Analysis and mean-field derivation of a porous-medium equation with fractional diffusion

A mean-field-type limit from stochastic moderately interacting many-particle systems with singular Riesz potential is performed, leading to nonlocal porous-medium equations in the whole space. The nonlocality is given by the inverse of a fractional Laplacian, and the limit equation can be interprete...

Full description

Saved in:
Bibliographic Details
Published inCommunications in partial differential equations Vol. 47; no. 11; pp. 2217 - 2269
Main Authors Chen, Li, Holzinger, Alexandra, Jüngel, Ansgar, Zamponi, Nicola
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 02.11.2022
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0360-5302
1532-4133
DOI10.1080/03605302.2022.2118608

Cover

Abstract A mean-field-type limit from stochastic moderately interacting many-particle systems with singular Riesz potential is performed, leading to nonlocal porous-medium equations in the whole space. The nonlocality is given by the inverse of a fractional Laplacian, and the limit equation can be interpreted as a transport equation with a fractional pressure. The proof is based on Oelschläger's approach and a priori estimates for the associated diffusion equations, coming from energy-type and entropy inequalities as well as parabolic regularity. An existence analysis of the fractional porous-medium equation is also provided, based on a careful regularization procedure, new variants of fractional Gagliardo-Nirenberg inequalities, and the div-curl lemma. A consequence of the mean-field limit estimates is the propagation of chaos property.
AbstractList A mean-field-type limit from stochastic moderately interacting many-particle systems with singular Riesz potential is performed, leading to nonlocal porous-medium equations in the whole space. The nonlocality is given by the inverse of a fractional Laplacian, and the limit equation can be interpreted as a transport equation with a fractional pressure. The proof is based on Oelschläger's approach and a priori estimates for the associated diffusion equations, coming from energy-type and entropy inequalities as well as parabolic regularity. An existence analysis of the fractional porous-medium equation is also provided, based on a careful regularization procedure, new variants of fractional Gagliardo-Nirenberg inequalities, and the div-curl lemma. A consequence of the mean-field limit estimates is the propagation of chaos property.
Author Holzinger, Alexandra
Jüngel, Ansgar
Zamponi, Nicola
Chen, Li
Author_xml – sequence: 1
  givenname: Li
  surname: Chen
  fullname: Chen, Li
  organization: School of Business Informatics and Mathematics, University of Mannheim
– sequence: 2
  givenname: Alexandra
  surname: Holzinger
  fullname: Holzinger, Alexandra
  organization: Institute for Analysis and Scientific Computing, Vienna University of Technology
– sequence: 3
  givenname: Ansgar
  surname: Jüngel
  fullname: Jüngel, Ansgar
  organization: Institute for Analysis and Scientific Computing, Vienna University of Technology
– sequence: 4
  givenname: Nicola
  surname: Zamponi
  fullname: Zamponi, Nicola
  organization: School of Business Informatics and Mathematics, University of Mannheim
BookMark eNqFkE1Lw0AQhhepYFv9CcKC59T9yCYbvFiKXyB4UfC2TLO7uCXJtruJpf_exNSLB73MB_O-w8wzQ5PGNwahS0oWlEhyTXhGBCdswQjrA6UyI_IETangLEkp5xM0HTTJIDpDsxg3hFDJinSK3pcNVIfoIoZG49pAk1hnKo21Ce4TWucb7C0GvPXBdzGpjXZdjc2uG2d7135gG6AcOqiwdtZ2sa_P0amFKpqLY56jt_u719Vj8vzy8LRaPicll6JNbMZkKjIGRBqRcslMKjNWaCIyDqUBYfXaQrou10xolheSC9CyIIRbLjinfI6uxr3b4Hedia3a-C70p0TFciHztMhJ1qtuRlUZfIzBWFW69vuDNoCrFCVqQKl-UKoBpTqi7N3il3sbXA3h8K_vdvS5xvpQw96HSqsWDpUPPbOmdFHxv1d8ASoNjDc
CitedBy_id crossref_primary_10_3390_su162310486
crossref_primary_10_1007_s00332_025_10144_9
crossref_primary_10_1063_5_0235162
Cites_doi 10.1016/j.cnsns.2019.04.014
10.1002/cpa.20223
10.1007/s00205-014-0786-1
10.4171/IFB/445
10.1142/3302
10.1007/s00332-021-09754-w
10.1017/S0956792500002242
10.1016/j.jde.2014.10.003
10.1007/978-3-319-49996-3_10
10.1007/978-0-387-70914-7
10.5802/jedp.623
10.1007/s00285-014-0781-z
10.1002/cpa.21408
10.3934/dcds.2015.35.5725
10.1007/978-3-0348-0513-1
10.4171/JEMS/401
10.1080/03605302.2020.1814325
10.1515/9783110571660-012
10.1103/physrevb.50.1126
10.2422/2036-2145.202105_087
10.1016/j.crma.2011.06.003
10.1016/S0246-0203(99)80002-8
10.1016/0022-1236(84)90080-6
10.1214/aop/1176993301
10.3934/dcds.2011.29.1393
10.1007/BFb0085169
10.1007/s00033-019-1170-7
10.1090/jams/872
10.1016/j.na.2021.112393
10.1007/s00205-017-1168-2
10.1007/978-1-4612-0949-2
10.1007/978-3-642-25361-4_15
10.1007/978-3-319-61494-6_5
10.3934/dcdss.2012.5.115
10.1007/s00205-011-0420-4
10.1137/15M1042620
10.1016/j.anihpc.2011.02.006
10.1016/j.jde.2021.11.027
10.1016/j.jde.2019.09.029
10.1016/0022-0396(90)90101-T
10.1016/j.crma.2013.12.003
10.1080/03605302.2018.1475492
10.1215/00127094-2020-0019
ContentType Journal Article
Copyright 2022 The Author(s). Published with license by Taylor & Francis Group, LLC 2022
2022 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Author(s). Published with license by Taylor & Francis Group, LLC 2022
– notice: 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/03605302.2022.2118608
DatabaseName Taylor & Francis Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-4133
EndPage 2269
ExternalDocumentID 10_1080_03605302_2022_2118608
2118608
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
0YH
29F
2DF
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
N9A
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c385t-f6284562a08e54382e48629d0563acea5fdbfa4bcb25d279835ad89003f353313
IEDL.DBID 0YH
ISSN 0360-5302
IngestDate Wed Aug 13 11:12:54 EDT 2025
Tue Jul 01 03:00:54 EDT 2025
Thu Apr 24 23:12:36 EDT 2025
Wed Dec 25 09:05:04 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-f6284562a08e54382e48629d0563acea5fdbfa4bcb25d279835ad89003f353313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/03605302.2022.2118608
PQID 2758749706
PQPubID 186205
PageCount 53
ParticipantIDs proquest_journals_2758749706
crossref_citationtrail_10_1080_03605302_2022_2118608
crossref_primary_10_1080_03605302_2022_2118608
informaworld_taylorfrancis_310_1080_03605302_2022_2118608
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-02
PublicationDateYYYYMMDD 2022-11-02
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-02
  day: 02
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in partial differential equations
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0032
CIT0031
CIT0034
CIT0033
Figalli A. (CIT0039) 2008; 4
CIT0036
CIT0038
CIT0037
CIT0040
CIT0043
CIT0042
CIT0001
CIT0044
CIT0003
CIT0047
CIT0002
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
Stein E. (CIT0046) 1970
CIT0010
CIT0012
CIT0011
Novotný E. F. A. (CIT0041) 2009
CIT0014
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
Nualart D. (CIT0045) 2006
CIT0019
CIT0021
CIT0020
CIT0023
CIT0022
Chen L. (CIT0035) 2021; 31
CIT0025
CIT0024
CIT0027
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0040
– volume-title: Singular Limits in Thermodynamics of Viscous Fluids
  year: 2009
  ident: CIT0041
– ident: CIT0009
  doi: 10.1016/j.cnsns.2019.04.014
– ident: CIT0021
  doi: 10.1002/cpa.20223
– volume: 31
  start-page: 38
  issue: 94
  year: 2021
  ident: CIT0035
  publication-title: J. Nonlin. Sci
– ident: CIT0004
  doi: 10.1007/s00205-014-0786-1
– ident: CIT0020
  doi: 10.4171/IFB/445
– ident: CIT0049
  doi: 10.1142/3302
– ident: CIT0013
  doi: 10.1007/s00332-021-09754-w
– ident: CIT0002
  doi: 10.1017/S0956792500002242
– ident: CIT0017
  doi: 10.1016/j.jde.2014.10.003
– ident: CIT0029
  doi: 10.1007/978-3-319-49996-3_10
– ident: CIT0047
  doi: 10.1007/978-0-387-70914-7
– ident: CIT0028
  doi: 10.5802/jedp.623
– ident: CIT0038
  doi: 10.1007/s00285-014-0781-z
– ident: CIT0026
  doi: 10.1002/cpa.21408
– ident: CIT0042
  doi: 10.3934/dcds.2015.35.5725
– ident: CIT0048
  doi: 10.1007/978-3-0348-0513-1
– ident: CIT0019
  doi: 10.4171/JEMS/401
– ident: CIT0024
  doi: 10.1080/03605302.2020.1814325
– ident: CIT0001
  doi: 10.1515/9783110571660-012
– ident: CIT0003
  doi: 10.1103/physrevb.50.1126
– ident: CIT0012
  doi: 10.2422/2036-2145.202105_087
– volume-title: The Malliavin Calculus and Related Topics
  year: 2006
  ident: CIT0045
– ident: CIT0007
  doi: 10.1016/j.crma.2011.06.003
– ident: CIT0034
  doi: 10.1016/S0246-0203(99)80002-8
– ident: CIT0030
  doi: 10.1016/0022-1236(84)90080-6
– ident: CIT0032
  doi: 10.1214/aop/1176993301
– volume: 4
  start-page: 185
  year: 2008
  ident: CIT0039
  publication-title: Alea
– ident: CIT0016
  doi: 10.3934/dcds.2011.29.1393
– ident: CIT0031
  doi: 10.1007/BFb0085169
– ident: CIT0036
  doi: 10.1007/s00033-019-1170-7
– ident: CIT0011
  doi: 10.1090/jams/872
– ident: CIT0022
  doi: 10.1016/j.na.2021.112393
– ident: CIT0018
  doi: 10.1007/s00205-017-1168-2
– ident: CIT0044
  doi: 10.1007/978-1-4612-0949-2
– ident: CIT0027
  doi: 10.1007/978-3-642-25361-4_15
– ident: CIT0005
  doi: 10.1007/978-3-319-61494-6_5
– ident: CIT0037
  doi: 10.3934/dcdss.2012.5.115
– ident: CIT0006
  doi: 10.1007/s00205-011-0420-4
– ident: CIT0010
  doi: 10.1137/15M1042620
– ident: CIT0043
  doi: 10.1016/j.anihpc.2011.02.006
– ident: CIT0015
  doi: 10.1016/j.jde.2021.11.027
– ident: CIT0025
  doi: 10.1016/j.jde.2019.09.029
– ident: CIT0033
  doi: 10.1016/0022-0396(90)90101-T
– ident: CIT0008
  doi: 10.1016/j.crma.2013.12.003
– ident: CIT0023
  doi: 10.1080/03605302.2018.1475492
– ident: CIT0014
  doi: 10.1215/00127094-2020-0019
– volume-title: Singular Integrals and Differentiability Properties of Functions
  year: 1970
  ident: CIT0046
SSID ssj0018294
Score 2.3990374
Snippet A mean-field-type limit from stochastic moderately interacting many-particle systems with singular Riesz potential is performed, leading to nonlocal...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2217
SubjectTerms Diffusion
Estimates
Existence analysis
fractional diffusion
Inequalities
interacting particle systems
Mathematical analysis
mean-field limit
nonlocal porous-medium equation
Porous media
propagation of chaos
Regularization
Transport equations
Title Analysis and mean-field derivation of a porous-medium equation with fractional diffusion
URI https://www.tandfonline.com/doi/abs/10.1080/03605302.2022.2118608
https://www.proquest.com/docview/2758749706
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQu8CAeIpCqTywGhLbSZOxAqoIqUxUFJbIz4mm0Kb_n7s8KiqEOrBEsqJzlPPru_Pdd4TcxEpGqTEhsyqVTCZeMM2tZ1oL5IfTLhxicvLkOc6m8mkWtdGEqyasEm1oXxNFVHs1Lm6lV21E3B1sugEWuwHrjsMDIHKM6b5dDkARo_qCt2xzkZDwtGGQChjKtEk8f3WzdTxtkZf-2qyrE2h8RA4b6EhH9Vgfkz1XnJCDyYZ3dXVKZi3HCIWfo3OnClaFqFELE612vtKFp4oC6gaTn-HN-npO3VdN-E3RK0v9sk52gG9h-ZQ1-tPOyHT8-HKfsaZ2AjMiiUrmYzh3ANuoIHERXvY5CbZLagHvCGWcirzVXkltNI8sH6YAxJRN0K3pBSDAUJyTTrEo3AWhysHbQHprhJfKCy1THlpltPPOG2N7RLYqy01DLI71LT7ysOUfbTSdo6bzRtM9crsR-6yZNXYJpD_HIy8rl4av64_kYodsvx28vFmkq5yDrTSU6TCIL__R9RXZx2aVn8j7pFMu1-4agEqpB9VUHJDuKHt4f_0GMlveTA
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGYAB8RSFAh5YDUnspMmIEFWBtlMrlcnyc6IB2vT_c5dH1QqhDixZrLOVOz--O_u-I-QuUSLOjAmZVZlgIvWc6ch6pjVHfjjtwi4mJw9HSX8iXqfxdC0XBp9Vog_tK6KIcq_GxY3B6OZJ3APsugFWuwH3LoIPYOQE83134xS8CZjTwXt_dZOQRllNIRUwlGmyeP7qZuN82mAv_bVbl0dQ74gc1tiRPlbGPiY7Lj8hB8MV8erilEwbkhEKf0dnTuWsfKNGLcy0KvpKPz1VFGA3-PwMr9aXM-q-K8ZvimFZ6udVtgOMhfVTlhhQOyOT3vP4qc_q4gnM8DQumE_g4AFwo4LUxXjb5wQ4L5kFwMOVcSr2VnsltNFRbKNuBkhM2RTjmp4DBAz5OWnln7m7IFQ5aA2Et4Z7oTzXIotCq4x23nljbJuIRmXS1MziWODiQ4YNAWmtaYmalrWm2-R-JfZVUWtsE8jW7SGLMqbhqwIkkm-R7TTGk_UqXcgInKWuyLpBcvmPrm_JXn88HMjBy-jtiuxjU5msGHVIq5gv3TWglkLflNPyB0Ci4BY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQkRAMvBGFAh5YXZLYeY0IqMqjFQOVull-LtAHbbLw6znnUVEQ6tAli2U7sS_n78533yF0HQkWpkr5RIuUEZZYSmSgLZGSOn44afzYJSf3-lF3wJ6GYR1NOK_CKp0NbUuiiEJXu597qm0dEXcDStdzxW7AugvgARA5cum-mxHAExfVR73-4iIhCdKKQcojrk-dxPPfMEvH0xJ56R9lXZxAnT0k63cvA0_e23km2-rrF63jWh-3j3YrfIpvS4E6QBtmfIh2egty1_kRGtZEJhgmwSMjxqSIg8MapLn08OKJxQIDtJ_kYErD-ZiPsPksWcWxc_1iOyszKmAuV6Mld067YzToPLzddUlVoIEomoQZsREcbgCghJeY0N0oGgYGUqoBVFGhjAitllYwqWQQ6iBOAe0JnTjfqaUAM316ghrjydicIiwMtHrMakUtE5ZKlga-Fkoaa6xSuolYvS9cVezlrojGB_drktNq4bhbOF4tXBO1F92mJX3Hqg7pz03nWeE3sWWRE05X9G3VEsIrTTDnARhkMUtjLzpbY-grtPV63-Evj_3nc7TtWop8yKCFGtksNxcAjDJ5WYj-N_zJ_rE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+and+mean-field+derivation+of+a+porous-medium+equation+with+fractional+diffusion&rft.jtitle=Communications+in+partial+differential+equations&rft.au=Chen%2C+Li&rft.au=Holzinger%2C+Alexandra&rft.au=J%C3%BCngel%2C+Ansgar&rft.au=Zamponi%2C+Nicola&rft.date=2022-11-02&rft.pub=Taylor+%26+Francis&rft.issn=0360-5302&rft.eissn=1532-4133&rft.volume=47&rft.issue=11&rft.spage=2217&rft.epage=2269&rft_id=info:doi/10.1080%2F03605302.2022.2118608&rft.externalDBID=0YH&rft.externalDocID=2118608
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5302&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5302&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5302&client=summon