Conformalized temporal convolutional quantile regression networks for wind power interval forecasting
Wind power interval prediction is an effective technique for quantifying forecasting uncertainty caused by the intermittent and fluctuant characteristics of wind energy. Valid coverage and short interval length are the two most critical targets in interval prediction to attain reliable and accurate...
Saved in:
Published in | Energy (Oxford) Vol. 248; p. 123497 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.06.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wind power interval prediction is an effective technique for quantifying forecasting uncertainty caused by the intermittent and fluctuant characteristics of wind energy. Valid coverage and short interval length are the two most critical targets in interval prediction to attain reliable and accurate information, providing effective support for decision-makers to better control the risks in the power planning. This paper proposes a novel interval prediction approach named conformalized temporal convolutional quantile regression networks (CTCQRN) which combines the conformalized quantile regression (CQR) algorithm with a temporal convolutional network (TCN), without making any distributional assumptions. The proposed model inherits the advantages of quantile regression and conformal prediction that is fully adaptive to heteroscedasticity implicated in data, and meets the theoretical guarantee of valid coverage. As opposed to conventional RNN-based approaches, the adopted TCN architecture frees from suffering iterative propagation and gradient vanishing/explosion, and can handle very long sequences in a parallel manner. Case studies on two different geographical wind power datasets show that the proposed model has a distinct edge over benchmark models in goals of valid coverage and narrow interval bandwidth, which can help to ensure the economic and secure operation of the electric power system.
•A novel interval prediction model for wind power is proposed.•The TCN architecture is used to output the initial upper and lower bounds of the prediction intervals (PIs).•The conformalized quantile regression (CQR) algorithm is applied to calibrate the original prediction interval.•The proposal is adaptive to heteroscedasticity and shortens the generated PIs while satisfying the coverage requirement. |
---|---|
AbstractList | Wind power interval prediction is an effective technique for quantifying forecasting uncertainty caused by the intermittent and fluctuant characteristics of wind energy. Valid coverage and short interval length are the two most critical targets in interval prediction to attain reliable and accurate information, providing effective support for decision-makers to better control the risks in the power planning. This paper proposes a novel interval prediction approach named conformalized temporal convolutional quantile regression networks (CTCQRN) which combines the conformalized quantile regression (CQR) algorithm with a temporal convolutional network (TCN), without making any distributional assumptions. The proposed model inherits the advantages of quantile regression and conformal prediction that is fully adaptive to heteroscedasticity implicated in data, and meets the theoretical guarantee of valid coverage. As opposed to conventional RNN-based approaches, the adopted TCN architecture frees from suffering iterative propagation and gradient vanishing/explosion, and can handle very long sequences in a parallel manner. Case studies on two different geographical wind power datasets show that the proposed model has a distinct edge over benchmark models in goals of valid coverage and narrow interval bandwidth, which can help to ensure the economic and secure operation of the electric power system.
•A novel interval prediction model for wind power is proposed.•The TCN architecture is used to output the initial upper and lower bounds of the prediction intervals (PIs).•The conformalized quantile regression (CQR) algorithm is applied to calibrate the original prediction interval.•The proposal is adaptive to heteroscedasticity and shortens the generated PIs while satisfying the coverage requirement. Wind power interval prediction is an effective technique for quantifying forecasting uncertainty caused by the intermittent and fluctuant characteristics of wind energy. Valid coverage and short interval length are the two most critical targets in interval prediction to attain reliable and accurate information, providing effective support for decision-makers to better control the risks in the power planning. This paper proposes a novel interval prediction approach named conformalized temporal convolutional quantile regression networks (CTCQRN) which combines the conformalized quantile regression (CQR) algorithm with a temporal convolutional network (TCN), without making any distributional assumptions. The proposed model inherits the advantages of quantile regression and conformal prediction that is fully adaptive to heteroscedasticity implicated in data, and meets the theoretical guarantee of valid coverage. As opposed to conventional RNN-based approaches, the adopted TCN architecture frees from suffering iterative propagation and gradient vanishing/explosion, and can handle very long sequences in a parallel manner. Case studies on two different geographical wind power datasets show that the proposed model has a distinct edge over benchmark models in goals of valid coverage and narrow interval bandwidth, which can help to ensure the economic and secure operation of the electric power system. |
ArticleNumber | 123497 |
Author | Tang, Jingwei Deng, Yuwen Hu, Jianming Luo, Qingxi Heng, Jiani |
Author_xml | – sequence: 1 givenname: Jianming surname: Hu fullname: Hu, Jianming organization: College of Economics and Statistics, Guangzhou University, Guangzhou, China – sequence: 2 givenname: Qingxi surname: Luo fullname: Luo, Qingxi email: 2111964058@e.gzhu.edu.cn organization: College of Economics and Statistics, Guangzhou University, Guangzhou, China – sequence: 3 givenname: Jingwei surname: Tang fullname: Tang, Jingwei organization: Department of Mathematics, Faculty of Science and Technology, University of Macau, Macau, China – sequence: 4 givenname: Jiani surname: Heng fullname: Heng, Jiani organization: Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China – sequence: 5 givenname: Yuwen surname: Deng fullname: Deng, Yuwen organization: College of Economics and Statistics, Guangzhou University, Guangzhou, China |
BookMark | eNp9kF9LwzAUxYNMcE6_gQ8Fn1uTtE3TF0GG_2Dgiz6HLL0ZqV3SJdnG_PRm1GefLvdwzoHzu0Yz6ywgdEdwQTBhD30BFvzmVFBMaUFoWbXNBZoT3pQ5a3g9Q3NcMpzXVUWv0HUIPca45m07R7B0Vju_lYP5gS6LsB2dl0OmnD24YR-Ns-nb7aWNZoDMw8ZDCEnNLMSj898hS_HsaGyXje4IPjM2gj-kUNJByRCN3dygSy2HALd_d4G-Xp4_l2_56uP1ffm0ylXJ65jrmiimSVcyStZsLTlQzTpK2qaSsupKrda81kTXmkKru7ZSALIBXqsmeXVZLtD91Dt6t9tDiKJ3e58WBEEZq3DTtJgnVzW5lHcheNBi9GYr_UkQLM5ARS8moOIMVExAU-xxikFacDDgRVAGrILOpKFRdM78X_ALwwGGpg |
CitedBy_id | crossref_primary_10_1109_TSTE_2024_3389023 crossref_primary_10_1145_3637552 crossref_primary_10_1016_j_energy_2023_129079 crossref_primary_10_1016_j_energy_2023_130155 crossref_primary_10_1016_j_apenergy_2022_120279 crossref_primary_10_1016_j_energy_2024_130305 crossref_primary_10_3390_en15249299 crossref_primary_10_1016_j_seja_2024_100059 crossref_primary_10_1016_j_resourpol_2023_103563 crossref_primary_10_1007_s10489_022_03958_7 crossref_primary_10_1016_j_apenergy_2023_122341 crossref_primary_10_1088_1361_6501_ad2e68 crossref_primary_10_3389_fenrg_2023_1211360 crossref_primary_10_1016_j_energy_2022_125276 crossref_primary_10_1016_j_apenergy_2023_122248 crossref_primary_10_1016_j_asoc_2024_111649 crossref_primary_10_3389_fenrg_2022_1097048 crossref_primary_10_1016_j_apenergy_2024_122900 crossref_primary_10_3390_en16041988 crossref_primary_10_1016_j_energy_2023_126608 crossref_primary_10_1016_j_energy_2023_129639 |
Cites_doi | 10.1016/j.eswa.2017.12.041 10.1016/j.ijepes.2019.105556 10.1063/5.0007003 10.3390/electronics8080876 10.1016/j.epsr.2020.106865 10.1109/TITS.2011.2106209 10.1016/j.renene.2021.07.113 10.1016/j.apenergy.2021.116842 10.1016/j.renene.2020.03.098 10.1016/j.jhydrol.2014.08.026 10.1016/j.energy.2020.117081 10.1016/j.ins.2020.10.034 10.3390/en11123336 10.1016/j.renene.2019.01.006 10.1016/j.renene.2020.08.077 10.1111/rssb.12021 10.1016/j.neucom.2019.07.058 10.7465/jkdi.2020.31.6.1155 10.1109/TSTE.2017.2774195 10.1016/j.csda.2019.106876 10.1109/TPWRS.2013.2287871 10.1016/j.renene.2018.05.031 10.1016/j.enconman.2019.02.028 10.1016/j.asoc.2019.105550 10.1109/TNNLS.2019.2946414 10.1016/j.asoc.2020.106327 10.1016/j.cnsns.2020.105617 10.1080/01621459.2017.1307116 10.1080/01621459.2012.751873 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Jun 1, 2022 |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Jun 1, 2022 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI |
DOI | 10.1016/j.energy.2022.123497 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 1873-6785 |
ExternalDocumentID | 10_1016_j_energy_2022_123497 S0360544222004005 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AAXKI AAYXX ABFNM ABXDB ADMUD AFJKZ AHHHB ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 G8K HVGLF HZ~ R2- SAC SEW WUQ 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI |
ID | FETCH-LOGICAL-c385t-f51c6f1d3621b6ba8e2f6d21974aa4d3fcb85f1f5f2e9fd94ceea7e85c7a8ef33 |
IEDL.DBID | AIKHN |
ISSN | 0360-5442 |
IngestDate | Thu Oct 10 16:00:22 EDT 2024 Thu Sep 26 17:02:31 EDT 2024 Sat Apr 27 15:44:44 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Temporal convolutional network Conformalized quantile regression Wind power interval prediction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-f51c6f1d3621b6ba8e2f6d21974aa4d3fcb85f1f5f2e9fd94ceea7e85c7a8ef33 |
PQID | 2664077908 |
PQPubID | 2045484 |
ParticipantIDs | proquest_journals_2664077908 crossref_primary_10_1016_j_energy_2022_123497 elsevier_sciencedirect_doi_10_1016_j_energy_2022_123497 |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 2022-06-00 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Naik, Bisoi, Dash (bib4) 2018; 129 Johansson (bib16) 2018; 97 Gan (bib34) 2021; 191 Papadopoulos, Gammerman, Vovk (bib17) 2008 Shi, Liang, Venkata (bib23) 2017; 9 Khosravi (bib7) 2011; 12 Shahih, Purwarianti (bib31) 2019 Qi (bib39) 2017; 8 Wan (bib33) 2019; 8 Zhao, Jia (bib30) 2020; 12 Meinshausen (bib38) 2006; 7 Lei, Wasserman (bib13) 2014 Hu, Heng, Wen (bib40) 2020; 162 Pearce, Zaki, Brintrup, Neely (bib6) 2018 Yu, Zhang, Zang (bib37) 2018; 11 Wan (bib9) 2013; 29 He, Zhang, Ren (bib35) 2016 Nix, Weigend (bib8) 1994; vol. 1 Kumar (bib32) 2021 Lei (bib15) 2018; 523 Wang (bib27) 2019; 31 Hu, Lin, Tang, Zhao (bib41) 2020; 92 Ding (bib25) 2019; 365 Wang, Wang, Li (bib1) 2021; 179 Ma (bib22) 2021; vol. 22 Niu, Yu, Tang, Wu, Reformat (bib5) 2020; 196 Wang, Jv (bib10) 2021; 95 Li (bib26) 2020; 155 Shim (bib42) 2020; 31 Lei, Robins, Wasserman (bib36) 2013; 108 Ye (bib11) 2014; 519 Papadopoulos (bib18) 2008 Tian, Song (bib19) 2020; 144 Zhou, Wang, Guo (bib28) 2021; 550 Jiang, Huang, Yang, Yan, Zhang (bib12) 2019; 185 Romano, Patterson, Candes (bib20) 2019; 32 Li (bib21) 2020; 116 Yuan, Chen, Jiang, Yuan (bib24) 2019; 82 Vovk, Gammerman, Glenn Shafer (bib14) 2005 Romero (bib29) 2021 D. Wei, J. Wang, X. Niu, Z. Li, Wind speed forecasting system based on gated recurrent units and convolutional spiking neural networks, Appl Energy 292(2021), 116842. Naik, Dash, Dhar (bib3) 2019; 136 Naik (10.1016/j.energy.2022.123497_bib3) 2019; 136 Lei (10.1016/j.energy.2022.123497_bib15) 2018; 523 10.1016/j.energy.2022.123497_bib2 Lei (10.1016/j.energy.2022.123497_bib13) 2014 Vovk (10.1016/j.energy.2022.123497_bib14) 2005 Tian (10.1016/j.energy.2022.123497_bib19) 2020; 144 Yuan (10.1016/j.energy.2022.123497_bib24) 2019; 82 Romano (10.1016/j.energy.2022.123497_bib20) 2019; 32 Shi (10.1016/j.energy.2022.123497_bib23) 2017; 9 Pearce (10.1016/j.energy.2022.123497_bib6) 2018 Wan (10.1016/j.energy.2022.123497_bib33) 2019; 8 Jiang (10.1016/j.energy.2022.123497_bib12) 2019; 185 Zhao (10.1016/j.energy.2022.123497_bib30) 2020; 12 Papadopoulos (10.1016/j.energy.2022.123497_bib17) 2008 Khosravi (10.1016/j.energy.2022.123497_bib7) 2011; 12 Shahih (10.1016/j.energy.2022.123497_bib31) 2019 Wang (10.1016/j.energy.2022.123497_bib10) 2021; 95 Wang (10.1016/j.energy.2022.123497_bib27) 2019; 31 Meinshausen (10.1016/j.energy.2022.123497_bib38) 2006; 7 Wan (10.1016/j.energy.2022.123497_bib9) 2013; 29 Johansson (10.1016/j.energy.2022.123497_bib16) 2018; 97 Naik (10.1016/j.energy.2022.123497_bib4) 2018; 129 Zhou (10.1016/j.energy.2022.123497_bib28) 2021; 550 Wang (10.1016/j.energy.2022.123497_bib1) 2021; 179 Lei (10.1016/j.energy.2022.123497_bib36) 2013; 108 He (10.1016/j.energy.2022.123497_bib35) 2016 Papadopoulos (10.1016/j.energy.2022.123497_bib18) 2008 Hu (10.1016/j.energy.2022.123497_bib41) 2020; 92 Niu (10.1016/j.energy.2022.123497_bib5) 2020; 196 Yu (10.1016/j.energy.2022.123497_bib37) 2018; 11 Nix (10.1016/j.energy.2022.123497_bib8) 1994; vol. 1 Kumar (10.1016/j.energy.2022.123497_bib32) 2021 Hu (10.1016/j.energy.2022.123497_bib40) 2020; 162 Li (10.1016/j.energy.2022.123497_bib26) 2020; 155 Gan (10.1016/j.energy.2022.123497_bib34) 2021; 191 Li (10.1016/j.energy.2022.123497_bib21) 2020; 116 Ding (10.1016/j.energy.2022.123497_bib25) 2019; 365 Ye (10.1016/j.energy.2022.123497_bib11) 2014; 519 Ma (10.1016/j.energy.2022.123497_bib22) 2021; vol. 22 Qi (10.1016/j.energy.2022.123497_bib39) 2017; 8 Shim (10.1016/j.energy.2022.123497_bib42) 2020; 31 Romero (10.1016/j.energy.2022.123497_bib29) 2021 |
References_xml | – volume: 8 start-page: 876 year: 2019 ident: bib33 article-title: Multivariate temporal convolutional network: a deep neural networks approach for multivariate time series forecasting publication-title: Electronics contributor: fullname: Wan – volume: 162 start-page: 1208 year: 2020 end-page: 1226 ident: bib40 article-title: Deterministic and probabilistic wind speed forecasting with de-noising-reconstruction strategy and quantile regression based algorithm publication-title: Renew Energy contributor: fullname: Wen – year: 2019 ident: bib31 article-title: Combining word and character vector representation on neural machine translation publication-title: 2019 Fourth International conference on Informatics and computing (ICIC) contributor: fullname: Purwarianti – volume: 8 year: 2017 ident: bib39 article-title: Quantile regression models and their applications: a review publication-title: J Biometrics Biostat contributor: fullname: Qi – volume: 185 start-page: 758 year: 2019 end-page: 773 ident: bib12 article-title: A novel probabilistic wind speed prediction approach using real time refined variational model decomposition and conditional kernel density estimation publication-title: Energy Convers Manag contributor: fullname: Zhang – volume: 32 year: 2019 ident: bib20 article-title: Conformalized quantile regression publication-title: Adv Neural Inf Process Syst contributor: fullname: Candes – volume: 365 start-page: 54 year: 2019 end-page: 61 ident: bib25 article-title: A gated recurrent unit neural networks based wind speed error correction model for short-term wind power forecasting publication-title: Neurocomputing contributor: fullname: Ding – volume: 116 start-page: 105556 year: 2020 ident: bib21 article-title: Dynamic dependence modelling of wind power uncertainty considering heteroscedastic effect publication-title: Int J Electr Power Energy Syst contributor: fullname: Li – volume: 155 start-page: 197 year: 2020 end-page: 211 ident: bib26 article-title: The short-term interval prediction of wind power using the deep learning model with gradient descend optimization publication-title: Renew Energy contributor: fullname: Li – start-page: 6473 year: 2018 end-page: 6482 ident: bib6 article-title: High-quality prediction intervals for deep learning: a distribution-free, ensembled approach publication-title: 35th Int. Conf. Mach. Learn. ICML 2018 contributor: fullname: Neely – volume: 523 start-page: 1094 year: 2018 end-page: 1111 ident: bib15 article-title: Distribution-free predictive inference for regression publication-title: J Am Stat Assoc contributor: fullname: Lei – volume: 97 start-page: 394 year: 2018 end-page: 404 ident: bib16 article-title: Interpretable regression trees using conformal prediction publication-title: Expert Syst Appl contributor: fullname: Johansson – start-page: 64 year: 2008 end-page: 69 ident: bib17 article-title: Normalized nonconformity measures for regression conformal prediction publication-title: International conference on artificial intelligence and applications contributor: fullname: Vovk – volume: 31 start-page: 1155 year: 2020 end-page: 1165 ident: bib42 article-title: Noncrossing varying coefficient support vector quantile regression publication-title: Journal of the Korean Data and Information Science Society contributor: fullname: Shim – volume: 92 start-page: 106327 year: 2020 ident: bib41 article-title: A new wind power interval prediction approach based on reservoir computing and a quality-driven loss function publication-title: Appl Soft Comput contributor: fullname: Zhao – start-page: 71 year: 2014 end-page: 96 ident: bib13 article-title: Distribution-free prediction bands for non-parametric regression publication-title: J Roy Stat Soc B Stat Methodol contributor: fullname: Wasserman – volume: 9 start-page: 1177 year: 2017 end-page: 1187 ident: bib23 article-title: Direct interval forecast of uncertain wind power based on recurrent neural networks publication-title: IEEE Trans Sustain Energy contributor: fullname: Venkata – volume: 12 start-page: 537 year: 2011 end-page: 547 ident: bib7 article-title: Prediction intervals to account for uncertainties in travel time prediction publication-title: IEEE Trans Intell Transport Syst contributor: fullname: Khosravi – volume: 82 start-page: 105550 year: 2019 ident: bib24 article-title: Prediction interval of wind power using parameter optimized beta distribution based LSTM model publication-title: Appl Soft Comput contributor: fullname: Yuan – volume: 191 start-page: 106865 year: 2021 ident: bib34 article-title: Temporal convolutional networks interval prediction model for wind speed forecasting publication-title: Elec Power Syst Res contributor: fullname: Gan – volume: 31 start-page: 3814 year: 2019 end-page: 3827 ident: bib27 article-title: Deep learning method based on gated recurrent unit and variational mode decomposition for short-term wind power interval prediction publication-title: IEEE Transact Neural Networks Learn Syst contributor: fullname: Wang – volume: 11 start-page: 3336 year: 2018 ident: bib37 article-title: Wind power interval forecasting based on confidence interval optimization publication-title: Energies contributor: fullname: Zang – volume: 7 start-page: 983 year: 2006 end-page: 999 ident: bib38 article-title: Quantile regression forests publication-title: J Mach Learn Res contributor: fullname: Meinshausen – year: 2008 ident: bib18 article-title: Inductive conformal prediction: theory and application to neural networks publication-title: Tools in artificial intelligence contributor: fullname: Papadopoulos – volume: 144 year: 2020 ident: bib19 article-title: Bayesian bridge-randomized penalized quantile regression publication-title: Comput Stat Data Anal contributor: fullname: Song – volume: vol. 1 year: 1994 ident: bib8 article-title: Estimating the mean and variance of the target probability distribution publication-title: Proceedings of 1994 ieee international conference on neural networks (ICNN'94) contributor: fullname: Weigend – volume: 136 start-page: 701 year: 2019 end-page: 731 ident: bib3 article-title: A multi-objective wind speed and wind power prediction interval forecasting using variational modes decomposition based Multi-kernel robust ridge regression publication-title: Renew Energy contributor: fullname: Dhar – volume: 196 start-page: 117081 year: 2020 ident: bib5 article-title: Wind power forecasting using attention-based gated recurrent unit network publication-title: Energy contributor: fullname: Reformat – year: 2021 ident: bib29 article-title: CKConv: Continuous kernel convolution for sequential data contributor: fullname: Romero – volume: 12 year: 2020 ident: bib30 article-title: A short-term hybrid wind power prediction model based on singular spectrum analysis and temporal convolutional networks publication-title: J Renew Sustain Energy contributor: fullname: Jia – year: 2016 ident: bib35 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition contributor: fullname: Ren – volume: 129 start-page: 357 year: 2018 end-page: 383 ident: bib4 article-title: Prediction interval forecasting of wind speed and wind power using modes decomposition based low rank multi-kernel ridge regression publication-title: Renew Energy contributor: fullname: Dash – volume: 179 year: 2021 ident: bib1 article-title: Wind speed deterministic forecasting and probabilistic interval forecasting approach based on deep learning, modified tunicate swarm algorithm, and quantile regression publication-title: Renew Energy contributor: fullname: Li – volume: 95 start-page: 105617 year: 2021 ident: bib10 article-title: A novel grey prediction model based on quantile regression publication-title: Commun Nonlinear Sci Numer Simulat contributor: fullname: Jv – volume: 108 start-page: 278 year: 2013 end-page: 287 ident: bib36 article-title: Distribution-free prediction sets publication-title: J Am Stat Assoc contributor: fullname: Wasserman – volume: 519 start-page: 925 year: 2014 end-page: 933 ident: bib11 article-title: Multi-objective optimization for construction of prediction interval of hydrological models based on ensemble simulations publication-title: J Hydrol contributor: fullname: Ye – volume: vol. 22 start-page: 101410 year: 2021 ident: bib22 article-title: Modeling of lead removal by living Scenedesmus obliquus using backpropagation (BP) neural network algorithm contributor: fullname: Ma – year: 2021 ident: bib32 article-title: Role of convolutional neural networks for any real time image classification, recognition and analysis publication-title: Mater Today Proc contributor: fullname: Kumar – volume: 29 start-page: 1033 year: 2013 end-page: 1044 ident: bib9 article-title: Probabilistic forecasting of wind power generation using extreme learning machine publication-title: IEEE Trans Power Syst contributor: fullname: Wan – volume: 550 start-page: 207 year: 2021 end-page: 220 ident: bib28 article-title: Multi-objective prediction intervals for wind power forecast based on deep neural networks publication-title: Inf Sci contributor: fullname: Guo – year: 2005 ident: bib14 article-title: Algorithmic learning in a random world contributor: fullname: Glenn Shafer – volume: 97 start-page: 394 issue: 2018 year: 2018 ident: 10.1016/j.energy.2022.123497_bib16 article-title: Interpretable regression trees using conformal prediction publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.12.041 contributor: fullname: Johansson – volume: 116 start-page: 105556 year: 2020 ident: 10.1016/j.energy.2022.123497_bib21 article-title: Dynamic dependence modelling of wind power uncertainty considering heteroscedastic effect publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2019.105556 contributor: fullname: Li – volume: 12 issue: 5 year: 2020 ident: 10.1016/j.energy.2022.123497_bib30 article-title: A short-term hybrid wind power prediction model based on singular spectrum analysis and temporal convolutional networks publication-title: J Renew Sustain Energy doi: 10.1063/5.0007003 contributor: fullname: Zhao – start-page: 6473 year: 2018 ident: 10.1016/j.energy.2022.123497_bib6 article-title: High-quality prediction intervals for deep learning: a distribution-free, ensembled approach contributor: fullname: Pearce – volume: 8 start-page: 876 issue: 8 year: 2019 ident: 10.1016/j.energy.2022.123497_bib33 article-title: Multivariate temporal convolutional network: a deep neural networks approach for multivariate time series forecasting publication-title: Electronics doi: 10.3390/electronics8080876 contributor: fullname: Wan – volume: 191 start-page: 106865 year: 2021 ident: 10.1016/j.energy.2022.123497_bib34 article-title: Temporal convolutional networks interval prediction model for wind speed forecasting publication-title: Elec Power Syst Res doi: 10.1016/j.epsr.2020.106865 contributor: fullname: Gan – year: 2008 ident: 10.1016/j.energy.2022.123497_bib18 article-title: Inductive conformal prediction: theory and application to neural networks contributor: fullname: Papadopoulos – year: 2021 ident: 10.1016/j.energy.2022.123497_bib29 contributor: fullname: Romero – volume: 12 start-page: 537 issue: 2 year: 2011 ident: 10.1016/j.energy.2022.123497_bib7 article-title: Prediction intervals to account for uncertainties in travel time prediction publication-title: IEEE Trans Intell Transport Syst doi: 10.1109/TITS.2011.2106209 contributor: fullname: Khosravi – volume: 179 year: 2021 ident: 10.1016/j.energy.2022.123497_bib1 article-title: Wind speed deterministic forecasting and probabilistic interval forecasting approach based on deep learning, modified tunicate swarm algorithm, and quantile regression publication-title: Renew Energy doi: 10.1016/j.renene.2021.07.113 contributor: fullname: Wang – volume: vol. 22 start-page: 101410 year: 2021 ident: 10.1016/j.energy.2022.123497_bib22 contributor: fullname: Ma – start-page: 64 year: 2008 ident: 10.1016/j.energy.2022.123497_bib17 article-title: Normalized nonconformity measures for regression conformal prediction contributor: fullname: Papadopoulos – ident: 10.1016/j.energy.2022.123497_bib2 doi: 10.1016/j.apenergy.2021.116842 – volume: 155 start-page: 197 year: 2020 ident: 10.1016/j.energy.2022.123497_bib26 article-title: The short-term interval prediction of wind power using the deep learning model with gradient descend optimization publication-title: Renew Energy doi: 10.1016/j.renene.2020.03.098 contributor: fullname: Li – volume: 519 start-page: 925 year: 2014 ident: 10.1016/j.energy.2022.123497_bib11 article-title: Multi-objective optimization for construction of prediction interval of hydrological models based on ensemble simulations publication-title: J Hydrol doi: 10.1016/j.jhydrol.2014.08.026 contributor: fullname: Ye – volume: 32 year: 2019 ident: 10.1016/j.energy.2022.123497_bib20 article-title: Conformalized quantile regression publication-title: Adv Neural Inf Process Syst contributor: fullname: Romano – volume: 7 start-page: 983 year: 2006 ident: 10.1016/j.energy.2022.123497_bib38 article-title: Quantile regression forests publication-title: J Mach Learn Res contributor: fullname: Meinshausen – year: 2005 ident: 10.1016/j.energy.2022.123497_bib14 contributor: fullname: Vovk – volume: 196 start-page: 117081 year: 2020 ident: 10.1016/j.energy.2022.123497_bib5 article-title: Wind power forecasting using attention-based gated recurrent unit network publication-title: Energy doi: 10.1016/j.energy.2020.117081 contributor: fullname: Niu – volume: 550 start-page: 207 year: 2021 ident: 10.1016/j.energy.2022.123497_bib28 article-title: Multi-objective prediction intervals for wind power forecast based on deep neural networks publication-title: Inf Sci doi: 10.1016/j.ins.2020.10.034 contributor: fullname: Zhou – volume: 11 start-page: 3336 issue: 12 year: 2018 ident: 10.1016/j.energy.2022.123497_bib37 article-title: Wind power interval forecasting based on confidence interval optimization publication-title: Energies doi: 10.3390/en11123336 contributor: fullname: Yu – volume: 8 issue: 3 year: 2017 ident: 10.1016/j.energy.2022.123497_bib39 article-title: Quantile regression models and their applications: a review publication-title: J Biometrics Biostat contributor: fullname: Qi – volume: 136 start-page: 701 year: 2019 ident: 10.1016/j.energy.2022.123497_bib3 article-title: A multi-objective wind speed and wind power prediction interval forecasting using variational modes decomposition based Multi-kernel robust ridge regression publication-title: Renew Energy doi: 10.1016/j.renene.2019.01.006 contributor: fullname: Naik – volume: 162 start-page: 1208 year: 2020 ident: 10.1016/j.energy.2022.123497_bib40 article-title: Deterministic and probabilistic wind speed forecasting with de-noising-reconstruction strategy and quantile regression based algorithm publication-title: Renew Energy doi: 10.1016/j.renene.2020.08.077 contributor: fullname: Hu – start-page: 71 year: 2014 ident: 10.1016/j.energy.2022.123497_bib13 article-title: Distribution-free prediction bands for non-parametric regression publication-title: J Roy Stat Soc B Stat Methodol doi: 10.1111/rssb.12021 contributor: fullname: Lei – volume: 365 start-page: 54 year: 2019 ident: 10.1016/j.energy.2022.123497_bib25 article-title: A gated recurrent unit neural networks based wind speed error correction model for short-term wind power forecasting publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.07.058 contributor: fullname: Ding – year: 2019 ident: 10.1016/j.energy.2022.123497_bib31 article-title: Combining word and character vector representation on neural machine translation contributor: fullname: Shahih – volume: 31 start-page: 1155 issue: 6 year: 2020 ident: 10.1016/j.energy.2022.123497_bib42 article-title: Noncrossing varying coefficient support vector quantile regression publication-title: Journal of the Korean Data and Information Science Society doi: 10.7465/jkdi.2020.31.6.1155 contributor: fullname: Shim – volume: 9 start-page: 1177 issue: 3 year: 2017 ident: 10.1016/j.energy.2022.123497_bib23 article-title: Direct interval forecast of uncertain wind power based on recurrent neural networks publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2017.2774195 contributor: fullname: Shi – volume: 144 year: 2020 ident: 10.1016/j.energy.2022.123497_bib19 article-title: Bayesian bridge-randomized penalized quantile regression publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2019.106876 contributor: fullname: Tian – volume: 29 start-page: 1033 issue: 3 year: 2013 ident: 10.1016/j.energy.2022.123497_bib9 article-title: Probabilistic forecasting of wind power generation using extreme learning machine publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2013.2287871 contributor: fullname: Wan – year: 2016 ident: 10.1016/j.energy.2022.123497_bib35 article-title: Deep residual learning for image recognition contributor: fullname: He – volume: 129 start-page: 357 year: 2018 ident: 10.1016/j.energy.2022.123497_bib4 article-title: Prediction interval forecasting of wind speed and wind power using modes decomposition based low rank multi-kernel ridge regression publication-title: Renew Energy doi: 10.1016/j.renene.2018.05.031 contributor: fullname: Naik – volume: 185 start-page: 758 year: 2019 ident: 10.1016/j.energy.2022.123497_bib12 article-title: A novel probabilistic wind speed prediction approach using real time refined variational model decomposition and conditional kernel density estimation publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.02.028 contributor: fullname: Jiang – volume: 82 start-page: 105550 year: 2019 ident: 10.1016/j.energy.2022.123497_bib24 article-title: Prediction interval of wind power using parameter optimized beta distribution based LSTM model publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105550 contributor: fullname: Yuan – volume: 31 start-page: 3814 issue: 10 year: 2019 ident: 10.1016/j.energy.2022.123497_bib27 article-title: Deep learning method based on gated recurrent unit and variational mode decomposition for short-term wind power interval prediction publication-title: IEEE Transact Neural Networks Learn Syst doi: 10.1109/TNNLS.2019.2946414 contributor: fullname: Wang – volume: 92 start-page: 106327 year: 2020 ident: 10.1016/j.energy.2022.123497_bib41 article-title: A new wind power interval prediction approach based on reservoir computing and a quality-driven loss function publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106327 contributor: fullname: Hu – volume: 95 start-page: 105617 year: 2021 ident: 10.1016/j.energy.2022.123497_bib10 article-title: A novel grey prediction model based on quantile regression publication-title: Commun Nonlinear Sci Numer Simulat doi: 10.1016/j.cnsns.2020.105617 contributor: fullname: Wang – volume: 523 start-page: 1094 year: 2018 ident: 10.1016/j.energy.2022.123497_bib15 article-title: Distribution-free predictive inference for regression publication-title: J Am Stat Assoc doi: 10.1080/01621459.2017.1307116 contributor: fullname: Lei – year: 2021 ident: 10.1016/j.energy.2022.123497_bib32 article-title: Role of convolutional neural networks for any real time image classification, recognition and analysis publication-title: Mater Today Proc contributor: fullname: Kumar – volume: 108 start-page: 278 issue: 501 year: 2013 ident: 10.1016/j.energy.2022.123497_bib36 article-title: Distribution-free prediction sets publication-title: J Am Stat Assoc doi: 10.1080/01621459.2012.751873 contributor: fullname: Lei – volume: vol. 1 year: 1994 ident: 10.1016/j.energy.2022.123497_bib8 article-title: Estimating the mean and variance of the target probability distribution contributor: fullname: Nix |
SSID | ssj0005899 |
Score | 2.5411687 |
Snippet | Wind power interval prediction is an effective technique for quantifying forecasting uncertainty caused by the intermittent and fluctuant characteristics of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 123497 |
SubjectTerms | Algorithms Conformalized quantile regression Decision making Electric power Electric power systems Forecasting Iterative methods Mathematical models Predictions Regression Renewable energy Temporal convolutional network Wind power Wind power interval prediction |
Title | Conformalized temporal convolutional quantile regression networks for wind power interval forecasting |
URI | https://dx.doi.org/10.1016/j.energy.2022.123497 https://www.proquest.com/docview/2664077908 |
Volume | 248 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_28aAvolPxY0oefI2zS9I2j2NsTAd78AN9C2mbyGTUuU4EH_zbvbQpogiCTyUlV8rd5XeX9ncXgDNhBcYpaSjmyozyWHMqw8BSi87DDe4gfLfPWTi541cP4qEBw7oWxtEqPfZXmF6itb_T89rsLefz3g1iL-Yb7hNG6YmiCW33kwh3YO3B5XQy-2J6xOUxkm4-dQJ1BV1J8zJliR1uFPv9c0Rx7ro__R6hfmB1GYDG27DlM0cyqF5uBxom78BGXVhcdGB_9FW0hhP9qi12wbiyPpebLubvJiO-G9WCOMa59zwcvbyikhEjyMo8VuTYnOQVSbwgKE7ecPtOlu5UNTIvmZIohPdNqgvHnd6Du_Hodjih_ngFmrJYrKkVQRraIMMQFiRhomPTt2GGCBZxrXnGbJrEwgZW2L6RNpMc46mOTCzSCOdaxvahlT_n5gCIsIhVLOTyQjJudSozyTTnLBVasEyzQ6C1StWy6qKhanrZk6pMoJwJVGWCQ4hqvatv3qAQ6P-Q7NZmUn41FgqTEPS6SF7ER_9-8DFsulHFEutCa716NSeYj6yTU2iefwSn3uvcdXp9P_0EtVTkCQ |
link.rule.ids | 315,786,790,4516,24137,27946,27947,45609,45703 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHMYF8ZoYDMiBa7Z1SdrmiKZN43kBpN2irE3Q0FTGugmJA78dp03FQ0hIHJs6VWU7n53oswNwJqzAOCUNxVyZUR5rTmUYWGrRebjBHYTv9nkbjh745ViM16Bf1cI4WqXH_hLTC7T2Ix2vzc58Ou3cIfZivuGOMApPFOuwgdlA17l2-_0LzyMuLpF00tSJV_VzBcnLFAV2uE3s9dqI4dz1fvo9Pv1A6iL8DLdhy-eN5Lz8tR1YM9ku1Kuy4nwXGoPPkjUU9Gs23wPjivpcZjqbvpmU-F5UM-L45t7v8OllhSpGhCAL81hSYzOSlRTxnOB08oqbdzJ3d6qRacGTxEk4bhKdO-b0PjwMB_f9EfWXK9CExWJJrQiS0AYpBrBgEk50bHo2TBG_Iq41T5lNJrGwgRW2Z6RNJcdoqiMTiyRCWctYA2rZc2YOgAiLSMVCLruScasTmUqmOWeJ0IKlmjWBVipV87KHhqrIZU-qNIFyJlClCZoQVXpX33xBIcz_MbNVmUn5tZgrTEHQ5yLZjQ___eFTqI_ub67V9cXt1RFsujclX6wFteViZY4xM1lOTgrP-wCf9eM5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conformalized+temporal+convolutional+quantile+regression+networks+for+wind+power+interval+forecasting&rft.jtitle=Energy+%28Oxford%29&rft.au=Hu%2C+Jianming&rft.au=Luo%2C+Qingxi&rft.au=Tang%2C+Jingwei&rft.au=Heng%2C+Jiani&rft.date=2022-06-01&rft.issn=0360-5442&rft.volume=248&rft.spage=123497&rft_id=info:doi/10.1016%2Fj.energy.2022.123497&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2022_123497 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |