NO and ROS implications in the organization of root system architecture
Over the past decades the role of nitric oxide (NO) and reactive oxygen species (ROS) in signaling and cellular responses to stress has witnessed an exponential trend line. Despite advances in the subject, our knowledge of the role of NO and ROS as regulators of stress and plant growth and their imp...
Saved in:
Published in | Physiologia plantarum Vol. 168; no. 2; pp. 473 - 489 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.02.2020
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Over the past decades the role of nitric oxide (NO) and reactive oxygen species (ROS) in signaling and cellular responses to stress has witnessed an exponential trend line. Despite advances in the subject, our knowledge of the role of NO and ROS as regulators of stress and plant growth and their implication in signaling pathways is still partial. The crosstalk between NO and ROS during root formation offers new domains to be explored, as it regulates several plant functions. Previous findings indicate that plants utilize these signaling molecules for regulating physiological responses and development. Depending upon cellular concentration, NO either can stimulate or impede root system architecture (RSA) by modulating enzymes through post‐translational modifications. Similarly, the ROS signaling molecule network, in association with other hormonal signaling pathways, control the RSA. The spatial regulation of ROS controls cell growth and ROS determine primary root and act in concert with NO to promote lateral root primordia. NO and ROS are two central messenger molecules which act differentially to upregulate or downregulate the expression of genes pertaining to auxin synthesis and to the configuration of root architecture. The investigation concerning the contribution of donors and inhibitors of NO and ROS can further aid in deciphering their role in root development. With this background, this review provides comprehensive details about the effect and function of NO and ROS in the development of RSA. |
---|---|
AbstractList | Over the past decades the role of nitric oxide (NO) and reactive oxygen species (ROS) in signaling and cellular responses to stress has witnessed an exponential trend line. Despite advances in the subject, our knowledge of the role of NO and ROS as regulators of stress and plant growth and their implication in signaling pathways is still partial. The crosstalk between NO and ROS during root formation offers new domains to be explored, as it regulates several plant functions. Previous findings indicate that plants utilize these signaling molecules for regulating physiological responses and development. Depending upon cellular concentration, NO either can stimulate or impede root system architecture (RSA) by modulating enzymes through post‐translational modifications. Similarly, the ROS signaling molecule network, in association with other hormonal signaling pathways, control the RSA. The spatial regulation of ROS controls cell growth and ROS determine primary root and act in concert with NO to promote lateral root primordia. NO and ROS are two central messenger molecules which act differentially to upregulate or downregulate the expression of genes pertaining to auxin synthesis and to the configuration of root architecture. The investigation concerning the contribution of donors and inhibitors of NO and ROS can further aid in deciphering their role in root development. With this background, this review provides comprehensive details about the effect and function of NO and ROS in the development of RSA. Over the past decades the role of nitric oxide (NO) and reactive oxygen species (ROS) in signaling and cellular responses to stress has witnessed an exponential trend line. Despite advances in the subject, our knowledge of the role of NO and ROS as regulators of stress and plant growth and their implication in signaling pathways is still partial. The crosstalk between NO and ROS during root formation offers new domains to be explored, as it regulates several plant functions. Previous findings indicate that plants utilize these signaling molecules for regulating physiological responses and development. Depending upon cellular concentration, NO either can stimulate or impede root system architecture (RSA) by modulating enzymes through post-translational modifications. Similarly, the ROS signaling molecule network, in association with other hormonal signaling pathways, control the RSA. The spatial regulation of ROS controls cell growth and ROS determine primary root and act in concert with NO to promote lateral root primordia. NO and ROS are two central messenger molecules which act differentially to upregulate or downregulate the expression of genes pertaining to auxin synthesis and to the configuration of root architecture. The investigation concerning the contribution of donors and inhibitors of NO and ROS can further aid in deciphering their role in root development. With this background, this review provides comprehensive details about the effect and function of NO and ROS in the development of RSA.Over the past decades the role of nitric oxide (NO) and reactive oxygen species (ROS) in signaling and cellular responses to stress has witnessed an exponential trend line. Despite advances in the subject, our knowledge of the role of NO and ROS as regulators of stress and plant growth and their implication in signaling pathways is still partial. The crosstalk between NO and ROS during root formation offers new domains to be explored, as it regulates several plant functions. Previous findings indicate that plants utilize these signaling molecules for regulating physiological responses and development. Depending upon cellular concentration, NO either can stimulate or impede root system architecture (RSA) by modulating enzymes through post-translational modifications. Similarly, the ROS signaling molecule network, in association with other hormonal signaling pathways, control the RSA. The spatial regulation of ROS controls cell growth and ROS determine primary root and act in concert with NO to promote lateral root primordia. NO and ROS are two central messenger molecules which act differentially to upregulate or downregulate the expression of genes pertaining to auxin synthesis and to the configuration of root architecture. The investigation concerning the contribution of donors and inhibitors of NO and ROS can further aid in deciphering their role in root development. With this background, this review provides comprehensive details about the effect and function of NO and ROS in the development of RSA. |
Author | Ramawat, Naleeni Singh, Vijay Pratap Rai, Padmaja Tripathi, Durgesh Kumar Prakash, Ved Vishwakarma, Kanchan Sharma, Shivesh |
Author_xml | – sequence: 1 givenname: Ved surname: Prakash fullname: Prakash, Ved organization: Motilal Nehru National Institute of Technology Allahabad – sequence: 2 givenname: Kanchan surname: Vishwakarma fullname: Vishwakarma, Kanchan organization: Amity University Uttar Pradesh – sequence: 3 givenname: Vijay Pratap orcidid: 0000-0002-5772-5438 surname: Singh fullname: Singh, Vijay Pratap email: vijaypratap.au@gmail.com organization: A Constitute PG College of University of Allahabad – sequence: 4 givenname: Padmaja surname: Rai fullname: Rai, Padmaja organization: Motilal Nehru National Institute of Technology Allahabad – sequence: 5 givenname: Naleeni surname: Ramawat fullname: Ramawat, Naleeni organization: Amity University Uttar Pradesh – sequence: 6 givenname: Durgesh Kumar orcidid: 0000-0001-9044-3144 surname: Tripathi fullname: Tripathi, Durgesh Kumar email: dktripathiau@gmail.com organization: Amity University Uttar Pradesh – sequence: 7 givenname: Shivesh surname: Sharma fullname: Sharma, Shivesh email: shiveshs@mnnit.ac.in organization: Motilal Nehru National Institute of Technology Allahabad |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31747051$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLxDAUhYMoOj4W_gEJuNFFnaQ3fS1FfMHgiI91yLS3GmmbmqTI-OuNM-NmUMwm4fKdw805u2SzMx0ScsjZGQ9n3PfNGQeWsA0y4lAUUXiLTTJiDHhUAM92yK5zb4zxNOXxNtkJI5GxhI_I9d2Uqq6iD9NHqtu-0aXy2nSO6o76V6TGvqhOfy6G1NTUGuOpmzuPLVW2fNUeSz9Y3CdbtWocHqzuPfJ8dfl0cRNNpte3F-eTqIQ8ZRFAhoA5EwXLBMRVVgtesZzPUIACyAGFKmdJMsvTvFAFIFM51KKosYqBMYQ9crL07a15H9B52WpXYtOoDs3gZCygECLOMvgfBZ6GHTLOA3q8hr6ZwXbhI4FKANKQ27fh0YoaZi1Wsre6VXYuf9IMwHgJlNY4Z7GWpfaL6LxVupGcye--ZOhLLvoKitM1xY_pb-zK_UM3OP8blPf3k6XiC_XMoQg |
CitedBy_id | crossref_primary_10_3390_antiox13101232 crossref_primary_10_1093_jxb_erac115 crossref_primary_10_3390_ijms24076647 crossref_primary_10_3390_ijms22115979 crossref_primary_10_1016_j_jbiotec_2021_09_005 crossref_primary_10_1007_s11104_024_06618_6 crossref_primary_10_1007_s00299_023_03120_8 crossref_primary_10_1016_j_ecoenv_2021_112713 crossref_primary_10_1016_j_stress_2024_100418 crossref_primary_10_1007_s11240_023_02475_w crossref_primary_10_3390_agronomy13102599 crossref_primary_10_1016_j_plantsci_2024_112204 crossref_primary_10_1016_j_niox_2024_10_005 crossref_primary_10_1007_s40626_024_00342_3 crossref_primary_10_1071_FP24196 crossref_primary_10_1016_j_plaphy_2024_109037 crossref_primary_10_3390_agronomy15040784 crossref_primary_10_3390_microorganisms9112203 crossref_primary_10_1016_j_micres_2021_126771 crossref_primary_10_1080_15592324_2020_1748283 crossref_primary_10_1111_pce_14486 crossref_primary_10_1111_plb_13246 crossref_primary_10_1093_pcp_pcac138 crossref_primary_10_1111_ppl_13066 crossref_primary_10_1111_ppl_70126 crossref_primary_10_1093_jxb_erac508 crossref_primary_10_3390_antiox11112106 |
Cites_doi | 10.1016/j.plantsci.2007.11.003 10.1016/j.chemosphere.2013.04.079 10.1146/annurev.arplant.55.031903.141701 10.1105/tpc.108.058719 10.1016/j.tplants.2004.08.009 10.1111/j.1365-313X.2005.02494.x 10.1093/jxb/ern194 10.1111/nph.12377 10.1073/pnas.97.6.2405 10.4161/psb.4.10.9715 10.1016/j.plantsci.2009.06.006 10.1016/j.niox.2016.10.009 10.1093/jxb/erp033 10.1007/s00299-007-0448-y 10.1016/j.febslet.2005.01.018 10.1007/s11738-009-0367-3 10.1093/mp/ssr007 10.1111/j.1399-3054.2009.01313.x 10.1111/j.1365-3040.2005.01306.x 10.1093/jxb/erj058 10.1038/ncomms9821 10.1093/jxb/ert172 10.1016/j.sbi.2004.09.012 10.1016/j.molp.2015.04.008 10.1093/aob/mcv116 10.1104/pp.110.161109 10.1016/j.pbi.2004.04.002 10.1016/j.niox.2009.02.004 10.1080/15592324.2016.1192742 10.1179/135100006X116718 10.1073/pnas.0708586104 10.1111/j.1365-3040.2006.01531.x 10.3390/ijms18102084 10.1073/pnas.1108644108 10.1007/s10725-009-9385-9 10.1093/jxb/erh113 10.1146/annurev-arplant-042811-105501 10.1073/pnas.0900060106 10.1016/j.tplants.2016.08.002 10.1186/s12284-014-0030-5 10.1016/j.freeradbiomed.2009.03.020 10.4161/psb.1.1.2398 10.1126/science.1152505 10.1093/aob/mct229 10.1016/0891-5849(95)00034-U 10.1016/j.plaphy.2003.09.003 10.1093/jxb/erj109 10.1038/nature02081 10.1073/pnas.97.6.2940 10.1016/j.freeradbiomed.2017.11.027 10.1093/jxb/eri196 10.1104/pp.114.255216 10.1093/aob/mcl027 10.1016/j.niox.2014.04.004 10.1093/jxb/ert396 10.1007/s00344-017-9741-3 10.3390/s150100855 10.1093/jxb/ern242 10.1007/s00344-010-9140-5 10.1094/MPMI-08-13-0219-R 10.1007/s00299-012-1228-x 10.1007/s11104-009-0011-4 10.1016/j.envexpbot.2008.06.004 10.1111/j.1365-313X.2007.03283.x 10.1016/j.jplph.2007.07.019 10.3109/10715762.2015.1118473 10.1093/jxb/erj045 10.1094/MPMI-20-3-0283 10.1093/jxb/ert006 10.1021/ar300234c 10.1038/35021067 10.1093/jxb/erv213 10.1016/j.envexpbot.2009.03.005 10.1111/j.1365-3040.2008.01908.x 10.1093/jxb/erz031 10.1104/pp.104.054494 10.1104/pp.010934 10.1093/pcp/pcq117 10.1111/ppl.12429 10.1016/j.tplants.2018.09.010 10.1104/pp.126.3.1196 10.1042/bst0290345 10.1007/s00425-005-1523-7 10.1016/j.jhazmat.2018.08.035 10.1016/j.phytochem.2004.02.001 10.3389/fpls.2013.00029 10.1007/s00425-014-2204-1 10.1093/mp/sss047 10.1016/j.envexpbot.2018.10.033 10.1016/j.niox.2018.09.002 10.4161/psb.6.6.15308 10.1007/s00709-011-0277-2 10.1073/pnas.1804233115 10.1016/j.envpol.2018.04.096 10.1038/ncomms6401 10.1371/journal.pgen.1006175 10.1093/jxb/erx420 10.1016/0304-4211(79)90158-5 10.1016/j.cell.2010.10.020 10.1016/j.bbrc.2017.05.012 10.1016/j.jhazmat.2013.12.029 10.1080/14620316.2011.11512742 10.1093/jxb/ers166 10.4161/psb.5.10.12159 10.1371/journal.pone.0138713 10.1016/j.tplants.2005.02.008 10.1093/jexbot/52.355.215 10.1093/jxb/erv030 10.1104/pp.107.111815 10.1016/j.pbi.2014.10.005 10.1073/pnas.97.16.8849 10.1007/s00425-009-0970-y 10.1126/scisignal.2000448 10.1104/pp.106.086918 10.1016/j.tplants.2009.06.010 10.1111/j.1365-313X.2011.04885.x 10.1093/aobpla/pls052 10.1007/s00425-012-1763-2 10.1105/tpc.109.072959 10.1007/978-3-642-00390-5 10.1104/pp.109.140996 10.1016/S1360-1385(97)90054-6 10.1016/j.plantsci.2004.05.028 10.1023/A:1005837012203 10.1093/mp/sss148 10.4161/psb.18895 10.1016/j.plaphy.2012.06.012 10.1093/jxb/ery072 10.1104/pp.109.148023 10.1111/j.1469-8137.2007.01995.x 10.1016/j.tplants.2013.04.006 10.1093/aob/mcm142 10.3389/fpls.2013.00398 10.1016/j.redox.2018.07.003 10.1016/j.plantsci.2011.03.019 10.1104/pp.004036 10.1038/ncomms2541 10.1093/pcp/pci183 10.1007/s00425-003-1172-7 10.1016/j.jplph.2012.08.015 10.31661/gmj.v3i1.100 10.1016/j.devcel.2010.10.017 10.1101/cshperspect.a001537 10.1016/j.envexpbot.2013.12.014 10.1016/j.ecoenv.2014.11.030 10.1016/j.niox.2016.09.005 10.1111/tpj.12181 10.1111/j.1365-313X.2007.03068.x 10.1111/pce.12597 10.1104/pp.15.00293 10.1104/pp.103.022228 10.4161/psb.23196 10.1007/978-3-030-11129-8_8 10.1007/s11103-010-9683-7 10.1242/dev.136465 10.1111/j.1469-8137.2006.01787.x 10.1104/pp.15.00030 10.1016/S1360-1385(03)00051-7 10.1104/pp.107.096842 10.1104/pp.114.238873 10.1111/j.1365-313X.2012.05032.x 10.1007/s10534-013-9608-4 10.1104/pp.103.038554 10.1104/pp.108.121459 |
ContentType | Journal Article |
Copyright | 2019 Scandinavian Plant Physiology Society 2019 Scandinavian Plant Physiology Society. 2020 Scandinavian Plant Physiology Society |
Copyright_xml | – notice: 2019 Scandinavian Plant Physiology Society – notice: 2019 Scandinavian Plant Physiology Society. – notice: 2020 Scandinavian Plant Physiology Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7ST 8FD C1K FR3 P64 RC3 SOI 7X8 7S9 L.6 |
DOI | 10.1111/ppl.13050 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Engineering Research Database Ecology Abstracts Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Genetics Abstracts CrossRef MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1399-3054 |
EndPage | 489 |
ExternalDocumentID | 31747051 10_1111_ppl_13050 PPL13050 |
Genre | article Journal Article Review |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29O 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBTR ACBWZ ACCZN ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AETEA AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ H~9 IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OHT OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 TWZ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 XOL YNT ZCG ZZTAW ~02 ~IA ~KM ~WT AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION AEUQT AFPWT CGR CUY CVF ECM EIF ESX NPM PKN WRC 7SN 7ST 8FD C1K FR3 P64 RC3 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3860-337e3e804907432d7f41d081be43a3383e4acb55b8689a93e0a83f49fed2300e3 |
IEDL.DBID | DR2 |
ISSN | 0031-9317 1399-3054 |
IngestDate | Fri Jul 11 18:34:39 EDT 2025 Fri Jul 11 14:46:28 EDT 2025 Sun Jul 13 04:25:43 EDT 2025 Wed Feb 19 02:31:07 EST 2025 Thu Apr 24 23:09:24 EDT 2025 Tue Jul 01 03:00:48 EDT 2025 Sun Jul 06 04:44:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | 2019 Scandinavian Plant Physiology Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3860-337e3e804907432d7f41d081be43a3383e4acb55b8689a93e0a83f49fed2300e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9044-3144 0000-0002-5772-5438 |
PMID | 31747051 |
PQID | 2353366613 |
PQPubID | 1096353 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2439442773 proquest_miscellaneous_2316432711 proquest_journals_2353366613 pubmed_primary_31747051 crossref_citationtrail_10_1111_ppl_13050 crossref_primary_10_1111_ppl_13050 wiley_primary_10_1111_ppl_13050_PPL13050 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 2020-02-00 2020-Feb 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Denmark – name: Malden |
PublicationTitle | Physiologia plantarum |
PublicationTitleAlternate | Physiol Plant |
PublicationYear | 2020 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | 2004; 167 2007; 104 2013; 4 2018; 161 2010; 19 2004; 7 2009a; 230 2013; 64 2005; 579 2004; 9 2014; 27 2016; 143 1997; 2 2013; 8 2016; 39 2013; 5 2012; 249 2013; 6 2010; 22 2009; 14 2005; 221 2010; 29 2013; 237 2007; 174 2008; 27 2000; 97 2000; 406 2013; 112 2006; 29 2016; 158 2008; 20 2004; 218 2010; 2 2010; 5 2003; 41 2018; 37 2001; 52 2017; 63 2009b; 66 1979; 14 2006; 57 1997; 21 2009a; 65 2009; 60 2010; 326 2017; 68 2015; 241 2009; 177 2008; 59 2013; 93 2001; 29 2011; 4 2018; 23 2011; 6 2012; 31 2016; 12 2016; 11 2007a; 100 2004; 55 2018; 18 2013b; 65 2015; 116 2015; 113 2009b; 4 2018; 115 2015; 66 2013; 74 2011; 86 2002; 129 2005; 10 2014; 39 2013; 170 2012; 46 2010; 51 2014; 267 2009; 106 2004; 65 2018; 240 2018; 122 2009; 46 2013; 26 2007b; 144 2005; 137 2013; 200 2010; 143 2018; 80 2009; 151 2008; 147 2012; 58 2019; 361 2005; 28 2016; 77 2012; 71 2013; 18 2012; 70 2014; 5 2014; 3 2004; 135 2003; 8 2008; 319 2010; 154 2010; 152 2014; 165 2007; 20 2014; 7 2017; 488 2010; 74 2009; 59 2012; 63 2015; 15 2015; 6 2006; 97 2019; 70 2009; 20 2015; 168 2006; 11 2017; 22 2015; 167 2015; 10 2009 2005; 43 2016; 50 2007; 50 1995; 19 2006; 1 2007; 52 2008; 165 2015; 8 2001; 126 2003; 132 2018; 69 2005; 46 2015; 23 2013a; 64 2011; 108 2003; 426 2009; 32 2009; 31 2010; 138 2004; 14 2019 2006; 142 2011; 181 2017; 18 2012; 7 2003; 422 2009; 2 2014; 100 2012; 5 2008; 174 2005; 56 2005; 57 e_1_2_12_6_1 e_1_2_12_130_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_111_1 e_1_2_12_157_1 e_1_2_12_138_1 e_1_2_12_115_1 e_1_2_12_153_1 e_1_2_12_134_1 e_1_2_12_108_1 e_1_2_12_20_1 e_1_2_12_66_1 e_1_2_12_43_1 e_1_2_12_85_1 e_1_2_12_24_1 D'Alessandro S (e_1_2_12_35_1) 2013; 4 e_1_2_12_47_1 e_1_2_12_89_1 e_1_2_12_62_1 e_1_2_12_81_1 e_1_2_12_161_1 e_1_2_12_100_1 e_1_2_12_123_1 e_1_2_12_146_1 e_1_2_12_28_1 e_1_2_12_104_1 e_1_2_12_127_1 e_1_2_12_142_1 e_1_2_12_165_1 e_1_2_12_31_1 e_1_2_12_77_1 e_1_2_12_54_1 e_1_2_12_96_1 e_1_2_12_139_1 e_1_2_12_58_1 e_1_2_12_12_1 e_1_2_12_73_1 e_1_2_12_50_1 e_1_2_12_92_1 e_1_2_12_3_1 e_1_2_12_152_1 e_1_2_12_18_1 e_1_2_12_110_1 e_1_2_12_137_1 e_1_2_12_114_1 e_1_2_12_133_1 e_1_2_12_156_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_63_1 e_1_2_12_86_1 Ranjbar A (e_1_2_12_125_1) 2014; 3 e_1_2_12_107_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_67_1 e_1_2_12_40_1 e_1_2_12_82_1 e_1_2_12_160_1 e_1_2_12_141_1 e_1_2_12_122_1 e_1_2_12_168_1 e_1_2_12_29_1 e_1_2_12_149_1 e_1_2_12_126_1 e_1_2_12_164_1 e_1_2_12_103_1 e_1_2_12_145_1 e_1_2_12_119_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_74_1 e_1_2_12_97_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_78_1 e_1_2_12_13_1 e_1_2_12_7_1 e_1_2_12_51_1 e_1_2_12_93_1 e_1_2_12_4_1 e_1_2_12_151_1 e_1_2_12_19_1 e_1_2_12_38_1 e_1_2_12_136_1 e_1_2_12_159_1 e_1_2_12_132_1 Li D (e_1_2_12_79_1) 2019 e_1_2_12_113_1 e_1_2_12_155_1 e_1_2_12_41_1 e_1_2_12_87_1 e_1_2_12_106_1 e_1_2_12_129_1 e_1_2_12_22_1 e_1_2_12_64_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_68_1 e_1_2_12_83_1 e_1_2_12_60_1 e_1_2_12_140_1 e_1_2_12_163_1 e_1_2_12_49_1 e_1_2_12_121_1 e_1_2_12_148_1 e_1_2_12_102_1 e_1_2_12_144_1 e_1_2_12_167_1 e_1_2_12_52_1 e_1_2_12_98_1 e_1_2_12_118_1 e_1_2_12_33_1 e_1_2_12_75_1 e_1_2_12_56_1 e_1_2_12_37_1 e_1_2_12_14_1 e_1_2_12_90_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_94_1 e_1_2_12_71_1 e_1_2_12_150_1 e_1_2_12_5_1 e_1_2_12_16_1 e_1_2_12_112_1 e_1_2_12_135_1 e_1_2_12_158_1 e_1_2_12_39_1 e_1_2_12_116_1 e_1_2_12_131_1 e_1_2_12_154_1 e_1_2_12_42_1 e_1_2_12_65_1 e_1_2_12_88_1 e_1_2_12_109_1 e_1_2_12_128_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_69_1 e_1_2_12_80_1 e_1_2_12_61_1 e_1_2_12_84_1 e_1_2_12_162_1 Kovacs I (e_1_2_12_70_1) 2016 e_1_2_12_27_1 e_1_2_12_101_1 e_1_2_12_147_1 e_1_2_12_120_1 e_1_2_12_105_1 e_1_2_12_143_1 e_1_2_12_124_1 e_1_2_12_166_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_76_1 e_1_2_12_99_1 e_1_2_12_117_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_15_1 e_1_2_12_91_1 e_1_2_12_11_1 e_1_2_12_72_1 e_1_2_12_95_1 e_1_2_12_9_1 |
References_xml | – volume: 50 start-page: 514 year: 2007 end-page: 528 article-title: Auxin, actin and growth of the Arabidopsis thaliana primary root publication-title: T Plant J – volume: 58 start-page: 6 year: 2012 end-page: 15 article-title: Nitric oxide and hydrogen peroxide alleviate drought stress in marigold explants and promote its adventitious root development publication-title: Plant Physiol Biochem – volume: 221 start-page: 297 year: 2005 end-page: 303 article-title: Nitric oxide is involved in the ‐induced lateral root formation in tomato publication-title: Planta – volume: 579 start-page: 1243 year: 2005 end-page: 1248 article-title: Auxin‐induced reactive oxygen species production requires the activation of phosphatidylinositol 3‐kinase publication-title: FEBS Lett – volume: 7 start-page: 30 year: 2014 article-title: Genes controlling root development in rice publication-title: Rice – volume: 37 start-page: 438 year: 2018 end-page: 451 article-title: Jasmonic acid‐ethylene crosstalk via ETHYLENE INSENSITIVE 2 reprograms Arabidopsis root system architecture through nitric oxide accumulation publication-title: J Plant Growth Regul – volume: 97 start-page: 2405 year: 2000 end-page: 2407 article-title: Connecting oxidative stress, auxin, and cell cycle regulation through a plant mitogen‐activated protein kinase pathway publication-title: Proc Natl Acad Sci – volume: 142 start-page: 1246 year: 2006 end-page: 1255 article-title: Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins publication-title: Plant Physiol – volume: 29 start-page: 338 year: 2010 end-page: 348 article-title: Effect of nitric oxide and hydrogen peroxide on adventitious root development from cuttings of ground‐cover chrysanthemum and associated biochemical changes publication-title: J Plant Growth Regul – volume: 65 start-page: 527 year: 2013b end-page: 538 article-title: Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S‐nitrosylation publication-title: J Exp Bot – volume: 69 start-page: 3425 year: 2018 end-page: 3438 article-title: Nitric oxide buffering and conditional nitric oxide release in stress response publication-title: J Exp Bot – volume: 174 start-page: 332 year: 2007 end-page: 341 article-title: Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases publication-title: New Phytol – volume: 6 start-page: 8821 year: 2015 article-title: A coherent transcriptional feed‐forward motif model for mediating auxin‐sensitive PIN3 expression during lateral root development publication-title: Nat Commun – volume: 106 start-page: 4284 year: 2009 end-page: 4289 article-title: Cytokinin regulates root meristem activity via modulation of the polar auxin transport publication-title: Proc Natl Acad Sci – volume: 59 start-page: 27 year: 2009 end-page: 36 article-title: Reactive oxygen species localization in roots of seedlings grown under phosphate deficiency publication-title: Plant Growth Regul – volume: 41 start-page: 1011 year: 2003 end-page: 1017 article-title: Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of publication-title: Plant Physiol Biochem – volume: 21 start-page: 183 year: 1997 end-page: 187 article-title: NO‐releasing substances that induce growth elongation in maize root segments publication-title: Plant Growth Regul – volume: 112 start-page: 1655 year: 2013 end-page: 1665 article-title: Auxin and the integration of environmental signals into plant root development publication-title: Ann Bot‐London – volume: 59 start-page: 3443 year: 2008 end-page: 3452 article-title: Regulation of tomato lateral root development by carbon monoxide and involvement in auxin and nitric oxide publication-title: J Exp Bot – volume: 97 start-page: 2940 year: 2000 end-page: 2945 article-title: Functional analysis of oxidative stress‐activated mitogen‐activated protein kinase cascade in plants publication-title: Proc Natl Acad Sci – volume: 5 start-page: 1 year: 2013 end-page: 17 article-title: Nitric oxide in plants: an assessment of the current state of knowledge publication-title: AoB Plants – volume: 10 start-page: e0138713 year: 2015 article-title: Exogenous nitric oxide (NO) interferes with lead (Pb)‐induced toxicity by detoxifying reactive oxygen species in hydroponically grown wheat ( ) roots publication-title: PLoS One – volume: 5 start-page: 974 year: 2012 end-page: 983 article-title: Regulation of shoot and root development through mutual signaling publication-title: Mol Plant – volume: 4 start-page: 340 year: 2013 article-title: Limits in the use of cPTIO as nitric oxide scavenger and EPR probe in plant cells and seedlings publication-title: Front Plant Sci – volume: 5 start-page: 5401 year: 2014 article-title: S‐nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway publication-title: Nat Commun – volume: 28 start-page: 67 year: 2005 end-page: 77 article-title: Intrinsic and environmental response pathways that regulate root system architecture publication-title: Plant Cell Environ – volume: 6 start-page: 1214 year: 2013 end-page: 1225 article-title: Nitric oxide mediates cytokinin functions in cell proliferation and meristem maintenance in Arabidopsis publication-title: Mol Plant – volume: 22 start-page: 2981 year: 2010 end-page: 2998 article-title: Hydrogen peroxide–mediated activation of MAP kinase 6 modulates nitric oxide biosynthesis and signal transduction in Arabidopsis publication-title: Plant Cell – volume: 27 start-page: 563 year: 2008 end-page: 573 article-title: Function of nitric oxide and superoxide anion in the adventitious root development and antioxidant defence in publication-title: Plant Cell Rep – volume: 60 start-page: 1605 year: 2009 end-page: 1617 article-title: Nitric oxide modulates dynamic actin cytoskeleton and vesicle trafficking in a cell type‐specific manner in root apices publication-title: J Exp Bot – volume: 4 start-page: 1529 year: 2013 article-title: S‐nitrosylation of phosphotransfer proteins represses cytokinin signaling publication-title: Nat Commun – volume: 7 start-page: 196 year: 2012 end-page: 200 article-title: Nitric oxide: an emerging regulator of cell elongation during primary root growth publication-title: Plant Signal Behav – volume: 2 start-page: 390 year: 1997 end-page: 396 article-title: Down and out in Arabidopsis: the formation of lateral roots publication-title: Trend Plant Sci – volume: 167 start-page: 839 year: 2004 end-page: 847 article-title: Nitric oxide generation during early germination of sorghum seeds publication-title: Plant Sci – volume: 6 start-page: 889 year: 2011 end-page: 891 article-title: Phosphorylation by MPK6: a conserved transcriptional modification mediates nitrate reductase activation and NO production? publication-title: Plant Signal Behav – volume: 161 start-page: 41 year: 2018 end-page: 49 article-title: Crosstalk between nitric oxide (NO) and abscisic acid (ABA) signalling molecules in higher plants publication-title: Environ Exp Bot – volume: 11 start-page: 194 year: 2006 end-page: 206 article-title: NO chemistry: a diversity of targets in the cell publication-title: Redox Rep – volume: 55 start-page: 1105 year: 2004 end-page: 1113 article-title: Salinity up‐regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt‐tolerant tomato species publication-title: J Exp Bot – volume: 4 start-page: 999 year: 2009b end-page: 1001 article-title: Does nitric oxide play a pivotal role downstream of auxin in promoting crown root primordia initiation in monocots? publication-title: Plant Signal Behav – volume: 55 start-page: 373 year: 2004 end-page: 399 article-title: Reactive oxygen species: metabolism, oxidative stress, and signal transduction publication-title: Annu Rev Plant Biol – volume: 66 start-page: 442 year: 2009b end-page: 450 article-title: IBA‐induced changes in antioxidant enzymes during adventitious rooting in mung bean seedlings: the role of H O publication-title: Environ Exp Bot – volume: 18 start-page: 2084 year: 2017 article-title: Hydrogen gas is involved in auxin‐induced lateral root formation by modulating nitric oxide synthesis publication-title: Int J Mol Sci – volume: 70 start-page: 492 year: 2012 end-page: 500 article-title: Nitric oxide influences auxin signaling through S‐nitrosylation of the Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 auxin receptor publication-title: Plant J – volume: 167 start-page: 1604 year: 2015 end-page: 1615 article-title: S‐nitrosylation positively regulates ascorbate peroxidase activity during plant stress responses publication-title: Plant Physiol – volume: 181 start-page: 612 year: 2011 end-page: 620 article-title: The message of nitric oxide in cadmium challenged plants publication-title: Plant Sci – start-page: 157 year: 2019 end-page: 173 – volume: 147 start-page: 188 year: 2008 end-page: 198 article-title: Nitric oxide triggers phosphatidic acid accumulation via phospholipase D during auxin‐induced adventitious root formation in cucumber publication-title: Plant Physiol – volume: 8 start-page: 165 year: 2003 end-page: 171 article-title: Dissecting Arabidopsis lateral root development publication-title: Trends Plant Sci – volume: 129 start-page: 954 year: 2002 end-page: 956 article-title: Nitric oxide is required for root organogenesis publication-title: Plant Physiol – volume: 15 start-page: 855 year: 2015 end-page: 867 article-title: Hyper, a hydrogen peroxide sensor, indicates the sensitivity of the Arabidopsis root elongation zone to aluminum treatment publication-title: Sensors – volume: 154 start-page: 810 year: 2010 end-page: 819 article-title: Nitric oxide acts downstream of auxin to trigger root ferric‐chelate reductase activity in response to iron deficiency in publication-title: Plant Physiol – volume: 14 start-page: 557 year: 2009 end-page: 562 article-title: Cytokinin–auxin crosstalk publication-title: Trend Plant Sci – volume: 132 start-page: 1241 year: 2003 end-page: 1248 article-title: Nitric oxide and cyclic GMP are messengers in the indole acetic acid‐induced adventitious rooting process publication-title: Plant Physiol – volume: 66 start-page: 2449 year: 2015 end-page: 2459 article-title: Nitric oxide generated by nitrate reductase increases nitrogen uptake capacity by inducing lateral root formation and inorganic nitrogen uptake under partial nitrate nutrition in rice publication-title: J Exp Bot – volume: 100 start-page: 84 year: 2014 end-page: 93 article-title: Cross‐talk between nitric oxide and hydrogen peroxide in plant responses to abiotic stresses publication-title: Environ Exp Bot – volume: 5 start-page: 1163 year: 2010 end-page: 1166 article-title: Nitric oxide modulates specific steps of auxin‐induced adventitious rooting in sunflower publication-title: Plant Signal Behav – volume: 29 start-page: 345 year: 2001 end-page: 349 article-title: Role of reactive oxygen species in cell signaling pathways publication-title: Biochem Soc Transc – volume: 18 start-page: 200 year: 2018 end-page: 210 article-title: Regulation of SCFTIR1/AFBs E3 ligase assembly by S‐nitrosylation of Arabidopsis SKP1‐like1 impacts on auxin signaling publication-title: Redox Biol – volume: 59 start-page: 4007 year: 2008 end-page: 4016 article-title: Extracellular ATP‐induced NO production and its dependence on membrane Ca2+ flux in salvia miltiorrhiza hairy roots publication-title: J Exp Bot – volume: 319 start-page: 1241 year: 2008 end-page: 1244 article-title: Local positive feedback regulation determines cell shape in root hair cells publication-title: Science – volume: 14 start-page: 679 year: 2004 end-page: 686 article-title: The role of cysteine residues as redox‐sensitive regulatory switches publication-title: Curr Opin Struct Biol – volume: 4 start-page: 398 year: 2013 article-title: Nitric oxide and phytohormone interactions: current status and perspectives publication-title: Front Plant Sci – volume: 104 start-page: 20996 year: 2007 end-page: 21001 article-title: Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs publication-title: Proc Natl Acad Sci – volume: 71 start-page: 787 year: 2012 end-page: 799 article-title: Microarray analysis revealed upregulation of nitrate reductase in juvenile cuttings of , which correlated with increased nitric oxide production and adventitious root formation publication-title: Plant J – volume: 2 start-page: a001537 year: 2010 article-title: Auxin control of root development publication-title: Cold Spring Harb Perspec Biol – volume: 20 start-page: 283 year: 2007 end-page: 292 article-title: Rhizobium‐initiated rice growth inhibition caused by nitric oxide accumulation publication-title: Mol Plant Microbe Interac – volume: 74 start-page: 946 year: 2013 end-page: 958 article-title: Function of type‐2 Arabidopsishemoglobin in the auxin‐mediated formation of embryogenic cells during morphogenesis publication-title: Plant J – volume: 52 start-page: 949 year: 2007 end-page: 960 article-title: Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots publication-title: Plant J – volume: 168 start-page: 343 year: 2015 end-page: 356 article-title: Salt stress reduces root meristem size by nitric oxide‐mediated modulation of auxin accumulation and signaling in Arabidopsis publication-title: Plant Physiol – volume: 406 start-page: 731 year: 2000 end-page: 734 article-title: Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells publication-title: Nature – volume: 93 start-page: 283 year: 2013 end-page: 293 article-title: Microcystin‐LR‐induced phytotoxicity in rice crown root is associated with the cross‐talk between auxin and nitric oxide publication-title: Chemosphere – volume: 426 start-page: 255 year: 2003 end-page: 260 article-title: Regulation of phyllotaxis by polar auxin transport publication-title: Nature – volume: 19 start-page: 644 year: 2010 end-page: 646 article-title: Feeling UPBEAT about growth: linking ROS gradients and cell proliferation publication-title: Dev Cell – volume: 1 start-page: 28 year: 2006 end-page: 33 article-title: Nitric oxide functions as a positive regulator of root hair development publication-title: Plant Signal Behav – volume: 218 start-page: 900 year: 2004 end-page: 905 article-title: Nitric oxide plays a central role in determining lateral root development in tomato publication-title: Planta – volume: 50 start-page: 291 year: 2016 end-page: 303 article-title: Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants publication-title: Free Radic Res – volume: 167 start-page: 1209 year: 2015 end-page: 1210 article-title: Interplay of reactive oxygen species and nitric oxide: nitric oxide coordinates reactive oxygen species homeostasis publication-title: Plant Physiol – volume: 69 start-page: 3401 year: 2018 end-page: 3411 article-title: Nitric oxide production in plants: an update publication-title: J Exp Bot – volume: 63 start-page: 30 year: 2017 end-page: 38 article-title: Nitric oxide synthase in plants: where do we stand? publication-title: Nitric Oxide – volume: 165 start-page: 1105 year: 2014 end-page: 1119 article-title: The emerging role of ROS signalling during lateral root development publication-title: Plant Physiol – volume: 27 start-page: 364 year: 2014 end-page: 378 article-title: Pyocyanin, a virulence factor produced by , alters root development through reactive oxygen species and ethylene signaling in Arabidopsis publication-title: Mol Plant Microbe Interact – volume: 116 start-page: 695 year: 2015 end-page: 702 article-title: Nitric oxide is required for the auxin‐induced activation of NADPH‐dependent thioredoxin reductase and protein denitrosylation during root growth responses in Arabidopsis publication-title: Ann Bot‐London – volume: 165 start-page: 967 year: 2008 end-page: 975 article-title: Exogenous auxin‐induced NO synthesis is nitrate reductase‐associated in root primordia publication-title: J Plant Physiol – volume: 7 start-page: 449 year: 2004 end-page: 455 article-title: Nitric oxide: a new player in plant signalling and defence responses publication-title: Curr Opin Plant Biol – volume: 135 start-page: 279 year: 2004 end-page: 286 article-title: Nitric oxide mediates the indole acetic acid induction activation of a mitogen‐activated protein kinase cascade involved in adventitious root development publication-title: Plant Physiol – volume: 43 start-page: 849 year: 2005 end-page: 860 article-title: Nitric oxide is required for, and promotes auxin‐mediated activation of, cell division and embryogenic cell formation but does not influence cell cycle progression in alfalfa cell cultures publication-title: Plant J – volume: 56 start-page: 1991 year: 2005 end-page: 2001 article-title: Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ, and cellular level publication-title: J Exp Bot – volume: 31 start-page: 1279 year: 2009 end-page: 1289 article-title: Role and relationship of nitric oxide and hydrogen peroxide in adventitious root development of marigold publication-title: Acta Physiol Plant – volume: 3 start-page: 2 year: 2014 end-page: 13 article-title: The role of oxidative stress in metals toxicity; mitochondrial dysfunction as a key player publication-title: Galen Med J – year: 2009 – volume: 32 start-page: 158 year: 2009 end-page: 69 article-title: Different stresses, similar morphogenic responses: integrating a plethora of pathways publication-title: Plant Cell Environ – volume: 70 start-page: 4391 year: 2019 end-page: 4404 article-title: Nitric oxide (NO) and hydrogen sulfide (H S) in plants: which is first? publication-title: J Exp Bot – volume: 57 start-page: 581 year: 2006 end-page: 588 article-title: Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato publication-title: J Exp Bot – volume: 20 start-page: 289 year: 2009 end-page: 297 article-title: Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of (rice) publication-title: Nitric Oxide – volume: 18 start-page: 450 year: 2013 end-page: 458 article-title: Lateral root development in Arabidopsis: fifty shades of auxin publication-title: Trends Plant Sci – volume: 143 start-page: 606 year: 2010 end-page: 616 article-title: Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root publication-title: Cell – volume: 51 start-page: 1612 year: 2010 end-page: 1626 article-title: Nitric oxide is involved in alkamide‐induced lateral root development in Arabidopsis publication-title: Plant Cell Physiol – volume: 66 start-page: 2857 year: 2015 end-page: 2868 article-title: Nitric oxide (NO) and phytohormones crosstalk during early plant development publication-title: J Exp Bot – volume: 241 start-page: 591 year: 2015 end-page: 602 article-title: AtrbohD and AtrbohF negatively regulate lateral root development by changing the localized accumulation of superoxide in primary roots of Arabidopsis publication-title: Planta – volume: 237 start-page: 137 year: 2013 end-page: 144 article-title: Nitric oxide enhances development of lateral roots in tomato ( L.) under elevated carbon dioxide publication-title: Planta – volume: 177 start-page: 302 year: 2009 end-page: 309 article-title: Current view of nitric oxide‐responsive genes in plants publication-title: Plant Sci – volume: 144 start-page: 206 year: 2007b end-page: 217 article-title: Nitric oxide synthase‐dependent nitric oxide production is associated with salt tolerance in Arabidopsis publication-title: Plant Physiol – volume: 174 start-page: 165 year: 2008 end-page: 173 article-title: Tissue culture of explants reveals a stimulatory effect of alkamides on adventitious root formation and nitric oxide accumulation publication-title: Plant Sci – volume: 8 start-page: 1350 year: 2015 end-page: 1365 article-title: Loss of GSNOR1 function leads to compromised auxin signaling and polar auxin transport publication-title: Mol Plant – volume: 80 start-page: 89 year: 2018 end-page: 97 article-title: Abscisic acid and nitric oxide modulate cytoskeleton organization, root hair growth and ectopic hair formation in Arabidopsis publication-title: Nitric Oxide – volume: 39 start-page: 120 year: 2016 end-page: 135 article-title: Inhibition of root meristem growth by cadmium involves nitric oxide‐mediated repression of auxin accumulation and signalling in Arabidopsis publication-title: Plant Cell Environ – volume: 230 start-page: 599 year: 2009a end-page: 610 article-title: Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable for crown root primordia initiation in rice seedlings publication-title: Planta – volume: 65 start-page: 63 year: 2009a end-page: 71 article-title: Hydrogen peroxide acts as a signal molecule in the adventitious root formation of mung bean seedlings publication-title: Environ Exp Bot – volume: 23 start-page: 1041 year: 2018 end-page: 1044 article-title: Nitrate, NO and ROS signaling in stem cell homeostasis publication-title: Trends Plant Sci – volume: 46 start-page: 550 year: 2012 end-page: 559 article-title: Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects publication-title: Acc Chem Res – volume: 138 start-page: 384 year: 2010 end-page: 392 article-title: ROS in plant development publication-title: Physiol Plant – volume: 57 start-page: 1341 year: 2006 end-page: 1351 article-title: Calcium and calcium‐dependent protein kinases are involved in nitric oxide‐and auxin‐induced adventitious root formation in cucumber publication-title: J Exp Bot – volume: 240 start-page: 950 year: 2018 end-page: 962 article-title: Nitric oxide confronts arsenic stimulated oxidative stress and root architecture through distinct gene expression of auxin transporters, nutrient related genes and modulates biochemical responses in L publication-title: Environ Pollut – volume: 11 start-page: e1192742 year: 2016 article-title: Singlet oxygen detection in biological systems: uses and limitations publication-title: Plant Signal Behav – volume: 63 start-page: 563 year: 2012 end-page: 590 article-title: Control of Arabidopsis root development publication-title: Ann Rev Plant Biol – volume: 23 start-page: 31 year: 2015 end-page: 38 article-title: Talking through walls: mechanisms of lateral root emergence in publication-title: Curr Opin Plant Biol – volume: 64 start-page: 1121 year: 2013a end-page: 1134 article-title: Protein tyrosine nitration in pea roots during development and senescence publication-title: J Exp Bot – volume: 14 start-page: 79 year: 1979 end-page: 83 article-title: Cell dynamics studies on the pericycle of radish seedling roots publication-title: Plant Sci Lett – volume: 57 start-page: 463 year: 2005 end-page: 470 article-title: Formation and possible roles of nitric oxide in plant roots publication-title: J Exp Bot – volume: 100 start-page: 497 year: 2007a end-page: 503 article-title: Nitric oxide is involved in nitrate‐induced inhibition of root elongation in publication-title: Ann Bot – volume: 46 start-page: 1674 year: 2005 end-page: 1681 article-title: A PIN1 family gene, OsPIN1, involved in auxin‐dependent adventitious root emergence and tillering in rice publication-title: Plant Cell Physiol – volume: 77 start-page: 15 year: 2016 end-page: 39 – volume: 64 start-page: 3339 year: 2013 end-page: 3349 article-title: Auxin induces redox regulation of ascorbate peroxidase 1 activity by S‐nitrosylation/denitrosylation balance resulting in changes of root growth pattern in Arabidopsis publication-title: J Exp Bot – volume: 52 start-page: 215 year: 2001 end-page: 221 article-title: Auxin and heat shock activation of a novel member of the calmodulin like domain protein kinase gene family in cultured alfalfa cells publication-title: J Exp Bot – volume: 147 start-page: 1936 year: 2008 end-page: 1946 article-title: Arginase‐negative mutants of Arabidopsis exhibit increased nitric oxide signaling in root development publication-title: Plant Physiol – volume: 63 start-page: 4875 year: 2012 end-page: 4885 article-title: Nitric oxide is essential for vesicle formation and trafficking in Arabidopsis root hair growth publication-title: J Exp Bot – volume: 65 start-page: 783 year: 2004 end-page: 792 article-title: Nitric oxide and nitric oxide synthase activity in plants publication-title: Phytochemistry – volume: 126 start-page: 1196 year: 2001 end-page: 1204 article-title: Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress publication-title: Plant Physiol – volume: 488 start-page: 88 year: 2017 end-page: 94 article-title: Nitric oxide modifies root growth by S‐nitrosylation of plastidial glyceraldehyde‐3‐phosphate dehydrogenase publication-title: Biochem Bioph Res Co – volume: 2 start-page: ra45 year: 2009 article-title: The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli publication-title: Sci Signal – volume: 200 start-page: 473 year: 2013 end-page: 482 article-title: Indole‐3‐butyric acid induces lateral root formation via peroxisome‐derived indole‐3‐acetic acid and nitric oxide publication-title: New Phytol – volume: 97 start-page: 8849 year: 2000 end-page: 8855 article-title: Nitric oxide and salicylic acid signaling in plant defense publication-title: Proc Natl Acad Sci – start-page: 1 year: 2019 end-page: 13 article-title: Magnesium promotes root growth and increases aluminum tolerance via modulation of nitric oxide production in Arabidopsis publication-title: Plant and Soil – volume: 361 start-page: 134 year: 2019 end-page: 140 article-title: New adventitious root formation and primary root biomass accumulation are regulated by nitric oxide and reactive oxygen species in rice seedlings under arsenate stress publication-title: J Hazard Mater – volume: 74 start-page: 423 year: 2010 end-page: 435 article-title: Both the stimulation and inhibition of root hair growth induced by extracellular nucleotides in Arabidopsis are mediated by nitric oxide and reactive oxygen species publication-title: Plant Mol Biol – volume: 39 start-page: 20 year: 2014 end-page: 28 article-title: Nitric oxide is required for determining root architecture and lignin composition in sunflower. Supporting evidence from microarray analyses publication-title: Nitric Oxide – volume: 4 start-page: 616 year: 2011 end-page: 625 article-title: Auxin–cytokinin interaction regulates meristem development publication-title: Mol Plant – volume: 26 start-page: 255 year: 2013 end-page: 269 article-title: Nitric oxide (NO) counteracts cadmium induced cytotoxic processes mediated by reactive oxygen species (ROS) in : cross‐talk between ROS, NO and antioxidant responses publication-title: Biometals – volume: 152 start-page: 891 year: 2010 end-page: 903 article-title: Enhanced abscisic acid‐mediated responses in nia1nia2noa1‐2 triple mutant impaired in NIA/NR‐and AtNOA1‐dependent nitric oxide biosynthesis in Arabidopsis publication-title: Plant Physiol – volume: 4 start-page: 29 year: 2013 article-title: Protein tyrosine nitration in higher plants grown under natural and stress conditions publication-title: Front Plant Sci – volume: 31 start-page: 1085 year: 2012 end-page: 1091 article-title: Heme oxygenase is involved in nitric oxide‐and auxin‐induced lateral root formation in rice publication-title: Plant Cell Rep – volume: 267 start-page: 40 year: 2014 end-page: 47 article-title: Hydrogen‐rich water alleviates aluminum‐induced inhibition of root elongation in alfalfa via decreasing nitric oxide production publication-title: J Hazard Mater – volume: 249 start-page: 187 year: 2012 end-page: 195 article-title: Calcium is involved in nitric oxide‐and auxin‐induced lateral root formation in rice publication-title: Protoplasma – volume: 151 start-page: 755 year: 2009 end-page: 767 article-title: Nitric reductase‐dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis publication-title: Plant Physiol – volume: 122 start-page: 110 year: 2018 end-page: 115 article-title: Crosstalk between reactive oxygen species and nitric oxide in plants: key role of S‐nitrosoglutathione reductase publication-title: Free Radical Bio Med – volume: 129 start-page: 244 year: 2002 end-page: 256 article-title: Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system publication-title: Plant Physiol – volume: 22 start-page: 11 year: 2017 end-page: 19 article-title: ROS are good publication-title: Trends Plant Sci – volume: 170 start-page: 63 year: 2013 end-page: 69 article-title: Methyl jasmonate‐induced lateral root formation in rice: the role of heme oxygenase and calcium publication-title: J Plant Physiol – volume: 10 start-page: 195 year: 2005 end-page: 200 article-title: New insights into nitric oxide metabolism and regulatory functions publication-title: Trends Plant Sci – volume: 113 start-page: 95 year: 2015 end-page: 102 article-title: Interaction of nitric oxide and reactive oxygen species and associated regulation of root growth in wheat seedlings under zinc stress publication-title: Ecotox Environ Safe – volume: 19 start-page: 505 year: 1995 end-page: 510 article-title: The reaction of NO with O and HO ·‐: a pulse radiolysis study publication-title: Free Radical Bio Med – volume: 422 start-page: 442 year: 2003 end-page: 446 article-title: Reactive oxygen species produced by NADPH oxidase regulate plant cell growth publication-title: Nature – volume: 108 start-page: 18506 year: 2011 end-page: 18511 article-title: Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN‐FORMED 1 (PIN1)‐dependent acropetal auxin transport publication-title: Proc Natl Acad Sci – volume: 158 start-page: 92 year: 2016 end-page: 105 article-title: Serotonin modulates Arabidopsis root growth via changes in reactive oxygen species and jasmonic acid‐ethylene signaling publication-title: Physiol Plant – volume: 9 start-page: 490 year: 2004 end-page: 498 article-title: Reactive oxygen gene network of plants publication-title: Trends Plant Sci – volume: 12 start-page: e1006175 year: 2016 article-title: A P‐loop NTPase regulates quiescent center cell division and distal stem cell identity through the regulation of ROS homeostasis in Arabidopsis root publication-title: PLoS Genet – volume: 68 start-page: 5 year: 2017 end-page: 6 article-title: Nitric oxide synthase‐like activity in higher plants publication-title: Nitric Oxide – volume: 137 start-page: 663 year: 2005 end-page: 670 article-title: Nitric oxide mediates gravitropic bending in soybean roots publication-title: Plant Physiol – volume: 46 start-page: 1686 year: 2009 end-page: 1693 article-title: Nitric oxide signals ROS scavenger‐mediated enhancement of PAL activity in nitrogen‐deficient roots: side effects of scavengers publication-title: Free Radical Bio Med – volume: 143 start-page: 3328 year: 2016 end-page: 3339 article-title: RBOH‐mediated ROS production facilitates lateral root emergence in Arabidopsis publication-title: Development – volume: 86 start-page: 159 year: 2011 end-page: 165 article-title: Nitric oxide and hydrogen peroxide are involved in indole‐3‐butyric acid‐induced adventitious root development in marigold publication-title: J Hortic Sci Biotechnol – volume: 97 start-page: 883 year: 2006 end-page: 893 article-title: Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism publication-title: Ann Bot‐London – volume: 29 start-page: 1532 year: 2006 end-page: 1544 article-title: Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo publication-title: Plant Cell Environ – volume: 326 start-page: 321 year: 2010 end-page: 330 article-title: Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of seedlings under cadmium stress publication-title: Plant and Soil – volume: 20 start-page: 3258 year: 2008 end-page: 3272 article-title: Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor publication-title: Plant Cell – volume: 115 start-page: E4710 year: 2018 end-page: E4719 article-title: MYB30 links ROS signaling, root cell elongation, and plant immune responses publication-title: Proc Natl A Sci – volume: 8 start-page: e23196 year: 2013 article-title: Rapid auxin‐induced nitric oxide accumulation and subsequent tyrosine nitration of proteins during adventitious root formation in sunflower hypocotyls publication-title: Plant Signal Behav – ident: e_1_2_12_15_1 doi: 10.1016/j.plantsci.2007.11.003 – ident: e_1_2_12_21_1 doi: 10.1016/j.chemosphere.2013.04.079 – ident: e_1_2_12_4_1 doi: 10.1146/annurev.arplant.55.031903.141701 – ident: e_1_2_12_115_1 doi: 10.1105/tpc.108.058719 – ident: e_1_2_12_100_1 doi: 10.1016/j.tplants.2004.08.009 – ident: e_1_2_12_107_1 doi: 10.1111/j.1365-313X.2005.02494.x – ident: e_1_2_12_53_1 doi: 10.1093/jxb/ern194 – ident: e_1_2_12_133_1 doi: 10.1111/nph.12377 – ident: e_1_2_12_56_1 doi: 10.1073/pnas.97.6.2405 – ident: e_1_2_12_158_1 doi: 10.4161/psb.4.10.9715 – ident: e_1_2_12_13_1 doi: 10.1016/j.plantsci.2009.06.006 – ident: e_1_2_12_25_1 doi: 10.1016/j.niox.2016.10.009 – ident: e_1_2_12_62_1 doi: 10.1093/jxb/erp033 – ident: e_1_2_12_144_1 doi: 10.1007/s00299-007-0448-y – ident: e_1_2_12_61_1 doi: 10.1016/j.febslet.2005.01.018 – ident: e_1_2_12_80_1 doi: 10.1007/s11738-009-0367-3 – ident: e_1_2_12_139_1 doi: 10.1093/mp/ssr007 – ident: e_1_2_12_141_1 doi: 10.1111/j.1399-3054.2009.01313.x – ident: e_1_2_12_94_1 doi: 10.1111/j.1365-3040.2005.01306.x – ident: e_1_2_12_138_1 doi: 10.1093/jxb/erj058 – ident: e_1_2_12_23_1 doi: 10.1038/ncomms9821 – ident: e_1_2_12_30_1 doi: 10.1093/jxb/ert172 – ident: e_1_2_12_8_1 doi: 10.1016/j.sbi.2004.09.012 – ident: e_1_2_12_135_1 doi: 10.1016/j.molp.2015.04.008 – ident: e_1_2_12_31_1 doi: 10.1093/aob/mcv116 – ident: e_1_2_12_19_1 doi: 10.1104/pp.110.161109 – ident: e_1_2_12_155_1 doi: 10.1016/j.pbi.2004.04.002 – ident: e_1_2_12_137_1 doi: 10.1016/j.niox.2009.02.004 – ident: e_1_2_12_66_1 doi: 10.1080/15592324.2016.1192742 – ident: e_1_2_12_128_1 doi: 10.1179/135100006X116718 – ident: e_1_2_12_102_1 doi: 10.1073/pnas.0708586104 – ident: e_1_2_12_129_1 doi: 10.1111/j.1365-3040.2006.01531.x – ident: e_1_2_12_16_1 doi: 10.3390/ijms18102084 – ident: e_1_2_12_43_1 doi: 10.1073/pnas.1108644108 – ident: e_1_2_12_146_1 doi: 10.1007/s10725-009-9385-9 – ident: e_1_2_12_101_1 doi: 10.1093/jxb/erh113 – ident: e_1_2_12_117_1 doi: 10.1146/annurev-arplant-042811-105501 – ident: e_1_2_12_130_1 doi: 10.1073/pnas.0900060106 – ident: e_1_2_12_99_1 doi: 10.1016/j.tplants.2016.08.002 – ident: e_1_2_12_93_1 doi: 10.1186/s12284-014-0030-5 – ident: e_1_2_12_69_1 doi: 10.1016/j.freeradbiomed.2009.03.020 – ident: e_1_2_12_89_1 doi: 10.4161/psb.1.1.2398 – ident: e_1_2_12_142_1 doi: 10.1126/science.1152505 – ident: e_1_2_12_64_1 doi: 10.1093/aob/mct229 – ident: e_1_2_12_50_1 doi: 10.1016/0891-5849(95)00034-U – ident: e_1_2_12_68_1 doi: 10.1016/j.plaphy.2003.09.003 – start-page: 15 volume-title: Advances in Botanical Research year: 2016 ident: e_1_2_12_70_1 – ident: e_1_2_12_73_1 doi: 10.1093/jxb/erj109 – ident: e_1_2_12_127_1 doi: 10.1038/nature02081 – ident: e_1_2_12_71_1 doi: 10.1073/pnas.97.6.2940 – ident: e_1_2_12_84_1 doi: 10.1016/j.freeradbiomed.2017.11.027 – ident: e_1_2_12_112_1 doi: 10.1093/jxb/eri196 – ident: e_1_2_12_163_1 doi: 10.1104/pp.114.255216 – ident: e_1_2_12_3_1 doi: 10.1093/aob/mcl027 – ident: e_1_2_12_32_1 doi: 10.1016/j.niox.2014.04.004 – ident: e_1_2_12_11_1 doi: 10.1093/jxb/ert396 – ident: e_1_2_12_9_1 doi: 10.1007/s00344-017-9741-3 – ident: e_1_2_12_55_1 doi: 10.3390/s150100855 – ident: e_1_2_12_156_1 doi: 10.1093/jxb/ern242 – ident: e_1_2_12_81_1 doi: 10.1007/s00344-010-9140-5 – ident: e_1_2_12_106_1 doi: 10.1094/MPMI-08-13-0219-R – ident: e_1_2_12_20_1 doi: 10.1007/s00299-012-1228-x – ident: e_1_2_12_160_1 doi: 10.1007/s11104-009-0011-4 – ident: e_1_2_12_76_1 doi: 10.1016/j.envexpbot.2008.06.004 – ident: e_1_2_12_52_1 doi: 10.1111/j.1365-313X.2007.03283.x – ident: e_1_2_12_67_1 doi: 10.1016/j.jplph.2007.07.019 – ident: e_1_2_12_6_1 doi: 10.3109/10715762.2015.1118473 – ident: e_1_2_12_29_1 doi: 10.1093/jxb/erj045 – ident: e_1_2_12_116_1 doi: 10.1094/MPMI-20-3-0283 – ident: e_1_2_12_10_1 doi: 10.1093/jxb/ert006 – ident: e_1_2_12_123_1 doi: 10.1021/ar300234c – ident: e_1_2_12_113_1 doi: 10.1038/35021067 – ident: e_1_2_12_132_1 doi: 10.1093/jxb/erv213 – ident: e_1_2_12_77_1 doi: 10.1016/j.envexpbot.2009.03.005 – start-page: 1 year: 2019 ident: e_1_2_12_79_1 article-title: Magnesium promotes root growth and increases aluminum tolerance via modulation of nitric oxide production in Arabidopsis publication-title: Plant and Soil – ident: e_1_2_12_118_1 doi: 10.1111/j.1365-3040.2008.01908.x – ident: e_1_2_12_27_1 doi: 10.1093/jxb/erz031 – ident: e_1_2_12_58_1 doi: 10.1104/pp.104.054494 – ident: e_1_2_12_90_1 doi: 10.1104/pp.010934 – ident: e_1_2_12_97_1 doi: 10.1093/pcp/pcq117 – ident: e_1_2_12_114_1 doi: 10.1111/ppl.12429 – ident: e_1_2_12_153_1 doi: 10.1016/j.tplants.2018.09.010 – ident: e_1_2_12_49_1 doi: 10.1104/pp.126.3.1196 – ident: e_1_2_12_54_1 doi: 10.1042/bst0290345 – ident: e_1_2_12_34_1 doi: 10.1007/s00425-005-1523-7 – ident: e_1_2_12_72_1 doi: 10.1016/j.jhazmat.2018.08.035 – ident: e_1_2_12_38_1 doi: 10.1016/j.phytochem.2004.02.001 – ident: e_1_2_12_26_1 doi: 10.3389/fpls.2013.00029 – ident: e_1_2_12_78_1 doi: 10.1007/s00425-014-2204-1 – ident: e_1_2_12_121_1 doi: 10.1093/mp/sss047 – ident: e_1_2_12_119_1 doi: 10.1016/j.envexpbot.2018.10.033 – ident: e_1_2_12_88_1 doi: 10.1016/j.niox.2018.09.002 – ident: e_1_2_12_150_1 doi: 10.4161/psb.6.6.15308 – ident: e_1_2_12_18_1 doi: 10.1007/s00709-011-0277-2 – ident: e_1_2_12_92_1 doi: 10.1073/pnas.1804233115 – ident: e_1_2_12_120_1 doi: 10.1016/j.envpol.2018.04.096 – ident: e_1_2_12_48_1 doi: 10.1038/ncomms6401 – ident: e_1_2_12_164_1 doi: 10.1371/journal.pgen.1006175 – ident: e_1_2_12_7_1 doi: 10.1093/jxb/erx420 – ident: e_1_2_12_14_1 doi: 10.1016/0304-4211(79)90158-5 – ident: e_1_2_12_145_1 doi: 10.1016/j.cell.2010.10.020 – ident: e_1_2_12_152_1 doi: 10.1016/j.bbrc.2017.05.012 – ident: e_1_2_12_22_1 doi: 10.1016/j.jhazmat.2013.12.029 – ident: e_1_2_12_82_1 doi: 10.1080/14620316.2011.11512742 – ident: e_1_2_12_87_1 doi: 10.1093/jxb/ers166 – ident: e_1_2_12_161_1 doi: 10.4161/psb.5.10.12159 – ident: e_1_2_12_63_1 doi: 10.1371/journal.pone.0138713 – ident: e_1_2_12_33_1 doi: 10.1016/j.tplants.2005.02.008 – ident: e_1_2_12_36_1 doi: 10.1093/jexbot/52.355.215 – ident: e_1_2_12_140_1 doi: 10.1093/jxb/erv030 – ident: e_1_2_12_74_1 doi: 10.1104/pp.107.111815 – ident: e_1_2_12_148_1 doi: 10.1016/j.pbi.2014.10.005 – ident: e_1_2_12_65_1 doi: 10.1073/pnas.97.16.8849 – ident: e_1_2_12_157_1 doi: 10.1007/s00425-009-0970-y – ident: e_1_2_12_98_1 doi: 10.1126/scisignal.2000448 – ident: e_1_2_12_60_1 doi: 10.1104/pp.106.086918 – ident: e_1_2_12_103_1 doi: 10.1016/j.tplants.2009.06.010 – ident: e_1_2_12_143_1 doi: 10.1111/j.1365-313X.2011.04885.x – ident: e_1_2_12_104_1 doi: 10.1093/aobpla/pls052 – ident: e_1_2_12_151_1 doi: 10.1007/s00425-012-1763-2 – ident: e_1_2_12_149_1 doi: 10.1105/tpc.109.072959 – ident: e_1_2_12_37_1 doi: 10.1007/978-3-642-00390-5 – ident: e_1_2_12_168_1 doi: 10.1104/pp.109.140996 – ident: e_1_2_12_95_1 doi: 10.1016/S1360-1385(97)90054-6 – ident: e_1_2_12_136_1 doi: 10.1016/j.plantsci.2004.05.028 – ident: e_1_2_12_51_1 doi: 10.1023/A:1005837012203 – ident: e_1_2_12_134_1 doi: 10.1093/mp/sss148 – volume: 4 start-page: 340 year: 2013 ident: e_1_2_12_35_1 article-title: Limits in the use of cPTIO as nitric oxide scavenger and EPR probe in plant cells and seedlings publication-title: Front Plant Sci – ident: e_1_2_12_44_1 doi: 10.4161/psb.18895 – ident: e_1_2_12_83_1 doi: 10.1016/j.plaphy.2012.06.012 – ident: e_1_2_12_12_1 doi: 10.1093/jxb/ery072 – ident: e_1_2_12_91_1 doi: 10.1104/pp.109.148023 – ident: e_1_2_12_40_1 doi: 10.1111/j.1469-8137.2007.01995.x – ident: e_1_2_12_75_1 doi: 10.1016/j.tplants.2013.04.006 – ident: e_1_2_12_166_1 doi: 10.1093/aob/mcm142 – ident: e_1_2_12_47_1 doi: 10.3389/fpls.2013.00398 – ident: e_1_2_12_59_1 doi: 10.1016/j.redox.2018.07.003 – ident: e_1_2_12_5_1 doi: 10.1016/j.plantsci.2011.03.019 – ident: e_1_2_12_109_1 doi: 10.1104/pp.004036 – ident: e_1_2_12_42_1 doi: 10.1038/ncomms2541 – ident: e_1_2_12_159_1 doi: 10.1093/pcp/pci183 – ident: e_1_2_12_28_1 doi: 10.1007/s00425-003-1172-7 – ident: e_1_2_12_57_1 doi: 10.1016/j.jplph.2012.08.015 – volume: 3 start-page: 2 year: 2014 ident: e_1_2_12_125_1 article-title: The role of oxidative stress in metals toxicity; mitochondrial dysfunction as a key player publication-title: Galen Med J doi: 10.31661/gmj.v3i1.100 – ident: e_1_2_12_154_1 doi: 10.1016/j.devcel.2010.10.017 – ident: e_1_2_12_108_1 doi: 10.1101/cshperspect.a001537 – ident: e_1_2_12_122_1 doi: 10.1016/j.envexpbot.2013.12.014 – ident: e_1_2_12_39_1 doi: 10.1016/j.ecoenv.2014.11.030 – ident: e_1_2_12_131_1 doi: 10.1016/j.niox.2016.09.005 – ident: e_1_2_12_41_1 doi: 10.1111/tpj.12181 – ident: e_1_2_12_124_1 doi: 10.1111/j.1365-313X.2007.03068.x – ident: e_1_2_12_165_1 doi: 10.1111/pce.12597 – ident: e_1_2_12_85_1 doi: 10.1104/pp.15.00293 – ident: e_1_2_12_110_1 doi: 10.1104/pp.103.022228 – ident: e_1_2_12_162_1 doi: 10.4161/psb.23196 – ident: e_1_2_12_126_1 doi: 10.1007/978-3-030-11129-8_8 – ident: e_1_2_12_24_1 doi: 10.1007/s11103-010-9683-7 – ident: e_1_2_12_105_1 doi: 10.1242/dev.136465 – ident: e_1_2_12_46_1 doi: 10.1111/j.1469-8137.2006.01787.x – ident: e_1_2_12_86_1 doi: 10.1104/pp.15.00030 – ident: e_1_2_12_17_1 doi: 10.1016/S1360-1385(03)00051-7 – ident: e_1_2_12_167_1 doi: 10.1104/pp.107.096842 – ident: e_1_2_12_96_1 doi: 10.1104/pp.114.238873 – ident: e_1_2_12_2_1 doi: 10.1111/j.1365-313X.2012.05032.x – ident: e_1_2_12_147_1 doi: 10.1007/s10534-013-9608-4 – ident: e_1_2_12_111_1 doi: 10.1104/pp.103.038554 – ident: e_1_2_12_45_1 doi: 10.1104/pp.108.121459 |
SSID | ssj0016612 |
Score | 2.4331837 |
SecondaryResourceType | review_article |
Snippet | Over the past decades the role of nitric oxide (NO) and reactive oxygen species (ROS) in signaling and cellular responses to stress has witnessed an... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 473 |
SubjectTerms | auxins cell growth Computer architecture Crosstalk enzymes Gene expression gene expression regulation Indoleacetic Acids lateral roots Nitric oxide Nitric Oxide - metabolism physiological response Physiological responses Plant growth Plant Roots - growth & development Plants post-translational modification Primordia Reactive oxygen species Reactive Oxygen Species - metabolism Regulators Root development root primordia root systems Roots Signal Transduction Signaling |
Title | NO and ROS implications in the organization of root system architecture |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fppl.13050 https://www.ncbi.nlm.nih.gov/pubmed/31747051 https://www.proquest.com/docview/2353366613 https://www.proquest.com/docview/2316432711 https://www.proquest.com/docview/2439442773 |
Volume | 168 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA4iHry4L-NGFA9eOkybtGnwpOIoojODC8xBKNkKg9KKdg76631JF8YV8Vboa8jyXt73Ne-9ILQPDEBzAPKeZop74G-pF2sSeoYJpmJNSSBtovBVLzq_oxfDcDiFDutcmLI-RPPDzVqG26-tgQv5MmHkANLsVcaOr9tYLQuIrpvSUT74nbJSOPE9Dk6yqipko3iaLz_6oi8A8yNedQ6nO4_u666WcSYP7XEh2-rtUxXHf45lAc1VQBQflZqziKZMtoRmjnMAi6_L6KzXxyLT-Lp_g0cTQed4lGGAjDifSOHEeYoBfxe4rAqNJ88mVtBd9_T25Nyr7lzwFIkj2JIJM8TE9jwQsEWgWUp9DbBBGkqEpbOGCiXDUMZRzAUnpiNiklKeGg1kpmPIKprO8sysIxxppaAlHmpBKQAXHgVKRsDPfNkhXLAWOqhnP1FVQXJ7L8ZjUhMTmJbETUsL7TWiT2UVju-EtuolTCpDfEkCAngWKJpPWmi3eQ0mZM9FRGbysZUBzkgC5vu_yLgM4oAxaGetVI-mJ6BdlMHmBgNyi_xzF5PB4NI9bPxddBPNBpbju0jxLTRdPI_NNgChQu44jX8HxTEAig |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH4MKujFfRnXKB68VKZN2jTgxX3UcRQX8CIlTTIgSis6c9Bf70s3ZtwQb4W-hjTJy_u-JO8LwCYyAC0QyDuaK-FgvGVOqKnvGC65CjWjXmwThc_bQfOWnd75dzXYKXNhcn2IasHNekY2X1sHtwvSfV6OKM3eZWwJ-7C90dsq5x9cVeJRLkaeXCucuo7AMFnoCtlzPNWng9HoC8QcRKxZyDmagPuysvlJk8ftXjfeVu-fdBz_-zeTMF5gUbKbD54pqJlkGkb2UsSLbzNw3L4gMtHk6uKaPPSdOycPCUHUSNK-LE6SdghC8C7JhaFJ__bELNweHd7sN53i2gVH0TDAWZlyQ01otwQRXniad5irETnEhlFpGa1hUsW-H4dBKKSgpiFD2mGiYzTymYahczCUpIlZABJopbAk4WvJGGIXEXgqDpCiuXGDCsnrsFU2f6QKTXJ7NcZTVHITbJYoa5Y6bFSmz7kQx3dGy2UfRoUvvkYeRUiLLM2ldVivXqMX2a0RmZi0Z22QNlKPu-4vNlkSscc5ljOfj4-qJji8GMf5DX8o6-WfqxhdXrayh8W_m67BaPPmvBW1TtpnSzDmWcqfHRxfhqHuS8-sIC7qxqvZ8P8A0JYEpg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB5ERXzxPtYzig--VLZN2jT45LXe6-IBPgglTVIQpRXdfdBf76QX64n4Vug05JjJfF-TmQHYQAagBQJ5R3MlHPS3zAk19R3DJVehZtSLbaDweTs4umEnt_7tAGxXsTBFfoj6h5u1jHy_tgb-pJM-I0eQZksZW74-xIKmsHUb9i_r3FEuOp4iVTh1HYFeskwrZK_x1J9-dEZfEOZHwJp7nNY43FV9LS6aPGz1uvGWevuUxvGfg5mAsRKJkp1CdSZhwKRTMLybIVp8nYbD9gWRqSaXF1fkvu_WOblPCWJGkvXFcJIsIQjAu6RIC036Dydm4KZ1cL135JRFFxxFwwD3ZMoNNaE9EERw4WmeMFcjbogNo9LyWcOkin0_DoNQSEFNU4Y0YSIxGtlM09BZGEyz1MwDCbRS2JLwtWQMkYsIPBUHSNDcuEmF5A3YrGY_UmVGclsY4zGqmAlOS5RPSwPWa9GnIg3Hd0JL1RJGpSW-RB5FQIsczaUNWKtfow3ZgxGZmqxnZZA0Uo-77i8yeQixxzm2M1eoR90T1C7GcXfDAeWL_HMXo07nLH9Y-LvoKox09lvR2XH7dBFGPcv381vjSzDYfe6ZZQRF3XglV_53u3wDVQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NO+and+ROS+implications+in+the+organization+of+root+system+architecture&rft.jtitle=Physiologia+plantarum&rft.au=Prakash%2C+Ved&rft.au=Vishwakarma%2C+Kanchan&rft.au=Singh%2C+Vijay+Pratap&rft.au=Rai%2C+Padmaja&rft.date=2020-02-01&rft.eissn=1399-3054&rft.volume=168&rft.issue=2&rft.spage=473&rft_id=info:doi/10.1111%2Fppl.13050&rft_id=info%3Apmid%2F31747051&rft.externalDocID=31747051 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9317&client=summon |