How many animal‐pollinated angiosperms are nectar‐producing?
Summary The diversity of plant–pollinator interactions is grounded in floral resources, with nectar considered one of the main floral rewards plants produce for pollinators. However, a global evaluation of the number of animal‐pollinated nectar‐producing angiosperms and their distribution world‐wide...
Saved in:
Published in | The New phytologist Vol. 243; no. 5; pp. 2008 - 2020 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
The diversity of plant–pollinator interactions is grounded in floral resources, with nectar considered one of the main floral rewards plants produce for pollinators. However, a global evaluation of the number of animal‐pollinated nectar‐producing angiosperms and their distribution world‐wide remains elusive.
We compiled a thorough database encompassing 7621 plant species from 322 families to estimate the number and proportion of nectar‐producing angiosperms reliant on animal pollination. Through extensive sampling of plant communities, we also explored the interplay between nectar production, floral resource diversity, latitudinal and elevational gradients, contemporary climate, and environmental characteristics.
Roughly 223 308 animal‐pollinated angiosperms are nectar‐producing, accounting for 74.4% of biotic‐pollinated species. Global distribution patterns of nectar‐producing plants reveal a distinct trend along latitudinal and altitudinal gradients, with increased proportions of plants producing nectar in high latitudes and altitudes. Conversely, tropical communities in warm and moist climates exhibit greater floral resource diversity and a lower proportion of nectar‐producing plants.
These findings suggest that ecological trends driven by climate have fostered the diversification of floral resources in warmer and less seasonal climates, reducing the proportion of solely nectar‐producing plants. Our study provides a baseline for understanding plant–pollinator relationships, plant diversification, and the distribution of plant traits. |
---|---|
AbstractList | The diversity of plant–pollinator interactions is grounded in floral resources, with nectar considered one of the main floral rewards plants produce for pollinators. However, a global evaluation of the number of animal‐pollinated nectar‐producing angiosperms and their distribution world‐wide remains elusive. We compiled a thorough database encompassing 7621 plant species from 322 families to estimate the number and proportion of nectar‐producing angiosperms reliant on animal pollination. Through extensive sampling of plant communities, we also explored the interplay between nectar production, floral resource diversity, latitudinal and elevational gradients, contemporary climate, and environmental characteristics. Roughly 223 308 animal‐pollinated angiosperms are nectar‐producing, accounting for 74.4% of biotic‐pollinated species. Global distribution patterns of nectar‐producing plants reveal a distinct trend along latitudinal and altitudinal gradients, with increased proportions of plants producing nectar in high latitudes and altitudes. Conversely, tropical communities in warm and moist climates exhibit greater floral resource diversity and a lower proportion of nectar‐producing plants. These findings suggest that ecological trends driven by climate have fostered the diversification of floral resources in warmer and less seasonal climates, reducing the proportion of solely nectar‐producing plants. Our study provides a baseline for understanding plant–pollinator relationships, plant diversification, and the distribution of plant traits. The diversity of plant–pollinator interactions is grounded in floral resources, with nectar considered one of the main floral rewards plants produce for pollinators. However, a global evaluation of the number of animal‐pollinated nectar‐producing angiosperms and their distribution world‐wide remains elusive. We compiled a thorough database encompassing 7621 plant species from 322 families to estimate the number and proportion of nectar‐producing angiosperms reliant on animal pollination. Through extensive sampling of plant communities, we also explored the interplay between nectar production, floral resource diversity, latitudinal and elevational gradients, contemporary climate, and environmental characteristics. Roughly 223 308 animal‐pollinated angiosperms are nectar‐producing, accounting for 74.4% of biotic‐pollinated species. Global distribution patterns of nectar‐producing plants reveal a distinct trend along latitudinal and altitudinal gradients, with increased proportions of plants producing nectar in high latitudes and altitudes. Conversely, tropical communities in warm and moist climates exhibit greater floral resource diversity and a lower proportion of nectar‐producing plants. These findings suggest that ecological trends driven by climate have fostered the diversification of floral resources in warmer and less seasonal climates, reducing the proportion of solely nectar‐producing plants. Our study provides a baseline for understanding plant–pollinator relationships, plant diversification, and the distribution of plant traits. The diversity of plant-pollinator interactions is grounded in floral resources, with nectar considered one of the main floral rewards plants produce for pollinators. However, a global evaluation of the number of animal-pollinated nectar-producing angiosperms and their distribution world-wide remains elusive. We compiled a thorough database encompassing 7621 plant species from 322 families to estimate the number and proportion of nectar-producing angiosperms reliant on animal pollination. Through extensive sampling of plant communities, we also explored the interplay between nectar production, floral resource diversity, latitudinal and elevational gradients, contemporary climate, and environmental characteristics. Roughly 223 308 animal-pollinated angiosperms are nectar-producing, accounting for 74.4% of biotic-pollinated species. Global distribution patterns of nectar-producing plants reveal a distinct trend along latitudinal and altitudinal gradients, with increased proportions of plants producing nectar in high latitudes and altitudes. Conversely, tropical communities in warm and moist climates exhibit greater floral resource diversity and a lower proportion of nectar-producing plants. These findings suggest that ecological trends driven by climate have fostered the diversification of floral resources in warmer and less seasonal climates, reducing the proportion of solely nectar-producing plants. Our study provides a baseline for understanding plant-pollinator relationships, plant diversification, and the distribution of plant traits.The diversity of plant-pollinator interactions is grounded in floral resources, with nectar considered one of the main floral rewards plants produce for pollinators. However, a global evaluation of the number of animal-pollinated nectar-producing angiosperms and their distribution world-wide remains elusive. We compiled a thorough database encompassing 7621 plant species from 322 families to estimate the number and proportion of nectar-producing angiosperms reliant on animal pollination. Through extensive sampling of plant communities, we also explored the interplay between nectar production, floral resource diversity, latitudinal and elevational gradients, contemporary climate, and environmental characteristics. Roughly 223 308 animal-pollinated angiosperms are nectar-producing, accounting for 74.4% of biotic-pollinated species. Global distribution patterns of nectar-producing plants reveal a distinct trend along latitudinal and altitudinal gradients, with increased proportions of plants producing nectar in high latitudes and altitudes. Conversely, tropical communities in warm and moist climates exhibit greater floral resource diversity and a lower proportion of nectar-producing plants. These findings suggest that ecological trends driven by climate have fostered the diversification of floral resources in warmer and less seasonal climates, reducing the proportion of solely nectar-producing plants. Our study provides a baseline for understanding plant-pollinator relationships, plant diversification, and the distribution of plant traits. Summary The diversity of plant–pollinator interactions is grounded in floral resources, with nectar considered one of the main floral rewards plants produce for pollinators. However, a global evaluation of the number of animal‐pollinated nectar‐producing angiosperms and their distribution world‐wide remains elusive. We compiled a thorough database encompassing 7621 plant species from 322 families to estimate the number and proportion of nectar‐producing angiosperms reliant on animal pollination. Through extensive sampling of plant communities, we also explored the interplay between nectar production, floral resource diversity, latitudinal and elevational gradients, contemporary climate, and environmental characteristics. Roughly 223 308 animal‐pollinated angiosperms are nectar‐producing, accounting for 74.4% of biotic‐pollinated species. Global distribution patterns of nectar‐producing plants reveal a distinct trend along latitudinal and altitudinal gradients, with increased proportions of plants producing nectar in high latitudes and altitudes. Conversely, tropical communities in warm and moist climates exhibit greater floral resource diversity and a lower proportion of nectar‐producing plants. These findings suggest that ecological trends driven by climate have fostered the diversification of floral resources in warmer and less seasonal climates, reducing the proportion of solely nectar‐producing plants. Our study provides a baseline for understanding plant–pollinator relationships, plant diversification, and the distribution of plant traits. |
Author | Ballarin, Caio S. Hachuy‐Filho, Leandro Oliveira, Paulo E. Goés, Guilherme Alcarás Amorim, Felipe W. Fontúrbel, Francisco E. Polizello, Diego S. Oliveira, Pablo H. Rech, André R. |
Author_xml | – sequence: 1 givenname: Caio S. orcidid: 0000-0001-8299-3189 surname: Ballarin fullname: Ballarin, Caio S. organization: Programa de Pós‐graduação em Biologia Vegetal, IBB ‐ UNESP – sequence: 2 givenname: Francisco E. orcidid: 0000-0001-8585-2816 surname: Fontúrbel fullname: Fontúrbel, Francisco E. organization: Millennium Nucleus of Patagonian Limit of Life (LiLi) – sequence: 3 givenname: André R. orcidid: 0000-0003-4685-7483 surname: Rech fullname: Rech, André R. organization: Universidade Federal dos Vales do Jequitinhonha e Mucuri – sequence: 4 givenname: Paulo E. orcidid: 0000-0002-6162-8702 surname: Oliveira fullname: Oliveira, Paulo E. organization: Universidade Federal de Uberlândia – sequence: 5 givenname: Guilherme Alcarás surname: Goés fullname: Goés, Guilherme Alcarás organization: Universidade Estadual Paulista ‘Júlio de Mesquita Filho’ (UNESP) – sequence: 6 givenname: Diego S. orcidid: 0000-0003-0180-7001 surname: Polizello fullname: Polizello, Diego S. organization: IBB ‐ UNESP – sequence: 7 givenname: Pablo H. orcidid: 0000-0002-2164-2497 surname: Oliveira fullname: Oliveira, Pablo H. organization: IBB ‐ UNESP – sequence: 8 givenname: Leandro orcidid: 0000-0001-7348-9757 surname: Hachuy‐Filho fullname: Hachuy‐Filho, Leandro organization: IBB ‐ UNESP – sequence: 9 givenname: Felipe W. orcidid: 0000-0002-6026-0395 surname: Amorim fullname: Amorim, Felipe W. email: csballarin@gmail.com, felipe.amorim@unesp.br organization: IBB ‐ UNESP |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38952269$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c1KAzEQAOAgirbqwReQghc9bE02_yeVolYo6kHB25Jm0xrZTWqyS-nNR_AZfRKjrR4ENZeQ4ZsZMtMF6847A8Aegn2UzrGbPfaRlASugQ4iTGYCYb4OOhDmImOEPWyBboxPEEJJWb4JtrCQNM-Z7IDToZ_3auUWPeVsraq3l9eZryrrVGPKFJtaH2cm1LGnguk5oxsVPkzwZautm57sgI2JqqLZXd3b4P7i_G4wzEY3l1eDs1GmsWAwQxAxqrHSUpTlmKTHmBHDS6wMgyJHyJQKUak5o5iMJeeaTyjCkxTFFOoSb4PDZd3U-rk1sSlqG7WpKuWMb2OBEcUcS87g_xRywnMBGU_04Ad98m1w6SNJCUaoJFgktb9S7bg2ZTELaVRhUXyNMYGjJdDBxxjM5JsgWHysqEgrKj5XlOzxD6ttoxrrXROUrf7KmNvKLH4vXVzfDpcZ7ztZodo |
CitedBy_id | crossref_primary_10_1111_plb_13768 crossref_primary_10_1016_j_tree_2024_12_012 crossref_primary_10_1016_j_cpb_2025_100443 crossref_primary_10_1038_s42003_025_07768_8 |
Cites_doi | 10.1080/17550874.2016.1207722 10.1038/368195a0 10.1111/ele.13823 10.5586/aa.1704 10.1093/aob/mcp124 10.1111/mec.15575 10.1016/j.tree.2022.09.008 10.1016/j.pbi.2009.04.002 10.2307/25066027 10.1111/ele.14019 10.1016/j.cub.2020.11.020 10.1007/BF00620817 10.1111/ele.14265 10.1111/ele.14170 10.1111/1365-2435.12783 10.1111/ecog.05869 10.1146/annurev-ecolsys-120213-091905 10.1890/0012-9658(2002)083[2416:GPIPPM]2.0.CO;2 10.3732/ajb.91.5.767 10.1111/jbi.13623 10.1007/s10682-008-9259-z 10.1111/gcb.14904 10.1016/j.plantsci.2017.04.012 10.2307/1939537 10.1073/pnas.0810306106 10.1111/j.1461-0248.2012.01740.x 10.1111/j.1469-8137.2011.03762.x 10.1002/qj.3803 10.1086/381004 10.1111/j.1365-2699.2005.01272.x 10.1073/pnas.0608361104 10.3389/fpls.2018.01063 10.1038/s41559-022-01831-x 10.1007/s00265-010-1037-6 10.2307/1937773 10.1111/brv.12997 10.1093/nsr/nwad219 10.1002/ecy.3935 10.1007/BF00937588 10.1034/j.1600-0706.2002.980215.x 10.1890/0012-9658(2006)87[1234:TIOPOT]2.0.CO;2 10.1111/geb.13469 10.1111/geb.13251 10.1111/nph.18533 10.2307/2260469 10.1111/j.1600-0706.2010.18644.x 10.1126/science.aaj1631 10.11646/phytotaxa.261.3.1 10.1890/03-0388 10.1126/science.1181154 10.1038/s41477-021-00893-2 10.2307/1221036 10.1111/j.1558-5646.1999.tb05367.x 10.1016/B978-0-12-583980-8.50019-3 10.1111/jbi.12228 10.1016/j.tree.2007.11.003 10.1007/978-1-4020-5937-7_2 10.1371/journal.pone.0025891 10.1002/j.1537-2197.1984.tb11968.x 10.1007/s00606-002-0277-y 10.1126/science.1178338 10.1890/03-3112 10.1111/jvs.12877 10.26786/1920-7603(2015)17 10.1073/pnas.1633576100 10.1093/aob/mcy132 10.1007/BF01373137 10.1146/annurev.ecolsys.39.110707.173430 10.1111/ele.13415 10.1146/annurev-ecolsys-110218-024804 10.1146/annurev.ecolsys.31.1.343 10.1111/nph.19151 10.1111/geb.13077 10.1146/annurev-ecolsys-110316-022919 10.1016/0169-5347(96)10044-6 10.1111/j.1466-8238.2010.00621.x 10.1177/0049124104268644 10.1016/j.tplants.2003.12.003 10.1111/jvs.12592 10.1146/annurev.ecolsys.34.012103.144032 10.1111/j.1461-0248.2007.01138.x 10.1111/jbi.12173 10.1111/j.1365-2745.2011.01812.x 10.2307/2398800 10.1007/BF02860872 10.1007/BF00936404 10.1016/j.cub.2017.02.009 10.2307/2265575 10.3390/plants10030507 10.1016/j.tree.2016.02.013 10.3389/fpls.2018.00851 10.1126/science.aam5678 10.1086/673247 10.1098/rspb.2023.0344 10.1016/j.cub.2012.08.015 10.1093/aob/mcab082 10.1086/285447 10.1111/evo.14055 10.1086/715746 10.1111/j.1600-0587.1995.tb00341.x 10.1890/10-0794.1 10.1016/j.tplants.2011.01.003 10.1111/nph.18271 10.1002/ecy.2670 10.1016/S0169-5347(02)02540-5 10.1146/annurev-ecolsys-121415-032330 10.1111/j.1461-0248.2007.01020.x 10.1111/rec.12003 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). © 2024 New Phytologist Foundation. 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation. Copyright © 2024 New Phytologist Trust 2024 The Author(s). New Phytologist © 2024 New Phytologist Foundation. |
Copyright_xml | – notice: 2024 The Author(s). © 2024 New Phytologist Foundation. – notice: 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation. – notice: Copyright © 2024 New Phytologist Trust – notice: 2024 The Author(s). New Phytologist © 2024 New Phytologist Foundation. |
DBID | AAYXX CITATION NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.19940 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 2020 |
ExternalDocumentID | 38952269 10_1111_nph_19940 NPH19940 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico funderid: 131440/2019‐5; 133435/2018‐0; 306551/2014‐4; 308559/2022‐3; 311665/2022‐5; 400904/2019‐5; 423939/2021‐1 – fundername: Fundação de Amparo à Pesquisa do Estado de Minas Gerais funderid: APQ‐00932‐21; APQ‐01151‐22; APQ‐01822‐21; APQ‐02806‐22; APQ‐03100‐21; APQ‐03364‐21 – fundername: ANID ‐ Millennium Science Initiative Program funderid: NCN2021_050 – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – fundername: COOPBRAS funderid: 88887.837988/2023‐00 – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo funderid: 2021/10639‐5 – fundername: COOPBRAS grantid: 88887.837988/2023-00 – fundername: Fundação de Amparo à Pesquisa do Estado de Minas Gerais grantid: APQ-01822-21 – fundername: Fundação de Amparo à Pesquisa do Estado de Minas Gerais grantid: APQ-02806-22 – fundername: ANID - Millennium Science Initiative Program grantid: NCN2021_050 – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo grantid: 2021/10639-5 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico grantid: 311665/2022-5 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico grantid: 423939/2021-1 – fundername: Fundação de Amparo à Pesquisa do Estado de Minas Gerais grantid: APQ-03364-21 – fundername: Fundação de Amparo à Pesquisa do Estado de Minas Gerais grantid: APQ-01151-22 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AASVR AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABLJU ABPLY ABPVW ABTLG ABVKB ABXSQ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPNFZ IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT AAYXX ABGDZ ABSQW ADXHL AEYWJ AGHNM AGUYK AGYGG CITATION NPM 7QO 7SN 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3860-10165c3ac98ddb4165b64e7d3ae608211eda159c76534b977c7f513fda1350cd3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:29:01 EDT 2025 Fri Jul 11 14:13:49 EDT 2025 Fri Jul 25 12:06:28 EDT 2025 Thu Apr 03 07:04:36 EDT 2025 Thu Apr 24 23:07:04 EDT 2025 Tue Jul 01 02:28:50 EDT 2025 Wed Jan 22 17:17:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | animal pollination floral resources plant diversity climate nectar‐producing plants pollinator community latitudinal gradient rewards |
Language | English |
License | 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3860-10165c3ac98ddb4165b64e7d3ae608211eda159c76534b977c7f513fda1350cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8585-2816 0000-0002-2164-2497 0000-0001-7348-9757 0000-0001-8299-3189 0000-0003-4685-7483 0000-0002-6162-8702 0000-0003-0180-7001 0000-0002-6026-0395 |
PMID | 38952269 |
PQID | 3086459438 |
PQPubID | 2026848 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_3153739760 proquest_miscellaneous_3074728067 proquest_journals_3086459438 pubmed_primary_38952269 crossref_primary_10_1111_nph_19940 crossref_citationtrail_10_1111_nph_19940 wiley_primary_10_1111_nph_19940_NPH19940 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2024 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2002; 17 2007; 104 2004; 163 1984; 65 2002; 98 2004; 9 1988; 76 2016; 31 2023; 104 2022; 25 2011; 191 2012; 15 1979 2016; 261 1996; 77 2009; 12 2004; 33 2018; 9 2023; 290 2017; 70 2002; 83 2008; 23 2011; 65 1999; 53 1983 2022; 31 2012; 22 2016; 47 2022; 38 1994; 75 2011; 120 2018; 29 2021; 44 1992; 140 2008; 57 2020; 146 2014; 41 2007; 10 2011; 6 2019; 100 2014; 45 1996; 11 2022; 235 2003; 34 2020; 31 2022; 6 2011; 92 2019; 47 1962; 28 2020; 26 2013; 174 2020; 23 2017; 262 2003; 100 2009; 104 2016; 9 2020; 29 2009; 106 2021; 24 2009; 40 2003; 238 2019; 50 2017; 48 2013; 21 2021; 128 1986; 35 2011; 99 2011; 16 2021; 30 2017; 356 2019; 123 2023; 20 2017; 31 2021; 31 2023; 26 1971; 58 2011; 20 2005; 32 2021; 198 2009; 326 2009; 23 2023; 98 2004; 85 2021; 7 1992; 181 1963; 110 2015; 16 2012 2023; 240 2017; 27 1981; 68 2007 2006 2008; 11 1995; 18 2004; 91 2021; 10 1984; 71 1994; 368 1989; 167 2023 2020; 74 2022 2006; 87 2000; 31 2023; 237 2015 2014 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_107_1 Fægri K (e_1_2_9_36_1) 1979 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_111_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 Ollerton J (e_1_2_9_74_1) 2006 e_1_2_9_102_1 e_1_2_9_106_1 e_1_2_9_15_1 e_1_2_9_38_1 Armbruster WS (e_1_2_9_5_1) 2006 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_114_1 e_1_2_9_118_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_105_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_117_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 R Core Team (e_1_2_9_84_1) 2023 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 Armbruster WS (e_1_2_9_6_1) 2012 e_1_2_9_112_1 e_1_2_9_116_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 40 start-page: 245 year: 2009 end-page: 269 article-title: Is there a latitudinal gradient in the importance of biotic interactions? publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 290 year: 2023 article-title: Functional trait trade‐offs define plant population stability across different biomes publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 68 start-page: 301 year: 1981 end-page: 322 article-title: Floral rewards: alternatives to pollen and nectar publication-title: Annals of the Missouri Botanical Garden – volume: 77 start-page: 1043 year: 1996 end-page: 1060 article-title: Generalization in pollination systems, and why it matters publication-title: Ecology – volume: 104 start-page: 5925 year: 2007 end-page: 5930 article-title: Global patterns and determinants of vascular plant diversity publication-title: Proceedings of the National Academy of Sciences, USA – volume: 262 start-page: 148 year: 2017 end-page: 164 article-title: Nectar biology: from molecules to ecosystems publication-title: Plant Science – volume: 368 start-page: 195 year: 1994 article-title: Origin of insect pollination publication-title: Nature – volume: 123 start-page: 247 year: 2019 end-page: 261 article-title: Evolutionary ecology of nectar publication-title: Annals of Botany – volume: 106 start-page: 9322 year: 2009 end-page: 9327 article-title: A global assessment of endemism and species richness across Island and mainland regions publication-title: Proceedings of the National Academy of Sciences, USA – year: 2014 – volume: 45 start-page: 547 year: 2014 end-page: 572 article-title: Biome shifts and niche evolution in plants publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 32 start-page: 1107 year: 2005 end-page: 1116 article-title: Global patterns of plant diversity and floristic knowledge publication-title: Journal of Biogeography – volume: 20 year: 2023 article-title: New calculations imply that 90% of flowering plant species are animal‐pollinated publication-title: National Science Review – volume: 27 start-page: 897 year: 2017 end-page: 904 article-title: False blister beetles and the expansion of gymnosperm‐insect pollination modes before angiosperm dominance publication-title: Current Biology – volume: 26 start-page: 1452 year: 2023 end-page: 1465 article-title: The ecological causes of functional distinctiveness in communities publication-title: Ecology Letters – volume: 47 start-page: 16 year: 2019 end-page: 43 article-title: GIFT–a global inventory of floras and traits for macroecology and biogeography publication-title: Journal of Biogeography – volume: 237 start-page: 1432 year: 2023 end-page: 1445 article-title: Global models and predictions of plant diversity based on advanced machine learning techniques publication-title: New Phytologist – volume: 238 start-page: 7 year: 2003 end-page: 21 article-title: Nectar biodiversity: a short review publication-title: Plant Systematics and Evolution – year: 2022 – volume: 29 start-page: 992 year: 2020 end-page: 1007 article-title: Global gradients in intraspecific variation in vegetative and floral traits are partially associated with climate and species richness publication-title: Global Ecology and Biogeography – volume: 261 start-page: 201 year: 2016 end-page: 217 article-title: The number of known plant species in the world and its annual increase publication-title: Phytotaxa – volume: 31 start-page: 940 year: 2022 end-page: 953 article-title: Increasing pollen production at high latitudes across animal‐pollinated flowering plants publication-title: Global Ecology and Biogeography – volume: 41 start-page: 39 year: 2014 end-page: 51 article-title: Species richness and evolutionary speed: the influence of temperature, water and area publication-title: Journal of Biogeography – start-page: 19 year: 2007 end-page: 128 – volume: 235 start-page: 2054 year: 2022 end-page: 2065 article-title: Global analysis of floral longevity reveals latitudinal gradients and biotic and abiotic correlates publication-title: New Phytologist – volume: 23 start-page: 129 year: 2020 end-page: 139 article-title: Pollination outcomes reveal negative density‐dependence coupled with interspecific facilitation among plants publication-title: Ecology Letters – volume: 22 start-page: 1925 year: 2012 end-page: 1931 article-title: Specialisation of mutualistic interaction networks decreases toward tropical latitudes publication-title: Current Biology – volume: 23 start-page: 123 year: 2008 end-page: 130 article-title: Plant–pollinator interactions and the assembly of plant communities publication-title: Trends in Ecology & Evolution – volume: 100 start-page: 9383 year: 2003 end-page: 9387 article-title: The nested assembly of plant‐animal mutualistic networks publication-title: Proceedings of the National Academy of Sciences, USA – volume: 31 start-page: 91 year: 2021 end-page: 99 article-title: Mutualisms and (a)symmetry in plant–pollinator interactions publication-title: Current Biology – volume: 75 start-page: 315 year: 1994 end-page: 329 article-title: Floral character displacement generates assemblage structure of Western Australian triggerplants ( ) publication-title: Ecology – volume: 11 start-page: 362 year: 1996 end-page: 366 article-title: Plant diversity in Mediterranean‐climate regions publication-title: Trends in Ecology & Evolution – volume: 191 start-page: 1128 year: 2011 end-page: 1140 article-title: Transition from wind pollination to insect pollination in sedges: experimental evidence and functional traits publication-title: New Phytologist – volume: 25 start-page: 1711 year: 2022 end-page: 1724 article-title: The latitudinal gradient in plant community assembly processes: a meta‐analysis publication-title: Ecology Letters – volume: 356 start-page: 742 year: 2017 end-page: 744 article-title: Higher predation risk for insect prey at low latitudes and elevations publication-title: Science – start-page: 305 year: 1983 end-page: 329 – volume: 174 start-page: 1219 year: 2013 end-page: 1228 article-title: Experimental evidence of insect pollination in Juncaceae, a primarily wind‐pollinated family publication-title: International Journal of Plant Sciences – volume: 12 start-page: 486 year: 2009 end-page: 490 article-title: The sweetest thing: advances in nectar research publication-title: Current Opinion in Plant Biology – volume: 9 start-page: 65 year: 2004 end-page: 69 article-title: Nectar: properties, floral aspects, and speculations on origin publication-title: Trends in Plant Science – volume: 70 start-page: 1 year: 2017 end-page: 12 article-title: New perspectives in nectar evolution and ecology: simple alimentary reward or a complex multiorganism interaction? publication-title: Acta Agrobotanica – volume: 34 start-page: 273 year: 2003 end-page: 309 article-title: Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 181 start-page: 77 year: 1992 end-page: 95 article-title: Reproductive biology of a primitive angiosperm, (Winteraceae), and the evolution of pollination systems in the Anthophyta publication-title: Plant Systematics and Evolution – volume: 110 start-page: 308 year: 1963 end-page: 337 article-title: Das sexuelle Anlockungsprinzip der Catasetinen‐und Stanhopeen‐Blüten und die wahre Funktion ihres sogenannten Futtergewebes publication-title: Österreichische Botanische Zeitschrift – volume: 18 start-page: 200 year: 1995 end-page: 205 article-title: The elevational gradient of species richness: a uniform pattern? publication-title: Ecography – volume: 120 start-page: 321 year: 2011 end-page: 326 article-title: How many flowering plants are pollinated by animals? publication-title: Oikos – volume: 31 start-page: 339 year: 2016 end-page: 341 article-title: Floral nectar: pollinator attraction or manipulation? publication-title: Trends in Ecology & Evolution – volume: 240 start-page: 1636 year: 2023 end-page: 1646 article-title: Global hotspots of plant phylogenetic diversity publication-title: New Phytologist – volume: 28 start-page: 1 year: 1962 end-page: 239 article-title: Classification of natural communities publication-title: The Botanical Review – start-page: 44 year: 2012 end-page: 67 – volume: 74 start-page: 1874 year: 2020 end-page: 1876 article-title: Digest: floral evolution through the lens of the community context publication-title: Evolution – volume: 47 start-page: 383 year: 2016 end-page: 407 article-title: Mediterranean biomes: evolution of their vegetation, floras, and climate publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 104 year: 2023 article-title: Opossums and birds facilitate the unexpected bat visitation to the ground‐flowering publication-title: Ecology – volume: 100 year: 2019 article-title: Saurian surprise: lizards pollinate South Africa's enigmatic hidden flower publication-title: Ecology – volume: 44 start-page: 1486 year: 2021 end-page: 1500 article-title: Functional trait dimensions of trophic metacommunities publication-title: Ecography – volume: 29 start-page: 3413 year: 2020 end-page: 3428 article-title: Global patterns of population genetic differentiation in seed plants publication-title: Molecular Ecology – volume: 167 start-page: 165 year: 1989 end-page: 187 article-title: Beetle pollination and flowering rhythm of spp. (Annonaceae) in Brazil publication-title: Plant Systematics and Evolution – volume: 326 start-page: 808 year: 2009 end-page: 809 article-title: Evolution of animal pollination publication-title: Science – volume: 10 start-page: 315 year: 2007 end-page: 331 article-title: Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography publication-title: Ecology Letters – volume: 71 start-page: 1149 year: 1984 end-page: 1160 article-title: The role of resin in angiosperm pollination: ecological and chemical considerations publication-title: American Journal of Botany – volume: 20 start-page: 570 year: 2011 end-page: 581 article-title: The role of climate and plant functional trade‐offs in shaping global biome and biodiversity patterns publication-title: Global Ecology and Biogeography – volume: 31 start-page: 529 year: 2020 end-page: 539 article-title: The neglected importance of floral traits in trait‐based plant community assembly publication-title: Journal of Vegetation Science – volume: 65 start-page: 13 year: 2011 end-page: 21 article-title: A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike's information criterion publication-title: Behavioral Ecology and Sociobiology – volume: 23 start-page: 159 year: 2009 end-page: 179 article-title: Associations between floral specialisation and species diversity: cause, effect, or correlation? publication-title: Evolutionary Ecology – volume: 87 start-page: 1234 year: 2006 end-page: 1243 article-title: The influence of productivity on the species richness of plants: a critical assessment publication-title: Ecology – volume: 98 start-page: 340 year: 2002 end-page: 350 article-title: Latitudinal trends in plant–pollinator interactions: are tropical plants more specialised? publication-title: Oikos – volume: 83 start-page: 2416 year: 2002 end-page: 2424 article-title: Geographic patterns in plant–pollinator mutualistic networks publication-title: Ecology – volume: 41 start-page: 8 year: 2014 end-page: 22 article-title: Why are there so many species in the tropics? publication-title: Journal of Biogeography – volume: 53 start-page: 732 year: 1999 end-page: 744 article-title: Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families publication-title: Evolution – volume: 21 start-page: 713 year: 2013 end-page: 721 article-title: Diversity and distribution of floral resources influence the restoration of plant–pollinator networks on a reclaimed strip mine publication-title: Restoration Ecology – volume: 16 start-page: 191 year: 2011 end-page: 200 article-title: Nectar: generation, regulation and ecological functions publication-title: Trends in Plant Science – volume: 91 start-page: 767 year: 2004 end-page: 777 article-title: On the origin of the fig: phylogenetic relationships of Moraceae from ndhF sequences publication-title: American Journal of Botany – year: 1979 – volume: 356 start-page: 1389 year: 2017 end-page: 1392 article-title: Plant diversity increases with the strength of negative density dependence at the global scale publication-title: Science – volume: 163 start-page: 192 year: 2004 end-page: 211 article-title: On the generality of the latitudinal diversity gradient publication-title: American Naturalist – volume: 9 start-page: 253 year: 2016 end-page: 262 article-title: The macroecology of animal versus wind pollination: ecological factors are more important than historical climate stability publication-title: Plant Ecology and Diversity – volume: 50 start-page: 191 year: 2019 end-page: 217 article-title: Importance of pollinator‐mediated interspecific pollen transfer for angiosperm evolution publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 104 start-page: 205 year: 2009 end-page: 219 article-title: Nectar and pollination drops: how different are they? publication-title: Annals of Botany – start-page: 283 year: 2006 end-page: 308 – volume: 58 start-page: 58 year: 1971 article-title: Ölproduzierende Blumen, die durch ölsammelnde Bienen bestäubt werden publication-title: Naturwissenschaften – volume: 198 start-page: 441 year: 2021 end-page: 459 article-title: The evolution of resource provisioning in pollination mutualisms publication-title: The American Naturalist – volume: 16 start-page: 119 year: 2015 end-page: 125 article-title: Using the literature to test pollination syndromes – some methodological cautions publication-title: Journal of Pollination Ecology – volume: 7 start-page: 445 year: 2021 end-page: 451 article-title: Angiosperm pollinivory in a Cretaceous beetle publication-title: Nature Plants – volume: 29 start-page: 6 year: 2018 end-page: 14 article-title: New insights into plants co‐existence in species‐rich communities: the pollination interaction perspective publication-title: Journal of Vegetation Science – volume: 99 start-page: 838 year: 2011 end-page: 848 article-title: Competition may explain the fine‐scale spatial patterns and genetic structure of two co‐occurring plant congeners publication-title: Journal of Ecology – year: 2015 – volume: 26 start-page: 119 year: 2020 end-page: 188 article-title: TRY plant trait database–enhanced coverage and open access publication-title: Global Change Biology – volume: 65 start-page: 1775 year: 1984 end-page: 1779 article-title: Photosynthate allocation to floral nectar: a neglected energy investment publication-title: Ecology – volume: 17 start-page: 361 year: 2002 end-page: 369 article-title: The evolution of wind pollination in angiosperms publication-title: Trends in Ecology & Evolution – volume: 48 start-page: 353 year: 2017 end-page: 376 article-title: Pollinator diversity: distribution, ecological function, and conservation publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 33 start-page: 261 year: 2004 end-page: 304 article-title: Multimodel inference: understanding AIC and BIC in model selection publication-title: Sociological Methods & Research – volume: 30 start-page: 697 year: 2021 end-page: 709 article-title: Environmental drivers of plant distributions at global and regional scales publication-title: Global Ecology and Biogeography – volume: 31 start-page: 88 year: 2017 end-page: 100 article-title: The specialization continuum in pollination systems: diversity of concepts and implications for ecology, evolution and conservation publication-title: Functional Ecology – volume: 6 start-page: 1423 year: 2022 end-page: 1437 article-title: Co‐limitation towards lower latitudes shapes global forest diversity gradients publication-title: Nature Ecology & Evolution – volume: 15 start-page: 319 year: 2012 end-page: 328 article-title: Understanding and planning ecological restoration of plant–pollinator networks publication-title: Ecology Letters – volume: 146 start-page: 1999 year: 2020 end-page: 2049 article-title: The ERA5 global reanalysis publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 24 start-page: 1741 year: 2021 end-page: 1749 article-title: Plants and pollinators: will natural selection cause an imbalance between nectar supply and demand? publication-title: Ecology Letters – volume: 85 start-page: 1527 year: 2004 end-page: 1533 article-title: Heritability of nectar traits: why do we know so little? publication-title: Ecology – volume: 35 start-page: 76 year: 1986 end-page: 85 article-title: Insect reproduction and floral fragrances: keys to the evolution of the angiosperms? publication-title: Taxon – volume: 98 start-page: 2078 year: 2023 end-page: 2090 article-title: Floral nectar production: what cost to a plant? publication-title: Biological Reviews – volume: 9 start-page: 851 year: 2018 article-title: Fire and plant diversification in Mediterranean‐climate regions publication-title: Frontiers in Plant Science – volume: 92 start-page: 19 year: 2011 end-page: 25 article-title: Rareness and specialization in plant–pollinator networks publication-title: Ecology – volume: 85 start-page: 1251 year: 2004 end-page: 1257 article-title: Asymmetric specialization: a pervasive feature of plant–pollinator interactions publication-title: Ecology – volume: 6 year: 2011 article-title: Specialization in plant–hummingbird networks is associated with species richness, contemporary precipitation and quaternary climate‐change velocity publication-title: PLoS ONE – volume: 38 start-page: 171 year: 2022 end-page: 182 article-title: The multiscale feedback theory of biodiversity publication-title: Trends in Ecology & Evolution – volume: 326 start-page: 840 year: 2009 end-page: 847 article-title: A probable pollination mode before angiosperms: Eurasian, long‐proboscid scorpionflies publication-title: Science – volume: 10 start-page: 507 year: 2021 article-title: Evolutionary and ecological considerations on nectar‐mediated tripartite interactions in angiosperms and their relevance in the mediterranean basin publication-title: Plants – volume: 128 start-page: 383 year: 2021 end-page: 394 article-title: Spatial variation in the intensity of interactions via heterospecific pollen transfer may contribute to local and global patterns of plant diversity publication-title: Annals of Botany – volume: 57 start-page: 602 year: 2008 end-page: 611 article-title: Towards target 1 of the global strategy for plant conservation: a working list of all known plant species – progress and prospects publication-title: Taxon – volume: 76 start-page: 274 year: 1988 end-page: 287 article-title: Pollination relationships in southern Spanish Mediterranean shrublands publication-title: Journal of Ecology – volume: 26 start-page: 640 year: 2023 end-page: 657 article-title: Trait‐dependent diversification in angiosperms: patterns, models and data publication-title: Ecology Letters – year: 2023 – volume: 9 year: 2018 article-title: Nectar in plant–insect mutualistic relationships: from food reward to partner manipulation publication-title: Frontiers in Plant Science – volume: 140 start-page: 893 year: 1992 end-page: 911 article-title: The elevational gradient in altitudinal range: an extension of Rapoport's latitudinal rule to altitude publication-title: The American Naturalist – start-page: 260 year: 2006 end-page: 282 – volume: 11 start-page: 173 year: 2008 end-page: 183 article-title: Global variation in diversification rates of flowering plants: energy vs. climate change publication-title: Ecology Letters – volume: 31 start-page: 343 year: 2000 end-page: 366 article-title: Mechanisms of maintenance of species diversity publication-title: Annual Review of Ecology, Evolution, and Systematics – ident: e_1_2_9_89_1 doi: 10.1080/17550874.2016.1207722 – ident: e_1_2_9_50_1 doi: 10.1038/368195a0 – ident: e_1_2_9_88_1 doi: 10.1111/ele.13823 – ident: e_1_2_9_65_1 doi: 10.5586/aa.1704 – ident: e_1_2_9_68_1 doi: 10.1093/aob/mcp124 – ident: e_1_2_9_38_1 doi: 10.1111/mec.15575 – ident: e_1_2_9_119_1 doi: 10.1016/j.tree.2022.09.008 – ident: e_1_2_9_15_1 doi: 10.1016/j.pbi.2009.04.002 – ident: e_1_2_9_79_1 doi: 10.2307/25066027 – ident: e_1_2_9_69_1 doi: 10.1111/ele.14019 – ident: e_1_2_9_107_1 doi: 10.1016/j.cub.2020.11.020 – ident: e_1_2_9_110_1 doi: 10.1007/BF00620817 – ident: e_1_2_9_64_1 doi: 10.1111/ele.14265 – ident: e_1_2_9_43_1 doi: 10.1111/ele.14170 – ident: e_1_2_9_7_1 doi: 10.1111/1365-2435.12783 – volume-title: Principles of pollination ecology, 3rd edn year: 1979 ident: e_1_2_9_36_1 – ident: e_1_2_9_11_1 doi: 10.1111/ecog.05869 – ident: e_1_2_9_33_1 doi: 10.1146/annurev-ecolsys-120213-091905 – ident: e_1_2_9_70_1 doi: 10.1890/0012-9658(2002)083[2416:GPIPPM]2.0.CO;2 – ident: e_1_2_9_28_1 doi: 10.3732/ajb.91.5.767 – ident: e_1_2_9_112_1 doi: 10.1111/jbi.13623 – ident: e_1_2_9_9_1 doi: 10.1007/s10682-008-9259-z – ident: e_1_2_9_51_1 doi: 10.1111/gcb.14904 – ident: e_1_2_9_93_1 doi: 10.1016/j.plantsci.2017.04.012 – ident: e_1_2_9_8_1 doi: 10.2307/1939537 – ident: e_1_2_9_52_1 doi: 10.1073/pnas.0810306106 – ident: e_1_2_9_30_1 doi: 10.1111/j.1461-0248.2012.01740.x – ident: e_1_2_9_118_1 doi: 10.1111/j.1469-8137.2011.03762.x – ident: e_1_2_9_45_1 doi: 10.1002/qj.3803 – start-page: 44 volume-title: Evolution of plant–pollinator relationships year: 2012 ident: e_1_2_9_6_1 – ident: e_1_2_9_46_1 doi: 10.1086/381004 – ident: e_1_2_9_53_1 doi: 10.1111/j.1365-2699.2005.01272.x – ident: e_1_2_9_54_1 doi: 10.1073/pnas.0608361104 – ident: e_1_2_9_67_1 doi: 10.3389/fpls.2018.01063 – ident: e_1_2_9_57_1 doi: 10.1038/s41559-022-01831-x – ident: e_1_2_9_103_1 doi: 10.1007/s00265-010-1037-6 – ident: e_1_2_9_31_1 – ident: e_1_2_9_101_1 doi: 10.2307/1937773 – ident: e_1_2_9_83_1 doi: 10.1111/brv.12997 – ident: e_1_2_9_106_1 doi: 10.1093/nsr/nwad219 – ident: e_1_2_9_2_1 doi: 10.1002/ecy.3935 – ident: e_1_2_9_58_1 doi: 10.1007/BF00937588 – ident: e_1_2_9_73_1 doi: 10.1034/j.1600-0706.2002.980215.x – ident: e_1_2_9_39_1 doi: 10.1890/0012-9658(2006)87[1234:TIOPOT]2.0.CO;2 – ident: e_1_2_9_25_1 doi: 10.1111/geb.13469 – ident: e_1_2_9_47_1 doi: 10.1111/geb.13251 – ident: e_1_2_9_113_1 – ident: e_1_2_9_18_1 doi: 10.1111/nph.18533 – ident: e_1_2_9_44_1 doi: 10.2307/2260469 – ident: e_1_2_9_76_1 doi: 10.1111/j.1600-0706.2010.18644.x – ident: e_1_2_9_92_1 doi: 10.1126/science.aaj1631 – ident: e_1_2_9_20_1 doi: 10.11646/phytotaxa.261.3.1 – ident: e_1_2_9_61_1 doi: 10.1890/03-0388 – ident: e_1_2_9_72_1 doi: 10.1126/science.1181154 – ident: e_1_2_9_105_1 doi: 10.1038/s41477-021-00893-2 – ident: e_1_2_9_80_1 doi: 10.2307/1221036 – ident: e_1_2_9_32_1 doi: 10.1111/j.1558-5646.1999.tb05367.x – ident: e_1_2_9_87_1 doi: 10.1016/B978-0-12-583980-8.50019-3 – ident: e_1_2_9_16_1 doi: 10.1111/jbi.12228 – ident: e_1_2_9_96_1 doi: 10.1016/j.tree.2007.11.003 – ident: e_1_2_9_13_1 doi: 10.1007/978-1-4020-5937-7_2 – ident: e_1_2_9_27_1 doi: 10.1371/journal.pone.0025891 – ident: e_1_2_9_4_1 doi: 10.1002/j.1537-2197.1984.tb11968.x – ident: e_1_2_9_77_1 doi: 10.1007/s00606-002-0277-y – ident: e_1_2_9_90_1 doi: 10.1126/science.1178338 – ident: e_1_2_9_108_1 doi: 10.1890/03-3112 – ident: e_1_2_9_35_1 doi: 10.1111/jvs.12877 – ident: e_1_2_9_75_1 doi: 10.26786/1920-7603(2015)17 – ident: e_1_2_9_10_1 doi: 10.1073/pnas.1633576100 – ident: e_1_2_9_78_1 doi: 10.1093/aob/mcy132 – ident: e_1_2_9_109_1 doi: 10.1007/BF01373137 – ident: e_1_2_9_97_1 doi: 10.1146/annurev.ecolsys.39.110707.173430 – ident: e_1_2_9_12_1 doi: 10.1111/ele.13415 – ident: e_1_2_9_63_1 doi: 10.1146/annurev-ecolsys-110218-024804 – start-page: 283 volume-title: Plant–Pollinator interactions: from specialisation to generalization year: 2006 ident: e_1_2_9_74_1 – ident: e_1_2_9_19_1 doi: 10.1146/annurev.ecolsys.31.1.343 – ident: e_1_2_9_104_1 doi: 10.1111/nph.19151 – ident: e_1_2_9_116_1 – ident: e_1_2_9_55_1 doi: 10.1111/geb.13077 – ident: e_1_2_9_71_1 doi: 10.1146/annurev-ecolsys-110316-022919 – ident: e_1_2_9_22_1 doi: 10.1016/0169-5347(96)10044-6 – ident: e_1_2_9_91_1 doi: 10.1111/j.1466-8238.2010.00621.x – ident: e_1_2_9_17_1 doi: 10.1177/0049124104268644 – ident: e_1_2_9_29_1 doi: 10.1016/j.tplants.2003.12.003 – ident: e_1_2_9_37_1 doi: 10.1111/jvs.12592 – ident: e_1_2_9_115_1 doi: 10.1146/annurev.ecolsys.34.012103.144032 – ident: e_1_2_9_49_1 doi: 10.1111/j.1461-0248.2007.01138.x – ident: e_1_2_9_40_1 doi: 10.1111/jbi.12173 – ident: e_1_2_9_59_1 doi: 10.1111/j.1365-2745.2011.01812.x – ident: e_1_2_9_99_1 doi: 10.2307/2398800 – ident: e_1_2_9_114_1 doi: 10.1007/BF02860872 – ident: e_1_2_9_14_1 – ident: e_1_2_9_41_1 doi: 10.1007/BF00936404 – start-page: 260 volume-title: Plant–pollinator interactions: from specialisation to generalisation year: 2006 ident: e_1_2_9_5_1 – ident: e_1_2_9_81_1 doi: 10.1016/j.cub.2017.02.009 – ident: e_1_2_9_111_1 doi: 10.2307/2265575 – ident: e_1_2_9_66_1 doi: 10.3390/plants10030507 – ident: e_1_2_9_82_1 doi: 10.1016/j.tree.2016.02.013 – ident: e_1_2_9_94_1 doi: 10.3389/fpls.2018.00851 – ident: e_1_2_9_56_1 doi: 10.1126/science.aam5678 – ident: e_1_2_9_48_1 doi: 10.1086/673247 – ident: e_1_2_9_21_1 doi: 10.1098/rspb.2023.0344 – ident: e_1_2_9_98_1 doi: 10.1016/j.cub.2012.08.015 – ident: e_1_2_9_3_1 doi: 10.1093/aob/mcab082 – ident: e_1_2_9_102_1 doi: 10.1086/285447 – ident: e_1_2_9_86_1 doi: 10.1111/evo.14055 – ident: e_1_2_9_60_1 doi: 10.1086/715746 – ident: e_1_2_9_85_1 doi: 10.1111/j.1600-0587.1995.tb00341.x – ident: e_1_2_9_34_1 doi: 10.1890/10-0794.1 – ident: e_1_2_9_42_1 doi: 10.1016/j.tplants.2011.01.003 – volume-title: R: a language and environment for statistical computing year: 2023 ident: e_1_2_9_84_1 – ident: e_1_2_9_117_1 – ident: e_1_2_9_100_1 doi: 10.1111/nph.18271 – ident: e_1_2_9_23_1 doi: 10.1002/ecy.2670 – ident: e_1_2_9_24_1 doi: 10.1016/S0169-5347(02)02540-5 – ident: e_1_2_9_95_1 doi: 10.1146/annurev-ecolsys-121415-032330 – ident: e_1_2_9_62_1 doi: 10.1111/j.1461-0248.2007.01020.x – ident: e_1_2_9_26_1 doi: 10.1111/rec.12003 |
SSID | ssj0009562 |
Score | 2.4937153 |
Snippet | Summary
The diversity of plant–pollinator interactions is grounded in floral resources, with nectar considered one of the main floral rewards plants produce... The diversity of plant–pollinator interactions is grounded in floral resources, with nectar considered one of the main floral rewards plants produce for... The diversity of plant-pollinator interactions is grounded in floral resources, with nectar considered one of the main floral rewards plants produce for... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2008 |
SubjectTerms | altitude Angiosperms animal pollination animals Climate Distribution patterns Diversification floral resources Flowers Geographical distribution Gradients latitudinal gradient Nectar nectar secretion nectar‐producing plants Plant communities Plant diversity Plant nectar Plant reproduction Plant species Plants Plants (botany) Pollination pollinator community Pollinators rewards species |
Title | How many animal‐pollinated angiosperms are nectar‐producing? |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.19940 https://www.ncbi.nlm.nih.gov/pubmed/38952269 https://www.proquest.com/docview/3086459438 https://www.proquest.com/docview/3074728067 https://www.proquest.com/docview/3153739760 |
Volume | 243 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1JS8QwFMeDiAcv7svoKFU8eKm0TZq0eHDDoQiKiMIchJKkqQ7OdIZZED35EfyMfhJf0oVxRbyV9rVN07y832uTfxDacSEGUpwEdgDh2SYqDe1QEGorxoTHPch_Ev0d8vyCRjfkrOk3J9B-ORcm14eoPrhpzzD9tXZwLgZjTp717vVUO6LzdT1WSwPRlTcmuEu9UoGZEtosVIX0KJ7qzI-x6AtgfuRVE3Aas-i2LGo-zuRhbzQUe_L5k4rjP59lDs0UIGod5S1nHk2obAFNHXcBFp8W0WHUfbQ6sGnxrNXh7beX156R7wY0TWDfXctIjHcGFu8rK4Nek_e1jdGPhWh4sIRuGqfXJ5FdLLZgSxxQxzbzmiTmMgySRACm-YISxRLMFQVMcF2VcEAfyaiPiQBqlCz1XZzCXuw7MsHLaDLrZmoVWa5e0Ziw1GECLiRSIAKgYiGhKxGOp9Ia2i2rPZaFErleEKMdlxkJ1Eds6qOGtivTXi6_8Z1RvXx3ceGBgxhDrkb8kOCghraqw-A7-ocIz1R3pG0gmdK_ltkvNhASmIY2uM1K3i6qkgDsaXwN4YHM2_25iPHFZWQ21v5uuo6mPSCofEBbHU0O-yO1AQQ0FJumqb8DACEBKA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL0CWolu6Iu2A7SkVSt1E5TEjp0sENACCgVGVQXS7ILtOC2CyYzmIURXfEI_pL_CT_AlXDsPQQtVNyzYRc6V49i-Puf6cQzw3kcMZCSL3Ajh2aU6j91YUuZqzmUgAox_MjMPudtmyT790gk7E_C7PgtT6kM0E27GM-x4bRzcTEhf8fKi_8OctaNetaVyW5-eYMA2XN5ax9b9EASbG3ufE7e6U8BVJGKea4_vKCJUHGWZRDYSSkY1z4jQDNHQ93UmEOEVZyGhEsmR4nnokxxTSeipjGC-k_DA3CBulPrXvwVXJH5ZUGs-M8o6lY6R2TfUFPU6-v1Faa8zZAtxm4_hvK6ccmfL0dJ4JJfUzz90I-9L7T2BmYprO2ulczyFCV08g4efesiHT5_DatI7cbr46IjisCuOL85-9a1CObLvDNO-H1oV9e7QEQPtFAgMYmBsrEQuAv7KLOzfSelfwFTRK_QrcHxzaTPlucclZiRzJD1I_KXC0VJ6gc5b8LFu51RVYuvmzo_jtA66sP5TW_8teNeY9kuFkZuMFurOklaDzDAlGI7SMKYkasHb5jUOD2bNRxS6NzY2GC-a1XP-DxtEPW54KX7mZdkRm5IgnzUMPcYfst3p9iKm7a-JfZj7f9NFmE72dnfSna329jw8CpAwlvv3FmBqNBjr10j4RvKN9TMHDu66a14CMOtdug |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qLULd0PLs9AEBgcQmVRI7drJAlDKMphRGFaLS7FK_0lZ0MqN5qGpXfAL_wa_wFf0Srp2HWl5i0wW7yLlyHNvX51w_jgGehYiBjOjETxCefWry1E8lZb7hXEYiwvhH23nIDz3W3afv-nF_Dr7VZ2FKfYhmws16hhuvrYOPdH7JyYvRkT1qR4NqR-WuOTvFeG3ycqeNjfs8ijpvP73p-tWVAr4iCQt8d3pHEaHSRGuJZCSWjBquiTAMwTAMjRYI8IqzmFCJ3EjxPA5JjqkkDpQmmO8NWKAsSO09Ee2P0SWFXxbVks-Msn4lY2S3DTVFvQp-vzDaqwTZIVxnCb7XdVNubPm8OZvKTXX-k2zkf1J5y3C7Ytre69I17sCcKe7Cze0hsuGze7DVHZ56A3z0RHE8ECcXX76OnD45cm-NaYfHTkN9MPHE2HgFwoIYWxsnkItw_-o-7F9L6R_AfDEszAp4ob2ymfI84BIzkjlSHqT9UuFYKYPI5C14UTdzpiqpdXvjx0lWh1xY_5mr_xY8bUxHpb7I74zW676SVUPMJCMYjNI4pSRpwZPmNQ4OdsVHFGY4szYYLdq1c_4XG8Q8blkpfuZh2Q-bkiCbtfw8xR9yvenPRcx6e133sPrvpo_h1l67k73f6e2uwWKEbLHcvLcO89PxzGwg25vKR87LPDi47p75A5_uXGk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+many+animal%E2%80%90pollinated+angiosperms+are+nectar%E2%80%90producing%3F&rft.jtitle=The+New+phytologist&rft.au=Ballarin%2C+Caio+S&rft.au=Font%C3%BArbel%2C+Francisco+E&rft.au=Rech%2C+Andr%C3%A9+R&rft.au=Oliveira%2C+Paulo+E&rft.date=2024-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=243&rft.issue=5&rft.spage=2008&rft.epage=2020&rft_id=info:doi/10.1111%2Fnph.19940&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |