Quantification of some intrinsic soil properties using proximal sensing in arid lands: Application of Vis-NIR, MIR, and pXRF spectroscopy
The aim of the current research was to examine the effectiveness of Vis-NIR-SWIR (visible, near-infrared, and shortwave infrared spectroscopy: 350–2500 nm), MIR (mid-infrared spectroscopy: 4000–400 cm−1), and pXRF (portable x-ray fluorescence) to characterize and estimate clay, sand, silt, calcium c...
Saved in:
Published in | Geoderma Regional Vol. 28; p. e00484 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The aim of the current research was to examine the effectiveness of Vis-NIR-SWIR (visible, near-infrared, and shortwave infrared spectroscopy: 350–2500 nm), MIR (mid-infrared spectroscopy: 4000–400 cm−1), and pXRF (portable x-ray fluorescence) to characterize and estimate clay, sand, silt, calcium carbonate (CaCO3), gypsum (CaSO4.2H2O), soil organic carbon (SOC) contents and electrical conductivity (EC) in Afzar district, Fars province, southern Iran. The study area was divided into non-saline (A) and saline (B) regions, and then a total of 300 soil samples from these areas were collected for laboratory analysis. The partial least-squares regression (PLSR) method was used to predict soil properties from Vis-NIR-SWIR, mid-IR, and pXRF spectra. In general, Vis-NIR-SWIR showed better results for predicting soil texture (R2 for area A: clay = 0.78, sand = 0.80 and silt = 0.69; R2 for area B: clay = 0.63, sand = 0.67 and silt = 0.47) in the arid regions than mid-IR (R2 for area A: clay = 0.71, sand = 0.75 and silt = 0.63; R2 for area B: clay = 0.61, sand = 0.57 and silt = 0.37), and pXRF (R2 for area A: clay = 0.49, sand = 0.60 and silt = 0.50; R2 for area B: clay = 0.41, sand = 0.41 and silt = 0.23). Based on the RPI index, three approaches alone could successfully predict CaCO3 in areas A and B (R2 > 0.75 and RPIQ >2.02). The model prediction results for gypsum showed that although the value of the determination coefficient is high (R2 > 0.95), but according to the low value of the RPIQ index (RPIQ<1.26), the model prediction performance is untrusted, and this is probably due to unsuitable distribution of gypsum in this area. The results showed that the pXRF technique alone could not predict SOC in these areas (R2 < 0.27 and RPIQ <1.08), and it is probably better to use it in combination with Vis-NIR-SWIR and mid-IR data. pXRF for predicting soil salinity in areas A and B was acceptable and successful, respectively. Also, the results showed that the Vis-NIR-SWIR and mid-IR ranges could not predict salinity in these regions and should be used in combination with pXRF data. In conclusion, the Vis-NIR-SWIR, mid-IR, and pXRF spectroscopy are presented here as useful and reliable tools for direct applications in pedology, particularly in the digital mapping of soil surface properties.
•The effectiveness of Vis-NIR-SWIR, and MIR were examined to estimate some soil properties.•Vis-NIR-SWIR showed better results for soil texture than mid-IR and PXRF.•Each technique alone could successfully predict CaCO3 in the study area•The results showed that the PXRF technique alone is not able to predict SOC in these areas.•Vis-NIR-SWIR, mid-IR and PXRF reflectance spectroscopy are presented here as useful and reliable tools |
---|---|
AbstractList | The aim of the current research was to examine the effectiveness of Vis-NIR-SWIR (visible, near-infrared, and shortwave infrared spectroscopy: 350–2500 nm), MIR (mid-infrared spectroscopy: 4000–400 cm−1), and pXRF (portable x-ray fluorescence) to characterize and estimate clay, sand, silt, calcium carbonate (CaCO3), gypsum (CaSO4.2H2O), soil organic carbon (SOC) contents and electrical conductivity (EC) in Afzar district, Fars province, southern Iran. The study area was divided into non-saline (A) and saline (B) regions, and then a total of 300 soil samples from these areas were collected for laboratory analysis. The partial least-squares regression (PLSR) method was used to predict soil properties from Vis-NIR-SWIR, mid-IR, and pXRF spectra. In general, Vis-NIR-SWIR showed better results for predicting soil texture (R2 for area A: clay = 0.78, sand = 0.80 and silt = 0.69; R2 for area B: clay = 0.63, sand = 0.67 and silt = 0.47) in the arid regions than mid-IR (R2 for area A: clay = 0.71, sand = 0.75 and silt = 0.63; R2 for area B: clay = 0.61, sand = 0.57 and silt = 0.37), and pXRF (R2 for area A: clay = 0.49, sand = 0.60 and silt = 0.50; R2 for area B: clay = 0.41, sand = 0.41 and silt = 0.23). Based on the RPI index, three approaches alone could successfully predict CaCO3 in areas A and B (R2 > 0.75 and RPIQ >2.02). The model prediction results for gypsum showed that although the value of the determination coefficient is high (R2 > 0.95), but according to the low value of the RPIQ index (RPIQ<1.26), the model prediction performance is untrusted, and this is probably due to unsuitable distribution of gypsum in this area. The results showed that the pXRF technique alone could not predict SOC in these areas (R2 < 0.27 and RPIQ <1.08), and it is probably better to use it in combination with Vis-NIR-SWIR and mid-IR data. pXRF for predicting soil salinity in areas A and B was acceptable and successful, respectively. Also, the results showed that the Vis-NIR-SWIR and mid-IR ranges could not predict salinity in these regions and should be used in combination with pXRF data. In conclusion, the Vis-NIR-SWIR, mid-IR, and pXRF spectroscopy are presented here as useful and reliable tools for direct applications in pedology, particularly in the digital mapping of soil surface properties.
•The effectiveness of Vis-NIR-SWIR, and MIR were examined to estimate some soil properties.•Vis-NIR-SWIR showed better results for soil texture than mid-IR and PXRF.•Each technique alone could successfully predict CaCO3 in the study area•The results showed that the PXRF technique alone is not able to predict SOC in these areas.•Vis-NIR-SWIR, mid-IR and PXRF reflectance spectroscopy are presented here as useful and reliable tools The aim of the current research was to examine the effectiveness of Vis-NIR-SWIR (visible, near-infrared, and shortwave infrared spectroscopy: 350–2500 nm), MIR (mid-infrared spectroscopy: 4000–400 cm⁻¹), and pXRF (portable x-ray fluorescence) to characterize and estimate clay, sand, silt, calcium carbonate (CaCO₃), gypsum (CaSO₄.2H₂O), soil organic carbon (SOC) contents and electrical conductivity (EC) in Afzar district, Fars province, southern Iran. The study area was divided into non-saline (A) and saline (B) regions, and then a total of 300 soil samples from these areas were collected for laboratory analysis. The partial least-squares regression (PLSR) method was used to predict soil properties from Vis-NIR-SWIR, mid-IR, and pXRF spectra. In general, Vis-NIR-SWIR showed better results for predicting soil texture (R² for area A: clay = 0.78, sand = 0.80 and silt = 0.69; R² for area B: clay = 0.63, sand = 0.67 and silt = 0.47) in the arid regions than mid-IR (R² for area A: clay = 0.71, sand = 0.75 and silt = 0.63; R² for area B: clay = 0.61, sand = 0.57 and silt = 0.37), and pXRF (R² for area A: clay = 0.49, sand = 0.60 and silt = 0.50; R² for area B: clay = 0.41, sand = 0.41 and silt = 0.23). Based on the RPI index, three approaches alone could successfully predict CaCO3 in areas A and B (R² > 0.75 and RPIQ >2.02). The model prediction results for gypsum showed that although the value of the determination coefficient is high (R² > 0.95), but according to the low value of the RPIQ index (RPIQ<1.26), the model prediction performance is untrusted, and this is probably due to unsuitable distribution of gypsum in this area. The results showed that the pXRF technique alone could not predict SOC in these areas (R² < 0.27 and RPIQ <1.08), and it is probably better to use it in combination with Vis-NIR-SWIR and mid-IR data. pXRF for predicting soil salinity in areas A and B was acceptable and successful, respectively. Also, the results showed that the Vis-NIR-SWIR and mid-IR ranges could not predict salinity in these regions and should be used in combination with pXRF data. In conclusion, the Vis-NIR-SWIR, mid-IR, and pXRF spectroscopy are presented here as useful and reliable tools for direct applications in pedology, particularly in the digital mapping of soil surface properties. |
ArticleNumber | e00484 |
Author | Naimi, Salman Di Raimo, Luis Augusto Di Loreto Dematte, Jose Alexandre Melo Ayoubi, Shamsollah |
Author_xml | – sequence: 1 givenname: Salman surname: Naimi fullname: Naimi, Salman organization: Department of Soil Science, College of Agriculture, Isfahan University of Technology, 841156-83111, Isfahan, Iran – sequence: 2 givenname: Shamsollah surname: Ayoubi fullname: Ayoubi, Shamsollah email: ayoubi@cc.iut.ac.ir organization: Department of Soil Science, College of Agriculture, Isfahan University of Technology, 841156-83111, Isfahan, Iran – sequence: 3 givenname: Luis Augusto Di Loreto surname: Di Raimo fullname: Di Raimo, Luis Augusto Di Loreto organization: Department of Soil Science, College of Agronomy and Zootechnology, Federal University of Mato Grosso, Cuiabá, Brazil – sequence: 4 givenname: Jose Alexandre Melo surname: Dematte fullname: Dematte, Jose Alexandre Melo organization: Department of Soil Science, College of Agriculture Luiz de Queiróz, Av. Pádua Dias, 11, CEP 13418-900, Piracicaba, SP, Brazil |
BookMark | eNqFkMFu1DAQhi1UpJbSN-DgI4dmcRzHm_SAVFVdqFRAVIC4WV5nXM0qa6ceb0UfgbfG2_RQcYDLeDz6_18z3yt2EGIAxt7UYlGLWr_bLG4hDokWUki5ACFUp16wI9m0shKiVwfP-kN2QrQRQsi-bZZaHrHfX3c2ZPTobMYYePSc4hY4hpwwELryxZFPKU6QMgLxHWG43Q9-4daOnCA8DjBwm3Dgow0DnfHzaRqfZf5Aqj5f3ZzyT_tSJHz6ebPiNIHLKZKL08Nr9tLbkeDk6T1m31eX3y4-VtdfPlxdnF9XrunaXHkplmLtl952ArRtda1cb9dt3UErrBrWWopOeK0ArNW2LlKpfAeDbJySEppj9nbOLSfc7YCy2SI5GMviEHdkpG50u-x73RWpmqWu7EgJvJlSOTo9mFqYPXyzMTN8s4dvZvjFdvaXzWF-RJGTxfF_5vezGQqDe4RkyCEEBwOmAssMEf8d8Ac4x6cw |
CitedBy_id | crossref_primary_10_1080_17538947_2023_2210314 crossref_primary_10_1002_saj2_70028 crossref_primary_10_1007_s11368_024_03825_7 crossref_primary_10_3389_fchem_2023_1214825 crossref_primary_10_1016_j_iswcr_2022_06_004 crossref_primary_10_1111_ejss_70003 crossref_primary_10_1016_j_geoderma_2023_116754 crossref_primary_10_1007_s12145_023_01168_4 crossref_primary_10_1016_j_compag_2022_107459 crossref_primary_10_1016_j_geoderma_2024_116980 crossref_primary_10_3390_land13020154 crossref_primary_10_1080_03650340_2022_2134565 crossref_primary_10_1007_s11119_022_09942_y crossref_primary_10_1016_j_compag_2023_107928 crossref_primary_10_1016_j_geoderma_2023_116589 crossref_primary_10_1016_j_jsames_2022_103855 crossref_primary_10_1002_saj2_20639 crossref_primary_10_1016_j_geoderma_2022_116006 crossref_primary_10_1016_j_geoderma_2022_116268 crossref_primary_10_1515_geo_2022_0739 crossref_primary_10_1016_j_radphyschem_2025_112750 crossref_primary_10_3390_land11122188 crossref_primary_10_1007_s42729_025_02333_y crossref_primary_10_1016_j_catena_2022_106514 crossref_primary_10_1007_s12665_023_11345_9 crossref_primary_10_3390_min14111098 |
Cites_doi | 10.1016/j.biosystemseng.2005.04.015 10.1016/j.geoderma.2018.11.004 10.1016/j.geoderma.2018.01.011 10.1093/jxb/erq251 10.1016/j.jseaes.2010.06.002 10.1097/00010694-193401000-00003 10.1016/j.geoderma.2019.114136 10.1111/ejss.12272 10.1016/j.geoderma.2014.01.013 10.2138/am-2014-4756 10.14303/ajfst.2015.017 10.1016/j.geoderma.2003.09.012 10.1016/j.catena.2020.104485 10.1016/j.geoderma.2018.09.010 10.1097/SS.0b013e3181bbbd0b 10.1016/j.geoderma.2018.06.006 10.1016/j.foodchem.2013.09.142 10.1016/j.geomorph.2008.12.021 10.1016/j.geoderma.2015.12.030 10.1346/CCMN.1958.0070122 10.1002/jpln.19771400228 10.1093/jxb/erj108 10.2136/sssaj2013.05.0170 10.1071/EA97144 10.2136/sssaj2006.0059 10.1111/sum.12167 10.1016/j.biosystemseng.2018.06.008 10.1016/B978-0-12-386473-4.00005-1 10.1016/j.geoderma.2015.04.017 10.1366/0003702904086821 10.1016/j.geoderma.2005.02.011 10.1016/j.geoderma.2014.10.001 10.1016/j.earscirev.2016.01.012 10.1016/j.geoderma.2011.08.010 10.1080/05704928.2013.811081 10.1007/s10661-018-6557-y 10.3390/rs11202336 10.1007/s12665-013-2980-0 10.1111/ejss.12733 10.1155/2013/616578 10.1016/j.rse.2011.02.023 10.1016/S0065-2113(02)75005-0 10.1111/ejss.12699 10.4141/cjss90-029 10.1255/jnirs.1157 10.1016/j.geomorph.2017.02.015 10.2136/sssaj2005.0159 10.2136/sssaj2001.652480x 10.1016/j.geoderma.2013.07.017 10.2136/sssaj2003.0285 10.1371/journal.pone.0210235 10.1016/j.geodrs.2015.06.002 10.1081/CSS-120001102 10.1016/j.cageo.2005.12.009 10.1007/BF00016973 10.1007/s11629-019-5789-9 10.1016/j.geoderma.2008.09.016 10.1016/bs.agron.2015.02.002 10.1016/j.geoderma.2013.11.012 10.1016/j.geoderma.2018.09.006 10.1016/j.geoderma.2005.03.007 10.1097/00010694-200202000-00003 10.1016/j.chemolab.2016.02.013 10.1097/SS.0000000000000088 10.1097/SS.0000000000000026 10.1016/j.catena.2016.01.007 10.1016/j.catena.2019.104424 10.1097/SS.0b013e31819c6e1b 10.1111/j.1365-2389.2011.01401.x 10.1016/j.scitotenv.2005.03.024 10.1111/ejss.12320 10.1016/j.trac.2010.05.006 10.1016/S0065-2113(10)07005-7 10.2136/sssaj1995.03615995005900020014x 10.1016/j.geoderma.2009.07.021 10.1016/j.soilbio.2011.02.019 10.1016/j.geoderma.2014.09.011 10.1016/j.jaridenv.2009.08.011 10.1016/j.geoderma.2014.05.005 10.3390/rs13234825 10.1016/j.geoderma.2017.10.053 10.2136/sssaj2011.0174 10.1029/JB095iB08p12653 10.1071/SR9910049 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geodrs.2022.e00484 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-0094 |
ExternalDocumentID | 10_1016_j_geodrs_2022_e00484 S2352009422000049 |
GeographicLocations | Iran |
GeographicLocations_xml | – name: Iran |
GroupedDBID | --M 0R~ 4.4 457 4G. 7-5 AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AATLK AAXUO ABGRD ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFKWA AFTJW AFXIZ AGHFR AGUBO AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE RIG ROL SPC SPCBC SSA SSE SSJ SSZ T5K ~G- AAHBH AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c385t-f2070bf7fa80e6a5614c9ab518e50a4db62080f64eeaa6a1bf724f8ed23c422e3 |
IEDL.DBID | AIKHN |
ISSN | 2352-0094 |
IngestDate | Fri Jul 11 11:23:29 EDT 2025 Tue Jul 01 02:07:19 EDT 2025 Thu Apr 24 23:00:49 EDT 2025 Fri Feb 23 02:41:46 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Vis-NIR-SWIR Soil spectral behavior Mid-IR and pXRF spectroscopy PLSR, arid region |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-f2070bf7fa80e6a5614c9ab518e50a4db62080f64eeaa6a1bf724f8ed23c422e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1016/J.GEODRS.2022.E00484 |
PQID | 2636579968 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2636579968 crossref_primary_10_1016_j_geodrs_2022_e00484 crossref_citationtrail_10_1016_j_geodrs_2022_e00484 elsevier_sciencedirect_doi_10_1016_j_geodrs_2022_e00484 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma Regional |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bogrekci, Lee (bb0070) 2005; 91 Ames, Prych (bb0010) 1995 Hesse (bb0185) 1976; 44 Terra, Demattê, Viscarra Rossel (bb0400) 2015; 255–256 Janik, Merry, Skjemstad (bb0210) 1998; 38 Mehra, Jackson (bb0245) 1960; 7 Zeraatpisheh, Jafari, Bagheri Bodaghabadi, Ayoubi, Taghizadeh-Mehrjardi, Toomanian, Kerry, Xu (bb0515) 2020; 188 Ayoubi, Mokhtari, Mosaddeghi, Zeraatpisheh (bb0020) 2018; 190 Clay, Chang, Malo, Carlson, Reese, Clay, Ellsbury, Berg (bb0100) 2001; 32 Ravansari, Lemke (bb0295) 2018; 319 Soon, Abboud (bb0350) 1990; 70 Ben-Dor, Levin, Singer, Karnieli, Braun, Kidron (bb0055) 2006; 131 Sharma, Wang, Chakraborty (bb0315) 2015; 239–240 Zhang, Hartemink (bb0520) 2018; 70 Stenberg, Viscarra Rossel, Mouazen, Wetterlind (bb0365) 2010 Hürkamp, Raab, Völkel (bb0205) 2009; 110 Tümsavaş, Tekin, Ulusoy, Mouazen (bb0415) 2019; 177 Gates (bb0155) 2018 Henaka Arachchi, Field, McBratney (bb0180) 2016; 267 Chang, Laird, Mausbach, Hurburgh (bb0085) 2001; 65 Fischer (bb0150) 1977; 140 Shi, Ji, Rossel, Chen, Zhou (bb0325) 2015; 66 Vohland, Ludwig, Sören, Ludwig (bb0445) 2014; 223–225 Walkley, Black (bb0455) 1934; 37 Rengasamy (bb0305) 2006; 57 Shaverdi, Esfahani, Mirtohidi, Ghomashi (bb0320) 2004 Asgari, Ayoubi, Demattê, Dotto (bb0015) 2020 Viscarra Rossel, Walvoort, McBratney, Janik, Skjemstad (bb0430) 2006; 131 Terra (bb0395) 2012 Viscarra Rossel, Behrens, Ben-Dor, Brown, Demattê, Shepherd, Shi, Stenberg, Stevens, Adamchuk, Aïchi, Barthès, Bartholomeus, Bayer, Bernoux, Böttcher, Brodský, Du, Chappell, Fouad, Genot, Gomez, Grunwald, Gubler, Guerrero, Hedley, Knadel, Morrás, Nocita, Ramirez-Lopez, Roudier, Campos, Sanborn, Sellitto, Sudduth, Rawlins, Walter, Winowiecki, Hong, Ji (bb0440) 2016; 155 Edelman, de Bruin (bb0145) 1986 Weindorf, Zhu, Ferrell, Rolong, Barnett, Allen, Herrero, Hudnall (bb0465) 2009; 174 Stumpe, Weihermüller, Marschner (bb0380) 2011; 62 Ben-Dor, Banin (bb0045) 1990; 44 Vicente, Filho (bb0425) 2011; 115 Wiedenbeck (bb0490) 2013; 9 Mohamed, Saleh, Belal, Gad (bb0260) 2018; 21 Viscarra Rossel, Adamchuk, Sudduth, McKenzie, Lobsey (bb0435) 2011 Weindorf, Herrero, Castañeda, Bakr, Swanhart (bb0475) 2013; 77 Soil Conservation Service (bb0340) 1972 Towett, Shepherd, Tondoh, Winowiecki, Lulseged, Nyambura, Sila, Vågen, Cadisch (bb0410) 2015; 5 Yu, Li, Han, Zhou, Fu, Guan, Wang, Ning, Wu, Wang (bb0500) 2014; 72 Stockmann, Cattle, Minasny, McBratney (bb0375) 2016; 139 Chabrillat, Ben-Dor, Rossel, Demattê (bb0075) 2013; 2013 Nguyen, Janik, Raupach (bb0280) 1991; 29 Gee, Bauder (bb0165) 2018 Ben-Dor (bb0040) 2002 Chang, Laird (bb0080) 2002; 167 Nanni, Demattê (bb0275) 2006; 70 Weindorf, Chakraborty, Herrero, Li, Castañeda, Choudhury (bb0485) 2016; 67 Zhu, Weindorf, Zhang (bb0535) 2011; 167–168 Choudhary, Kharche (bb0090) 2018 Hunt (bb0195) 1980 Volkan Bilgili, van Es, Akbas, Durak, Hively (bb0450) 2010; 74 Gomez, Coulouma (bb0170) 2018; 330 Ben-Dor, Heller, Chudnovsky (bb0060) 2008; 72 Terra, Demattê, Viscarra Rossel (bb0405) 2018; 318 Zolfaghari, Mosaddeghi, Ayoubi (bb0540) 2015; 31 Lemiere (bb0230) 2014 Aldabaa, Weindorf, Chakraborty, Sharma, Li (bb0005) 2015; 239–240 Minasny, Tranter, McBratney, Alex, Brough, Murphy (bb0255) 2009; 153 Soriano-Disla, Janik, Viscarra Rossel, Macdonald, McLaughlin (bb0360) 2014; 49 Weindorf, Zhu, Haggard, Lofton, Chakraborty, Bakr, Zhang, Weindorf, Legoria (bb0470) 2012; 76 Doner, Lynn (bb0135) 1989 Sharma, Weindorf, Man, Aldabaa, Chakraborty (bb0310) 2014; 232–234 Silva, Weindorf, Pinto, Faria, Acerbi Junior, Gomide, de Mello, de Pádua Junior, de Souza, Teixeira, Guilherme, Curi (bb0335) 2020; 362 Weindorf, Bakr, Zhu (bb0480) 2014; 128 Stevenson (bb0370) 1982 Ge, Thomasson, Morgan (bb0160) 2014; 213 Khayamim, Wetterlind, Hossein, Robertson, Cano, Stenberg (bb0220) 2015; 23 Comstock, Sherpa, Ferguson, Bailey, Beem-Miller, Lin, Lehmann, Wolfe (bb0110) 2019; 14 Naimi, Ayoubi, Demattê, Zeraatpisheh, Amorim, Mello (bb0265) 2021; 1–24 Bellon-Maurel, McBratney (bb0030) 2011; 43 Hunt, Salisbury, Lenhoff (bb0200) 1971 Clark, King, Klejwa, Swayze, Vergo (bb0095) 1990; 95 Loeppert, Suarez (bb0235) 1996 Zeraatpisheh, Ayoubi, Jafari, Finke (bb0505) 2017; 285 Demattê, Terra (bb0115) 2014; 217–218 Löwemark, Chen, Yang, Kylander, Yu, Hsu, Lee, Song, Jarvis (bb0240) 2011; 40 Zeraatpisheh, Ayoubi, Jafari, Tajik, Finke (bb0510) 2019; 338 Swanhart, Weindorf, Chakraborty, Bakr, Zhu, Nelson, Shook, Acree (bb0385) 2014; 179 Ben-Dor, Banin (bb0050) 1995; 59 Coblinski, Giasson, Demattê, Dotto, Costa, Vašát (bb0105) 2020; 189 Wold, Martens, Wold (bb0495) 1983 Gomez, Lagacherie, Coulouma (bb0175) 2008; 148 Zhu, Weindorf (bb0530) 2009; 174 Naimi, Ayoubi, Zeraatpisheh, Dematte (bb0270) 2021; 13 Sila, Shepherd, Pokhariyal (bb0330) 2016; 153 Vasava, Gupta, Arora, Das Bhabani (bb0420) 2019; 337 Bellon-Maurel, Fernandez-Ahumada, Palagos, Roger, McBratney (bb0035) 2010; 29 Sorensen, Dalsgaard (bb0355) 2005; 69 Soil Survey Staff (bb0345) 2014 Tavakkoli, Rengasamy, McDonald (bb0390) 2010; 61 Demattê, Campos, Alves, Fiorio, Nanni (bb0120) 2004; 121 Hobley, Prater (bb0190) 2019; 70 Demattê, Dotto, Bedin, Sayão, Souza (bb0125) 2019; 337 Otaka, Hokura, Nakai (bb0290) 2014; 147 Bishop, Lane, Dyar, King, Brown, Swayze (bb0065) 2014; 99 Nocita, Stevens, van Wesemael, Aitkenhead, Bachmann, Barthès, Ben Dor, Brown, Clairotte, Csorba, Dardenne, Demattê, Genot, Guerrero, Knadel, Montanarella, Noon, Ramirez-Lopez, Robertson, Sakai, Soriano-Disla, Shepherd, Stenberg, Towett, Vargas, Wetterlind (bb0285) 2015 Bashour, Sayegh (bb0025) 2007 Wang, Li, Li, Liu (bb0460) 2013; 178 Dotto, Dalmolin, Caten, Gris, Ruiz (bb0140) 2017 Minasny, McBratney (bb0250) 2006; 32 Janvier (bb0215) 2015; 06 Zheng, Ryu, Jiao, Xie, Cui, Shang (bb0525) 2019; 11 Reeves, Smith (bb0300) 2009; 24 Lee, Li, Shi, Cheung, Thornton (bb0225) 2006; 356 Swanhart (10.1016/j.geodrs.2022.e00484_bb0385) 2014; 179 Bashour (10.1016/j.geodrs.2022.e00484_bb0025) 2007 Ben-Dor (10.1016/j.geodrs.2022.e00484_bb0040) 2002 Weindorf (10.1016/j.geodrs.2022.e00484_bb0485) 2016; 67 Soriano-Disla (10.1016/j.geodrs.2022.e00484_bb0360) 2014; 49 Bogrekci (10.1016/j.geodrs.2022.e00484_bb0070) 2005; 91 Wang (10.1016/j.geodrs.2022.e00484_bb0460) 2013; 178 Stumpe (10.1016/j.geodrs.2022.e00484_bb0380) 2011; 62 Tavakkoli (10.1016/j.geodrs.2022.e00484_bb0390) 2010; 61 Hunt (10.1016/j.geodrs.2022.e00484_bb0200) 1971 Comstock (10.1016/j.geodrs.2022.e00484_bb0110) 2019; 14 Bishop (10.1016/j.geodrs.2022.e00484_bb0065) 2014; 99 Weindorf (10.1016/j.geodrs.2022.e00484_bb0475) 2013; 77 Weindorf (10.1016/j.geodrs.2022.e00484_bb0480) 2014; 128 Janik (10.1016/j.geodrs.2022.e00484_bb0210) 1998; 38 Zhu (10.1016/j.geodrs.2022.e00484_bb0535) 2011; 167–168 Bellon-Maurel (10.1016/j.geodrs.2022.e00484_bb0035) 2010; 29 Chabrillat (10.1016/j.geodrs.2022.e00484_bb0075) 2013; 2013 Dotto (10.1016/j.geodrs.2022.e00484_bb0140) 2017 Löwemark (10.1016/j.geodrs.2022.e00484_bb0240) 2011; 40 Fischer (10.1016/j.geodrs.2022.e00484_bb0150) 1977; 140 Reeves (10.1016/j.geodrs.2022.e00484_bb0300) 2009; 24 Gomez (10.1016/j.geodrs.2022.e00484_bb0175) 2008; 148 Zeraatpisheh (10.1016/j.geodrs.2022.e00484_bb0510) 2019; 338 Hürkamp (10.1016/j.geodrs.2022.e00484_bb0205) 2009; 110 Hesse (10.1016/j.geodrs.2022.e00484_bb0185) 1976; 44 Soil Conservation Service (10.1016/j.geodrs.2022.e00484_bb0340) 1972 Zolfaghari (10.1016/j.geodrs.2022.e00484_bb0540) 2015; 31 Mohamed (10.1016/j.geodrs.2022.e00484_bb0260) 2018; 21 Shaverdi (10.1016/j.geodrs.2022.e00484_bb0320) 2004 Viscarra Rossel (10.1016/j.geodrs.2022.e00484_bb0435) 2011 Clark (10.1016/j.geodrs.2022.e00484_bb0095) 1990; 95 Mehra (10.1016/j.geodrs.2022.e00484_bb0245) 1960; 7 Gee (10.1016/j.geodrs.2022.e00484_bb0165) 2018 Vasava (10.1016/j.geodrs.2022.e00484_bb0420) 2019; 337 Nguyen (10.1016/j.geodrs.2022.e00484_bb0280) 1991; 29 Vohland (10.1016/j.geodrs.2022.e00484_bb0445) 2014; 223–225 Sila (10.1016/j.geodrs.2022.e00484_bb0330) 2016; 153 Ben-Dor (10.1016/j.geodrs.2022.e00484_bb0050) 1995; 59 Viscarra Rossel (10.1016/j.geodrs.2022.e00484_bb0430) 2006; 131 Wold (10.1016/j.geodrs.2022.e00484_bb0495) 1983 Choudhary (10.1016/j.geodrs.2022.e00484_bb0090) 2018 Ravansari (10.1016/j.geodrs.2022.e00484_bb0295) 2018; 319 Zheng (10.1016/j.geodrs.2022.e00484_bb0525) 2019; 11 Janvier (10.1016/j.geodrs.2022.e00484_bb0215) 2015; 06 Minasny (10.1016/j.geodrs.2022.e00484_bb0250) 2006; 32 Minasny (10.1016/j.geodrs.2022.e00484_bb0255) 2009; 153 Gomez (10.1016/j.geodrs.2022.e00484_bb0170) 2018; 330 Henaka Arachchi (10.1016/j.geodrs.2022.e00484_bb0180) 2016; 267 Asgari (10.1016/j.geodrs.2022.e00484_bb0015) 2020 Khayamim (10.1016/j.geodrs.2022.e00484_bb0220) 2015; 23 Weindorf (10.1016/j.geodrs.2022.e00484_bb0465) 2009; 174 Ayoubi (10.1016/j.geodrs.2022.e00484_bb0020) 2018; 190 Sharma (10.1016/j.geodrs.2022.e00484_bb0310) 2014; 232–234 Ben-Dor (10.1016/j.geodrs.2022.e00484_bb0045) 1990; 44 Terra (10.1016/j.geodrs.2022.e00484_bb0400) 2015; 255–256 Gates (10.1016/j.geodrs.2022.e00484_bb0155) 2018 Hobley (10.1016/j.geodrs.2022.e00484_bb0190) 2019; 70 Stenberg (10.1016/j.geodrs.2022.e00484_bb0365) 2010 Naimi (10.1016/j.geodrs.2022.e00484_bb0270) 2021; 13 Naimi (10.1016/j.geodrs.2022.e00484_bb0265) 2021; 1–24 Lee (10.1016/j.geodrs.2022.e00484_bb0225) 2006; 356 Vicente (10.1016/j.geodrs.2022.e00484_bb0425) 2011; 115 Zhu (10.1016/j.geodrs.2022.e00484_bb0530) 2009; 174 Otaka (10.1016/j.geodrs.2022.e00484_bb0290) 2014; 147 Soon (10.1016/j.geodrs.2022.e00484_bb0350) 1990; 70 Demattê (10.1016/j.geodrs.2022.e00484_bb0120) 2004; 121 Lemiere (10.1016/j.geodrs.2022.e00484_bb0230) 2014 Edelman (10.1016/j.geodrs.2022.e00484_bb0145) 1986 Stockmann (10.1016/j.geodrs.2022.e00484_bb0375) 2016; 139 Terra (10.1016/j.geodrs.2022.e00484_bb0405) 2018; 318 Volkan Bilgili (10.1016/j.geodrs.2022.e00484_bb0450) 2010; 74 Shi (10.1016/j.geodrs.2022.e00484_bb0325) 2015; 66 Sharma (10.1016/j.geodrs.2022.e00484_bb0315) 2015; 239–240 Stevenson (10.1016/j.geodrs.2022.e00484_bb0370) 1982 Bellon-Maurel (10.1016/j.geodrs.2022.e00484_bb0030) 2011; 43 Towett (10.1016/j.geodrs.2022.e00484_bb0410) 2015; 5 Chang (10.1016/j.geodrs.2022.e00484_bb0085) 2001; 65 Hunt (10.1016/j.geodrs.2022.e00484_bb0195) 1980 Sorensen (10.1016/j.geodrs.2022.e00484_bb0355) 2005; 69 Coblinski (10.1016/j.geodrs.2022.e00484_bb0105) 2020; 189 Nocita (10.1016/j.geodrs.2022.e00484_bb0285) 2015 Chang (10.1016/j.geodrs.2022.e00484_bb0080) 2002; 167 Doner (10.1016/j.geodrs.2022.e00484_bb0135) 1989 Viscarra Rossel (10.1016/j.geodrs.2022.e00484_bb0440) 2016; 155 Aldabaa (10.1016/j.geodrs.2022.e00484_bb0005) 2015; 239–240 Ben-Dor (10.1016/j.geodrs.2022.e00484_bb0060) 2008; 72 Nanni (10.1016/j.geodrs.2022.e00484_bb0275) 2006; 70 Ge (10.1016/j.geodrs.2022.e00484_bb0160) 2014; 213 Weindorf (10.1016/j.geodrs.2022.e00484_bb0470) 2012; 76 Wiedenbeck (10.1016/j.geodrs.2022.e00484_bb0490) 2013; 9 Clay (10.1016/j.geodrs.2022.e00484_bb0100) 2001; 32 Zeraatpisheh (10.1016/j.geodrs.2022.e00484_bb0515) 2020; 188 Demattê (10.1016/j.geodrs.2022.e00484_bb0125) 2019; 337 Tümsavaş (10.1016/j.geodrs.2022.e00484_bb0415) 2019; 177 Zeraatpisheh (10.1016/j.geodrs.2022.e00484_bb0505) 2017; 285 Zhang (10.1016/j.geodrs.2022.e00484_bb0520) 2018; 70 Walkley (10.1016/j.geodrs.2022.e00484_bb0455) 1934; 37 Demattê (10.1016/j.geodrs.2022.e00484_bb0115) 2014; 217–218 Soil Survey Staff (10.1016/j.geodrs.2022.e00484_bb0345) 2014 Terra (10.1016/j.geodrs.2022.e00484_bb0395) 2012 Rengasamy (10.1016/j.geodrs.2022.e00484_bb0305) 2006; 57 Loeppert (10.1016/j.geodrs.2022.e00484_bb0235) 1996 Ben-Dor (10.1016/j.geodrs.2022.e00484_bb0055) 2006; 131 Silva (10.1016/j.geodrs.2022.e00484_bb0335) 2020; 362 Yu (10.1016/j.geodrs.2022.e00484_bb0500) 2014; 72 Ames (10.1016/j.geodrs.2022.e00484_bb0010) 1995 |
References_xml | – year: 1995 ident: bb0010 article-title: Background concentrations of metals in soils from selected regions in the State of Washington publication-title: USGS Water Resour. Invest (No. 95–4018) – start-page: 163 year: 2010 end-page: 215 ident: bb0365 article-title: Visible and Near infrared spectroscopy in soil science publication-title: Advances in Agronomy – volume: 29 start-page: 49 year: 1991 end-page: 67 ident: bb0280 article-title: Diffuse reflectance infrared fourier transform (DRIFT) spectroscopy in soil studies publication-title: Soil Res – start-page: 353 year: 2018 end-page: 384 ident: bb0090 article-title: Soil Salinity and Sodicity – start-page: 89 year: 1986 end-page: 99 ident: bb0145 article-title: Background Values of 32 Elements in Dutch Topsoils, Determined with Non-Destructive Neutron Activation Analysis publication-title: Contaminated Soil: First International TNO Conference on Contaminated Soil 11–15 November, 1985, Utrecht, The Netherlands – volume: 70 start-page: 393 year: 2006 end-page: 407 ident: bb0275 article-title: Spectral reflectance methodology in comparison to traditional soil analysis publication-title: Soil Sci. Soc. Am. J. – volume: 110 start-page: 28 year: 2009 end-page: 36 ident: bb0205 article-title: Two and three-dimensional quantification of lead contamination in alluvial soils of a historic mining area using field portable X-ray fluorescence (FPXRF) analysis publication-title: Geomorphology – volume: 338 start-page: 445 year: 2019 end-page: 452 ident: bb0510 article-title: Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran publication-title: Geoderma – year: 1996 ident: bb0235 article-title: Carbonate and gypsum publication-title: Method of Soil Analysis – volume: 318 start-page: 123 year: 2018 end-page: 136 ident: bb0405 article-title: Proximal spectral sensing in pedological assessments: Vis–NIR spectra for soil classification based on weathering and pedogenesis publication-title: Geoderma – volume: 32 start-page: 1378 year: 2006 end-page: 1388 ident: bb0250 article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information publication-title: Comput. Geosci. – volume: 49 start-page: 139 year: 2014 end-page: 186 ident: bb0360 article-title: The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties publication-title: Appl. Spectrosc. Rev. – year: 1982 ident: bb0370 article-title: Humus Chemistry: Genesis, Composition – volume: 239–240 start-page: 34 year: 2015 end-page: 46 ident: bb0005 article-title: Combination of proximal and remote sensing methods for rapid soil salinity quantification publication-title: Geoderma – volume: 362 year: 2020 ident: bb0335 article-title: Soil texture prediction in tropical soils: a portable X-ray fluorescence spectrometry approach publication-title: Geoderma – volume: 66 start-page: 679 year: 2015 end-page: 687 ident: bb0325 article-title: Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese Vis–NIR spectral library publication-title: Eur. J. Soil Sci. – volume: 140 start-page: 247 year: 1977 end-page: 248 ident: bb0150 article-title: H.W. van der Marel und H. Beutelspacher (Herausg.): Atlas of infrared spectroscopy of clay minerals and their admixtures. Elsevier, Amsterdam 1976. VIII + 396 Seiten, Großformat Dfl. 165, — publication-title: Z Pflanzenernaehr Bodenk – start-page: 173 year: 2002 end-page: 243 ident: bb0040 article-title: Quantitative remote sensing of soil properties publication-title: Advances in Agronomy – volume: 77 year: 2013 ident: bb0475 article-title: Direct soil gypsum quantification via portable X-ray fluorescence spectrometry publication-title: Soil Sci. Soc. Am. J. – start-page: 5 year: 1980 end-page: 45 ident: bb0195 article-title: Electromagnetic radiation: The communication link in remote sensing publication-title: Remote Sensing in Geology – volume: 239–240 start-page: 130 year: 2015 end-page: 134 ident: bb0315 article-title: Characterizing soils via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC) publication-title: Geoderma s – year: 2017 ident: bb0140 article-title: Alrad Spectra: predição de atributos do solo usando dados espectrais publication-title: In: Anais do XXXVI Congresso Brasileiro de Ciência do Solo; agosto 2017; Belém – volume: 356 start-page: 45 year: 2006 end-page: 61 ident: bb0225 article-title: Metal contamination in urban, suburban, and country park soils of Hong Kong: a study based on GIS and multivariate statistics publication-title: Sci. Total Environ. – volume: 337 start-page: 914 year: 2019 end-page: 926 ident: bb0420 article-title: Assessment of soil texture from spectral reflectance data of bulk soil samples and their dry-sieved aggregate size fractions publication-title: Geoderma – volume: 155 start-page: 198 year: 2016 end-page: 230 ident: bb0440 article-title: A global spectral library to characterize the world’s soil publication-title: Earth Sci. Rev. – volume: 2013 start-page: 1 year: 2013 end-page: 3 ident: bb0075 article-title: Quantitative soil spectroscopy publication-title: Appl Environ Soil Sci – volume: 174 start-page: 556 year: 2009 end-page: 562 ident: bb0465 article-title: Evaluation of portable X-ray fluorescence for gypsum quantification in soils publication-title: Soil Sci. – volume: 74 start-page: 229 year: 2010 end-page: 238 ident: bb0450 article-title: Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey publication-title: J. Arid Environ. – volume: 217–218 start-page: 190 year: 2014 end-page: 200 ident: bb0115 article-title: Spectral pedology: a new perspective on evaluation of soils along pedogenetic alterations publication-title: Geoderma – start-page: 139 year: 2015 end-page: 159 ident: bb0285 article-title: Chapter four - soil spectroscopy: an alternative to wet chemistry for soil monitoring publication-title: Advances in Agronomy – volume: 11 start-page: 2336 year: 2019 ident: bb0525 article-title: Visible and near-infrared reflectance spectroscopy analysis of a coastal soil chronosequence publication-title: Remote Sens. – volume: 177 start-page: 90 year: 2019 end-page: 100 ident: bb0415 article-title: Prediction and mapping of soil clay and sand contents using visible and near-infrared spectroscopy publication-title: Biosyst. Eng. – volume: 213 start-page: 57 year: 2014 end-page: 63 ident: bb0160 article-title: Mid-infrared attenuated total reflectance spectroscopy for soil carbon and particle size determination publication-title: Geoderma – volume: 44 start-page: 1064 year: 1990 end-page: 1069 ident: bb0045 article-title: Near-infrared reflectance analysis of carbonate concentration in soils publication-title: Appl. Spectrosc. – volume: 139 start-page: 220 year: 2016 end-page: 231 ident: bb0375 article-title: Utilizing portable X-ray fluorescence spectrometry for in-field investigation of pedogenesis publication-title: CATENA – volume: 72 start-page: 589 year: 2014 end-page: 599 ident: bb0500 article-title: The spatial distribution characteristics of soil salinity in coastal zone of the Yellow River Delta publication-title: Environ. Earth Sci. – volume: 43 start-page: 1398 year: 2011 end-page: 1410 ident: bb0030 article-title: Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils – critical review and research perspectives publication-title: Soil Biol. Biochem. – volume: 167 start-page: 110 year: 2002 end-page: 116 ident: bb0080 article-title: Near-infrared reflectance spectroscopic analysis of soil C and N publication-title: Soil Sci. – volume: 337 start-page: 111 year: 2019 end-page: 121 ident: bb0125 article-title: Soil analytical quality control by traditional and spectroscopy techniques: constructing the future of a hybrid laboratory for low environmental impact publication-title: Geoderma – volume: 255–256 start-page: 81 year: 2015 end-page: 93 ident: bb0400 article-title: Spectral libraries for quantitative analyses of tropical Brazilian soils: comparing Vis–NIR and mid-IR reflectance data publication-title: Geoderma – volume: 91 start-page: 305 year: 2005 end-page: 312 ident: bb0070 article-title: Spectral phosphorus mapping using diffuse reflectance of soils and grass publication-title: Biosyst. Eng. – volume: 38 start-page: 681 year: 1998 end-page: 696 ident: bb0210 article-title: Can mid infrared diffuse reflectance analysis replace soil extractions? publication-title: Aust. J. Exp. Agric. – volume: 70 start-page: 27 year: 2018 end-page: 41 ident: bb0520 article-title: Digital mapping of a soil profile publication-title: Eur. J. Soil Sci. – volume: 32 start-page: 2993 year: 2001 end-page: 3008 ident: bb0100 article-title: Factors influencing spatial variability of soil apparent electrical conductivity publication-title: Commun. Soil Sci. Plant Anal. – volume: 1–24 year: 2021 ident: bb0265 article-title: Spatial prediction of soil surface properties in an arid region using synthetic soil image and machine learning publication-title: Geocarto Int – volume: 61 start-page: 4449 year: 2010 end-page: 4459 ident: bb0390 article-title: High concentrations of Na+ and cl– ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress publication-title: J. Exp. Bot. – volume: 57 start-page: 1017 year: 2006 end-page: 1023 ident: bb0305 article-title: World salinization with emphasis on Australia publication-title: J. Exp. Bot. – year: 2012 ident: bb0395 article-title: Espectroscopia de reflectância do visível ao infravermelho médio aplicada aos estudos qualitativos e quantitativos de solos (Doutorado em Solos e Nutrição de Plantas) – volume: 232–234 start-page: 141 year: 2014 end-page: 147 ident: bb0310 article-title: Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH) publication-title: Geoderma – volume: 121 start-page: 95 year: 2004 end-page: 112 ident: bb0120 article-title: Visible–NIR reflectance: a new approach on soil evaluation publication-title: Geoderma – start-page: 3 year: 1971 ident: bb0200 article-title: Visible and near infrared spectra of minerals and rocks: IV. Sulphides and sulphates publication-title: Modem Gcoloqy – volume: 128 start-page: 65 year: 2014 end-page: 2113 ident: bb0480 article-title: Advances in portable X-ray fluorescence (PXRF) for environmental, pedological, and agronomic applications publication-title: Adv. Agron. – volume: 267 start-page: 207 year: 2016 end-page: 214 ident: bb0180 article-title: Quantification of soil carbon from bulk soil samples to predict the aggregate-carbon fractions within using near- and mid-infrared spectroscopic techniques publication-title: Geoderma – year: 1972 ident: bb0340 article-title: Soil survey laboratory methods and procedures for collecting soil samples publication-title: Rev. ed. USDA-SCS, Soil Survey Investigation Report No. 1 – volume: 40 start-page: 1250 year: 2011 end-page: 1256 ident: bb0240 article-title: Normalizing XRF-scanner data: a cautionary note on the interpretation of high-resolution records from organic-rich lakes publication-title: J. Asian Earth Sci. – volume: 59 start-page: 364 year: 1995 end-page: 372 ident: bb0050 article-title: Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties publication-title: Soil Sci. Soc. Am. J. – volume: 21 start-page: 1 year: 2018 end-page: 14 ident: bb0260 article-title: Application of near-infrared reflectance for quantitative assessment of soil properties publication-title: Egypt. J. Remote Sens. Space Sci. – volume: 115 start-page: 1824 year: 2011 end-page: 1836 ident: bb0425 article-title: Identification of mineral components in tropical soils using reflectance spectroscopy and advanced spaceborne thermal emission and reflection radiometer (ASTER) data publication-title: Remote Sens. Environ. – volume: 174 start-page: 151 year: 2009 end-page: 155 ident: bb0530 article-title: Determination of soil calcium using field portable X-ray fluorescence publication-title: Soil Sci. – year: 2007 ident: bb0025 article-title: Methods of Analysis for Soils of Arid and Semi-Arid Regions – volume: 31 start-page: 142 year: 2015 end-page: 154 ident: bb0540 article-title: ANN-based pedotransfer and soil spatial prediction functions for predicting Atterberg consistency limits and indices from easily available properties at the watershed scale in western Iran publication-title: Soil Use Manag. – volume: 13 start-page: 4825 year: 2021 ident: bb0270 article-title: Ground observations and environmental covariates integration for mapping of soil salinity: a machine learning-based approach publication-title: Remote Sens. – volume: 44 start-page: 241 year: 1976 end-page: 247 ident: bb0185 article-title: Particle size distribution in gypsic soils publication-title: Plant Soil – volume: 23 start-page: 155 year: 2015 end-page: 165 ident: bb0220 article-title: Using visible and near infrared spectroscopy to estimate carbonates and gypsum in soils in arid and subhumid regions of Isfahan publication-title: Iran J. Near Infrared Spectr. – volume: 167–168 start-page: 167 year: 2011 end-page: 177 ident: bb0535 article-title: Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture publication-title: Geoderma – volume: 69 start-page: 159 year: 2005 ident: bb0355 article-title: Determination of Clay and other soil properties by near infrared spectroscopy publication-title: Soil Sci. Soc. Am. J. – volume: 188 year: 2020 ident: bb0515 article-title: Conventional and digital soil mapping in Iran: past, present, and future publication-title: CATENA – volume: 14 year: 2019 ident: bb0110 article-title: Carbonate determination in soils by mid-IR spectroscopy with regional and continental scale models publication-title: PLoS One – volume: 9 start-page: 7 year: 2013 end-page: 8 ident: bb0490 article-title: Field-portable XRF: a geochemist’s dream? publication-title: Elements – volume: 62 start-page: 849 year: 2011 end-page: 862 ident: bb0380 article-title: Sample preparation and selection for qualitative and quantitative analyses of soil organic carbon with mid-infrared reflectance spectroscopy publication-title: Eur. J. Soil Sci. – volume: 29 start-page: 1073 year: 2010 end-page: 1081 ident: bb0035 article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy publication-title: TrAC Trends Anal. Chem. – volume: 178 start-page: 626 year: 2013 end-page: 638 ident: bb0460 article-title: Prediction of soil texture using FT-NIR spectroscopy and PXRF spectrometry with data fusion publication-title: Soil Sci. – volume: 72 start-page: 1113 year: 2008 end-page: 1123 ident: bb0060 article-title: A novel method of classifying soil profiles in the field using optical means publication-title: Soil Sci. Soc. Am. J. – start-page: 243 year: 2011 end-page: 291 ident: bb0435 article-title: Chapter five - proximal soil sensing: An effective approach for soil measurements in space and time publication-title: Advances in Agronomy, Advances in Agronomy – year: 2020 ident: bb0015 article-title: Carbonates and organic matter in soils characterized by reflected energy from 350–25000 nm wavelength publication-title: J. Mt. Sci. – volume: 06 year: 2015 ident: bb0215 article-title: Application of infrared technique in soil properties’ characterization in south Kivu province of DR Congo publication-title: Afr J Food Sci Technol – volume: 65 start-page: 480 year: 2001 end-page: 490 ident: bb0085 article-title: Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties publication-title: Soil Sci. Soc. Am. J. – year: 2018 ident: bb0155 article-title: A comparison of VNIR and MIR spectroscopy for predicting various soil properties publication-title: Dissertations & Theses in Natural Resources – volume: 190 start-page: 192 year: 2018 ident: bb0020 article-title: Erodibility of calcareous soils as influenced by land use and intrinsic soil properties in a semiarid region of Central Iran publication-title: Environ. Monit. Assess. – volume: 148 start-page: 141 year: 2008 end-page: 148 ident: bb0175 article-title: Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements publication-title: Geoderma – volume: 24 start-page: 1472 year: 2009 end-page: 1481 ident: bb0300 article-title: The potential of mid- and near-infrared diffuse reflectance spectroscopy for determining major- and trace-element concentrations in soils from a geochemical survey of North America publication-title: Appl. Geochem. Geochem. Stud. North American Soils – volume: 76 year: 2012 ident: bb0470 article-title: Enhanced pedon horizonation using portable X-ray fluorescence spectrometry publication-title: Soil Sci. Soc. Am. J. – start-page: 5 year: 2014 ident: bb0230 article-title: Field Analytical Techniques for Geochemical Surveys – volume: 153 start-page: 92 year: 2016 end-page: 105 ident: bb0330 article-title: Evaluating the utility of mid-infrared spectral subspaces for predicting soil properties publication-title: Chemom. Intell. Lab. Syst. – volume: 189 year: 2020 ident: bb0105 article-title: Prediction of soil texture classes through different wavelength regions of reflectance spectroscopy at various soil depths publication-title: CATENA – volume: 131 start-page: 59 year: 2006 end-page: 75 ident: bb0430 article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties publication-title: Geoderma – volume: 67 start-page: 173 year: 2016 end-page: 183 ident: bb0485 article-title: Simultaneous assessment of key properties of arid soil by combined PXRF and Vis–NIR data publication-title: Eur. J. Soil Sci. – volume: 285 start-page: 186 year: 2017 end-page: 204 ident: bb0505 article-title: Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran publication-title: Geomorphology – start-page: 383 year: 2018 end-page: 411 ident: bb0165 article-title: Particle-Size Analysis, in: Methods of Soil Analysis – volume: 70 start-page: 277 year: 1990 end-page: 288 ident: bb0350 article-title: Trace elements in agricultural soils of northwestern ALBERTA publication-title: Can. J. Soil Sci. – volume: 319 start-page: 175 year: 2018 end-page: 184 ident: bb0295 article-title: Portable X-ray fluorescence trace metal measurement in organic rich soils: pXRF response as a function of organic matter fraction publication-title: Geoderma – start-page: 286 year: 1983 end-page: 293 ident: bb0495 article-title: The multivariate calibration problem in chemistry solved by the PLS method publication-title: Matrix Pencils – volume: 7 start-page: 317 year: 1960 end-page: 327 ident: bb0245 article-title: Iron oxide removal from soils and clays by a dithionite citrate system with sodium bicarbonate publication-title: Clay Clay Miner. – volume: 99 start-page: 2105 year: 2014 end-page: 2115 ident: bb0065 article-title: Spectral properties of ca-sulfates: gypsum, bassanite, and anhydrite publication-title: Am. Mineral. – year: 2004 ident: bb0320 article-title: Geological quadrangle map of Iran, No. 6546 (Mozafari)m Scale 1:100000 – year: 2014 ident: bb0345 article-title: Keys to Soil Taxonomy – volume: 37 start-page: 29 year: 1934 end-page: 38 ident: bb0455 article-title: An examination of the DEGTJAREFF method for determining soil organic matter, and a proposed modification of the chromic acid titration method publication-title: Soil Sci. – volume: 95 start-page: 12653 year: 1990 ident: bb0095 article-title: High spectral resolution reflectance spectroscopy of minerals publication-title: J. Geophys. Res. – volume: 147 start-page: 318 year: 2014 end-page: 326 ident: bb0290 article-title: Determination of trace elements in soybean by X-ray fluorescence analysis and its application to identification of their production areas publication-title: Food Chem. – volume: 153 start-page: 155 year: 2009 end-page: 162 ident: bb0255 article-title: Regional transferability of mid-infrared diffuse reflectance spectroscopic prediction for soil chemical properties publication-title: Geoderma – volume: 131 start-page: 1 year: 2006 end-page: 21 ident: bb0055 article-title: Quantitative mapping of the soil rubification process on sand dunes using an airborne hyperspectral sensor publication-title: Geoderma – volume: 70 start-page: 83 year: 2019 end-page: 95 ident: bb0190 article-title: Estimating soil texture from Vis–NIR spectra publication-title: Eur. J. Soil Sci. – volume: 330 year: 2018 ident: bb0170 article-title: Importance of the spatial extent for using soil properties estimated by laboratory VNIR/SWIR spectroscopy: examples of the clay and calcium carbonate content publication-title: Geoderma – volume: 5 start-page: 157 year: 2015 end-page: 168 ident: bb0410 article-title: Total elemental composition of soils in sub-Saharan Africa and relationship with soil forming factors publication-title: Geoderma Reg – volume: 223–225 start-page: 88 year: 2014 end-page: 96 ident: bb0445 article-title: Determination of soil properties with visible to near- and mid-infrared spectroscopy: effects of spectral variable selection publication-title: Geoderma – start-page: 331 year: 1989 end-page: 378 ident: bb0135 article-title: Carbonate, halide, sulfate, and sulfide minerals. Carbonate, halide, sulfate, and sulfide minerals. Ch. 6 publication-title: Minerals in Soil Environments – volume: 179 start-page: 417 year: 2014 end-page: 423 ident: bb0385 article-title: Soil salinity measurement via portable X-ray fluorescence spectrometry publication-title: Soil Sci. – volume: 91 start-page: 305 year: 2005 ident: 10.1016/j.geodrs.2022.e00484_bb0070 article-title: Spectral phosphorus mapping using diffuse reflectance of soils and grass publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2005.04.015 – volume: 1–24 year: 2021 ident: 10.1016/j.geodrs.2022.e00484_bb0265 article-title: Spatial prediction of soil surface properties in an arid region using synthetic soil image and machine learning publication-title: Geocarto Int – volume: 337 start-page: 914 year: 2019 ident: 10.1016/j.geodrs.2022.e00484_bb0420 article-title: Assessment of soil texture from spectral reflectance data of bulk soil samples and their dry-sieved aggregate size fractions publication-title: Geoderma doi: 10.1016/j.geoderma.2018.11.004 – volume: 319 start-page: 175 year: 2018 ident: 10.1016/j.geodrs.2022.e00484_bb0295 article-title: Portable X-ray fluorescence trace metal measurement in organic rich soils: pXRF response as a function of organic matter fraction publication-title: Geoderma doi: 10.1016/j.geoderma.2018.01.011 – volume: 61 start-page: 4449 year: 2010 ident: 10.1016/j.geodrs.2022.e00484_bb0390 article-title: High concentrations of Na+ and cl– ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq251 – volume: 40 start-page: 1250 year: 2011 ident: 10.1016/j.geodrs.2022.e00484_bb0240 article-title: Normalizing XRF-scanner data: a cautionary note on the interpretation of high-resolution records from organic-rich lakes publication-title: J. Asian Earth Sci. doi: 10.1016/j.jseaes.2010.06.002 – year: 2018 ident: 10.1016/j.geodrs.2022.e00484_bb0155 article-title: A comparison of VNIR and MIR spectroscopy for predicting various soil properties – year: 2012 ident: 10.1016/j.geodrs.2022.e00484_bb0395 – volume: 37 start-page: 29 year: 1934 ident: 10.1016/j.geodrs.2022.e00484_bb0455 article-title: An examination of the DEGTJAREFF method for determining soil organic matter, and a proposed modification of the chromic acid titration method publication-title: Soil Sci. doi: 10.1097/00010694-193401000-00003 – volume: 362 year: 2020 ident: 10.1016/j.geodrs.2022.e00484_bb0335 article-title: Soil texture prediction in tropical soils: a portable X-ray fluorescence spectrometry approach publication-title: Geoderma doi: 10.1016/j.geoderma.2019.114136 – volume: 66 start-page: 679 year: 2015 ident: 10.1016/j.geodrs.2022.e00484_bb0325 article-title: Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese Vis–NIR spectral library publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12272 – volume: 223–225 start-page: 88 year: 2014 ident: 10.1016/j.geodrs.2022.e00484_bb0445 article-title: Determination of soil properties with visible to near- and mid-infrared spectroscopy: effects of spectral variable selection publication-title: Geoderma doi: 10.1016/j.geoderma.2014.01.013 – volume: 99 start-page: 2105 year: 2014 ident: 10.1016/j.geodrs.2022.e00484_bb0065 article-title: Spectral properties of ca-sulfates: gypsum, bassanite, and anhydrite publication-title: Am. Mineral. doi: 10.2138/am-2014-4756 – volume: 06 year: 2015 ident: 10.1016/j.geodrs.2022.e00484_bb0215 article-title: Application of infrared technique in soil properties’ characterization in south Kivu province of DR Congo publication-title: Afr J Food Sci Technol doi: 10.14303/ajfst.2015.017 – volume: 121 start-page: 95 year: 2004 ident: 10.1016/j.geodrs.2022.e00484_bb0120 article-title: Visible–NIR reflectance: a new approach on soil evaluation publication-title: Geoderma doi: 10.1016/j.geoderma.2003.09.012 – year: 1996 ident: 10.1016/j.geodrs.2022.e00484_bb0235 article-title: Carbonate and gypsum – volume: 189 year: 2020 ident: 10.1016/j.geodrs.2022.e00484_bb0105 article-title: Prediction of soil texture classes through different wavelength regions of reflectance spectroscopy at various soil depths publication-title: CATENA doi: 10.1016/j.catena.2020.104485 – year: 2017 ident: 10.1016/j.geodrs.2022.e00484_bb0140 article-title: Alrad Spectra: predição de atributos do solo usando dados espectrais – volume: 337 start-page: 111 year: 2019 ident: 10.1016/j.geodrs.2022.e00484_bb0125 article-title: Soil analytical quality control by traditional and spectroscopy techniques: constructing the future of a hybrid laboratory for low environmental impact publication-title: Geoderma doi: 10.1016/j.geoderma.2018.09.010 – volume: 174 start-page: 556 year: 2009 ident: 10.1016/j.geodrs.2022.e00484_bb0465 article-title: Evaluation of portable X-ray fluorescence for gypsum quantification in soils publication-title: Soil Sci. doi: 10.1097/SS.0b013e3181bbbd0b – year: 2004 ident: 10.1016/j.geodrs.2022.e00484_bb0320 – volume: 330 year: 2018 ident: 10.1016/j.geodrs.2022.e00484_bb0170 article-title: Importance of the spatial extent for using soil properties estimated by laboratory VNIR/SWIR spectroscopy: examples of the clay and calcium carbonate content publication-title: Geoderma doi: 10.1016/j.geoderma.2018.06.006 – volume: 147 start-page: 318 year: 2014 ident: 10.1016/j.geodrs.2022.e00484_bb0290 article-title: Determination of trace elements in soybean by X-ray fluorescence analysis and its application to identification of their production areas publication-title: Food Chem. doi: 10.1016/j.foodchem.2013.09.142 – volume: 21 start-page: 1 year: 2018 ident: 10.1016/j.geodrs.2022.e00484_bb0260 article-title: Application of near-infrared reflectance for quantitative assessment of soil properties publication-title: Egypt. J. Remote Sens. Space Sci. – volume: 110 start-page: 28 year: 2009 ident: 10.1016/j.geodrs.2022.e00484_bb0205 article-title: Two and three-dimensional quantification of lead contamination in alluvial soils of a historic mining area using field portable X-ray fluorescence (FPXRF) analysis publication-title: Geomorphology doi: 10.1016/j.geomorph.2008.12.021 – volume: 267 start-page: 207 year: 2016 ident: 10.1016/j.geodrs.2022.e00484_bb0180 article-title: Quantification of soil carbon from bulk soil samples to predict the aggregate-carbon fractions within using near- and mid-infrared spectroscopic techniques publication-title: Geoderma doi: 10.1016/j.geoderma.2015.12.030 – year: 2014 ident: 10.1016/j.geodrs.2022.e00484_bb0345 – volume: 7 start-page: 317 year: 1960 ident: 10.1016/j.geodrs.2022.e00484_bb0245 article-title: Iron oxide removal from soils and clays by a dithionite citrate system with sodium bicarbonate publication-title: Clay Clay Miner. doi: 10.1346/CCMN.1958.0070122 – volume: 140 start-page: 247 year: 1977 ident: 10.1016/j.geodrs.2022.e00484_bb0150 article-title: H.W. van der Marel und H. Beutelspacher (Herausg.): Atlas of infrared spectroscopy of clay minerals and their admixtures. Elsevier, Amsterdam 1976. VIII + 396 Seiten, Großformat Dfl. 165, — publication-title: Z Pflanzenernaehr Bodenk doi: 10.1002/jpln.19771400228 – volume: 57 start-page: 1017 year: 2006 ident: 10.1016/j.geodrs.2022.e00484_bb0305 article-title: World salinization with emphasis on Australia publication-title: J. Exp. Bot. doi: 10.1093/jxb/erj108 – volume: 77 year: 2013 ident: 10.1016/j.geodrs.2022.e00484_bb0475 article-title: Direct soil gypsum quantification via portable X-ray fluorescence spectrometry publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2013.05.0170 – volume: 38 start-page: 681 year: 1998 ident: 10.1016/j.geodrs.2022.e00484_bb0210 article-title: Can mid infrared diffuse reflectance analysis replace soil extractions? publication-title: Aust. J. Exp. Agric. doi: 10.1071/EA97144 – volume: 72 start-page: 1113 year: 2008 ident: 10.1016/j.geodrs.2022.e00484_bb0060 article-title: A novel method of classifying soil profiles in the field using optical means publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2006.0059 – volume: 31 start-page: 142 year: 2015 ident: 10.1016/j.geodrs.2022.e00484_bb0540 article-title: ANN-based pedotransfer and soil spatial prediction functions for predicting Atterberg consistency limits and indices from easily available properties at the watershed scale in western Iran publication-title: Soil Use Manag. doi: 10.1111/sum.12167 – volume: 177 start-page: 90 year: 2019 ident: 10.1016/j.geodrs.2022.e00484_bb0415 article-title: Prediction and mapping of soil clay and sand contents using visible and near-infrared spectroscopy publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2018.06.008 – start-page: 243 year: 2011 ident: 10.1016/j.geodrs.2022.e00484_bb0435 article-title: Chapter five - proximal soil sensing: An effective approach for soil measurements in space and time doi: 10.1016/B978-0-12-386473-4.00005-1 – volume: 255–256 start-page: 81 year: 2015 ident: 10.1016/j.geodrs.2022.e00484_bb0400 article-title: Spectral libraries for quantitative analyses of tropical Brazilian soils: comparing Vis–NIR and mid-IR reflectance data publication-title: Geoderma doi: 10.1016/j.geoderma.2015.04.017 – volume: 44 start-page: 1064 year: 1990 ident: 10.1016/j.geodrs.2022.e00484_bb0045 article-title: Near-infrared reflectance analysis of carbonate concentration in soils publication-title: Appl. Spectrosc. doi: 10.1366/0003702904086821 – volume: 131 start-page: 1 year: 2006 ident: 10.1016/j.geodrs.2022.e00484_bb0055 article-title: Quantitative mapping of the soil rubification process on sand dunes using an airborne hyperspectral sensor publication-title: Geoderma doi: 10.1016/j.geoderma.2005.02.011 – volume: 239–240 start-page: 130 year: 2015 ident: 10.1016/j.geodrs.2022.e00484_bb0315 article-title: Characterizing soils via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC) publication-title: Geoderma s doi: 10.1016/j.geoderma.2014.10.001 – volume: 155 start-page: 198 year: 2016 ident: 10.1016/j.geodrs.2022.e00484_bb0440 article-title: A global spectral library to characterize the world’s soil publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2016.01.012 – year: 2007 ident: 10.1016/j.geodrs.2022.e00484_bb0025 – volume: 167–168 start-page: 167 year: 2011 ident: 10.1016/j.geodrs.2022.e00484_bb0535 article-title: Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture publication-title: Geoderma doi: 10.1016/j.geoderma.2011.08.010 – volume: 49 start-page: 139 year: 2014 ident: 10.1016/j.geodrs.2022.e00484_bb0360 article-title: The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704928.2013.811081 – volume: 9 start-page: 7 year: 2013 ident: 10.1016/j.geodrs.2022.e00484_bb0490 article-title: Field-portable XRF: a geochemist’s dream? publication-title: Elements – volume: 190 start-page: 192 year: 2018 ident: 10.1016/j.geodrs.2022.e00484_bb0020 article-title: Erodibility of calcareous soils as influenced by land use and intrinsic soil properties in a semiarid region of Central Iran publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-018-6557-y – volume: 11 start-page: 2336 year: 2019 ident: 10.1016/j.geodrs.2022.e00484_bb0525 article-title: Visible and near-infrared reflectance spectroscopy analysis of a coastal soil chronosequence publication-title: Remote Sens. doi: 10.3390/rs11202336 – volume: 72 start-page: 589 year: 2014 ident: 10.1016/j.geodrs.2022.e00484_bb0500 article-title: The spatial distribution characteristics of soil salinity in coastal zone of the Yellow River Delta publication-title: Environ. Earth Sci. doi: 10.1007/s12665-013-2980-0 – volume: 70 start-page: 83 year: 2019 ident: 10.1016/j.geodrs.2022.e00484_bb0190 article-title: Estimating soil texture from Vis–NIR spectra publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12733 – volume: 2013 start-page: 1 year: 2013 ident: 10.1016/j.geodrs.2022.e00484_bb0075 article-title: Quantitative soil spectroscopy publication-title: Appl Environ Soil Sci doi: 10.1155/2013/616578 – volume: 115 start-page: 1824 year: 2011 ident: 10.1016/j.geodrs.2022.e00484_bb0425 article-title: Identification of mineral components in tropical soils using reflectance spectroscopy and advanced spaceborne thermal emission and reflection radiometer (ASTER) data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.02.023 – start-page: 173 year: 2002 ident: 10.1016/j.geodrs.2022.e00484_bb0040 article-title: Quantitative remote sensing of soil properties doi: 10.1016/S0065-2113(02)75005-0 – volume: 70 start-page: 27 year: 2018 ident: 10.1016/j.geodrs.2022.e00484_bb0520 article-title: Digital mapping of a soil profile publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12699 – volume: 70 start-page: 277 year: 1990 ident: 10.1016/j.geodrs.2022.e00484_bb0350 article-title: Trace elements in agricultural soils of northwestern ALBERTA publication-title: Can. J. Soil Sci. doi: 10.4141/cjss90-029 – start-page: 5 year: 2014 ident: 10.1016/j.geodrs.2022.e00484_bb0230 – volume: 23 start-page: 155 year: 2015 ident: 10.1016/j.geodrs.2022.e00484_bb0220 article-title: Using visible and near infrared spectroscopy to estimate carbonates and gypsum in soils in arid and subhumid regions of Isfahan publication-title: Iran J. Near Infrared Spectr. doi: 10.1255/jnirs.1157 – volume: 285 start-page: 186 year: 2017 ident: 10.1016/j.geodrs.2022.e00484_bb0505 article-title: Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.02.015 – volume: 69 start-page: 159 year: 2005 ident: 10.1016/j.geodrs.2022.e00484_bb0355 article-title: Determination of Clay and other soil properties by near infrared spectroscopy publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2005.0159 – volume: 65 start-page: 480 year: 2001 ident: 10.1016/j.geodrs.2022.e00484_bb0085 article-title: Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2001.652480x – volume: 213 start-page: 57 year: 2014 ident: 10.1016/j.geodrs.2022.e00484_bb0160 article-title: Mid-infrared attenuated total reflectance spectroscopy for soil carbon and particle size determination publication-title: Geoderma doi: 10.1016/j.geoderma.2013.07.017 – volume: 70 start-page: 393 year: 2006 ident: 10.1016/j.geodrs.2022.e00484_bb0275 article-title: Spectral reflectance methodology in comparison to traditional soil analysis publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2003.0285 – volume: 14 year: 2019 ident: 10.1016/j.geodrs.2022.e00484_bb0110 article-title: Carbonate determination in soils by mid-IR spectroscopy with regional and continental scale models publication-title: PLoS One doi: 10.1371/journal.pone.0210235 – volume: 5 start-page: 157 year: 2015 ident: 10.1016/j.geodrs.2022.e00484_bb0410 article-title: Total elemental composition of soils in sub-Saharan Africa and relationship with soil forming factors publication-title: Geoderma Reg doi: 10.1016/j.geodrs.2015.06.002 – volume: 32 start-page: 2993 year: 2001 ident: 10.1016/j.geodrs.2022.e00484_bb0100 article-title: Factors influencing spatial variability of soil apparent electrical conductivity publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1081/CSS-120001102 – volume: 32 start-page: 1378 year: 2006 ident: 10.1016/j.geodrs.2022.e00484_bb0250 article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2005.12.009 – year: 1995 ident: 10.1016/j.geodrs.2022.e00484_bb0010 article-title: Background concentrations of metals in soils from selected regions in the State of Washington – start-page: 331 year: 1989 ident: 10.1016/j.geodrs.2022.e00484_bb0135 article-title: Carbonate, halide, sulfate, and sulfide minerals. Carbonate, halide, sulfate, and sulfide minerals. Ch. 6 – volume: 44 start-page: 241 year: 1976 ident: 10.1016/j.geodrs.2022.e00484_bb0185 article-title: Particle size distribution in gypsic soils publication-title: Plant Soil doi: 10.1007/BF00016973 – year: 2020 ident: 10.1016/j.geodrs.2022.e00484_bb0015 article-title: Carbonates and organic matter in soils characterized by reflected energy from 350–25000 nm wavelength publication-title: J. Mt. Sci. doi: 10.1007/s11629-019-5789-9 – volume: 148 start-page: 141 year: 2008 ident: 10.1016/j.geodrs.2022.e00484_bb0175 article-title: Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements publication-title: Geoderma doi: 10.1016/j.geoderma.2008.09.016 – start-page: 139 year: 2015 ident: 10.1016/j.geodrs.2022.e00484_bb0285 article-title: Chapter four - soil spectroscopy: an alternative to wet chemistry for soil monitoring doi: 10.1016/bs.agron.2015.02.002 – volume: 217–218 start-page: 190 year: 2014 ident: 10.1016/j.geodrs.2022.e00484_bb0115 article-title: Spectral pedology: a new perspective on evaluation of soils along pedogenetic alterations publication-title: Geoderma doi: 10.1016/j.geoderma.2013.11.012 – volume: 338 start-page: 445 year: 2019 ident: 10.1016/j.geodrs.2022.e00484_bb0510 article-title: Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2018.09.006 – volume: 131 start-page: 59 year: 2006 ident: 10.1016/j.geodrs.2022.e00484_bb0430 article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties publication-title: Geoderma doi: 10.1016/j.geoderma.2005.03.007 – volume: 167 start-page: 110 year: 2002 ident: 10.1016/j.geodrs.2022.e00484_bb0080 article-title: Near-infrared reflectance spectroscopic analysis of soil C and N publication-title: Soil Sci. doi: 10.1097/00010694-200202000-00003 – start-page: 89 year: 1986 ident: 10.1016/j.geodrs.2022.e00484_bb0145 article-title: Background Values of 32 Elements in Dutch Topsoils, Determined with Non-Destructive Neutron Activation Analysis – start-page: 286 year: 1983 ident: 10.1016/j.geodrs.2022.e00484_bb0495 article-title: The multivariate calibration problem in chemistry solved by the PLS method – volume: 153 start-page: 92 year: 2016 ident: 10.1016/j.geodrs.2022.e00484_bb0330 article-title: Evaluating the utility of mid-infrared spectral subspaces for predicting soil properties publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2016.02.013 – volume: 179 start-page: 417 year: 2014 ident: 10.1016/j.geodrs.2022.e00484_bb0385 article-title: Soil salinity measurement via portable X-ray fluorescence spectrometry publication-title: Soil Sci. doi: 10.1097/SS.0000000000000088 – volume: 178 start-page: 626 year: 2013 ident: 10.1016/j.geodrs.2022.e00484_bb0460 article-title: Prediction of soil texture using FT-NIR spectroscopy and PXRF spectrometry with data fusion publication-title: Soil Sci. doi: 10.1097/SS.0000000000000026 – volume: 139 start-page: 220 year: 2016 ident: 10.1016/j.geodrs.2022.e00484_bb0375 article-title: Utilizing portable X-ray fluorescence spectrometry for in-field investigation of pedogenesis publication-title: CATENA doi: 10.1016/j.catena.2016.01.007 – year: 1972 ident: 10.1016/j.geodrs.2022.e00484_bb0340 article-title: Soil survey laboratory methods and procedures for collecting soil samples – volume: 188 year: 2020 ident: 10.1016/j.geodrs.2022.e00484_bb0515 article-title: Conventional and digital soil mapping in Iran: past, present, and future publication-title: CATENA doi: 10.1016/j.catena.2019.104424 – volume: 174 start-page: 151 year: 2009 ident: 10.1016/j.geodrs.2022.e00484_bb0530 article-title: Determination of soil calcium using field portable X-ray fluorescence publication-title: Soil Sci. doi: 10.1097/SS.0b013e31819c6e1b – year: 1982 ident: 10.1016/j.geodrs.2022.e00484_bb0370 – volume: 62 start-page: 849 year: 2011 ident: 10.1016/j.geodrs.2022.e00484_bb0380 article-title: Sample preparation and selection for qualitative and quantitative analyses of soil organic carbon with mid-infrared reflectance spectroscopy publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2011.01401.x – volume: 356 start-page: 45 year: 2006 ident: 10.1016/j.geodrs.2022.e00484_bb0225 article-title: Metal contamination in urban, suburban, and country park soils of Hong Kong: a study based on GIS and multivariate statistics publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2005.03.024 – volume: 67 start-page: 173 year: 2016 ident: 10.1016/j.geodrs.2022.e00484_bb0485 article-title: Simultaneous assessment of key properties of arid soil by combined PXRF and Vis–NIR data publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12320 – volume: 29 start-page: 1073 year: 2010 ident: 10.1016/j.geodrs.2022.e00484_bb0035 article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2010.05.006 – start-page: 5 year: 1980 ident: 10.1016/j.geodrs.2022.e00484_bb0195 article-title: Electromagnetic radiation: The communication link in remote sensing – start-page: 163 year: 2010 ident: 10.1016/j.geodrs.2022.e00484_bb0365 article-title: Visible and Near infrared spectroscopy in soil science doi: 10.1016/S0065-2113(10)07005-7 – volume: 59 start-page: 364 year: 1995 ident: 10.1016/j.geodrs.2022.e00484_bb0050 article-title: Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1995.03615995005900020014x – volume: 153 start-page: 155 year: 2009 ident: 10.1016/j.geodrs.2022.e00484_bb0255 article-title: Regional transferability of mid-infrared diffuse reflectance spectroscopic prediction for soil chemical properties publication-title: Geoderma doi: 10.1016/j.geoderma.2009.07.021 – start-page: 383 year: 2018 ident: 10.1016/j.geodrs.2022.e00484_bb0165 – volume: 43 start-page: 1398 year: 2011 ident: 10.1016/j.geodrs.2022.e00484_bb0030 article-title: Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils – critical review and research perspectives publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.02.019 – volume: 239–240 start-page: 34 year: 2015 ident: 10.1016/j.geodrs.2022.e00484_bb0005 article-title: Combination of proximal and remote sensing methods for rapid soil salinity quantification publication-title: Geoderma doi: 10.1016/j.geoderma.2014.09.011 – start-page: 353 year: 2018 ident: 10.1016/j.geodrs.2022.e00484_bb0090 – volume: 128 start-page: 65 year: 2014 ident: 10.1016/j.geodrs.2022.e00484_bb0480 article-title: Advances in portable X-ray fluorescence (PXRF) for environmental, pedological, and agronomic applications publication-title: Adv. Agron. – start-page: 3 year: 1971 ident: 10.1016/j.geodrs.2022.e00484_bb0200 article-title: Visible and near infrared spectra of minerals and rocks: IV. Sulphides and sulphates publication-title: Modem Gcoloqy – volume: 74 start-page: 229 year: 2010 ident: 10.1016/j.geodrs.2022.e00484_bb0450 article-title: Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2009.08.011 – volume: 232–234 start-page: 141 year: 2014 ident: 10.1016/j.geodrs.2022.e00484_bb0310 article-title: Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH) publication-title: Geoderma doi: 10.1016/j.geoderma.2014.05.005 – volume: 13 start-page: 4825 year: 2021 ident: 10.1016/j.geodrs.2022.e00484_bb0270 article-title: Ground observations and environmental covariates integration for mapping of soil salinity: a machine learning-based approach publication-title: Remote Sens. doi: 10.3390/rs13234825 – volume: 24 start-page: 1472 year: 2009 ident: 10.1016/j.geodrs.2022.e00484_bb0300 article-title: The potential of mid- and near-infrared diffuse reflectance spectroscopy for determining major- and trace-element concentrations in soils from a geochemical survey of North America publication-title: Appl. Geochem. Geochem. Stud. North American Soils – volume: 318 start-page: 123 year: 2018 ident: 10.1016/j.geodrs.2022.e00484_bb0405 article-title: Proximal spectral sensing in pedological assessments: Vis–NIR spectra for soil classification based on weathering and pedogenesis publication-title: Geoderma doi: 10.1016/j.geoderma.2017.10.053 – volume: 76 year: 2012 ident: 10.1016/j.geodrs.2022.e00484_bb0470 article-title: Enhanced pedon horizonation using portable X-ray fluorescence spectrometry publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2011.0174 – volume: 95 start-page: 12653 year: 1990 ident: 10.1016/j.geodrs.2022.e00484_bb0095 article-title: High spectral resolution reflectance spectroscopy of minerals publication-title: J. Geophys. Res. doi: 10.1029/JB095iB08p12653 – volume: 29 start-page: 49 year: 1991 ident: 10.1016/j.geodrs.2022.e00484_bb0280 article-title: Diffuse reflectance infrared fourier transform (DRIFT) spectroscopy in soil studies publication-title: Soil Res doi: 10.1071/SR9910049 |
SSID | ssj0002953762 |
Score | 2.403941 |
Snippet | The aim of the current research was to examine the effectiveness of Vis-NIR-SWIR (visible, near-infrared, and shortwave infrared spectroscopy: 350–2500 nm),... The aim of the current research was to examine the effectiveness of Vis-NIR-SWIR (visible, near-infrared, and shortwave infrared spectroscopy: 350–2500 nm),... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e00484 |
SubjectTerms | calcium carbonate clay electrical conductivity fluorescence gypsum infrared spectroscopy Iran least squares Mid-IR and pXRF spectroscopy PLSR, arid region prediction salinity sand silt soil organic carbon soil salinity Soil spectral behavior soil texture Vis-NIR-SWIR X-radiation |
Title | Quantification of some intrinsic soil properties using proximal sensing in arid lands: Application of Vis-NIR, MIR, and pXRF spectroscopy |
URI | https://dx.doi.org/10.1016/j.geodrs.2022.e00484 https://www.proquest.com/docview/2636579968 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA_qXnwRRcVvIvho3EzStPVtiGNzbOB0ureStqlUtC37AP0T_K-9S1tFQQRfWhouodxd7i7J3S-EnKjYjRPthsxALM6kn3gsBDfLtK90HEXcDy188WCoumN5PXEmS-SyroXBtMrK9pc23VrrqqVZcbNZpGnzlgsLGSQ5LwPdZdLgwleg2o12r98dfm61cB8xS7i9Zs7hDPvURXQ20-vR5PEUobs5PzOo0vI3J_XDXFsf1Fkna1XwSNvl_22QJZNtkvebhS4zfiyTaZ7QWf5iaJrNp2kGQoDP9JkWuOs-RfhUirnuj9jwmr7AcDPMYYeGNKOwcI6prf69oO2vo20c8z6dsWFvdEoH-AASWkxGHWorNRERMy_etsi4c3V32WXVBQssEp4zZwmHCR8mbqK9llEaQUEjX4fOuWeclpZxqDgElImSxmit9DmQcpl4JuYiArYbsU1WsjwzO4S6sNINBSiEEBBhtWIttZEe-EevpcDj8V0iao4GUYU-jpdgPAd1mtlTUMohQDkEpRx2CfvsVZToG3_Qu7Wwgm9aFICD-KPncS3bACYYnprozOQLIFJCOS4sC729f4--T1bxq8xdOyAr8-nCHEIwMw-PKmXFd3_00P8ASXT2lw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-wwEA66PuiLKB453iP4eOKuSZq2vi3isqvuwvFy2LeQtqlUtC17Af0J_mtn0taDggi-FJpOQpmZzEySmS-EHKnET1LjR8xCLM5kmAYsAjfLTKhMEsc8jBx88XCk-nfyYuyNF8hZUwuDaZW17a9surPWdUu75ma7zLL2DRcOMkhyXgW6i2QJ0am8FlnqDi77o_etFh4iZgl318x5nGGfpojOZXrd2yKZIHQ358cWVVp-5aQ-mWvng3prZLUOHmm3-r91smDzDfL6d26qjB_HZFqkdFo8WZrls0mWgxDgNXukJe66TxA-lWKu-z02PGdPMNwUc9ihIcspLJwT6qp_T2n3_9E2jvkvm7LR4PoPHeIDSGg5vu5RV6mJiJhF-fKL3PXOb8_6rL5ggcUi8GYs5TDho9RPTdCxyiAoaByayDsJrNcxMokUh4AyVdJaY5Q5AVIu08AmXMTAdis2SSsvcvubUB9WupEAhRACIqxOYqSxMgD_GHQUeDy-RUTDUR3X6ON4CcajbtLMHnQlB41y0JUctgh771VW6Bvf0PuNsPQHLdLgIL7pedjIVsMEw1MTk9tiDkRKKM-HZWGw_ePRD8hy_3Z4pa8Go8sdsoJfqjy2XdKaTeZ2DwKbWbRfK-4bLTH32g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+some+intrinsic+soil+properties+using+proximal+sensing+in+arid+lands%3A+Application+of+Vis-NIR%2C+MIR%2C+and+pXRF+spectroscopy&rft.jtitle=Geoderma+Regional&rft.au=Naimi%2C+Salman&rft.au=Ayoubi%2C+Shamsollah&rft.au=Di+Raimo%2C+Luis+Augusto+Di+Loreto&rft.au=Dematt%C3%AA%2C+Jos%C3%A9+Alexandre+Melo&rft.date=2022-03-01&rft.issn=2352-0094&rft.eissn=2352-0094&rft.volume=28+p.e00484-&rft_id=info:doi/10.1016%2Fj.geodrs.2022.e00484&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon |