Analysis and mean-field derivation of a porous-medium equation with fractional diffusion
A mean-field-type limit from stochastic moderately interacting many-particle systems with singular Riesz potential is performed, leading to nonlocal porous-medium equations in the whole space. The nonlocality is given by the inverse of a fractional Laplacian, and the limit equation can be interprete...
Saved in:
Published in | Communications in partial differential equations Vol. 47; no. 11; pp. 2217 - 2269 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
02.11.2022
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0360-5302 1532-4133 |
DOI | 10.1080/03605302.2022.2118608 |
Cover
Abstract | A mean-field-type limit from stochastic moderately interacting many-particle systems with singular Riesz potential is performed, leading to nonlocal porous-medium equations in the whole space. The nonlocality is given by the inverse of a fractional Laplacian, and the limit equation can be interpreted as a transport equation with a fractional pressure. The proof is based on Oelschläger's approach and a priori estimates for the associated diffusion equations, coming from energy-type and entropy inequalities as well as parabolic regularity. An existence analysis of the fractional porous-medium equation is also provided, based on a careful regularization procedure, new variants of fractional Gagliardo-Nirenberg inequalities, and the div-curl lemma. A consequence of the mean-field limit estimates is the propagation of chaos property. |
---|---|
AbstractList | A mean-field-type limit from stochastic moderately interacting many-particle systems with singular Riesz potential is performed, leading to nonlocal porous-medium equations in the whole space. The nonlocality is given by the inverse of a fractional Laplacian, and the limit equation can be interpreted as a transport equation with a fractional pressure. The proof is based on Oelschläger's approach and a priori estimates for the associated diffusion equations, coming from energy-type and entropy inequalities as well as parabolic regularity. An existence analysis of the fractional porous-medium equation is also provided, based on a careful regularization procedure, new variants of fractional Gagliardo-Nirenberg inequalities, and the div-curl lemma. A consequence of the mean-field limit estimates is the propagation of chaos property. |
Author | Holzinger, Alexandra Jüngel, Ansgar Zamponi, Nicola Chen, Li |
Author_xml | – sequence: 1 givenname: Li surname: Chen fullname: Chen, Li organization: School of Business Informatics and Mathematics, University of Mannheim – sequence: 2 givenname: Alexandra surname: Holzinger fullname: Holzinger, Alexandra organization: Institute for Analysis and Scientific Computing, Vienna University of Technology – sequence: 3 givenname: Ansgar surname: Jüngel fullname: Jüngel, Ansgar organization: Institute for Analysis and Scientific Computing, Vienna University of Technology – sequence: 4 givenname: Nicola surname: Zamponi fullname: Zamponi, Nicola organization: School of Business Informatics and Mathematics, University of Mannheim |
BookMark | eNqFkE1Lw0AQhhepYFv9CcKC59T9yCYbvFiKXyB4UfC2TLO7uCXJtruJpf_exNSLB73MB_O-w8wzQ5PGNwahS0oWlEhyTXhGBCdswQjrA6UyI_IETangLEkp5xM0HTTJIDpDsxg3hFDJinSK3pcNVIfoIoZG49pAk1hnKo21Ce4TWucb7C0GvPXBdzGpjXZdjc2uG2d7135gG6AcOqiwdtZ2sa_P0amFKpqLY56jt_u719Vj8vzy8LRaPicll6JNbMZkKjIGRBqRcslMKjNWaCIyDqUBYfXaQrou10xolheSC9CyIIRbLjinfI6uxr3b4Hedia3a-C70p0TFciHztMhJ1qtuRlUZfIzBWFW69vuDNoCrFCVqQKl-UKoBpTqi7N3il3sbXA3h8K_vdvS5xvpQw96HSqsWDpUPPbOmdFHxv1d8ASoNjDc |
CitedBy_id | crossref_primary_10_3390_su162310486 crossref_primary_10_1007_s00332_025_10144_9 crossref_primary_10_1063_5_0235162 |
Cites_doi | 10.1016/j.cnsns.2019.04.014 10.1002/cpa.20223 10.1007/s00205-014-0786-1 10.4171/IFB/445 10.1142/3302 10.1007/s00332-021-09754-w 10.1017/S0956792500002242 10.1016/j.jde.2014.10.003 10.1007/978-3-319-49996-3_10 10.1007/978-0-387-70914-7 10.5802/jedp.623 10.1007/s00285-014-0781-z 10.1002/cpa.21408 10.3934/dcds.2015.35.5725 10.1007/978-3-0348-0513-1 10.4171/JEMS/401 10.1080/03605302.2020.1814325 10.1515/9783110571660-012 10.1103/physrevb.50.1126 10.2422/2036-2145.202105_087 10.1016/j.crma.2011.06.003 10.1016/S0246-0203(99)80002-8 10.1016/0022-1236(84)90080-6 10.1214/aop/1176993301 10.3934/dcds.2011.29.1393 10.1007/BFb0085169 10.1007/s00033-019-1170-7 10.1090/jams/872 10.1016/j.na.2021.112393 10.1007/s00205-017-1168-2 10.1007/978-1-4612-0949-2 10.1007/978-3-642-25361-4_15 10.1007/978-3-319-61494-6_5 10.3934/dcdss.2012.5.115 10.1007/s00205-011-0420-4 10.1137/15M1042620 10.1016/j.anihpc.2011.02.006 10.1016/j.jde.2021.11.027 10.1016/j.jde.2019.09.029 10.1016/0022-0396(90)90101-T 10.1016/j.crma.2013.12.003 10.1080/03605302.2018.1475492 10.1215/00127094-2020-0019 |
ContentType | Journal Article |
Copyright | 2022 The Author(s). Published with license by Taylor & Francis Group, LLC 2022 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Author(s). Published with license by Taylor & Francis Group, LLC 2022 – notice: 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION 7SC 8FD H8D JQ2 L7M L~C L~D |
DOI | 10.1080/03605302.2022.2118608 |
DatabaseName | Taylor & Francis Open Access CrossRef Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1532-4133 |
EndPage | 2269 |
ExternalDocumentID | 10_1080_03605302_2022_2118608 2118608 |
Genre | Research Article |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 0YH 29F 2DF 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z N9A NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 8FD H8D JQ2 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c385t-f6284562a08e54382e48629d0563acea5fdbfa4bcb25d279835ad89003f353313 |
IEDL.DBID | 0YH |
ISSN | 0360-5302 |
IngestDate | Wed Aug 13 11:12:54 EDT 2025 Tue Jul 01 03:00:54 EDT 2025 Thu Apr 24 23:12:36 EDT 2025 Wed Dec 25 09:05:04 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-f6284562a08e54382e48629d0563acea5fdbfa4bcb25d279835ad89003f353313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/03605302.2022.2118608 |
PQID | 2758749706 |
PQPubID | 186205 |
PageCount | 53 |
ParticipantIDs | proquest_journals_2758749706 crossref_citationtrail_10_1080_03605302_2022_2118608 crossref_primary_10_1080_03605302_2022_2118608 informaworld_taylorfrancis_310_1080_03605302_2022_2118608 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-02 |
PublicationDateYYYYMMDD | 2022-11-02 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Communications in partial differential equations |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0030 CIT0032 CIT0031 CIT0034 CIT0033 Figalli A. (CIT0039) 2008; 4 CIT0036 CIT0038 CIT0037 CIT0040 CIT0043 CIT0042 CIT0001 CIT0044 CIT0003 CIT0047 CIT0002 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 Stein E. (CIT0046) 1970 CIT0010 CIT0012 CIT0011 Novotný E. F. A. (CIT0041) 2009 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 Nualart D. (CIT0045) 2006 CIT0019 CIT0021 CIT0020 CIT0023 CIT0022 Chen L. (CIT0035) 2021; 31 CIT0025 CIT0024 CIT0027 CIT0026 CIT0029 CIT0028 |
References_xml | – ident: CIT0040 – volume-title: Singular Limits in Thermodynamics of Viscous Fluids year: 2009 ident: CIT0041 – ident: CIT0009 doi: 10.1016/j.cnsns.2019.04.014 – ident: CIT0021 doi: 10.1002/cpa.20223 – volume: 31 start-page: 38 issue: 94 year: 2021 ident: CIT0035 publication-title: J. Nonlin. Sci – ident: CIT0004 doi: 10.1007/s00205-014-0786-1 – ident: CIT0020 doi: 10.4171/IFB/445 – ident: CIT0049 doi: 10.1142/3302 – ident: CIT0013 doi: 10.1007/s00332-021-09754-w – ident: CIT0002 doi: 10.1017/S0956792500002242 – ident: CIT0017 doi: 10.1016/j.jde.2014.10.003 – ident: CIT0029 doi: 10.1007/978-3-319-49996-3_10 – ident: CIT0047 doi: 10.1007/978-0-387-70914-7 – ident: CIT0028 doi: 10.5802/jedp.623 – ident: CIT0038 doi: 10.1007/s00285-014-0781-z – ident: CIT0026 doi: 10.1002/cpa.21408 – ident: CIT0042 doi: 10.3934/dcds.2015.35.5725 – ident: CIT0048 doi: 10.1007/978-3-0348-0513-1 – ident: CIT0019 doi: 10.4171/JEMS/401 – ident: CIT0024 doi: 10.1080/03605302.2020.1814325 – ident: CIT0001 doi: 10.1515/9783110571660-012 – ident: CIT0003 doi: 10.1103/physrevb.50.1126 – ident: CIT0012 doi: 10.2422/2036-2145.202105_087 – volume-title: The Malliavin Calculus and Related Topics year: 2006 ident: CIT0045 – ident: CIT0007 doi: 10.1016/j.crma.2011.06.003 – ident: CIT0034 doi: 10.1016/S0246-0203(99)80002-8 – ident: CIT0030 doi: 10.1016/0022-1236(84)90080-6 – ident: CIT0032 doi: 10.1214/aop/1176993301 – volume: 4 start-page: 185 year: 2008 ident: CIT0039 publication-title: Alea – ident: CIT0016 doi: 10.3934/dcds.2011.29.1393 – ident: CIT0031 doi: 10.1007/BFb0085169 – ident: CIT0036 doi: 10.1007/s00033-019-1170-7 – ident: CIT0011 doi: 10.1090/jams/872 – ident: CIT0022 doi: 10.1016/j.na.2021.112393 – ident: CIT0018 doi: 10.1007/s00205-017-1168-2 – ident: CIT0044 doi: 10.1007/978-1-4612-0949-2 – ident: CIT0027 doi: 10.1007/978-3-642-25361-4_15 – ident: CIT0005 doi: 10.1007/978-3-319-61494-6_5 – ident: CIT0037 doi: 10.3934/dcdss.2012.5.115 – ident: CIT0006 doi: 10.1007/s00205-011-0420-4 – ident: CIT0010 doi: 10.1137/15M1042620 – ident: CIT0043 doi: 10.1016/j.anihpc.2011.02.006 – ident: CIT0015 doi: 10.1016/j.jde.2021.11.027 – ident: CIT0025 doi: 10.1016/j.jde.2019.09.029 – ident: CIT0033 doi: 10.1016/0022-0396(90)90101-T – ident: CIT0008 doi: 10.1016/j.crma.2013.12.003 – ident: CIT0023 doi: 10.1080/03605302.2018.1475492 – ident: CIT0014 doi: 10.1215/00127094-2020-0019 – volume-title: Singular Integrals and Differentiability Properties of Functions year: 1970 ident: CIT0046 |
SSID | ssj0018294 |
Score | 2.3990374 |
Snippet | A mean-field-type limit from stochastic moderately interacting many-particle systems with singular Riesz potential is performed, leading to nonlocal... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2217 |
SubjectTerms | Diffusion Estimates Existence analysis fractional diffusion Inequalities interacting particle systems Mathematical analysis mean-field limit nonlocal porous-medium equation Porous media propagation of chaos Regularization Transport equations |
Title | Analysis and mean-field derivation of a porous-medium equation with fractional diffusion |
URI | https://www.tandfonline.com/doi/abs/10.1080/03605302.2022.2118608 https://www.proquest.com/docview/2758749706 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQu8CAeIpCqTywGhLbSZOxAqoIqUxUFJbIz4mm0Kb_n7s8KiqEOrBEsqJzlPPru_Pdd4TcxEpGqTEhsyqVTCZeMM2tZ1oL5IfTLhxicvLkOc6m8mkWtdGEqyasEm1oXxNFVHs1Lm6lV21E3B1sugEWuwHrjsMDIHKM6b5dDkARo_qCt2xzkZDwtGGQChjKtEk8f3WzdTxtkZf-2qyrE2h8RA4b6EhH9Vgfkz1XnJCDyYZ3dXVKZi3HCIWfo3OnClaFqFELE612vtKFp4oC6gaTn-HN-npO3VdN-E3RK0v9sk52gG9h-ZQ1-tPOyHT8-HKfsaZ2AjMiiUrmYzh3ANuoIHERXvY5CbZLagHvCGWcirzVXkltNI8sH6YAxJRN0K3pBSDAUJyTTrEo3AWhysHbQHprhJfKCy1THlpltPPOG2N7RLYqy01DLI71LT7ysOUfbTSdo6bzRtM9crsR-6yZNXYJpD_HIy8rl4av64_kYodsvx28vFmkq5yDrTSU6TCIL__R9RXZx2aVn8j7pFMu1-4agEqpB9VUHJDuKHt4f_0GMlveTA |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGYAB8RSFAh5YDUnspMmIEFWBtlMrlcnyc6IB2vT_c5dH1QqhDixZrLOVOz--O_u-I-QuUSLOjAmZVZlgIvWc6ch6pjVHfjjtwi4mJw9HSX8iXqfxdC0XBp9Vog_tK6KIcq_GxY3B6OZJ3APsugFWuwH3LoIPYOQE83134xS8CZjTwXt_dZOQRllNIRUwlGmyeP7qZuN82mAv_bVbl0dQ74gc1tiRPlbGPiY7Lj8hB8MV8erilEwbkhEKf0dnTuWsfKNGLcy0KvpKPz1VFGA3-PwMr9aXM-q-K8ZvimFZ6udVtgOMhfVTlhhQOyOT3vP4qc_q4gnM8DQumE_g4AFwo4LUxXjb5wQ4L5kFwMOVcSr2VnsltNFRbKNuBkhM2RTjmp4DBAz5OWnln7m7IFQ5aA2Et4Z7oTzXIotCq4x23nljbJuIRmXS1MziWODiQ4YNAWmtaYmalrWm2-R-JfZVUWtsE8jW7SGLMqbhqwIkkm-R7TTGk_UqXcgInKWuyLpBcvmPrm_JXn88HMjBy-jtiuxjU5msGHVIq5gv3TWglkLflNPyB0Ci4BY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQkRAMvBGFAh5YXZLYeY0IqMqjFQOVull-LtAHbbLw6znnUVEQ6tAli2U7sS_n78533yF0HQkWpkr5RIuUEZZYSmSgLZGSOn44afzYJSf3-lF3wJ6GYR1NOK_CKp0NbUuiiEJXu597qm0dEXcDStdzxW7AugvgARA5cum-mxHAExfVR73-4iIhCdKKQcojrk-dxPPfMEvH0xJ56R9lXZxAnT0k63cvA0_e23km2-rrF63jWh-3j3YrfIpvS4E6QBtmfIh2egty1_kRGtZEJhgmwSMjxqSIg8MapLn08OKJxQIDtJ_kYErD-ZiPsPksWcWxc_1iOyszKmAuV6Mld067YzToPLzddUlVoIEomoQZsREcbgCghJeY0N0oGgYGUqoBVFGhjAitllYwqWQQ6iBOAe0JnTjfqaUAM316ghrjydicIiwMtHrMakUtE5ZKlga-Fkoaa6xSuolYvS9cVezlrojGB_drktNq4bhbOF4tXBO1F92mJX3Hqg7pz03nWeE3sWWRE05X9G3VEsIrTTDnARhkMUtjLzpbY-grtPV63-Evj_3nc7TtWop8yKCFGtksNxcAjDJ5WYj-N_zJ_rE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+and+mean-field+derivation+of+a+porous-medium+equation+with+fractional+diffusion&rft.jtitle=Communications+in+partial+differential+equations&rft.au=Chen%2C+Li&rft.au=Holzinger%2C+Alexandra&rft.au=J%C3%BCngel%2C+Ansgar&rft.au=Zamponi%2C+Nicola&rft.date=2022-11-02&rft.pub=Taylor+%26+Francis&rft.issn=0360-5302&rft.eissn=1532-4133&rft.volume=47&rft.issue=11&rft.spage=2217&rft.epage=2269&rft_id=info:doi/10.1080%2F03605302.2022.2118608&rft.externalDBID=0YH&rft.externalDocID=2118608 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5302&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5302&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5302&client=summon |