NO and ROS implications in the organization of root system architecture

Over the past decades the role of nitric oxide (NO) and reactive oxygen species (ROS) in signaling and cellular responses to stress has witnessed an exponential trend line. Despite advances in the subject, our knowledge of the role of NO and ROS as regulators of stress and plant growth and their imp...

Full description

Saved in:
Bibliographic Details
Published inPhysiologia plantarum Vol. 168; no. 2; pp. 473 - 489
Main Authors Prakash, Ved, Vishwakarma, Kanchan, Singh, Vijay Pratap, Rai, Padmaja, Ramawat, Naleeni, Tripathi, Durgesh Kumar, Sharma, Shivesh
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.02.2020
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Over the past decades the role of nitric oxide (NO) and reactive oxygen species (ROS) in signaling and cellular responses to stress has witnessed an exponential trend line. Despite advances in the subject, our knowledge of the role of NO and ROS as regulators of stress and plant growth and their implication in signaling pathways is still partial. The crosstalk between NO and ROS during root formation offers new domains to be explored, as it regulates several plant functions. Previous findings indicate that plants utilize these signaling molecules for regulating physiological responses and development. Depending upon cellular concentration, NO either can stimulate or impede root system architecture (RSA) by modulating enzymes through post‐translational modifications. Similarly, the ROS signaling molecule network, in association with other hormonal signaling pathways, control the RSA. The spatial regulation of ROS controls cell growth and ROS determine primary root and act in concert with NO to promote lateral root primordia. NO and ROS are two central messenger molecules which act differentially to upregulate or downregulate the expression of genes pertaining to auxin synthesis and to the configuration of root architecture. The investigation concerning the contribution of donors and inhibitors of NO and ROS can further aid in deciphering their role in root development. With this background, this review provides comprehensive details about the effect and function of NO and ROS in the development of RSA.
AbstractList Over the past decades the role of nitric oxide (NO) and reactive oxygen species (ROS) in signaling and cellular responses to stress has witnessed an exponential trend line. Despite advances in the subject, our knowledge of the role of NO and ROS as regulators of stress and plant growth and their implication in signaling pathways is still partial. The crosstalk between NO and ROS during root formation offers new domains to be explored, as it regulates several plant functions. Previous findings indicate that plants utilize these signaling molecules for regulating physiological responses and development. Depending upon cellular concentration, NO either can stimulate or impede root system architecture (RSA) by modulating enzymes through post‐translational modifications. Similarly, the ROS signaling molecule network, in association with other hormonal signaling pathways, control the RSA. The spatial regulation of ROS controls cell growth and ROS determine primary root and act in concert with NO to promote lateral root primordia. NO and ROS are two central messenger molecules which act differentially to upregulate or downregulate the expression of genes pertaining to auxin synthesis and to the configuration of root architecture. The investigation concerning the contribution of donors and inhibitors of NO and ROS can further aid in deciphering their role in root development. With this background, this review provides comprehensive details about the effect and function of NO and ROS in the development of RSA.
Over the past decades the role of nitric oxide (NO) and reactive oxygen species (ROS) in signaling and cellular responses to stress has witnessed an exponential trend line. Despite advances in the subject, our knowledge of the role of NO and ROS as regulators of stress and plant growth and their implication in signaling pathways is still partial. The crosstalk between NO and ROS during root formation offers new domains to be explored, as it regulates several plant functions. Previous findings indicate that plants utilize these signaling molecules for regulating physiological responses and development. Depending upon cellular concentration, NO either can stimulate or impede root system architecture (RSA) by modulating enzymes through post-translational modifications. Similarly, the ROS signaling molecule network, in association with other hormonal signaling pathways, control the RSA. The spatial regulation of ROS controls cell growth and ROS determine primary root and act in concert with NO to promote lateral root primordia. NO and ROS are two central messenger molecules which act differentially to upregulate or downregulate the expression of genes pertaining to auxin synthesis and to the configuration of root architecture. The investigation concerning the contribution of donors and inhibitors of NO and ROS can further aid in deciphering their role in root development. With this background, this review provides comprehensive details about the effect and function of NO and ROS in the development of RSA.Over the past decades the role of nitric oxide (NO) and reactive oxygen species (ROS) in signaling and cellular responses to stress has witnessed an exponential trend line. Despite advances in the subject, our knowledge of the role of NO and ROS as regulators of stress and plant growth and their implication in signaling pathways is still partial. The crosstalk between NO and ROS during root formation offers new domains to be explored, as it regulates several plant functions. Previous findings indicate that plants utilize these signaling molecules for regulating physiological responses and development. Depending upon cellular concentration, NO either can stimulate or impede root system architecture (RSA) by modulating enzymes through post-translational modifications. Similarly, the ROS signaling molecule network, in association with other hormonal signaling pathways, control the RSA. The spatial regulation of ROS controls cell growth and ROS determine primary root and act in concert with NO to promote lateral root primordia. NO and ROS are two central messenger molecules which act differentially to upregulate or downregulate the expression of genes pertaining to auxin synthesis and to the configuration of root architecture. The investigation concerning the contribution of donors and inhibitors of NO and ROS can further aid in deciphering their role in root development. With this background, this review provides comprehensive details about the effect and function of NO and ROS in the development of RSA.
Author Ramawat, Naleeni
Singh, Vijay Pratap
Rai, Padmaja
Tripathi, Durgesh Kumar
Prakash, Ved
Vishwakarma, Kanchan
Sharma, Shivesh
Author_xml – sequence: 1
  givenname: Ved
  surname: Prakash
  fullname: Prakash, Ved
  organization: Motilal Nehru National Institute of Technology Allahabad
– sequence: 2
  givenname: Kanchan
  surname: Vishwakarma
  fullname: Vishwakarma, Kanchan
  organization: Amity University Uttar Pradesh
– sequence: 3
  givenname: Vijay Pratap
  orcidid: 0000-0002-5772-5438
  surname: Singh
  fullname: Singh, Vijay Pratap
  email: vijaypratap.au@gmail.com
  organization: A Constitute PG College of University of Allahabad
– sequence: 4
  givenname: Padmaja
  surname: Rai
  fullname: Rai, Padmaja
  organization: Motilal Nehru National Institute of Technology Allahabad
– sequence: 5
  givenname: Naleeni
  surname: Ramawat
  fullname: Ramawat, Naleeni
  organization: Amity University Uttar Pradesh
– sequence: 6
  givenname: Durgesh Kumar
  orcidid: 0000-0001-9044-3144
  surname: Tripathi
  fullname: Tripathi, Durgesh Kumar
  email: dktripathiau@gmail.com
  organization: Amity University Uttar Pradesh
– sequence: 7
  givenname: Shivesh
  surname: Sharma
  fullname: Sharma, Shivesh
  email: shiveshs@mnnit.ac.in
  organization: Motilal Nehru National Institute of Technology Allahabad
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31747051$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLxDAUhYMoOj4W_gEJuNFFnaQ3fS1FfMHgiI91yLS3GmmbmqTI-OuNM-NmUMwm4fKdw805u2SzMx0ScsjZGQ9n3PfNGQeWsA0y4lAUUXiLTTJiDHhUAM92yK5zb4zxNOXxNtkJI5GxhI_I9d2Uqq6iD9NHqtu-0aXy2nSO6o76V6TGvqhOfy6G1NTUGuOpmzuPLVW2fNUeSz9Y3CdbtWocHqzuPfJ8dfl0cRNNpte3F-eTqIQ8ZRFAhoA5EwXLBMRVVgtesZzPUIACyAGFKmdJMsvTvFAFIFM51KKosYqBMYQ9crL07a15H9B52WpXYtOoDs3gZCygECLOMvgfBZ6GHTLOA3q8hr6ZwXbhI4FKANKQ27fh0YoaZi1Wsre6VXYuf9IMwHgJlNY4Z7GWpfaL6LxVupGcye--ZOhLLvoKitM1xY_pb-zK_UM3OP8blPf3k6XiC_XMoQg
CitedBy_id crossref_primary_10_3390_antiox13101232
crossref_primary_10_1093_jxb_erac115
crossref_primary_10_3390_ijms24076647
crossref_primary_10_3390_ijms22115979
crossref_primary_10_1016_j_jbiotec_2021_09_005
crossref_primary_10_1007_s11104_024_06618_6
crossref_primary_10_1007_s00299_023_03120_8
crossref_primary_10_1016_j_ecoenv_2021_112713
crossref_primary_10_1016_j_stress_2024_100418
crossref_primary_10_1007_s11240_023_02475_w
crossref_primary_10_3390_agronomy13102599
crossref_primary_10_1016_j_plantsci_2024_112204
crossref_primary_10_1016_j_niox_2024_10_005
crossref_primary_10_1007_s40626_024_00342_3
crossref_primary_10_1071_FP24196
crossref_primary_10_1016_j_plaphy_2024_109037
crossref_primary_10_3390_agronomy15040784
crossref_primary_10_3390_microorganisms9112203
crossref_primary_10_1016_j_micres_2021_126771
crossref_primary_10_1080_15592324_2020_1748283
crossref_primary_10_1111_pce_14486
crossref_primary_10_1111_plb_13246
crossref_primary_10_1093_pcp_pcac138
crossref_primary_10_1111_ppl_13066
crossref_primary_10_1111_ppl_70126
crossref_primary_10_1093_jxb_erac508
crossref_primary_10_3390_antiox11112106
Cites_doi 10.1016/j.plantsci.2007.11.003
10.1016/j.chemosphere.2013.04.079
10.1146/annurev.arplant.55.031903.141701
10.1105/tpc.108.058719
10.1016/j.tplants.2004.08.009
10.1111/j.1365-313X.2005.02494.x
10.1093/jxb/ern194
10.1111/nph.12377
10.1073/pnas.97.6.2405
10.4161/psb.4.10.9715
10.1016/j.plantsci.2009.06.006
10.1016/j.niox.2016.10.009
10.1093/jxb/erp033
10.1007/s00299-007-0448-y
10.1016/j.febslet.2005.01.018
10.1007/s11738-009-0367-3
10.1093/mp/ssr007
10.1111/j.1399-3054.2009.01313.x
10.1111/j.1365-3040.2005.01306.x
10.1093/jxb/erj058
10.1038/ncomms9821
10.1093/jxb/ert172
10.1016/j.sbi.2004.09.012
10.1016/j.molp.2015.04.008
10.1093/aob/mcv116
10.1104/pp.110.161109
10.1016/j.pbi.2004.04.002
10.1016/j.niox.2009.02.004
10.1080/15592324.2016.1192742
10.1179/135100006X116718
10.1073/pnas.0708586104
10.1111/j.1365-3040.2006.01531.x
10.3390/ijms18102084
10.1073/pnas.1108644108
10.1007/s10725-009-9385-9
10.1093/jxb/erh113
10.1146/annurev-arplant-042811-105501
10.1073/pnas.0900060106
10.1016/j.tplants.2016.08.002
10.1186/s12284-014-0030-5
10.1016/j.freeradbiomed.2009.03.020
10.4161/psb.1.1.2398
10.1126/science.1152505
10.1093/aob/mct229
10.1016/0891-5849(95)00034-U
10.1016/j.plaphy.2003.09.003
10.1093/jxb/erj109
10.1038/nature02081
10.1073/pnas.97.6.2940
10.1016/j.freeradbiomed.2017.11.027
10.1093/jxb/eri196
10.1104/pp.114.255216
10.1093/aob/mcl027
10.1016/j.niox.2014.04.004
10.1093/jxb/ert396
10.1007/s00344-017-9741-3
10.3390/s150100855
10.1093/jxb/ern242
10.1007/s00344-010-9140-5
10.1094/MPMI-08-13-0219-R
10.1007/s00299-012-1228-x
10.1007/s11104-009-0011-4
10.1016/j.envexpbot.2008.06.004
10.1111/j.1365-313X.2007.03283.x
10.1016/j.jplph.2007.07.019
10.3109/10715762.2015.1118473
10.1093/jxb/erj045
10.1094/MPMI-20-3-0283
10.1093/jxb/ert006
10.1021/ar300234c
10.1038/35021067
10.1093/jxb/erv213
10.1016/j.envexpbot.2009.03.005
10.1111/j.1365-3040.2008.01908.x
10.1093/jxb/erz031
10.1104/pp.104.054494
10.1104/pp.010934
10.1093/pcp/pcq117
10.1111/ppl.12429
10.1016/j.tplants.2018.09.010
10.1104/pp.126.3.1196
10.1042/bst0290345
10.1007/s00425-005-1523-7
10.1016/j.jhazmat.2018.08.035
10.1016/j.phytochem.2004.02.001
10.3389/fpls.2013.00029
10.1007/s00425-014-2204-1
10.1093/mp/sss047
10.1016/j.envexpbot.2018.10.033
10.1016/j.niox.2018.09.002
10.4161/psb.6.6.15308
10.1007/s00709-011-0277-2
10.1073/pnas.1804233115
10.1016/j.envpol.2018.04.096
10.1038/ncomms6401
10.1371/journal.pgen.1006175
10.1093/jxb/erx420
10.1016/0304-4211(79)90158-5
10.1016/j.cell.2010.10.020
10.1016/j.bbrc.2017.05.012
10.1016/j.jhazmat.2013.12.029
10.1080/14620316.2011.11512742
10.1093/jxb/ers166
10.4161/psb.5.10.12159
10.1371/journal.pone.0138713
10.1016/j.tplants.2005.02.008
10.1093/jexbot/52.355.215
10.1093/jxb/erv030
10.1104/pp.107.111815
10.1016/j.pbi.2014.10.005
10.1073/pnas.97.16.8849
10.1007/s00425-009-0970-y
10.1126/scisignal.2000448
10.1104/pp.106.086918
10.1016/j.tplants.2009.06.010
10.1111/j.1365-313X.2011.04885.x
10.1093/aobpla/pls052
10.1007/s00425-012-1763-2
10.1105/tpc.109.072959
10.1007/978-3-642-00390-5
10.1104/pp.109.140996
10.1016/S1360-1385(97)90054-6
10.1016/j.plantsci.2004.05.028
10.1023/A:1005837012203
10.1093/mp/sss148
10.4161/psb.18895
10.1016/j.plaphy.2012.06.012
10.1093/jxb/ery072
10.1104/pp.109.148023
10.1111/j.1469-8137.2007.01995.x
10.1016/j.tplants.2013.04.006
10.1093/aob/mcm142
10.3389/fpls.2013.00398
10.1016/j.redox.2018.07.003
10.1016/j.plantsci.2011.03.019
10.1104/pp.004036
10.1038/ncomms2541
10.1093/pcp/pci183
10.1007/s00425-003-1172-7
10.1016/j.jplph.2012.08.015
10.31661/gmj.v3i1.100
10.1016/j.devcel.2010.10.017
10.1101/cshperspect.a001537
10.1016/j.envexpbot.2013.12.014
10.1016/j.ecoenv.2014.11.030
10.1016/j.niox.2016.09.005
10.1111/tpj.12181
10.1111/j.1365-313X.2007.03068.x
10.1111/pce.12597
10.1104/pp.15.00293
10.1104/pp.103.022228
10.4161/psb.23196
10.1007/978-3-030-11129-8_8
10.1007/s11103-010-9683-7
10.1242/dev.136465
10.1111/j.1469-8137.2006.01787.x
10.1104/pp.15.00030
10.1016/S1360-1385(03)00051-7
10.1104/pp.107.096842
10.1104/pp.114.238873
10.1111/j.1365-313X.2012.05032.x
10.1007/s10534-013-9608-4
10.1104/pp.103.038554
10.1104/pp.108.121459
ContentType Journal Article
Copyright 2019 Scandinavian Plant Physiology Society
2019 Scandinavian Plant Physiology Society.
2020 Scandinavian Plant Physiology Society
Copyright_xml – notice: 2019 Scandinavian Plant Physiology Society
– notice: 2019 Scandinavian Plant Physiology Society.
– notice: 2020 Scandinavian Plant Physiology Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7ST
8FD
C1K
FR3
P64
RC3
SOI
7X8
7S9
L.6
DOI 10.1111/ppl.13050
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Engineering Research Database
Ecology Abstracts
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Genetics Abstracts
CrossRef

MEDLINE - Academic
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1399-3054
EndPage 489
ExternalDocumentID 31747051
10_1111_ppl_13050
PPL13050
Genre article
Journal Article
Review
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29O
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBTR
ACBWZ
ACCZN
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AETEA
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
TWZ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XOL
YNT
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
AEUQT
AFPWT
CGR
CUY
CVF
ECM
EIF
ESX
NPM
PKN
WRC
7SN
7ST
8FD
C1K
FR3
P64
RC3
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c3860-337e3e804907432d7f41d081be43a3383e4acb55b8689a93e0a83f49fed2300e3
IEDL.DBID DR2
ISSN 0031-9317
1399-3054
IngestDate Fri Jul 11 18:34:39 EDT 2025
Fri Jul 11 14:46:28 EDT 2025
Sun Jul 13 04:25:43 EDT 2025
Wed Feb 19 02:31:07 EST 2025
Thu Apr 24 23:09:24 EDT 2025
Tue Jul 01 03:00:48 EDT 2025
Sun Jul 06 04:44:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License 2019 Scandinavian Plant Physiology Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3860-337e3e804907432d7f41d081be43a3383e4acb55b8689a93e0a83f49fed2300e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9044-3144
0000-0002-5772-5438
PMID 31747051
PQID 2353366613
PQPubID 1096353
PageCount 17
ParticipantIDs proquest_miscellaneous_2439442773
proquest_miscellaneous_2316432711
proquest_journals_2353366613
pubmed_primary_31747051
crossref_citationtrail_10_1111_ppl_13050
crossref_primary_10_1111_ppl_13050
wiley_primary_10_1111_ppl_13050_PPL13050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
2020-Feb
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Denmark
– name: Malden
PublicationTitle Physiologia plantarum
PublicationTitleAlternate Physiol Plant
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References 2004; 167
2007; 104
2013; 4
2018; 161
2010; 19
2004; 7
2009a; 230
2013; 64
2005; 579
2004; 9
2014; 27
2016; 143
1997; 2
2013; 8
2016; 39
2013; 5
2012; 249
2013; 6
2010; 22
2009; 14
2005; 221
2010; 29
2013; 237
2007; 174
2008; 27
2000; 97
2000; 406
2013; 112
2006; 29
2016; 158
2008; 20
2004; 218
2010; 2
2010; 5
2003; 41
2018; 37
2001; 52
2017; 63
2009b; 66
1979; 14
2006; 57
1997; 21
2009a; 65
2009; 60
2010; 326
2017; 68
2015; 241
2009; 177
2008; 59
2013; 93
2001; 29
2011; 4
2018; 23
2011; 6
2012; 31
2016; 12
2016; 11
2007a; 100
2004; 55
2018; 18
2013b; 65
2015; 116
2015; 113
2009b; 4
2018; 115
2015; 66
2013; 74
2011; 86
2002; 129
2005; 10
2014; 39
2013; 170
2012; 46
2010; 51
2014; 267
2009; 106
2004; 65
2018; 240
2018; 122
2009; 46
2013; 26
2007b; 144
2005; 137
2013; 200
2010; 143
2018; 80
2009; 151
2008; 147
2012; 58
2019; 361
2005; 28
2016; 77
2012; 71
2013; 18
2012; 70
2014; 5
2014; 3
2004; 135
2003; 8
2008; 319
2010; 154
2010; 152
2014; 165
2007; 20
2014; 7
2017; 488
2010; 74
2009; 59
2012; 63
2015; 15
2015; 6
2006; 97
2019; 70
2009; 20
2015; 168
2006; 11
2017; 22
2015; 167
2015; 10
2009
2005; 43
2016; 50
2007; 50
1995; 19
2006; 1
2007; 52
2008; 165
2015; 8
2001; 126
2003; 132
2018; 69
2005; 46
2015; 23
2013a; 64
2011; 108
2003; 426
2009; 32
2009; 31
2010; 138
2004; 14
2019
2006; 142
2011; 181
2017; 18
2012; 7
2003; 422
2009; 2
2014; 100
2012; 5
2008; 174
2005; 56
2005; 57
e_1_2_12_6_1
e_1_2_12_130_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_111_1
e_1_2_12_157_1
e_1_2_12_138_1
e_1_2_12_115_1
e_1_2_12_153_1
e_1_2_12_134_1
e_1_2_12_108_1
e_1_2_12_20_1
e_1_2_12_66_1
e_1_2_12_43_1
e_1_2_12_85_1
e_1_2_12_24_1
D'Alessandro S (e_1_2_12_35_1) 2013; 4
e_1_2_12_47_1
e_1_2_12_89_1
e_1_2_12_62_1
e_1_2_12_81_1
e_1_2_12_161_1
e_1_2_12_100_1
e_1_2_12_123_1
e_1_2_12_146_1
e_1_2_12_28_1
e_1_2_12_104_1
e_1_2_12_127_1
e_1_2_12_142_1
e_1_2_12_165_1
e_1_2_12_31_1
e_1_2_12_77_1
e_1_2_12_54_1
e_1_2_12_96_1
e_1_2_12_139_1
e_1_2_12_58_1
e_1_2_12_12_1
e_1_2_12_73_1
e_1_2_12_50_1
e_1_2_12_92_1
e_1_2_12_3_1
e_1_2_12_152_1
e_1_2_12_18_1
e_1_2_12_110_1
e_1_2_12_137_1
e_1_2_12_114_1
e_1_2_12_133_1
e_1_2_12_156_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
e_1_2_12_86_1
Ranjbar A (e_1_2_12_125_1) 2014; 3
e_1_2_12_107_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_67_1
e_1_2_12_40_1
e_1_2_12_82_1
e_1_2_12_160_1
e_1_2_12_141_1
e_1_2_12_122_1
e_1_2_12_168_1
e_1_2_12_29_1
e_1_2_12_149_1
e_1_2_12_126_1
e_1_2_12_164_1
e_1_2_12_103_1
e_1_2_12_145_1
e_1_2_12_119_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_74_1
e_1_2_12_97_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_78_1
e_1_2_12_13_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_93_1
e_1_2_12_4_1
e_1_2_12_151_1
e_1_2_12_19_1
e_1_2_12_38_1
e_1_2_12_136_1
e_1_2_12_159_1
e_1_2_12_132_1
Li D (e_1_2_12_79_1) 2019
e_1_2_12_113_1
e_1_2_12_155_1
e_1_2_12_41_1
e_1_2_12_87_1
e_1_2_12_106_1
e_1_2_12_129_1
e_1_2_12_22_1
e_1_2_12_64_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_68_1
e_1_2_12_83_1
e_1_2_12_60_1
e_1_2_12_140_1
e_1_2_12_163_1
e_1_2_12_49_1
e_1_2_12_121_1
e_1_2_12_148_1
e_1_2_12_102_1
e_1_2_12_144_1
e_1_2_12_167_1
e_1_2_12_52_1
e_1_2_12_98_1
e_1_2_12_118_1
e_1_2_12_33_1
e_1_2_12_75_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_14_1
e_1_2_12_90_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_94_1
e_1_2_12_71_1
e_1_2_12_150_1
e_1_2_12_5_1
e_1_2_12_16_1
e_1_2_12_112_1
e_1_2_12_135_1
e_1_2_12_158_1
e_1_2_12_39_1
e_1_2_12_116_1
e_1_2_12_131_1
e_1_2_12_154_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_88_1
e_1_2_12_109_1
e_1_2_12_128_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_80_1
e_1_2_12_61_1
e_1_2_12_84_1
e_1_2_12_162_1
Kovacs I (e_1_2_12_70_1) 2016
e_1_2_12_27_1
e_1_2_12_101_1
e_1_2_12_147_1
e_1_2_12_120_1
e_1_2_12_105_1
e_1_2_12_143_1
e_1_2_12_124_1
e_1_2_12_166_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_76_1
e_1_2_12_99_1
e_1_2_12_117_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_15_1
e_1_2_12_91_1
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_95_1
e_1_2_12_9_1
References_xml – volume: 50
  start-page: 514
  year: 2007
  end-page: 528
  article-title: Auxin, actin and growth of the Arabidopsis thaliana primary root
  publication-title: T Plant J
– volume: 58
  start-page: 6
  year: 2012
  end-page: 15
  article-title: Nitric oxide and hydrogen peroxide alleviate drought stress in marigold explants and promote its adventitious root development
  publication-title: Plant Physiol Biochem
– volume: 221
  start-page: 297
  year: 2005
  end-page: 303
  article-title: Nitric oxide is involved in the ‐induced lateral root formation in tomato
  publication-title: Planta
– volume: 579
  start-page: 1243
  year: 2005
  end-page: 1248
  article-title: Auxin‐induced reactive oxygen species production requires the activation of phosphatidylinositol 3‐kinase
  publication-title: FEBS Lett
– volume: 7
  start-page: 30
  year: 2014
  article-title: Genes controlling root development in rice
  publication-title: Rice
– volume: 37
  start-page: 438
  year: 2018
  end-page: 451
  article-title: Jasmonic acid‐ethylene crosstalk via ETHYLENE INSENSITIVE 2 reprograms Arabidopsis root system architecture through nitric oxide accumulation
  publication-title: J Plant Growth Regul
– volume: 97
  start-page: 2405
  year: 2000
  end-page: 2407
  article-title: Connecting oxidative stress, auxin, and cell cycle regulation through a plant mitogen‐activated protein kinase pathway
  publication-title: Proc Natl Acad Sci
– volume: 142
  start-page: 1246
  year: 2006
  end-page: 1255
  article-title: Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins
  publication-title: Plant Physiol
– volume: 29
  start-page: 338
  year: 2010
  end-page: 348
  article-title: Effect of nitric oxide and hydrogen peroxide on adventitious root development from cuttings of ground‐cover chrysanthemum and associated biochemical changes
  publication-title: J Plant Growth Regul
– volume: 65
  start-page: 527
  year: 2013b
  end-page: 538
  article-title: Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S‐nitrosylation
  publication-title: J Exp Bot
– volume: 69
  start-page: 3425
  year: 2018
  end-page: 3438
  article-title: Nitric oxide buffering and conditional nitric oxide release in stress response
  publication-title: J Exp Bot
– volume: 174
  start-page: 332
  year: 2007
  end-page: 341
  article-title: Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases
  publication-title: New Phytol
– volume: 6
  start-page: 8821
  year: 2015
  article-title: A coherent transcriptional feed‐forward motif model for mediating auxin‐sensitive PIN3 expression during lateral root development
  publication-title: Nat Commun
– volume: 106
  start-page: 4284
  year: 2009
  end-page: 4289
  article-title: Cytokinin regulates root meristem activity via modulation of the polar auxin transport
  publication-title: Proc Natl Acad Sci
– volume: 59
  start-page: 27
  year: 2009
  end-page: 36
  article-title: Reactive oxygen species localization in roots of seedlings grown under phosphate deficiency
  publication-title: Plant Growth Regul
– volume: 41
  start-page: 1011
  year: 2003
  end-page: 1017
  article-title: Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of
  publication-title: Plant Physiol Biochem
– volume: 21
  start-page: 183
  year: 1997
  end-page: 187
  article-title: NO‐releasing substances that induce growth elongation in maize root segments
  publication-title: Plant Growth Regul
– volume: 112
  start-page: 1655
  year: 2013
  end-page: 1665
  article-title: Auxin and the integration of environmental signals into plant root development
  publication-title: Ann Bot‐London
– volume: 59
  start-page: 3443
  year: 2008
  end-page: 3452
  article-title: Regulation of tomato lateral root development by carbon monoxide and involvement in auxin and nitric oxide
  publication-title: J Exp Bot
– volume: 97
  start-page: 2940
  year: 2000
  end-page: 2945
  article-title: Functional analysis of oxidative stress‐activated mitogen‐activated protein kinase cascade in plants
  publication-title: Proc Natl Acad Sci
– volume: 5
  start-page: 1
  year: 2013
  end-page: 17
  article-title: Nitric oxide in plants: an assessment of the current state of knowledge
  publication-title: AoB Plants
– volume: 10
  start-page: e0138713
  year: 2015
  article-title: Exogenous nitric oxide (NO) interferes with lead (Pb)‐induced toxicity by detoxifying reactive oxygen species in hydroponically grown wheat ( ) roots
  publication-title: PLoS One
– volume: 5
  start-page: 974
  year: 2012
  end-page: 983
  article-title: Regulation of shoot and root development through mutual signaling
  publication-title: Mol Plant
– volume: 4
  start-page: 340
  year: 2013
  article-title: Limits in the use of cPTIO as nitric oxide scavenger and EPR probe in plant cells and seedlings
  publication-title: Front Plant Sci
– volume: 5
  start-page: 5401
  year: 2014
  article-title: S‐nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway
  publication-title: Nat Commun
– volume: 28
  start-page: 67
  year: 2005
  end-page: 77
  article-title: Intrinsic and environmental response pathways that regulate root system architecture
  publication-title: Plant Cell Environ
– volume: 6
  start-page: 1214
  year: 2013
  end-page: 1225
  article-title: Nitric oxide mediates cytokinin functions in cell proliferation and meristem maintenance in Arabidopsis
  publication-title: Mol Plant
– volume: 22
  start-page: 2981
  year: 2010
  end-page: 2998
  article-title: Hydrogen peroxide–mediated activation of MAP kinase 6 modulates nitric oxide biosynthesis and signal transduction in Arabidopsis
  publication-title: Plant Cell
– volume: 27
  start-page: 563
  year: 2008
  end-page: 573
  article-title: Function of nitric oxide and superoxide anion in the adventitious root development and antioxidant defence in
  publication-title: Plant Cell Rep
– volume: 60
  start-page: 1605
  year: 2009
  end-page: 1617
  article-title: Nitric oxide modulates dynamic actin cytoskeleton and vesicle trafficking in a cell type‐specific manner in root apices
  publication-title: J Exp Bot
– volume: 4
  start-page: 1529
  year: 2013
  article-title: S‐nitrosylation of phosphotransfer proteins represses cytokinin signaling
  publication-title: Nat Commun
– volume: 7
  start-page: 196
  year: 2012
  end-page: 200
  article-title: Nitric oxide: an emerging regulator of cell elongation during primary root growth
  publication-title: Plant Signal Behav
– volume: 2
  start-page: 390
  year: 1997
  end-page: 396
  article-title: Down and out in Arabidopsis: the formation of lateral roots
  publication-title: Trend Plant Sci
– volume: 167
  start-page: 839
  year: 2004
  end-page: 847
  article-title: Nitric oxide generation during early germination of sorghum seeds
  publication-title: Plant Sci
– volume: 6
  start-page: 889
  year: 2011
  end-page: 891
  article-title: Phosphorylation by MPK6: a conserved transcriptional modification mediates nitrate reductase activation and NO production?
  publication-title: Plant Signal Behav
– volume: 161
  start-page: 41
  year: 2018
  end-page: 49
  article-title: Crosstalk between nitric oxide (NO) and abscisic acid (ABA) signalling molecules in higher plants
  publication-title: Environ Exp Bot
– volume: 11
  start-page: 194
  year: 2006
  end-page: 206
  article-title: NO chemistry: a diversity of targets in the cell
  publication-title: Redox Rep
– volume: 55
  start-page: 1105
  year: 2004
  end-page: 1113
  article-title: Salinity up‐regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt‐tolerant tomato species
  publication-title: J Exp Bot
– volume: 4
  start-page: 999
  year: 2009b
  end-page: 1001
  article-title: Does nitric oxide play a pivotal role downstream of auxin in promoting crown root primordia initiation in monocots?
  publication-title: Plant Signal Behav
– volume: 55
  start-page: 373
  year: 2004
  end-page: 399
  article-title: Reactive oxygen species: metabolism, oxidative stress, and signal transduction
  publication-title: Annu Rev Plant Biol
– volume: 66
  start-page: 442
  year: 2009b
  end-page: 450
  article-title: IBA‐induced changes in antioxidant enzymes during adventitious rooting in mung bean seedlings: the role of H O
  publication-title: Environ Exp Bot
– volume: 18
  start-page: 2084
  year: 2017
  article-title: Hydrogen gas is involved in auxin‐induced lateral root formation by modulating nitric oxide synthesis
  publication-title: Int J Mol Sci
– volume: 70
  start-page: 492
  year: 2012
  end-page: 500
  article-title: Nitric oxide influences auxin signaling through S‐nitrosylation of the Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 auxin receptor
  publication-title: Plant J
– volume: 167
  start-page: 1604
  year: 2015
  end-page: 1615
  article-title: S‐nitrosylation positively regulates ascorbate peroxidase activity during plant stress responses
  publication-title: Plant Physiol
– volume: 181
  start-page: 612
  year: 2011
  end-page: 620
  article-title: The message of nitric oxide in cadmium challenged plants
  publication-title: Plant Sci
– start-page: 157
  year: 2019
  end-page: 173
– volume: 147
  start-page: 188
  year: 2008
  end-page: 198
  article-title: Nitric oxide triggers phosphatidic acid accumulation via phospholipase D during auxin‐induced adventitious root formation in cucumber
  publication-title: Plant Physiol
– volume: 8
  start-page: 165
  year: 2003
  end-page: 171
  article-title: Dissecting Arabidopsis lateral root development
  publication-title: Trends Plant Sci
– volume: 129
  start-page: 954
  year: 2002
  end-page: 956
  article-title: Nitric oxide is required for root organogenesis
  publication-title: Plant Physiol
– volume: 15
  start-page: 855
  year: 2015
  end-page: 867
  article-title: Hyper, a hydrogen peroxide sensor, indicates the sensitivity of the Arabidopsis root elongation zone to aluminum treatment
  publication-title: Sensors
– volume: 154
  start-page: 810
  year: 2010
  end-page: 819
  article-title: Nitric oxide acts downstream of auxin to trigger root ferric‐chelate reductase activity in response to iron deficiency in
  publication-title: Plant Physiol
– volume: 14
  start-page: 557
  year: 2009
  end-page: 562
  article-title: Cytokinin–auxin crosstalk
  publication-title: Trend Plant Sci
– volume: 132
  start-page: 1241
  year: 2003
  end-page: 1248
  article-title: Nitric oxide and cyclic GMP are messengers in the indole acetic acid‐induced adventitious rooting process
  publication-title: Plant Physiol
– volume: 66
  start-page: 2449
  year: 2015
  end-page: 2459
  article-title: Nitric oxide generated by nitrate reductase increases nitrogen uptake capacity by inducing lateral root formation and inorganic nitrogen uptake under partial nitrate nutrition in rice
  publication-title: J Exp Bot
– volume: 100
  start-page: 84
  year: 2014
  end-page: 93
  article-title: Cross‐talk between nitric oxide and hydrogen peroxide in plant responses to abiotic stresses
  publication-title: Environ Exp Bot
– volume: 5
  start-page: 1163
  year: 2010
  end-page: 1166
  article-title: Nitric oxide modulates specific steps of auxin‐induced adventitious rooting in sunflower
  publication-title: Plant Signal Behav
– volume: 29
  start-page: 345
  year: 2001
  end-page: 349
  article-title: Role of reactive oxygen species in cell signaling pathways
  publication-title: Biochem Soc Transc
– volume: 18
  start-page: 200
  year: 2018
  end-page: 210
  article-title: Regulation of SCFTIR1/AFBs E3 ligase assembly by S‐nitrosylation of Arabidopsis SKP1‐like1 impacts on auxin signaling
  publication-title: Redox Biol
– volume: 59
  start-page: 4007
  year: 2008
  end-page: 4016
  article-title: Extracellular ATP‐induced NO production and its dependence on membrane Ca2+ flux in salvia miltiorrhiza hairy roots
  publication-title: J Exp Bot
– volume: 319
  start-page: 1241
  year: 2008
  end-page: 1244
  article-title: Local positive feedback regulation determines cell shape in root hair cells
  publication-title: Science
– volume: 14
  start-page: 679
  year: 2004
  end-page: 686
  article-title: The role of cysteine residues as redox‐sensitive regulatory switches
  publication-title: Curr Opin Struct Biol
– volume: 4
  start-page: 398
  year: 2013
  article-title: Nitric oxide and phytohormone interactions: current status and perspectives
  publication-title: Front Plant Sci
– volume: 104
  start-page: 20996
  year: 2007
  end-page: 21001
  article-title: Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs
  publication-title: Proc Natl Acad Sci
– volume: 71
  start-page: 787
  year: 2012
  end-page: 799
  article-title: Microarray analysis revealed upregulation of nitrate reductase in juvenile cuttings of , which correlated with increased nitric oxide production and adventitious root formation
  publication-title: Plant J
– volume: 2
  start-page: a001537
  year: 2010
  article-title: Auxin control of root development
  publication-title: Cold Spring Harb Perspec Biol
– volume: 20
  start-page: 283
  year: 2007
  end-page: 292
  article-title: Rhizobium‐initiated rice growth inhibition caused by nitric oxide accumulation
  publication-title: Mol Plant Microbe Interac
– volume: 74
  start-page: 946
  year: 2013
  end-page: 958
  article-title: Function of type‐2 Arabidopsishemoglobin in the auxin‐mediated formation of embryogenic cells during morphogenesis
  publication-title: Plant J
– volume: 52
  start-page: 949
  year: 2007
  end-page: 960
  article-title: Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots
  publication-title: Plant J
– volume: 168
  start-page: 343
  year: 2015
  end-page: 356
  article-title: Salt stress reduces root meristem size by nitric oxide‐mediated modulation of auxin accumulation and signaling in Arabidopsis
  publication-title: Plant Physiol
– volume: 406
  start-page: 731
  year: 2000
  end-page: 734
  article-title: Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells
  publication-title: Nature
– volume: 93
  start-page: 283
  year: 2013
  end-page: 293
  article-title: Microcystin‐LR‐induced phytotoxicity in rice crown root is associated with the cross‐talk between auxin and nitric oxide
  publication-title: Chemosphere
– volume: 426
  start-page: 255
  year: 2003
  end-page: 260
  article-title: Regulation of phyllotaxis by polar auxin transport
  publication-title: Nature
– volume: 19
  start-page: 644
  year: 2010
  end-page: 646
  article-title: Feeling UPBEAT about growth: linking ROS gradients and cell proliferation
  publication-title: Dev Cell
– volume: 1
  start-page: 28
  year: 2006
  end-page: 33
  article-title: Nitric oxide functions as a positive regulator of root hair development
  publication-title: Plant Signal Behav
– volume: 218
  start-page: 900
  year: 2004
  end-page: 905
  article-title: Nitric oxide plays a central role in determining lateral root development in tomato
  publication-title: Planta
– volume: 50
  start-page: 291
  year: 2016
  end-page: 303
  article-title: Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants
  publication-title: Free Radic Res
– volume: 167
  start-page: 1209
  year: 2015
  end-page: 1210
  article-title: Interplay of reactive oxygen species and nitric oxide: nitric oxide coordinates reactive oxygen species homeostasis
  publication-title: Plant Physiol
– volume: 69
  start-page: 3401
  year: 2018
  end-page: 3411
  article-title: Nitric oxide production in plants: an update
  publication-title: J Exp Bot
– volume: 63
  start-page: 30
  year: 2017
  end-page: 38
  article-title: Nitric oxide synthase in plants: where do we stand?
  publication-title: Nitric Oxide
– volume: 165
  start-page: 1105
  year: 2014
  end-page: 1119
  article-title: The emerging role of ROS signalling during lateral root development
  publication-title: Plant Physiol
– volume: 27
  start-page: 364
  year: 2014
  end-page: 378
  article-title: Pyocyanin, a virulence factor produced by , alters root development through reactive oxygen species and ethylene signaling in Arabidopsis
  publication-title: Mol Plant Microbe Interact
– volume: 116
  start-page: 695
  year: 2015
  end-page: 702
  article-title: Nitric oxide is required for the auxin‐induced activation of NADPH‐dependent thioredoxin reductase and protein denitrosylation during root growth responses in Arabidopsis
  publication-title: Ann Bot‐London
– volume: 165
  start-page: 967
  year: 2008
  end-page: 975
  article-title: Exogenous auxin‐induced NO synthesis is nitrate reductase‐associated in root primordia
  publication-title: J Plant Physiol
– volume: 7
  start-page: 449
  year: 2004
  end-page: 455
  article-title: Nitric oxide: a new player in plant signalling and defence responses
  publication-title: Curr Opin Plant Biol
– volume: 135
  start-page: 279
  year: 2004
  end-page: 286
  article-title: Nitric oxide mediates the indole acetic acid induction activation of a mitogen‐activated protein kinase cascade involved in adventitious root development
  publication-title: Plant Physiol
– volume: 43
  start-page: 849
  year: 2005
  end-page: 860
  article-title: Nitric oxide is required for, and promotes auxin‐mediated activation of, cell division and embryogenic cell formation but does not influence cell cycle progression in alfalfa cell cultures
  publication-title: Plant J
– volume: 56
  start-page: 1991
  year: 2005
  end-page: 2001
  article-title: Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ, and cellular level
  publication-title: J Exp Bot
– volume: 31
  start-page: 1279
  year: 2009
  end-page: 1289
  article-title: Role and relationship of nitric oxide and hydrogen peroxide in adventitious root development of marigold
  publication-title: Acta Physiol Plant
– volume: 3
  start-page: 2
  year: 2014
  end-page: 13
  article-title: The role of oxidative stress in metals toxicity; mitochondrial dysfunction as a key player
  publication-title: Galen Med J
– year: 2009
– volume: 32
  start-page: 158
  year: 2009
  end-page: 69
  article-title: Different stresses, similar morphogenic responses: integrating a plethora of pathways
  publication-title: Plant Cell Environ
– volume: 70
  start-page: 4391
  year: 2019
  end-page: 4404
  article-title: Nitric oxide (NO) and hydrogen sulfide (H S) in plants: which is first?
  publication-title: J Exp Bot
– volume: 57
  start-page: 581
  year: 2006
  end-page: 588
  article-title: Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato
  publication-title: J Exp Bot
– volume: 20
  start-page: 289
  year: 2009
  end-page: 297
  article-title: Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of (rice)
  publication-title: Nitric Oxide
– volume: 18
  start-page: 450
  year: 2013
  end-page: 458
  article-title: Lateral root development in Arabidopsis: fifty shades of auxin
  publication-title: Trends Plant Sci
– volume: 143
  start-page: 606
  year: 2010
  end-page: 616
  article-title: Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root
  publication-title: Cell
– volume: 51
  start-page: 1612
  year: 2010
  end-page: 1626
  article-title: Nitric oxide is involved in alkamide‐induced lateral root development in Arabidopsis
  publication-title: Plant Cell Physiol
– volume: 66
  start-page: 2857
  year: 2015
  end-page: 2868
  article-title: Nitric oxide (NO) and phytohormones crosstalk during early plant development
  publication-title: J Exp Bot
– volume: 241
  start-page: 591
  year: 2015
  end-page: 602
  article-title: AtrbohD and AtrbohF negatively regulate lateral root development by changing the localized accumulation of superoxide in primary roots of Arabidopsis
  publication-title: Planta
– volume: 237
  start-page: 137
  year: 2013
  end-page: 144
  article-title: Nitric oxide enhances development of lateral roots in tomato ( L.) under elevated carbon dioxide
  publication-title: Planta
– volume: 177
  start-page: 302
  year: 2009
  end-page: 309
  article-title: Current view of nitric oxide‐responsive genes in plants
  publication-title: Plant Sci
– volume: 144
  start-page: 206
  year: 2007b
  end-page: 217
  article-title: Nitric oxide synthase‐dependent nitric oxide production is associated with salt tolerance in Arabidopsis
  publication-title: Plant Physiol
– volume: 174
  start-page: 165
  year: 2008
  end-page: 173
  article-title: Tissue culture of explants reveals a stimulatory effect of alkamides on adventitious root formation and nitric oxide accumulation
  publication-title: Plant Sci
– volume: 8
  start-page: 1350
  year: 2015
  end-page: 1365
  article-title: Loss of GSNOR1 function leads to compromised auxin signaling and polar auxin transport
  publication-title: Mol Plant
– volume: 80
  start-page: 89
  year: 2018
  end-page: 97
  article-title: Abscisic acid and nitric oxide modulate cytoskeleton organization, root hair growth and ectopic hair formation in Arabidopsis
  publication-title: Nitric Oxide
– volume: 39
  start-page: 120
  year: 2016
  end-page: 135
  article-title: Inhibition of root meristem growth by cadmium involves nitric oxide‐mediated repression of auxin accumulation and signalling in Arabidopsis
  publication-title: Plant Cell Environ
– volume: 230
  start-page: 599
  year: 2009a
  end-page: 610
  article-title: Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable for crown root primordia initiation in rice seedlings
  publication-title: Planta
– volume: 65
  start-page: 63
  year: 2009a
  end-page: 71
  article-title: Hydrogen peroxide acts as a signal molecule in the adventitious root formation of mung bean seedlings
  publication-title: Environ Exp Bot
– volume: 23
  start-page: 1041
  year: 2018
  end-page: 1044
  article-title: Nitrate, NO and ROS signaling in stem cell homeostasis
  publication-title: Trends Plant Sci
– volume: 46
  start-page: 550
  year: 2012
  end-page: 559
  article-title: Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects
  publication-title: Acc Chem Res
– volume: 138
  start-page: 384
  year: 2010
  end-page: 392
  article-title: ROS in plant development
  publication-title: Physiol Plant
– volume: 57
  start-page: 1341
  year: 2006
  end-page: 1351
  article-title: Calcium and calcium‐dependent protein kinases are involved in nitric oxide‐and auxin‐induced adventitious root formation in cucumber
  publication-title: J Exp Bot
– volume: 240
  start-page: 950
  year: 2018
  end-page: 962
  article-title: Nitric oxide confronts arsenic stimulated oxidative stress and root architecture through distinct gene expression of auxin transporters, nutrient related genes and modulates biochemical responses in L
  publication-title: Environ Pollut
– volume: 11
  start-page: e1192742
  year: 2016
  article-title: Singlet oxygen detection in biological systems: uses and limitations
  publication-title: Plant Signal Behav
– volume: 63
  start-page: 563
  year: 2012
  end-page: 590
  article-title: Control of Arabidopsis root development
  publication-title: Ann Rev Plant Biol
– volume: 23
  start-page: 31
  year: 2015
  end-page: 38
  article-title: Talking through walls: mechanisms of lateral root emergence in
  publication-title: Curr Opin Plant Biol
– volume: 64
  start-page: 1121
  year: 2013a
  end-page: 1134
  article-title: Protein tyrosine nitration in pea roots during development and senescence
  publication-title: J Exp Bot
– volume: 14
  start-page: 79
  year: 1979
  end-page: 83
  article-title: Cell dynamics studies on the pericycle of radish seedling roots
  publication-title: Plant Sci Lett
– volume: 57
  start-page: 463
  year: 2005
  end-page: 470
  article-title: Formation and possible roles of nitric oxide in plant roots
  publication-title: J Exp Bot
– volume: 100
  start-page: 497
  year: 2007a
  end-page: 503
  article-title: Nitric oxide is involved in nitrate‐induced inhibition of root elongation in
  publication-title: Ann Bot
– volume: 46
  start-page: 1674
  year: 2005
  end-page: 1681
  article-title: A PIN1 family gene, OsPIN1, involved in auxin‐dependent adventitious root emergence and tillering in rice
  publication-title: Plant Cell Physiol
– volume: 77
  start-page: 15
  year: 2016
  end-page: 39
– volume: 64
  start-page: 3339
  year: 2013
  end-page: 3349
  article-title: Auxin induces redox regulation of ascorbate peroxidase 1 activity by S‐nitrosylation/denitrosylation balance resulting in changes of root growth pattern in Arabidopsis
  publication-title: J Exp Bot
– volume: 52
  start-page: 215
  year: 2001
  end-page: 221
  article-title: Auxin and heat shock activation of a novel member of the calmodulin like domain protein kinase gene family in cultured alfalfa cells
  publication-title: J Exp Bot
– volume: 147
  start-page: 1936
  year: 2008
  end-page: 1946
  article-title: Arginase‐negative mutants of Arabidopsis exhibit increased nitric oxide signaling in root development
  publication-title: Plant Physiol
– volume: 63
  start-page: 4875
  year: 2012
  end-page: 4885
  article-title: Nitric oxide is essential for vesicle formation and trafficking in Arabidopsis root hair growth
  publication-title: J Exp Bot
– volume: 65
  start-page: 783
  year: 2004
  end-page: 792
  article-title: Nitric oxide and nitric oxide synthase activity in plants
  publication-title: Phytochemistry
– volume: 126
  start-page: 1196
  year: 2001
  end-page: 1204
  article-title: Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress
  publication-title: Plant Physiol
– volume: 488
  start-page: 88
  year: 2017
  end-page: 94
  article-title: Nitric oxide modifies root growth by S‐nitrosylation of plastidial glyceraldehyde‐3‐phosphate dehydrogenase
  publication-title: Biochem Bioph Res Co
– volume: 2
  start-page: ra45
  year: 2009
  article-title: The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli
  publication-title: Sci Signal
– volume: 200
  start-page: 473
  year: 2013
  end-page: 482
  article-title: Indole‐3‐butyric acid induces lateral root formation via peroxisome‐derived indole‐3‐acetic acid and nitric oxide
  publication-title: New Phytol
– volume: 97
  start-page: 8849
  year: 2000
  end-page: 8855
  article-title: Nitric oxide and salicylic acid signaling in plant defense
  publication-title: Proc Natl Acad Sci
– start-page: 1
  year: 2019
  end-page: 13
  article-title: Magnesium promotes root growth and increases aluminum tolerance via modulation of nitric oxide production in Arabidopsis
  publication-title: Plant and Soil
– volume: 361
  start-page: 134
  year: 2019
  end-page: 140
  article-title: New adventitious root formation and primary root biomass accumulation are regulated by nitric oxide and reactive oxygen species in rice seedlings under arsenate stress
  publication-title: J Hazard Mater
– volume: 74
  start-page: 423
  year: 2010
  end-page: 435
  article-title: Both the stimulation and inhibition of root hair growth induced by extracellular nucleotides in Arabidopsis are mediated by nitric oxide and reactive oxygen species
  publication-title: Plant Mol Biol
– volume: 39
  start-page: 20
  year: 2014
  end-page: 28
  article-title: Nitric oxide is required for determining root architecture and lignin composition in sunflower. Supporting evidence from microarray analyses
  publication-title: Nitric Oxide
– volume: 4
  start-page: 616
  year: 2011
  end-page: 625
  article-title: Auxin–cytokinin interaction regulates meristem development
  publication-title: Mol Plant
– volume: 26
  start-page: 255
  year: 2013
  end-page: 269
  article-title: Nitric oxide (NO) counteracts cadmium induced cytotoxic processes mediated by reactive oxygen species (ROS) in : cross‐talk between ROS, NO and antioxidant responses
  publication-title: Biometals
– volume: 152
  start-page: 891
  year: 2010
  end-page: 903
  article-title: Enhanced abscisic acid‐mediated responses in nia1nia2noa1‐2 triple mutant impaired in NIA/NR‐and AtNOA1‐dependent nitric oxide biosynthesis in Arabidopsis
  publication-title: Plant Physiol
– volume: 4
  start-page: 29
  year: 2013
  article-title: Protein tyrosine nitration in higher plants grown under natural and stress conditions
  publication-title: Front Plant Sci
– volume: 31
  start-page: 1085
  year: 2012
  end-page: 1091
  article-title: Heme oxygenase is involved in nitric oxide‐and auxin‐induced lateral root formation in rice
  publication-title: Plant Cell Rep
– volume: 267
  start-page: 40
  year: 2014
  end-page: 47
  article-title: Hydrogen‐rich water alleviates aluminum‐induced inhibition of root elongation in alfalfa via decreasing nitric oxide production
  publication-title: J Hazard Mater
– volume: 249
  start-page: 187
  year: 2012
  end-page: 195
  article-title: Calcium is involved in nitric oxide‐and auxin‐induced lateral root formation in rice
  publication-title: Protoplasma
– volume: 151
  start-page: 755
  year: 2009
  end-page: 767
  article-title: Nitric reductase‐dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis
  publication-title: Plant Physiol
– volume: 122
  start-page: 110
  year: 2018
  end-page: 115
  article-title: Crosstalk between reactive oxygen species and nitric oxide in plants: key role of S‐nitrosoglutathione reductase
  publication-title: Free Radical Bio Med
– volume: 129
  start-page: 244
  year: 2002
  end-page: 256
  article-title: Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system
  publication-title: Plant Physiol
– volume: 22
  start-page: 11
  year: 2017
  end-page: 19
  article-title: ROS are good
  publication-title: Trends Plant Sci
– volume: 170
  start-page: 63
  year: 2013
  end-page: 69
  article-title: Methyl jasmonate‐induced lateral root formation in rice: the role of heme oxygenase and calcium
  publication-title: J Plant Physiol
– volume: 10
  start-page: 195
  year: 2005
  end-page: 200
  article-title: New insights into nitric oxide metabolism and regulatory functions
  publication-title: Trends Plant Sci
– volume: 113
  start-page: 95
  year: 2015
  end-page: 102
  article-title: Interaction of nitric oxide and reactive oxygen species and associated regulation of root growth in wheat seedlings under zinc stress
  publication-title: Ecotox Environ Safe
– volume: 19
  start-page: 505
  year: 1995
  end-page: 510
  article-title: The reaction of NO with O and HO ·‐: a pulse radiolysis study
  publication-title: Free Radical Bio Med
– volume: 422
  start-page: 442
  year: 2003
  end-page: 446
  article-title: Reactive oxygen species produced by NADPH oxidase regulate plant cell growth
  publication-title: Nature
– volume: 108
  start-page: 18506
  year: 2011
  end-page: 18511
  article-title: Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN‐FORMED 1 (PIN1)‐dependent acropetal auxin transport
  publication-title: Proc Natl Acad Sci
– volume: 158
  start-page: 92
  year: 2016
  end-page: 105
  article-title: Serotonin modulates Arabidopsis root growth via changes in reactive oxygen species and jasmonic acid‐ethylene signaling
  publication-title: Physiol Plant
– volume: 9
  start-page: 490
  year: 2004
  end-page: 498
  article-title: Reactive oxygen gene network of plants
  publication-title: Trends Plant Sci
– volume: 12
  start-page: e1006175
  year: 2016
  article-title: A P‐loop NTPase regulates quiescent center cell division and distal stem cell identity through the regulation of ROS homeostasis in Arabidopsis root
  publication-title: PLoS Genet
– volume: 68
  start-page: 5
  year: 2017
  end-page: 6
  article-title: Nitric oxide synthase‐like activity in higher plants
  publication-title: Nitric Oxide
– volume: 137
  start-page: 663
  year: 2005
  end-page: 670
  article-title: Nitric oxide mediates gravitropic bending in soybean roots
  publication-title: Plant Physiol
– volume: 46
  start-page: 1686
  year: 2009
  end-page: 1693
  article-title: Nitric oxide signals ROS scavenger‐mediated enhancement of PAL activity in nitrogen‐deficient roots: side effects of scavengers
  publication-title: Free Radical Bio Med
– volume: 143
  start-page: 3328
  year: 2016
  end-page: 3339
  article-title: RBOH‐mediated ROS production facilitates lateral root emergence in Arabidopsis
  publication-title: Development
– volume: 86
  start-page: 159
  year: 2011
  end-page: 165
  article-title: Nitric oxide and hydrogen peroxide are involved in indole‐3‐butyric acid‐induced adventitious root development in marigold
  publication-title: J Hortic Sci Biotechnol
– volume: 97
  start-page: 883
  year: 2006
  end-page: 893
  article-title: Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism
  publication-title: Ann Bot‐London
– volume: 29
  start-page: 1532
  year: 2006
  end-page: 1544
  article-title: Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo
  publication-title: Plant Cell Environ
– volume: 326
  start-page: 321
  year: 2010
  end-page: 330
  article-title: Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of seedlings under cadmium stress
  publication-title: Plant and Soil
– volume: 20
  start-page: 3258
  year: 2008
  end-page: 3272
  article-title: Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor
  publication-title: Plant Cell
– volume: 115
  start-page: E4710
  year: 2018
  end-page: E4719
  article-title: MYB30 links ROS signaling, root cell elongation, and plant immune responses
  publication-title: Proc Natl A Sci
– volume: 8
  start-page: e23196
  year: 2013
  article-title: Rapid auxin‐induced nitric oxide accumulation and subsequent tyrosine nitration of proteins during adventitious root formation in sunflower hypocotyls
  publication-title: Plant Signal Behav
– ident: e_1_2_12_15_1
  doi: 10.1016/j.plantsci.2007.11.003
– ident: e_1_2_12_21_1
  doi: 10.1016/j.chemosphere.2013.04.079
– ident: e_1_2_12_4_1
  doi: 10.1146/annurev.arplant.55.031903.141701
– ident: e_1_2_12_115_1
  doi: 10.1105/tpc.108.058719
– ident: e_1_2_12_100_1
  doi: 10.1016/j.tplants.2004.08.009
– ident: e_1_2_12_107_1
  doi: 10.1111/j.1365-313X.2005.02494.x
– ident: e_1_2_12_53_1
  doi: 10.1093/jxb/ern194
– ident: e_1_2_12_133_1
  doi: 10.1111/nph.12377
– ident: e_1_2_12_56_1
  doi: 10.1073/pnas.97.6.2405
– ident: e_1_2_12_158_1
  doi: 10.4161/psb.4.10.9715
– ident: e_1_2_12_13_1
  doi: 10.1016/j.plantsci.2009.06.006
– ident: e_1_2_12_25_1
  doi: 10.1016/j.niox.2016.10.009
– ident: e_1_2_12_62_1
  doi: 10.1093/jxb/erp033
– ident: e_1_2_12_144_1
  doi: 10.1007/s00299-007-0448-y
– ident: e_1_2_12_61_1
  doi: 10.1016/j.febslet.2005.01.018
– ident: e_1_2_12_80_1
  doi: 10.1007/s11738-009-0367-3
– ident: e_1_2_12_139_1
  doi: 10.1093/mp/ssr007
– ident: e_1_2_12_141_1
  doi: 10.1111/j.1399-3054.2009.01313.x
– ident: e_1_2_12_94_1
  doi: 10.1111/j.1365-3040.2005.01306.x
– ident: e_1_2_12_138_1
  doi: 10.1093/jxb/erj058
– ident: e_1_2_12_23_1
  doi: 10.1038/ncomms9821
– ident: e_1_2_12_30_1
  doi: 10.1093/jxb/ert172
– ident: e_1_2_12_8_1
  doi: 10.1016/j.sbi.2004.09.012
– ident: e_1_2_12_135_1
  doi: 10.1016/j.molp.2015.04.008
– ident: e_1_2_12_31_1
  doi: 10.1093/aob/mcv116
– ident: e_1_2_12_19_1
  doi: 10.1104/pp.110.161109
– ident: e_1_2_12_155_1
  doi: 10.1016/j.pbi.2004.04.002
– ident: e_1_2_12_137_1
  doi: 10.1016/j.niox.2009.02.004
– ident: e_1_2_12_66_1
  doi: 10.1080/15592324.2016.1192742
– ident: e_1_2_12_128_1
  doi: 10.1179/135100006X116718
– ident: e_1_2_12_102_1
  doi: 10.1073/pnas.0708586104
– ident: e_1_2_12_129_1
  doi: 10.1111/j.1365-3040.2006.01531.x
– ident: e_1_2_12_16_1
  doi: 10.3390/ijms18102084
– ident: e_1_2_12_43_1
  doi: 10.1073/pnas.1108644108
– ident: e_1_2_12_146_1
  doi: 10.1007/s10725-009-9385-9
– ident: e_1_2_12_101_1
  doi: 10.1093/jxb/erh113
– ident: e_1_2_12_117_1
  doi: 10.1146/annurev-arplant-042811-105501
– ident: e_1_2_12_130_1
  doi: 10.1073/pnas.0900060106
– ident: e_1_2_12_99_1
  doi: 10.1016/j.tplants.2016.08.002
– ident: e_1_2_12_93_1
  doi: 10.1186/s12284-014-0030-5
– ident: e_1_2_12_69_1
  doi: 10.1016/j.freeradbiomed.2009.03.020
– ident: e_1_2_12_89_1
  doi: 10.4161/psb.1.1.2398
– ident: e_1_2_12_142_1
  doi: 10.1126/science.1152505
– ident: e_1_2_12_64_1
  doi: 10.1093/aob/mct229
– ident: e_1_2_12_50_1
  doi: 10.1016/0891-5849(95)00034-U
– ident: e_1_2_12_68_1
  doi: 10.1016/j.plaphy.2003.09.003
– start-page: 15
  volume-title: Advances in Botanical Research
  year: 2016
  ident: e_1_2_12_70_1
– ident: e_1_2_12_73_1
  doi: 10.1093/jxb/erj109
– ident: e_1_2_12_127_1
  doi: 10.1038/nature02081
– ident: e_1_2_12_71_1
  doi: 10.1073/pnas.97.6.2940
– ident: e_1_2_12_84_1
  doi: 10.1016/j.freeradbiomed.2017.11.027
– ident: e_1_2_12_112_1
  doi: 10.1093/jxb/eri196
– ident: e_1_2_12_163_1
  doi: 10.1104/pp.114.255216
– ident: e_1_2_12_3_1
  doi: 10.1093/aob/mcl027
– ident: e_1_2_12_32_1
  doi: 10.1016/j.niox.2014.04.004
– ident: e_1_2_12_11_1
  doi: 10.1093/jxb/ert396
– ident: e_1_2_12_9_1
  doi: 10.1007/s00344-017-9741-3
– ident: e_1_2_12_55_1
  doi: 10.3390/s150100855
– ident: e_1_2_12_156_1
  doi: 10.1093/jxb/ern242
– ident: e_1_2_12_81_1
  doi: 10.1007/s00344-010-9140-5
– ident: e_1_2_12_106_1
  doi: 10.1094/MPMI-08-13-0219-R
– ident: e_1_2_12_20_1
  doi: 10.1007/s00299-012-1228-x
– ident: e_1_2_12_160_1
  doi: 10.1007/s11104-009-0011-4
– ident: e_1_2_12_76_1
  doi: 10.1016/j.envexpbot.2008.06.004
– ident: e_1_2_12_52_1
  doi: 10.1111/j.1365-313X.2007.03283.x
– ident: e_1_2_12_67_1
  doi: 10.1016/j.jplph.2007.07.019
– ident: e_1_2_12_6_1
  doi: 10.3109/10715762.2015.1118473
– ident: e_1_2_12_29_1
  doi: 10.1093/jxb/erj045
– ident: e_1_2_12_116_1
  doi: 10.1094/MPMI-20-3-0283
– ident: e_1_2_12_10_1
  doi: 10.1093/jxb/ert006
– ident: e_1_2_12_123_1
  doi: 10.1021/ar300234c
– ident: e_1_2_12_113_1
  doi: 10.1038/35021067
– ident: e_1_2_12_132_1
  doi: 10.1093/jxb/erv213
– ident: e_1_2_12_77_1
  doi: 10.1016/j.envexpbot.2009.03.005
– start-page: 1
  year: 2019
  ident: e_1_2_12_79_1
  article-title: Magnesium promotes root growth and increases aluminum tolerance via modulation of nitric oxide production in Arabidopsis
  publication-title: Plant and Soil
– ident: e_1_2_12_118_1
  doi: 10.1111/j.1365-3040.2008.01908.x
– ident: e_1_2_12_27_1
  doi: 10.1093/jxb/erz031
– ident: e_1_2_12_58_1
  doi: 10.1104/pp.104.054494
– ident: e_1_2_12_90_1
  doi: 10.1104/pp.010934
– ident: e_1_2_12_97_1
  doi: 10.1093/pcp/pcq117
– ident: e_1_2_12_114_1
  doi: 10.1111/ppl.12429
– ident: e_1_2_12_153_1
  doi: 10.1016/j.tplants.2018.09.010
– ident: e_1_2_12_49_1
  doi: 10.1104/pp.126.3.1196
– ident: e_1_2_12_54_1
  doi: 10.1042/bst0290345
– ident: e_1_2_12_34_1
  doi: 10.1007/s00425-005-1523-7
– ident: e_1_2_12_72_1
  doi: 10.1016/j.jhazmat.2018.08.035
– ident: e_1_2_12_38_1
  doi: 10.1016/j.phytochem.2004.02.001
– ident: e_1_2_12_26_1
  doi: 10.3389/fpls.2013.00029
– ident: e_1_2_12_78_1
  doi: 10.1007/s00425-014-2204-1
– ident: e_1_2_12_121_1
  doi: 10.1093/mp/sss047
– ident: e_1_2_12_119_1
  doi: 10.1016/j.envexpbot.2018.10.033
– ident: e_1_2_12_88_1
  doi: 10.1016/j.niox.2018.09.002
– ident: e_1_2_12_150_1
  doi: 10.4161/psb.6.6.15308
– ident: e_1_2_12_18_1
  doi: 10.1007/s00709-011-0277-2
– ident: e_1_2_12_92_1
  doi: 10.1073/pnas.1804233115
– ident: e_1_2_12_120_1
  doi: 10.1016/j.envpol.2018.04.096
– ident: e_1_2_12_48_1
  doi: 10.1038/ncomms6401
– ident: e_1_2_12_164_1
  doi: 10.1371/journal.pgen.1006175
– ident: e_1_2_12_7_1
  doi: 10.1093/jxb/erx420
– ident: e_1_2_12_14_1
  doi: 10.1016/0304-4211(79)90158-5
– ident: e_1_2_12_145_1
  doi: 10.1016/j.cell.2010.10.020
– ident: e_1_2_12_152_1
  doi: 10.1016/j.bbrc.2017.05.012
– ident: e_1_2_12_22_1
  doi: 10.1016/j.jhazmat.2013.12.029
– ident: e_1_2_12_82_1
  doi: 10.1080/14620316.2011.11512742
– ident: e_1_2_12_87_1
  doi: 10.1093/jxb/ers166
– ident: e_1_2_12_161_1
  doi: 10.4161/psb.5.10.12159
– ident: e_1_2_12_63_1
  doi: 10.1371/journal.pone.0138713
– ident: e_1_2_12_33_1
  doi: 10.1016/j.tplants.2005.02.008
– ident: e_1_2_12_36_1
  doi: 10.1093/jexbot/52.355.215
– ident: e_1_2_12_140_1
  doi: 10.1093/jxb/erv030
– ident: e_1_2_12_74_1
  doi: 10.1104/pp.107.111815
– ident: e_1_2_12_148_1
  doi: 10.1016/j.pbi.2014.10.005
– ident: e_1_2_12_65_1
  doi: 10.1073/pnas.97.16.8849
– ident: e_1_2_12_157_1
  doi: 10.1007/s00425-009-0970-y
– ident: e_1_2_12_98_1
  doi: 10.1126/scisignal.2000448
– ident: e_1_2_12_60_1
  doi: 10.1104/pp.106.086918
– ident: e_1_2_12_103_1
  doi: 10.1016/j.tplants.2009.06.010
– ident: e_1_2_12_143_1
  doi: 10.1111/j.1365-313X.2011.04885.x
– ident: e_1_2_12_104_1
  doi: 10.1093/aobpla/pls052
– ident: e_1_2_12_151_1
  doi: 10.1007/s00425-012-1763-2
– ident: e_1_2_12_149_1
  doi: 10.1105/tpc.109.072959
– ident: e_1_2_12_37_1
  doi: 10.1007/978-3-642-00390-5
– ident: e_1_2_12_168_1
  doi: 10.1104/pp.109.140996
– ident: e_1_2_12_95_1
  doi: 10.1016/S1360-1385(97)90054-6
– ident: e_1_2_12_136_1
  doi: 10.1016/j.plantsci.2004.05.028
– ident: e_1_2_12_51_1
  doi: 10.1023/A:1005837012203
– ident: e_1_2_12_134_1
  doi: 10.1093/mp/sss148
– volume: 4
  start-page: 340
  year: 2013
  ident: e_1_2_12_35_1
  article-title: Limits in the use of cPTIO as nitric oxide scavenger and EPR probe in plant cells and seedlings
  publication-title: Front Plant Sci
– ident: e_1_2_12_44_1
  doi: 10.4161/psb.18895
– ident: e_1_2_12_83_1
  doi: 10.1016/j.plaphy.2012.06.012
– ident: e_1_2_12_12_1
  doi: 10.1093/jxb/ery072
– ident: e_1_2_12_91_1
  doi: 10.1104/pp.109.148023
– ident: e_1_2_12_40_1
  doi: 10.1111/j.1469-8137.2007.01995.x
– ident: e_1_2_12_75_1
  doi: 10.1016/j.tplants.2013.04.006
– ident: e_1_2_12_166_1
  doi: 10.1093/aob/mcm142
– ident: e_1_2_12_47_1
  doi: 10.3389/fpls.2013.00398
– ident: e_1_2_12_59_1
  doi: 10.1016/j.redox.2018.07.003
– ident: e_1_2_12_5_1
  doi: 10.1016/j.plantsci.2011.03.019
– ident: e_1_2_12_109_1
  doi: 10.1104/pp.004036
– ident: e_1_2_12_42_1
  doi: 10.1038/ncomms2541
– ident: e_1_2_12_159_1
  doi: 10.1093/pcp/pci183
– ident: e_1_2_12_28_1
  doi: 10.1007/s00425-003-1172-7
– ident: e_1_2_12_57_1
  doi: 10.1016/j.jplph.2012.08.015
– volume: 3
  start-page: 2
  year: 2014
  ident: e_1_2_12_125_1
  article-title: The role of oxidative stress in metals toxicity; mitochondrial dysfunction as a key player
  publication-title: Galen Med J
  doi: 10.31661/gmj.v3i1.100
– ident: e_1_2_12_154_1
  doi: 10.1016/j.devcel.2010.10.017
– ident: e_1_2_12_108_1
  doi: 10.1101/cshperspect.a001537
– ident: e_1_2_12_122_1
  doi: 10.1016/j.envexpbot.2013.12.014
– ident: e_1_2_12_39_1
  doi: 10.1016/j.ecoenv.2014.11.030
– ident: e_1_2_12_131_1
  doi: 10.1016/j.niox.2016.09.005
– ident: e_1_2_12_41_1
  doi: 10.1111/tpj.12181
– ident: e_1_2_12_124_1
  doi: 10.1111/j.1365-313X.2007.03068.x
– ident: e_1_2_12_165_1
  doi: 10.1111/pce.12597
– ident: e_1_2_12_85_1
  doi: 10.1104/pp.15.00293
– ident: e_1_2_12_110_1
  doi: 10.1104/pp.103.022228
– ident: e_1_2_12_162_1
  doi: 10.4161/psb.23196
– ident: e_1_2_12_126_1
  doi: 10.1007/978-3-030-11129-8_8
– ident: e_1_2_12_24_1
  doi: 10.1007/s11103-010-9683-7
– ident: e_1_2_12_105_1
  doi: 10.1242/dev.136465
– ident: e_1_2_12_46_1
  doi: 10.1111/j.1469-8137.2006.01787.x
– ident: e_1_2_12_86_1
  doi: 10.1104/pp.15.00030
– ident: e_1_2_12_17_1
  doi: 10.1016/S1360-1385(03)00051-7
– ident: e_1_2_12_167_1
  doi: 10.1104/pp.107.096842
– ident: e_1_2_12_96_1
  doi: 10.1104/pp.114.238873
– ident: e_1_2_12_2_1
  doi: 10.1111/j.1365-313X.2012.05032.x
– ident: e_1_2_12_147_1
  doi: 10.1007/s10534-013-9608-4
– ident: e_1_2_12_111_1
  doi: 10.1104/pp.103.038554
– ident: e_1_2_12_45_1
  doi: 10.1104/pp.108.121459
SSID ssj0016612
Score 2.4331837
SecondaryResourceType review_article
Snippet Over the past decades the role of nitric oxide (NO) and reactive oxygen species (ROS) in signaling and cellular responses to stress has witnessed an...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 473
SubjectTerms auxins
cell growth
Computer architecture
Crosstalk
enzymes
Gene expression
gene expression regulation
Indoleacetic Acids
lateral roots
Nitric oxide
Nitric Oxide - metabolism
physiological response
Physiological responses
Plant growth
Plant Roots - growth & development
Plants
post-translational modification
Primordia
Reactive oxygen species
Reactive Oxygen Species - metabolism
Regulators
Root development
root primordia
root systems
Roots
Signal Transduction
Signaling
Title NO and ROS implications in the organization of root system architecture
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fppl.13050
https://www.ncbi.nlm.nih.gov/pubmed/31747051
https://www.proquest.com/docview/2353366613
https://www.proquest.com/docview/2316432711
https://www.proquest.com/docview/2439442773
Volume 168
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA4iHry4L-NGFA9eOkybtGnwpOIoojODC8xBKNkKg9KKdg76631JF8YV8Vboa8jyXt73Ne-9ILQPDEBzAPKeZop74G-pF2sSeoYJpmJNSSBtovBVLzq_oxfDcDiFDutcmLI-RPPDzVqG26-tgQv5MmHkANLsVcaOr9tYLQuIrpvSUT74nbJSOPE9Dk6yqipko3iaLz_6oi8A8yNedQ6nO4_u666WcSYP7XEh2-rtUxXHf45lAc1VQBQflZqziKZMtoRmjnMAi6_L6KzXxyLT-Lp_g0cTQed4lGGAjDifSOHEeYoBfxe4rAqNJ88mVtBd9_T25Nyr7lzwFIkj2JIJM8TE9jwQsEWgWUp9DbBBGkqEpbOGCiXDUMZRzAUnpiNiklKeGg1kpmPIKprO8sysIxxppaAlHmpBKQAXHgVKRsDPfNkhXLAWOqhnP1FVQXJ7L8ZjUhMTmJbETUsL7TWiT2UVju-EtuolTCpDfEkCAngWKJpPWmi3eQ0mZM9FRGbysZUBzkgC5vu_yLgM4oAxaGetVI-mJ6BdlMHmBgNyi_xzF5PB4NI9bPxddBPNBpbju0jxLTRdPI_NNgChQu44jX8HxTEAig
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH4MKujFfRnXKB68VKZN2jTgxX3UcRQX8CIlTTIgSis6c9Bf70s3ZtwQb4W-hjTJy_u-JO8LwCYyAC0QyDuaK-FgvGVOqKnvGC65CjWjXmwThc_bQfOWnd75dzXYKXNhcn2IasHNekY2X1sHtwvSfV6OKM3eZWwJ-7C90dsq5x9cVeJRLkaeXCucuo7AMFnoCtlzPNWng9HoC8QcRKxZyDmagPuysvlJk8ftXjfeVu-fdBz_-zeTMF5gUbKbD54pqJlkGkb2UsSLbzNw3L4gMtHk6uKaPPSdOycPCUHUSNK-LE6SdghC8C7JhaFJ__bELNweHd7sN53i2gVH0TDAWZlyQ01otwQRXniad5irETnEhlFpGa1hUsW-H4dBKKSgpiFD2mGiYzTymYahczCUpIlZABJopbAk4WvJGGIXEXgqDpCiuXGDCsnrsFU2f6QKTXJ7NcZTVHITbJYoa5Y6bFSmz7kQx3dGy2UfRoUvvkYeRUiLLM2ldVivXqMX2a0RmZi0Z22QNlKPu-4vNlkSscc5ljOfj4-qJji8GMf5DX8o6-WfqxhdXrayh8W_m67BaPPmvBW1TtpnSzDmWcqfHRxfhqHuS8-sIC7qxqvZ8P8A0JYEpg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB5ERXzxPtYzig--VLZN2jT45LXe6-IBPgglTVIQpRXdfdBf76QX64n4Vug05JjJfF-TmQHYQAagBQJ5R3MlHPS3zAk19R3DJVehZtSLbaDweTs4umEnt_7tAGxXsTBFfoj6h5u1jHy_tgb-pJM-I0eQZksZW74-xIKmsHUb9i_r3FEuOp4iVTh1HYFeskwrZK_x1J9-dEZfEOZHwJp7nNY43FV9LS6aPGz1uvGWevuUxvGfg5mAsRKJkp1CdSZhwKRTMLybIVp8nYbD9gWRqSaXF1fkvu_WOblPCWJGkvXFcJIsIQjAu6RIC036Dydm4KZ1cL135JRFFxxFwwD3ZMoNNaE9EERw4WmeMFcjbogNo9LyWcOkin0_DoNQSEFNU4Y0YSIxGtlM09BZGEyz1MwDCbRS2JLwtWQMkYsIPBUHSNDcuEmF5A3YrGY_UmVGclsY4zGqmAlOS5RPSwPWa9GnIg3Hd0JL1RJGpSW-RB5FQIsczaUNWKtfow3ZgxGZmqxnZZA0Uo-77i8yeQixxzm2M1eoR90T1C7GcXfDAeWL_HMXo07nLH9Y-LvoKox09lvR2XH7dBFGPcv381vjSzDYfe6ZZQRF3XglV_53u3wDVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NO+and+ROS+implications+in+the+organization+of+root+system+architecture&rft.jtitle=Physiologia+plantarum&rft.au=Prakash%2C+Ved&rft.au=Vishwakarma%2C+Kanchan&rft.au=Singh%2C+Vijay+Pratap&rft.au=Rai%2C+Padmaja&rft.date=2020-02-01&rft.eissn=1399-3054&rft.volume=168&rft.issue=2&rft.spage=473&rft_id=info:doi/10.1111%2Fppl.13050&rft_id=info%3Apmid%2F31747051&rft.externalDocID=31747051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9317&client=summon