory affects PSFs on the performance of native and invasive plants and the introduced beetles. Despite increased herbivory from A. hygrophila, A. philoxeroides dominance over co‐occurring congeneric native Alternanthera sessilis remained constant from 2014 to 2019. While occurring at lower abundances, A. sessilis experienced similar herbivore damage, suggesting apparent competitive effects. Our experiments revealed that herbivory on A. philoxeroides altered soil microbial communities, prolonged its negative PSF on A. sessilis, and decreased A. hygrophila larvae performance on the next‐generation invasive plants. Consequently, A. hygrophila larvae performed better on leaves of natives than those of invasives when grown in soils conditioned by invasive plants defoliated by the introduced beetles. Our findings suggest that aboveground herbivory might promote rather than suppress A. philoxeroides invasion by enhancing its soil‐mediated self‐reinforcement, providing a novel mechanistic understanding of plant invasions. These findings highlight the need to incorporate an aboveground–belowground perspective during the assessment of potential biocontrol agents. See also the Commentary on this article by Antunes, 237: 1941–1942.
Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant–soil feedbacks (PSFs) remains unclear. To explore how herbivory by the introduced beetle Agasicles hygrophila affects Alternanthera philoxeroides invasions in China, we integrated multiyear field surveys and a 2‐yr PSF experiment, in which we examined how herbivory affects PSFs on the performance of native and invasive plants and the introduced beetles. Despite increased herbivory from A. hygrophila, A. philoxeroides dominance over co‐occurring congeneric native Alternanthera sessilis remained constant from 2014 to 2019. While occurring at lower abundances, A. sessilis experienced similar herbivore damage, suggesting apparent competitive effects. Our experiments revealed that herbivory on A. philoxeroides altered soil microbial communities, prolonged its negative PSF on A. sessilis, and decreased A. hygrophila larvae performance on the next‐generation invasive plants. Consequently, A. hygrophila larvae performed better on leaves of natives than those of invasives when grown in soils conditioned by invasive plants defoliated by the introduced beetles. Our findings suggest that aboveground herbivory might promote rather than suppress A. philoxeroides invasion by enhancing its soil‐mediated self‐reinforcement, providing a novel mechanistic understanding of plant invasions. These findings highlight the need to incorporate an aboveground–belowground perspective during the assessment of potential biocontrol agents.
Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant–soil feedbacks (PSFs) remains unclear. To explore how herbivory by the introduced beetle Agasicles hygrophila affects Alternanthera philoxeroides invasions in China, we integrated multiyear field surveys and a 2‐yr PSF experiment, in which we examined how herbivory affects PSFs on the performance of native and invasive plants and the introduced beetles. Despite increased herbivory from A. hygrophila , A. philoxeroides dominance over co‐occurring congeneric native Alternanthera sessilis remained constant from 2014 to 2019 . While occurring at lower abundances, A. sessilis experienced similar herbivore damage, suggesting apparent competitive effects. Our experiments revealed that herbivory on A. philoxeroides altered soil microbial communities, prolonged its negative PSF on A. sessilis , and decreased A. hygrophila larvae performance on the next‐generation invasive plants. Consequently, A. hygrophila larvae performed better on leaves of natives than those of invasives when grown in soils conditioned by invasive plants defoliated by the introduced beetles. Our findings suggest that aboveground herbivory might promote rather than suppress A. philoxeroides invasion by enhancing its soil‐mediated self‐reinforcement, providing a novel mechanistic understanding of plant invasions. These findings highlight the need to incorporate an aboveground–belowground perspective during the assessment of potential biocontrol agents. See also the Commentary on this article by Antunes, 237 : 1941–1942.
Author Wei, Chunqiang
Chen, Wei
Xu, Hao
Tang, Xuefei
Wu, Yuqing
Gao, Lunlun
Wilschut, Rutger A.
Lu, Xinmin
He, Yifan
Author_xml – sequence: 1
  givenname: Lunlun
  orcidid: 0000-0002-4361-2790
  surname: Gao
  fullname: Gao, Lunlun
  organization: Huazhong Agricultural University
– sequence: 2
  givenname: Chunqiang
  orcidid: 0000-0002-0648-5139
  surname: Wei
  fullname: Wei, Chunqiang
  organization: Chinese Academy of Science
– sequence: 3
  givenname: Yifan
  orcidid: 0000-0003-1973-3901
  surname: He
  fullname: He, Yifan
  organization: Huazhong Agricultural University
– sequence: 4
  givenname: Xuefei
  orcidid: 0000-0002-6137-2567
  surname: Tang
  fullname: Tang, Xuefei
  organization: Huazhong Agricultural University
– sequence: 5
  givenname: Wei
  orcidid: 0000-0001-9405-8497
  surname: Chen
  fullname: Chen, Wei
  organization: Huazhong Agricultural University
– sequence: 6
  givenname: Hao
  orcidid: 0000-0002-7752-4369
  surname: Xu
  fullname: Xu, Hao
  organization: Huazhong Agricultural University
– sequence: 7
  givenname: Yuqing
  orcidid: 0000-0002-7376-4971
  surname: Wu
  fullname: Wu, Yuqing
  organization: Henan Academy of Agricultural Sciences
– sequence: 8
  givenname: Rutger A.
  orcidid: 0000-0002-2559-9799
  surname: Wilschut
  fullname: Wilschut, Rutger A.
  organization: Wageningen University and Research
– sequence: 9
  givenname: Xinmin
  orcidid: 0000-0001-8776-7869
  surname: Lu
  fullname: Lu, Xinmin
  email: lxm3412@mail.hzau.edu.cn
  organization: Huazhong Agricultural University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36200166$$D View this record in MEDLINE/PubMed
BookMark eNqFkd9qFDEUxoNU7LZ64QvIgDd6MW3-bSa5LEWtUNQLBe9CkjnbTZmdjMnM1r2rbyD4hn0ST7tbhKKYm5Dw-77Dd74DstenHgh5zugRw3PcD8sjpuecPiIzJpWpNRPNHplRynWtpPq6Tw5KuaSUmrniT8i-UJxSptSM_DjxaQ0XOU19Wy0h-7hOeVMF11dDTqs0QgXf0xhDNXSuH6vYr12Jqa_GJWoulvgxZndz_bNyaIAPyGWAEBeocH-sb65_eejS1W7QHefCiEblKXm8cF2BZ7v7kHx5--bz6Vl9_vHd-9OT8zoIrWgtMRdtJfAglRNOQBsMdVItjDYCgjbS-KC8BwDn5NwL34g2SENN43lLgzgkr7a-mOvbBGW0q1gCdBgL0lQs14wZrYXQ_0cbzgUTcs4QffkAvUxT7jEIUk1D0U5TpF7sqMmvoLVDjiuXN_a-BwSOt0DIqZQMCxvi6G73g9uNnWXU3jZtsWl71zQqXj9Q3Jv-jd25X8UONv8G7YdPZ1vFb8R7vHI
CitedBy_id crossref_primary_10_3390_microorganisms12122438
crossref_primary_10_1007_s11104_024_07078_8
crossref_primary_10_1111_1365_2745_14398
crossref_primary_10_1111_1365_2745_14157
crossref_primary_10_1111_nph_18721
crossref_primary_10_1016_j_scienta_2025_113985
crossref_primary_10_1111_nph_20160
crossref_primary_10_1016_j_apsoil_2025_105899
Cites_doi 10.1111/nph.17193
10.1016/j.biocon.2010.03.004
10.1007/s00442-009-1351-8
10.1111/ele.12391
10.1111/nph.15485
10.1016/j.funeco.2015.06.006
10.1890/07-0646.1
10.1146/annurev.ento.43.1.369
10.1073/pnas.2013751117
10.1046/j.1461-0248.2001.00251.x
10.1111/nph.18118
10.1038/ismej.2009.72
10.1111/j.1365-2664.2012.02209.x
10.1023/A:1022453129662
10.1093/aob/mcaa191
10.1111/nph.16430
10.1111/gcb.12244
10.1016/j.tree.2019.01.008
10.1126/science.1094875
10.1111/j.1467-9868.2010.00749.x
10.1038/s41396-018-0219-5
10.1038/s41467-021-23030-1
10.1111/1365-2745.12601
10.1034/j.1600-0706.2001.950301.x
10.1111/j.1461-0248.2004.00713.x
10.1016/j.envexpbot.2006.06.003
10.1111/nph.16768
10.1111/nph.15603
10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
10.1016/S0169-5347(02)02499-0
10.1111/j.2006.0030-1299.14625.x
10.1111/1365-2745.12778
10.1038/s41477-020-0656-9
10.1126/science.1256688
10.1007/s00442-018-4245-9
10.1111/1365-2745.12045
10.1104/pp.111.190777
10.1111/nph.13976
10.1890/05-0219
10.1111/nph.17479
10.1126/science.aaw9285
10.1016/j.tplants.2020.10.006
10.1111/1365-2745.13975
10.1111/brv.12627
10.1007/s10530-011-0106-8
10.1038/s41586-021-03405-6
10.1038/s41559-020-01311-0
10.1002/ecm.1216
10.1111/j.1461-0248.2012.01801.x
10.1146/annurev-micro-092412-155650
ContentType Journal Article
Copyright 2022 The Authors. © 2022 New Phytologist Foundation
2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
Copyright © 2023 New Phytologist Trust
Copyright_xml – notice: 2022 The Authors. © 2022 New Phytologist Foundation
– notice: 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
– notice: Copyright © 2023 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.18520
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

AGRICOLA
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 2359
ExternalDocumentID 36200166
10_1111_nph_18520
NPH18520
Genre researchArticle
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Key R&D program of China
  funderid: 2021YFC2600401
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2662020ZKPY007; 2662021JC011
– fundername: National Natural Science Foundation of China
  funderid: 31872034; 32171585
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPNFZ
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABGDZ
ABSQW
ADXHL
AEYWJ
AGHNM
AGUYK
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c3860-44690d4e2c46a3a3edc90a46f9893ec8949bc6bbeeeaa45b3b73dc49097b2d0c3
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:28:18 EDT 2025
Thu Jul 10 22:01:26 EDT 2025
Fri Jul 25 12:15:05 EDT 2025
Thu Apr 03 07:07:04 EDT 2025
Thu Apr 24 23:04:17 EDT 2025
Tue Jul 01 02:28:43 EDT 2025
Wed Jan 22 16:23:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords aboveground-belowground interactions
soil biota
invasive plant
biological control
herbivore
plant-soil feedback
plant invasions
Language English
License 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3860-44690d4e2c46a3a3edc90a46f9893ec8949bc6bbeeeaa45b3b73dc49097b2d0c3
Notes These authors contributed equally to this work.
1941–1942.
Antunes
237
See also the Commentary on this article by
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7376-4971
0000-0002-6137-2567
0000-0001-8776-7869
0000-0002-0648-5139
0000-0002-4361-2790
0000-0002-7752-4369
0000-0001-9405-8497
0000-0002-2559-9799
0000-0003-1973-3901
PMID 36200166
PQID 2777033880
PQPubID 2026848
PageCount 2359
ParticipantIDs proquest_miscellaneous_2811988338
proquest_miscellaneous_2722313451
proquest_journals_2777033880
pubmed_primary_36200166
crossref_citationtrail_10_1111_nph_18520
crossref_primary_10_1111_nph_18520
wiley_primary_10_1111_nph_18520_NPH18520
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 17
2021; 26
2013; 67
1995; 33
2010; 143
2020; 127
2019; 366
2016; 104
2012; 15
2012; 14
1999; 80
1998; 43
2003; 12
2013; 19
2020; 6
2020; 4
2020; 95
2011; 73
2016; 86
2009; 161
2007; 60
2021; 230
2021; 592
2021; 231
2009; 19
2001; 95
2018; 188
2022; 110
2015; 18
2019; 34
2013; 101
2020; 226
2005; 86
2020; 228
2004; 304
2019; 221
2019; 222
2006; 114
2022; 234
1988; 4
2021; 12
2001; 4
2020
2005; 8
2016; 211
2016; 20
2020; 117
2012; 49
2009; 3
2012; 158
2018; 12
2017; 105
2014; 346
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
Julien MH (e_1_2_9_20_1) 1995; 33
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Wang R (e_1_2_9_45_1) 1988; 4
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
36795473 - New Phytol. 2023 Mar;237(6):1941-1942
References_xml – volume: 6
  start-page: 483
  year: 2020
  end-page: 491
  article-title: Organic management promotes natural pest control through altered plant resistance to insects
  publication-title: Nature Plants
– volume: 230
  start-page: 845
  year: 2021
  end-page: 856
  article-title: Rapid evolution of latitudinal clines in growth and defence of an invasive weed
  publication-title: New Phytologist
– volume: 19
  start-page: 709
  year: 2009
  end-page: 721
  article-title: Population‐level compensation by an invasive thistle thwarts biological control from seed predators
  publication-title: Ecological Applications
– volume: 222
  start-page: 91
  year: 2019
  end-page: 96
  article-title: Mechanisms of plant–soil feedback: interactions among biotic and abiotic drivers
  publication-title: New Phytologist
– volume: 101
  start-page: 325
  year: 2013
  end-page: 333
  article-title: Above‐ and below‐ground herbivory effects on below‐ground plant–fungus interactions and plant–soil feedback responses
  publication-title: Journal of Ecology
– volume: 117
  start-page: 26849
  year: 2020
  end-page: 26853
  article-title: Phylogenetic escape from pests reduces pesticides on some crop plants
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 18
  start-page: 48
  year: 2015
  end-page: 56
  article-title: Climate warming increases biological control agent impact on a non‐target species
  publication-title: Ecology Letters
– volume: 14
  start-page: 649
  year: 2012
  end-page: 658
  article-title: History of exposure to herbivores increases the compensatory ability of an invasive plant
  publication-title: Biological Invasions
– volume: 8
  start-page: 209
  year: 2005
  end-page: 217
  article-title: Insect herbivory stimulates allelopathic exudation by an invasive plant and the suppression of natives
  publication-title: Ecology Letters
– volume: 211
  start-page: 1371
  year: 2016
  end-page: 1381
  article-title: Warming benefits a native species competing with an invasive congener in the presence of a biocontrol beetle
  publication-title: New Phytologist
– volume: 19
  start-page: 2339
  year: 2013
  end-page: 2347
  article-title: Climate warming affects biological invasions by shifting interactions of plants and herbivores
  publication-title: Global Change Biology
– volume: 60
  start-page: 20
  year: 2007
  end-page: 25
  article-title: Rapid response to shoot removal by the invasive wetland plant, alligator weed ( )
  publication-title: Environmental and Experimental Botany
– volume: 110
  start-page: 2649
  year: 2022
  end-page: 2660
  article-title: Soil microbiota explain differences in herbivore resistance between native and invasive populations of a perennial herb
  publication-title: Journal of Ecology
– volume: 188
  start-page: 801
  year: 2018
  end-page: 811
  article-title: Species‐specific plant–soil feedbacks alter herbivore‐induced gene expression and defense chemistry in
  publication-title: Oecologia
– volume: 228
  start-page: 1440
  year: 2020
  end-page: 1449
  article-title: Phylogenetic signals and predictability in plant–soil feedbacks
  publication-title: New Phytologist
– volume: 127
  start-page: 327
  year: 2020
  end-page: 336
  article-title: An invasive plant rapidly increased the similarity of soil fungal pathogen communities
  publication-title: Annals of Botany
– volume: 86
  start-page: 373
  year: 2016
  end-page: 390
  article-title: Carbon content and climate variability drive global soil bacterial diversity patterns
  publication-title: Ecological Monographs
– volume: 12
  start-page: 637
  year: 2003
  end-page: 645
  article-title: Genetic diversity of alligator weed in China by RAPD analysis
  publication-title: Biodiversity and Conservation
– volume: 67
  start-page: 399
  year: 2013
  end-page: 416
  article-title: pathogenomics
  publication-title: Annual Review of Microbiology
– volume: 4
  start-page: 1612
  year: 2020
  end-page: 1621
  article-title: Soil‐microorganism‐mediated invasional meltdown in plants
  publication-title: Nature Ecology & Evolution
– volume: 49
  start-page: 1287
  year: 2012
  end-page: 1295
  article-title: The effectiveness of classical biological control of invasive plants
  publication-title: Journal of Applied Ecology
– volume: 161
  start-page: 1
  year: 2009
  end-page: 14
  article-title: Empirical and theoretical challenges in aboveground–belowground ecology
  publication-title: Oecologia
– volume: 592
  start-page: 571
  year: 2021
  end-page: 576
  article-title: High and rising economic costs of biological invasions worldwide
  publication-title: Nature
– volume: 143
  start-page: 2251
  year: 2010
  end-page: 2259
  article-title: Interactions between invasive plants and insect herbivores: a plea for a multitrophic perspective
  publication-title: Biological Conservation
– volume: 43
  start-page: 369
  year: 1998
  end-page: 393
  article-title: Biological control of weeds
  publication-title: Annual Review of Entomology
– volume: 34
  start-page: 447
  year: 2019
  end-page: 458
  article-title: Simulated herbivory: the key to disentangling plant defence responses
  publication-title: Trends in Ecology & Evolution
– volume: 346
  year: 2014
  article-title: Global diversity and geography of soil fungi
  publication-title: Science
– volume: 221
  start-page: 1478
  year: 2019
  end-page: 1491
  article-title: Removal of soil biota alters soil feedback effects on plant growth and defense chemistry
  publication-title: New Phytologist
– volume: 114
  start-page: 168
  year: 2006
  end-page: 176
  article-title: Accumulation of local pathogens: a new hypothesis to explain exotic plant invasions
  publication-title: Oikos
– volume: 231
  start-page: 1559
  year: 2021
  end-page: 1569
  article-title: Latitudinal variation in the diversity and composition of various organisms associated with an exotic plant: the role of climate and plant invasion
  publication-title: New Phytologist
– volume: 80
  start-page: 1150
  year: 1999
  end-page: 1156
  article-title: The meta‐analysis of response ratios in experimental ecology
  publication-title: Ecology
– volume: 226
  start-page: 1144
  year: 2020
  end-page: 1157
  article-title: Shifts in plant–microbe interactions over community succession and their effects on plant resistance to herbivores
  publication-title: New Phytologist
– volume: 95
  start-page: 1511
  year: 2020
  end-page: 1534
  article-title: Scientists' warning on invasive alien species
  publication-title: Biological Reviews
– volume: 86
  start-page: 2979
  year: 2005
  end-page: 2989
  article-title: Enemy release? An experiment with congeneric plant pairs and diverse above‐ and belowground enemies
  publication-title: Ecology
– volume: 15
  start-page: 813
  year: 2012
  end-page: 821
  article-title: Legacy effects of aboveground–belowground interactions
  publication-title: Ecology Letters
– volume: 3
  start-page: 1314
  year: 2009
  end-page: 1317
  article-title: Systematic artifacts in metagenomes from complex microbial communities
  publication-title: The ISME Journal
– volume: 158
  start-page: 1107
  year: 2012
  end-page: 1114
  article-title: Exotic plant invasion in the context of plant defense against herbivores
  publication-title: Plant Physiology
– volume: 33
  start-page: 55
  year: 1995
  end-page: 60
  article-title: Potential geographical distribution of alligator weed and its biological control by
  publication-title: Journal of Aquatic Plant Management
– volume: 12
  start-page: 2696
  year: 2021
  article-title: Exotic plants accumulate and share herbivores yet dominate communities via rapid growth
  publication-title: Nature Communications
– volume: 4
  start-page: 429
  year: 2001
  end-page: 433
  article-title: Compensatory growth and competitive ability of an invasive weed are enhanced by soil fungi and native neighbours
  publication-title: Ecology Letters
– volume: 234
  start-page: 1929
  year: 2022
  end-page: 1944
  article-title: Deciphering the role of specialist and generalist plant–microbial interactions as drivers of plant–soil feedback
  publication-title: New Phytologist
– volume: 17
  start-page: 164
  year: 2002
  end-page: 170
  article-title: Exotic plant invasions and the enemy release hypothesis
  publication-title: Trends in Ecology & Evolution
– volume: 73
  start-page: 3
  year: 2011
  end-page: 36
  article-title: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 105
  start-page: 1534
  year: 2017
  end-page: 1546
  article-title: Manipulating two olfactory cues causes a biological control beetle to shift to non‐target plant species
  publication-title: Journal of Ecology
– volume: 26
  start-page: 237
  year: 2021
  end-page: 247
  article-title: Nematodes as drivers of plant performance in natural systems
  publication-title: Trends in Plant Science
– volume: 95
  start-page: 361
  year: 2001
  end-page: 373
  article-title: When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses
  publication-title: Oikos
– volume: 104
  start-page: 1233
  year: 2016
  end-page: 1242
  article-title: Alien and native plant establishment in grassland communities is more strongly affected by disturbance than above‐ and below‐ground enemies
  publication-title: Journal of Ecology
– volume: 304
  start-page: 1629
  year: 2004
  end-page: 1633
  article-title: Ecological linkages between aboveground and belowground biota
  publication-title: Science
– year: 2020
– volume: 4
  start-page: 14
  year: 1988
  end-page: 17
  article-title: Host specificity tests for [Col: Chrysomelidae], a biocontrol agent of alligator weed
  publication-title: Chinese Journal of Biological Control
– volume: 12
  start-page: 2811
  year: 2018
  end-page: 2822
  article-title: Latitudinal variation in soil biota: testing the biotic interaction hypothesis with an invasive plant and a native congener
  publication-title: The ISME Journal
– volume: 366
  start-page: 606
  year: 2019
  end-page: 612
  article-title: Pathogen‐induced activation of disease‐suppressive functions in the endophytic root microbiome
  publication-title: Science
– volume: 20
  start-page: 241
  year: 2016
  end-page: 248
  article-title: FUNG : an open annotation tool for parsing fungal community datasets by ecological guild
  publication-title: Fungal Ecology
– ident: e_1_2_9_52_1
  doi: 10.1111/nph.17193
– ident: e_1_2_9_16_1
  doi: 10.1016/j.biocon.2010.03.004
– ident: e_1_2_9_37_1
  doi: 10.1007/s00442-009-1351-8
– ident: e_1_2_9_27_1
  doi: 10.1111/ele.12391
– ident: e_1_2_9_43_1
  doi: 10.1111/nph.15485
– ident: e_1_2_9_34_1
  doi: 10.1016/j.funeco.2015.06.006
– ident: e_1_2_9_14_1
  doi: 10.1890/07-0646.1
– ident: e_1_2_9_32_1
  doi: 10.1146/annurev.ento.43.1.369
– ident: e_1_2_9_36_1
  doi: 10.1073/pnas.2013751117
– ident: e_1_2_9_7_1
  doi: 10.1046/j.1461-0248.2001.00251.x
– ident: e_1_2_9_39_1
  doi: 10.1111/nph.18118
– ident: e_1_2_9_15_1
  doi: 10.1038/ismej.2009.72
– ident: e_1_2_9_35_1
– ident: e_1_2_9_9_1
  doi: 10.1111/j.1365-2664.2012.02209.x
– ident: e_1_2_9_51_1
  doi: 10.1023/A:1022453129662
– ident: e_1_2_9_44_1
  doi: 10.1093/aob/mcaa191
– ident: e_1_2_9_18_1
  doi: 10.1111/nph.16430
– volume: 33
  start-page: 55
  year: 1995
  ident: e_1_2_9_20_1
  article-title: Potential geographical distribution of alligator weed and its biological control by Agasicles hygrophila
  publication-title: Journal of Aquatic Plant Management
– ident: e_1_2_9_29_1
  doi: 10.1111/gcb.12244
– ident: e_1_2_9_47_1
  doi: 10.1016/j.tree.2019.01.008
– ident: e_1_2_9_46_1
  doi: 10.1126/science.1094875
– ident: e_1_2_9_50_1
  doi: 10.1111/j.1467-9868.2010.00749.x
– ident: e_1_2_9_26_1
  doi: 10.1038/s41396-018-0219-5
– ident: e_1_2_9_3_1
  doi: 10.1038/s41467-021-23030-1
– ident: e_1_2_9_33_1
  doi: 10.1111/1365-2745.12601
– ident: e_1_2_9_31_1
  doi: 10.1034/j.1600-0706.2001.950301.x
– ident: e_1_2_9_41_1
  doi: 10.1111/j.1461-0248.2004.00713.x
– ident: e_1_2_9_49_1
  doi: 10.1016/j.envexpbot.2006.06.003
– ident: e_1_2_9_42_1
  doi: 10.1111/nph.16768
– ident: e_1_2_9_4_1
  doi: 10.1111/nph.15603
– volume: 4
  start-page: 14
  year: 1988
  ident: e_1_2_9_45_1
  article-title: Host specificity tests for Agasicles hygrophila [Col: Chrysomelidae], a biocontrol agent of alligator weed
  publication-title: Chinese Journal of Biological Control
– ident: e_1_2_9_17_1
  doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
– ident: e_1_2_9_22_1
  doi: 10.1016/S0169-5347(02)02499-0
– ident: e_1_2_9_12_1
  doi: 10.1111/j.2006.0030-1299.14625.x
– ident: e_1_2_9_24_1
  doi: 10.1111/1365-2745.12778
– ident: e_1_2_9_6_1
  doi: 10.1038/s41477-020-0656-9
– ident: e_1_2_9_40_1
  doi: 10.1126/science.1256688
– ident: e_1_2_9_54_1
  doi: 10.1007/s00442-018-4245-9
– ident: e_1_2_9_5_1
  doi: 10.1111/1365-2745.12045
– ident: e_1_2_9_19_1
  doi: 10.1104/pp.111.190777
– ident: e_1_2_9_28_1
  doi: 10.1111/nph.13976
– ident: e_1_2_9_2_1
  doi: 10.1890/05-0219
– ident: e_1_2_9_13_1
  doi: 10.1111/nph.17479
– ident: e_1_2_9_8_1
  doi: 10.1126/science.aaw9285
– ident: e_1_2_9_48_1
  doi: 10.1016/j.tplants.2020.10.006
– ident: e_1_2_9_21_1
  doi: 10.1111/1365-2745.13975
– ident: e_1_2_9_38_1
  doi: 10.1111/brv.12627
– ident: e_1_2_9_25_1
  doi: 10.1007/s10530-011-0106-8
– ident: e_1_2_9_11_1
  doi: 10.1038/s41586-021-03405-6
– ident: e_1_2_9_53_1
  doi: 10.1038/s41559-020-01311-0
– ident: e_1_2_9_10_1
  doi: 10.1002/ecm.1216
– ident: e_1_2_9_23_1
  doi: 10.1111/j.1461-0248.2012.01801.x
– ident: e_1_2_9_30_1
  doi: 10.1146/annurev-micro-092412-155650
– reference: 36795473 - New Phytol. 2023 Mar;237(6):1941-1942
SSID ssj0009562
Score 2.4662106
Snippet Summary Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant–soil...
Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant–soil feedbacks...
Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant-soil feedbacks...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2347
SubjectTerms aboveground–belowground interactions
Agasicles hygrophila
Alternanthera philoxeroides
Alternanthera sessilis
Amaranthaceae
Animals
Beetles
Biological control
Biological invasions
Biota
China
Coleoptera
ecological invasion
herbivore
Herbivores
Herbivory
Introduced plants
Introduced Species
invasive plant
Invasive plants
invasive species
Larva
Larvae
Microbial activity
Microorganisms
plant invasions
Plants
plant–soil feedback
Soil
soil biota
Soil conditions
Soil microorganisms
Soils
Title Aboveground herbivory can promote exotic plant invasion through intra‐ and interspecific aboveground–belowground interactions
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.18520
https://www.ncbi.nlm.nih.gov/pubmed/36200166
https://www.proquest.com/docview/2777033880
https://www.proquest.com/docview/2722313451
https://www.proquest.com/docview/2811988338
Volume 237
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYh9NBL349t0qKUHHrxspZl2aKnpDQsgYRSEthDwegxS0MWe9lXm5zSf1DoP8wvyYz8aNK0pfRm7LEse2akT_LMN4xtj1OTez_OIhBaRFL4ODKxxMFQGK_BZy4NuVUHh2p4LPdH6WiNvW1zYWp-iG7DjTwjjNfk4MbOrzl5Of3cp8xfWq9TrBYBoo_iGuGuEi0Ds5Jq1LAKURRPd-fNuegWwLyJV8OEs3effWq7WseZnPaXC9t357-wOP7nuzxg9xogyndqy3nI1qB8xO7sVggWzx6zbzu2WgGlfJSeo1rtyaqanXHUA5-GAD7g8LXCW_l0grrhJ-XK0L4bb-r-4InFzFxefOcGGyBOipDTSXFJ3Pxs-vLih4VJ9aV5UJCrMy3mT9jx3vujd8OoqdYQuSRXg0jSQttLEE4qk5gEvNMDI9VYIyQCl2uprVPWAoAxMrWJzRLvpB7ozAo_cMlTtl5WJTxnXPuYfuBChthDepdYNCZhgAru5amXtsfetHorXENlThU1JkW7pMEPWoQP2mOvO9Fpzd_xO6HNVvlF48LzQmQZjobEldNjW91ldD76o2JKqJYkg-gqTmQa_0Umj2NNJZ3zHntWG1bXE0QPhLkVvlAwjz93sTj8MAwHL_5ddIPdFQjJ6oi5Tba-mC3hJUKohX0VfOUKCXkcow
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VBQku5Q1bChjEgUtWG8dxYolLQVQLtCuEWmkvKPJrRcUqWW13F8qp_AMk_mF_CTPOg5aXELcomSR2xuN8Y898A_B4kurcuUkWea54JLiLIx0LnAy5dsq7zKYht2pvJIcH4tU4Ha_B0zYXpuaH6BbcyDLCfE0GTgvSZ6y8nL3vU-ovOuwXqKJ3cKje8jOUu5K3HMxSyHHDK0RxPN2t5_9Gv0DM84g1_HJ2rsC7trF1pMmH_nJh-vbzTzyO_9ubq7DRYFG2XQ-ea7Dmy-tw8VmFePH4BnzZNtXKU9ZH6Rhq1hyuqvkxQ1WwWYjh88x_qvBWNpuiethhudK09Maa0j94YjHXpydfmcYHEC1FSOuk0CSmfzz69OSb8dPqY_OiIFcnWxzdhIOdF_vPh1FTsCGySS4HkSBf2wnPrZA60Yl3Vg20kBOFqMjbXAllrDTGe6-1SE1issRZoQYqM9wNbHIL1suq9HeAKRfTHq7PEH4IZxOD44lrTzX38tQJ04MnreIK27CZU1GNadF6NfhBi_BBe_CoE53VFB6_E9pqtV80VnxU8CzDCZHocnrwsLuM9kebKrr01ZJkEGDFiUjjv8jkcayoqnPeg9v1yOpaggCCYLfEDoXx8ecmFqM3w3Cw-e-iD-DScH9vt9h9OXp9Fy5zRGh1AN0WrC_mS38PEdXC3A-G8x2prSC-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VBSEuPMproQUXceCSVeI4TixOpe1qoWVVISrtASnya0XFKom2uwvlVP4BEv-wv6Rj50HLS4hblEwSOzPjfLZnvgF4NklkZswkDSwVNGDURIGMGA6GVBphTaoTn1v1ZsSHh-z1OBmvwIs2F6bmh-gW3Jxn-PHaOXhlJhecvKg-9F3mL87XrzAeZs6kd97SC4y7nLYUzJzxcUMr5MJ4ulsv_4x-QZiXAav_4wxuwvu2rXWgycf-Yq76-stPNI7_2ZlbcKNBomSrNp3bsGKLNbj6skS0eHIHvm6pcmldzkdhCOpVHS3L2QlBRZDKR_BZYj-XeCuppqgcclQspVt4I03hHzwxn8mz029E4gMcKYVP6nSBSUT-ePTZ6Xdlp-Wn5kVerk61OL4Lh4Pdd9vDoCnXEOg442HA3EzbMEs14zKWsTVahJLxiUBMZHUmmFCaK2WtlZIlKlZpbDQToUgVNaGO78FqURb2ARBhIreDa1MEH8zoWKE1UWldxb0sMUz14Hmrt1w3XOaupMY0b-c0-EFz_0F78LQTrWoCj98JrbfKzxsfPs5pmuJw6MhyerDZXUbvc1sqsrDlwskgvIpilkR_kcmiSLiazlkP7teG1bUE4YMD3Rw75M3jz03MRwdDf_Dw30WfwLWDnUG-_2q09wiuU4RndfTcOqzOZwu7gXBqrh57tzkHXPsfdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aboveground+herbivory+can+promote+exotic+plant+invasion+through+intra%E2%80%90+and+interspecific+aboveground%E2%80%93belowground+interactions&rft.jtitle=The+New+phytologist&rft.au=Gao%2C+Lunlun&rft.au=Chunqiang+Wei&rft.au=He%2C+Yifan&rft.au=Tang%2C+Xuefei&rft.date=2023-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=237&rft.issue=6&rft.spage=2347&rft.epage=2359&rft_id=info:doi/10.1111%2Fnph.18520&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon