Quantification of some intrinsic soil properties using proximal sensing in arid lands: Application of Vis-NIR, MIR, and pXRF spectroscopy

The aim of the current research was to examine the effectiveness of Vis-NIR-SWIR (visible, near-infrared, and shortwave infrared spectroscopy: 350–2500 nm), MIR (mid-infrared spectroscopy: 4000–400 cm−1), and pXRF (portable x-ray fluorescence) to characterize and estimate clay, sand, silt, calcium c...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Regional Vol. 28; p. e00484
Main Authors Naimi, Salman, Ayoubi, Shamsollah, Di Raimo, Luis Augusto Di Loreto, Dematte, Jose Alexandre Melo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The aim of the current research was to examine the effectiveness of Vis-NIR-SWIR (visible, near-infrared, and shortwave infrared spectroscopy: 350–2500 nm), MIR (mid-infrared spectroscopy: 4000–400 cm−1), and pXRF (portable x-ray fluorescence) to characterize and estimate clay, sand, silt, calcium carbonate (CaCO3), gypsum (CaSO4.2H2O), soil organic carbon (SOC) contents and electrical conductivity (EC) in Afzar district, Fars province, southern Iran. The study area was divided into non-saline (A) and saline (B) regions, and then a total of 300 soil samples from these areas were collected for laboratory analysis. The partial least-squares regression (PLSR) method was used to predict soil properties from Vis-NIR-SWIR, mid-IR, and pXRF spectra. In general, Vis-NIR-SWIR showed better results for predicting soil texture (R2 for area A: clay = 0.78, sand = 0.80 and silt = 0.69; R2 for area B: clay = 0.63, sand = 0.67 and silt = 0.47) in the arid regions than mid-IR (R2 for area A: clay = 0.71, sand = 0.75 and silt = 0.63; R2 for area B: clay = 0.61, sand = 0.57 and silt = 0.37), and pXRF (R2 for area A: clay = 0.49, sand = 0.60 and silt = 0.50; R2 for area B: clay = 0.41, sand = 0.41 and silt = 0.23). Based on the RPI index, three approaches alone could successfully predict CaCO3 in areas A and B (R2 > 0.75 and RPIQ >2.02). The model prediction results for gypsum showed that although the value of the determination coefficient is high (R2 > 0.95), but according to the low value of the RPIQ index (RPIQ<1.26), the model prediction performance is untrusted, and this is probably due to unsuitable distribution of gypsum in this area. The results showed that the pXRF technique alone could not predict SOC in these areas (R2 < 0.27 and RPIQ <1.08), and it is probably better to use it in combination with Vis-NIR-SWIR and mid-IR data. pXRF for predicting soil salinity in areas A and B was acceptable and successful, respectively. Also, the results showed that the Vis-NIR-SWIR and mid-IR ranges could not predict salinity in these regions and should be used in combination with pXRF data. In conclusion, the Vis-NIR-SWIR, mid-IR, and pXRF spectroscopy are presented here as useful and reliable tools for direct applications in pedology, particularly in the digital mapping of soil surface properties. •The effectiveness of Vis-NIR-SWIR, and MIR were examined to estimate some soil properties.•Vis-NIR-SWIR showed better results for soil texture than mid-IR and PXRF.•Each technique alone could successfully predict CaCO3 in the study area•The results showed that the PXRF technique alone is not able to predict SOC in these areas.•Vis-NIR-SWIR, mid-IR and PXRF reflectance spectroscopy are presented here as useful and reliable tools
AbstractList The aim of the current research was to examine the effectiveness of Vis-NIR-SWIR (visible, near-infrared, and shortwave infrared spectroscopy: 350–2500 nm), MIR (mid-infrared spectroscopy: 4000–400 cm−1), and pXRF (portable x-ray fluorescence) to characterize and estimate clay, sand, silt, calcium carbonate (CaCO3), gypsum (CaSO4.2H2O), soil organic carbon (SOC) contents and electrical conductivity (EC) in Afzar district, Fars province, southern Iran. The study area was divided into non-saline (A) and saline (B) regions, and then a total of 300 soil samples from these areas were collected for laboratory analysis. The partial least-squares regression (PLSR) method was used to predict soil properties from Vis-NIR-SWIR, mid-IR, and pXRF spectra. In general, Vis-NIR-SWIR showed better results for predicting soil texture (R2 for area A: clay = 0.78, sand = 0.80 and silt = 0.69; R2 for area B: clay = 0.63, sand = 0.67 and silt = 0.47) in the arid regions than mid-IR (R2 for area A: clay = 0.71, sand = 0.75 and silt = 0.63; R2 for area B: clay = 0.61, sand = 0.57 and silt = 0.37), and pXRF (R2 for area A: clay = 0.49, sand = 0.60 and silt = 0.50; R2 for area B: clay = 0.41, sand = 0.41 and silt = 0.23). Based on the RPI index, three approaches alone could successfully predict CaCO3 in areas A and B (R2 > 0.75 and RPIQ >2.02). The model prediction results for gypsum showed that although the value of the determination coefficient is high (R2 > 0.95), but according to the low value of the RPIQ index (RPIQ<1.26), the model prediction performance is untrusted, and this is probably due to unsuitable distribution of gypsum in this area. The results showed that the pXRF technique alone could not predict SOC in these areas (R2 < 0.27 and RPIQ <1.08), and it is probably better to use it in combination with Vis-NIR-SWIR and mid-IR data. pXRF for predicting soil salinity in areas A and B was acceptable and successful, respectively. Also, the results showed that the Vis-NIR-SWIR and mid-IR ranges could not predict salinity in these regions and should be used in combination with pXRF data. In conclusion, the Vis-NIR-SWIR, mid-IR, and pXRF spectroscopy are presented here as useful and reliable tools for direct applications in pedology, particularly in the digital mapping of soil surface properties. •The effectiveness of Vis-NIR-SWIR, and MIR were examined to estimate some soil properties.•Vis-NIR-SWIR showed better results for soil texture than mid-IR and PXRF.•Each technique alone could successfully predict CaCO3 in the study area•The results showed that the PXRF technique alone is not able to predict SOC in these areas.•Vis-NIR-SWIR, mid-IR and PXRF reflectance spectroscopy are presented here as useful and reliable tools
The aim of the current research was to examine the effectiveness of Vis-NIR-SWIR (visible, near-infrared, and shortwave infrared spectroscopy: 350–2500 nm), MIR (mid-infrared spectroscopy: 4000–400 cm⁻¹), and pXRF (portable x-ray fluorescence) to characterize and estimate clay, sand, silt, calcium carbonate (CaCO₃), gypsum (CaSO₄.2H₂O), soil organic carbon (SOC) contents and electrical conductivity (EC) in Afzar district, Fars province, southern Iran. The study area was divided into non-saline (A) and saline (B) regions, and then a total of 300 soil samples from these areas were collected for laboratory analysis. The partial least-squares regression (PLSR) method was used to predict soil properties from Vis-NIR-SWIR, mid-IR, and pXRF spectra. In general, Vis-NIR-SWIR showed better results for predicting soil texture (R² for area A: clay = 0.78, sand = 0.80 and silt = 0.69; R² for area B: clay = 0.63, sand = 0.67 and silt = 0.47) in the arid regions than mid-IR (R² for area A: clay = 0.71, sand = 0.75 and silt = 0.63; R² for area B: clay = 0.61, sand = 0.57 and silt = 0.37), and pXRF (R² for area A: clay = 0.49, sand = 0.60 and silt = 0.50; R² for area B: clay = 0.41, sand = 0.41 and silt = 0.23). Based on the RPI index, three approaches alone could successfully predict CaCO3 in areas A and B (R² > 0.75 and RPIQ >2.02). The model prediction results for gypsum showed that although the value of the determination coefficient is high (R² > 0.95), but according to the low value of the RPIQ index (RPIQ<1.26), the model prediction performance is untrusted, and this is probably due to unsuitable distribution of gypsum in this area. The results showed that the pXRF technique alone could not predict SOC in these areas (R² < 0.27 and RPIQ <1.08), and it is probably better to use it in combination with Vis-NIR-SWIR and mid-IR data. pXRF for predicting soil salinity in areas A and B was acceptable and successful, respectively. Also, the results showed that the Vis-NIR-SWIR and mid-IR ranges could not predict salinity in these regions and should be used in combination with pXRF data. In conclusion, the Vis-NIR-SWIR, mid-IR, and pXRF spectroscopy are presented here as useful and reliable tools for direct applications in pedology, particularly in the digital mapping of soil surface properties.
ArticleNumber e00484
Author Naimi, Salman
Di Raimo, Luis Augusto Di Loreto
Dematte, Jose Alexandre Melo
Ayoubi, Shamsollah
Author_xml – sequence: 1
  givenname: Salman
  surname: Naimi
  fullname: Naimi, Salman
  organization: Department of Soil Science, College of Agriculture, Isfahan University of Technology, 841156-83111, Isfahan, Iran
– sequence: 2
  givenname: Shamsollah
  surname: Ayoubi
  fullname: Ayoubi, Shamsollah
  email: ayoubi@cc.iut.ac.ir
  organization: Department of Soil Science, College of Agriculture, Isfahan University of Technology, 841156-83111, Isfahan, Iran
– sequence: 3
  givenname: Luis Augusto Di Loreto
  surname: Di Raimo
  fullname: Di Raimo, Luis Augusto Di Loreto
  organization: Department of Soil Science, College of Agronomy and Zootechnology, Federal University of Mato Grosso, Cuiabá, Brazil
– sequence: 4
  givenname: Jose Alexandre Melo
  surname: Dematte
  fullname: Dematte, Jose Alexandre Melo
  organization: Department of Soil Science, College of Agriculture Luiz de Queiróz, Av. Pádua Dias, 11, CEP 13418-900, Piracicaba, SP, Brazil
BookMark eNqFkMFu1DAQhi1UpJbSN-DgI4dmcRzHm_SAVFVdqFRAVIC4WV5nXM0qa6ceb0UfgbfG2_RQcYDLeDz6_18z3yt2EGIAxt7UYlGLWr_bLG4hDokWUki5ACFUp16wI9m0shKiVwfP-kN2QrQRQsi-bZZaHrHfX3c2ZPTobMYYePSc4hY4hpwwELryxZFPKU6QMgLxHWG43Q9-4daOnCA8DjBwm3Dgow0DnfHzaRqfZf5Aqj5f3ZzyT_tSJHz6ebPiNIHLKZKL08Nr9tLbkeDk6T1m31eX3y4-VtdfPlxdnF9XrunaXHkplmLtl952ArRtda1cb9dt3UErrBrWWopOeK0ArNW2LlKpfAeDbJySEppj9nbOLSfc7YCy2SI5GMviEHdkpG50u-x73RWpmqWu7EgJvJlSOTo9mFqYPXyzMTN8s4dvZvjFdvaXzWF-RJGTxfF_5vezGQqDe4RkyCEEBwOmAssMEf8d8Ac4x6cw
CitedBy_id crossref_primary_10_1080_17538947_2023_2210314
crossref_primary_10_1002_saj2_70028
crossref_primary_10_1007_s11368_024_03825_7
crossref_primary_10_3389_fchem_2023_1214825
crossref_primary_10_1016_j_iswcr_2022_06_004
crossref_primary_10_1111_ejss_70003
crossref_primary_10_1016_j_geoderma_2023_116754
crossref_primary_10_1007_s12145_023_01168_4
crossref_primary_10_1016_j_compag_2022_107459
crossref_primary_10_1016_j_geoderma_2024_116980
crossref_primary_10_3390_land13020154
crossref_primary_10_1080_03650340_2022_2134565
crossref_primary_10_1007_s11119_022_09942_y
crossref_primary_10_1016_j_compag_2023_107928
crossref_primary_10_1016_j_geoderma_2023_116589
crossref_primary_10_1016_j_jsames_2022_103855
crossref_primary_10_1002_saj2_20639
crossref_primary_10_1016_j_geoderma_2022_116006
crossref_primary_10_1016_j_geoderma_2022_116268
crossref_primary_10_1515_geo_2022_0739
crossref_primary_10_1016_j_radphyschem_2025_112750
crossref_primary_10_3390_land11122188
crossref_primary_10_1007_s42729_025_02333_y
crossref_primary_10_1016_j_catena_2022_106514
crossref_primary_10_1007_s12665_023_11345_9
crossref_primary_10_3390_min14111098
Cites_doi 10.1016/j.biosystemseng.2005.04.015
10.1016/j.geoderma.2018.11.004
10.1016/j.geoderma.2018.01.011
10.1093/jxb/erq251
10.1016/j.jseaes.2010.06.002
10.1097/00010694-193401000-00003
10.1016/j.geoderma.2019.114136
10.1111/ejss.12272
10.1016/j.geoderma.2014.01.013
10.2138/am-2014-4756
10.14303/ajfst.2015.017
10.1016/j.geoderma.2003.09.012
10.1016/j.catena.2020.104485
10.1016/j.geoderma.2018.09.010
10.1097/SS.0b013e3181bbbd0b
10.1016/j.geoderma.2018.06.006
10.1016/j.foodchem.2013.09.142
10.1016/j.geomorph.2008.12.021
10.1016/j.geoderma.2015.12.030
10.1346/CCMN.1958.0070122
10.1002/jpln.19771400228
10.1093/jxb/erj108
10.2136/sssaj2013.05.0170
10.1071/EA97144
10.2136/sssaj2006.0059
10.1111/sum.12167
10.1016/j.biosystemseng.2018.06.008
10.1016/B978-0-12-386473-4.00005-1
10.1016/j.geoderma.2015.04.017
10.1366/0003702904086821
10.1016/j.geoderma.2005.02.011
10.1016/j.geoderma.2014.10.001
10.1016/j.earscirev.2016.01.012
10.1016/j.geoderma.2011.08.010
10.1080/05704928.2013.811081
10.1007/s10661-018-6557-y
10.3390/rs11202336
10.1007/s12665-013-2980-0
10.1111/ejss.12733
10.1155/2013/616578
10.1016/j.rse.2011.02.023
10.1016/S0065-2113(02)75005-0
10.1111/ejss.12699
10.4141/cjss90-029
10.1255/jnirs.1157
10.1016/j.geomorph.2017.02.015
10.2136/sssaj2005.0159
10.2136/sssaj2001.652480x
10.1016/j.geoderma.2013.07.017
10.2136/sssaj2003.0285
10.1371/journal.pone.0210235
10.1016/j.geodrs.2015.06.002
10.1081/CSS-120001102
10.1016/j.cageo.2005.12.009
10.1007/BF00016973
10.1007/s11629-019-5789-9
10.1016/j.geoderma.2008.09.016
10.1016/bs.agron.2015.02.002
10.1016/j.geoderma.2013.11.012
10.1016/j.geoderma.2018.09.006
10.1016/j.geoderma.2005.03.007
10.1097/00010694-200202000-00003
10.1016/j.chemolab.2016.02.013
10.1097/SS.0000000000000088
10.1097/SS.0000000000000026
10.1016/j.catena.2016.01.007
10.1016/j.catena.2019.104424
10.1097/SS.0b013e31819c6e1b
10.1111/j.1365-2389.2011.01401.x
10.1016/j.scitotenv.2005.03.024
10.1111/ejss.12320
10.1016/j.trac.2010.05.006
10.1016/S0065-2113(10)07005-7
10.2136/sssaj1995.03615995005900020014x
10.1016/j.geoderma.2009.07.021
10.1016/j.soilbio.2011.02.019
10.1016/j.geoderma.2014.09.011
10.1016/j.jaridenv.2009.08.011
10.1016/j.geoderma.2014.05.005
10.3390/rs13234825
10.1016/j.geoderma.2017.10.053
10.2136/sssaj2011.0174
10.1029/JB095iB08p12653
10.1071/SR9910049
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geodrs.2022.e00484
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
EISSN 2352-0094
ExternalDocumentID 10_1016_j_geodrs_2022_e00484
S2352009422000049
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID --M
0R~
4.4
457
4G.
7-5
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AATLK
AAXUO
ABGRD
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
RIG
ROL
SPC
SPCBC
SSA
SSE
SSJ
SSZ
T5K
~G-
AAHBH
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c385t-f2070bf7fa80e6a5614c9ab518e50a4db62080f64eeaa6a1bf724f8ed23c422e3
IEDL.DBID AIKHN
ISSN 2352-0094
IngestDate Fri Jul 11 11:23:29 EDT 2025
Tue Jul 01 02:07:19 EDT 2025
Thu Apr 24 23:00:49 EDT 2025
Fri Feb 23 02:41:46 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Vis-NIR-SWIR
Soil spectral behavior
Mid-IR and pXRF spectroscopy
PLSR, arid region
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-f2070bf7fa80e6a5614c9ab518e50a4db62080f64eeaa6a1bf724f8ed23c422e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1016/J.GEODRS.2022.E00484
PQID 2636579968
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636579968
crossref_primary_10_1016_j_geodrs_2022_e00484
crossref_citationtrail_10_1016_j_geodrs_2022_e00484
elsevier_sciencedirect_doi_10_1016_j_geodrs_2022_e00484
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Geoderma Regional
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bogrekci, Lee (bb0070) 2005; 91
Ames, Prych (bb0010) 1995
Hesse (bb0185) 1976; 44
Terra, Demattê, Viscarra Rossel (bb0400) 2015; 255–256
Janik, Merry, Skjemstad (bb0210) 1998; 38
Mehra, Jackson (bb0245) 1960; 7
Zeraatpisheh, Jafari, Bagheri Bodaghabadi, Ayoubi, Taghizadeh-Mehrjardi, Toomanian, Kerry, Xu (bb0515) 2020; 188
Ayoubi, Mokhtari, Mosaddeghi, Zeraatpisheh (bb0020) 2018; 190
Clay, Chang, Malo, Carlson, Reese, Clay, Ellsbury, Berg (bb0100) 2001; 32
Ravansari, Lemke (bb0295) 2018; 319
Soon, Abboud (bb0350) 1990; 70
Ben-Dor, Levin, Singer, Karnieli, Braun, Kidron (bb0055) 2006; 131
Sharma, Wang, Chakraborty (bb0315) 2015; 239–240
Zhang, Hartemink (bb0520) 2018; 70
Stenberg, Viscarra Rossel, Mouazen, Wetterlind (bb0365) 2010
Hürkamp, Raab, Völkel (bb0205) 2009; 110
Tümsavaş, Tekin, Ulusoy, Mouazen (bb0415) 2019; 177
Gates (bb0155) 2018
Henaka Arachchi, Field, McBratney (bb0180) 2016; 267
Chang, Laird, Mausbach, Hurburgh (bb0085) 2001; 65
Fischer (bb0150) 1977; 140
Shi, Ji, Rossel, Chen, Zhou (bb0325) 2015; 66
Vohland, Ludwig, Sören, Ludwig (bb0445) 2014; 223–225
Walkley, Black (bb0455) 1934; 37
Rengasamy (bb0305) 2006; 57
Shaverdi, Esfahani, Mirtohidi, Ghomashi (bb0320) 2004
Asgari, Ayoubi, Demattê, Dotto (bb0015) 2020
Viscarra Rossel, Walvoort, McBratney, Janik, Skjemstad (bb0430) 2006; 131
Terra (bb0395) 2012
Viscarra Rossel, Behrens, Ben-Dor, Brown, Demattê, Shepherd, Shi, Stenberg, Stevens, Adamchuk, Aïchi, Barthès, Bartholomeus, Bayer, Bernoux, Böttcher, Brodský, Du, Chappell, Fouad, Genot, Gomez, Grunwald, Gubler, Guerrero, Hedley, Knadel, Morrás, Nocita, Ramirez-Lopez, Roudier, Campos, Sanborn, Sellitto, Sudduth, Rawlins, Walter, Winowiecki, Hong, Ji (bb0440) 2016; 155
Edelman, de Bruin (bb0145) 1986
Weindorf, Zhu, Ferrell, Rolong, Barnett, Allen, Herrero, Hudnall (bb0465) 2009; 174
Stumpe, Weihermüller, Marschner (bb0380) 2011; 62
Ben-Dor, Banin (bb0045) 1990; 44
Vicente, Filho (bb0425) 2011; 115
Wiedenbeck (bb0490) 2013; 9
Mohamed, Saleh, Belal, Gad (bb0260) 2018; 21
Viscarra Rossel, Adamchuk, Sudduth, McKenzie, Lobsey (bb0435) 2011
Weindorf, Herrero, Castañeda, Bakr, Swanhart (bb0475) 2013; 77
Soil Conservation Service (bb0340) 1972
Towett, Shepherd, Tondoh, Winowiecki, Lulseged, Nyambura, Sila, Vågen, Cadisch (bb0410) 2015; 5
Yu, Li, Han, Zhou, Fu, Guan, Wang, Ning, Wu, Wang (bb0500) 2014; 72
Stockmann, Cattle, Minasny, McBratney (bb0375) 2016; 139
Chabrillat, Ben-Dor, Rossel, Demattê (bb0075) 2013; 2013
Nguyen, Janik, Raupach (bb0280) 1991; 29
Gee, Bauder (bb0165) 2018
Ben-Dor (bb0040) 2002
Chang, Laird (bb0080) 2002; 167
Nanni, Demattê (bb0275) 2006; 70
Weindorf, Chakraborty, Herrero, Li, Castañeda, Choudhury (bb0485) 2016; 67
Zhu, Weindorf, Zhang (bb0535) 2011; 167–168
Choudhary, Kharche (bb0090) 2018
Hunt (bb0195) 1980
Volkan Bilgili, van Es, Akbas, Durak, Hively (bb0450) 2010; 74
Gomez, Coulouma (bb0170) 2018; 330
Ben-Dor, Heller, Chudnovsky (bb0060) 2008; 72
Terra, Demattê, Viscarra Rossel (bb0405) 2018; 318
Zolfaghari, Mosaddeghi, Ayoubi (bb0540) 2015; 31
Lemiere (bb0230) 2014
Aldabaa, Weindorf, Chakraborty, Sharma, Li (bb0005) 2015; 239–240
Minasny, Tranter, McBratney, Alex, Brough, Murphy (bb0255) 2009; 153
Soriano-Disla, Janik, Viscarra Rossel, Macdonald, McLaughlin (bb0360) 2014; 49
Weindorf, Zhu, Haggard, Lofton, Chakraborty, Bakr, Zhang, Weindorf, Legoria (bb0470) 2012; 76
Doner, Lynn (bb0135) 1989
Sharma, Weindorf, Man, Aldabaa, Chakraborty (bb0310) 2014; 232–234
Silva, Weindorf, Pinto, Faria, Acerbi Junior, Gomide, de Mello, de Pádua Junior, de Souza, Teixeira, Guilherme, Curi (bb0335) 2020; 362
Weindorf, Bakr, Zhu (bb0480) 2014; 128
Stevenson (bb0370) 1982
Ge, Thomasson, Morgan (bb0160) 2014; 213
Khayamim, Wetterlind, Hossein, Robertson, Cano, Stenberg (bb0220) 2015; 23
Comstock, Sherpa, Ferguson, Bailey, Beem-Miller, Lin, Lehmann, Wolfe (bb0110) 2019; 14
Naimi, Ayoubi, Demattê, Zeraatpisheh, Amorim, Mello (bb0265) 2021; 1–24
Bellon-Maurel, McBratney (bb0030) 2011; 43
Hunt, Salisbury, Lenhoff (bb0200) 1971
Clark, King, Klejwa, Swayze, Vergo (bb0095) 1990; 95
Loeppert, Suarez (bb0235) 1996
Zeraatpisheh, Ayoubi, Jafari, Finke (bb0505) 2017; 285
Demattê, Terra (bb0115) 2014; 217–218
Löwemark, Chen, Yang, Kylander, Yu, Hsu, Lee, Song, Jarvis (bb0240) 2011; 40
Zeraatpisheh, Ayoubi, Jafari, Tajik, Finke (bb0510) 2019; 338
Swanhart, Weindorf, Chakraborty, Bakr, Zhu, Nelson, Shook, Acree (bb0385) 2014; 179
Ben-Dor, Banin (bb0050) 1995; 59
Coblinski, Giasson, Demattê, Dotto, Costa, Vašát (bb0105) 2020; 189
Wold, Martens, Wold (bb0495) 1983
Gomez, Lagacherie, Coulouma (bb0175) 2008; 148
Zhu, Weindorf (bb0530) 2009; 174
Naimi, Ayoubi, Zeraatpisheh, Dematte (bb0270) 2021; 13
Sila, Shepherd, Pokhariyal (bb0330) 2016; 153
Vasava, Gupta, Arora, Das Bhabani (bb0420) 2019; 337
Bellon-Maurel, Fernandez-Ahumada, Palagos, Roger, McBratney (bb0035) 2010; 29
Sorensen, Dalsgaard (bb0355) 2005; 69
Soil Survey Staff (bb0345) 2014
Tavakkoli, Rengasamy, McDonald (bb0390) 2010; 61
Demattê, Campos, Alves, Fiorio, Nanni (bb0120) 2004; 121
Hobley, Prater (bb0190) 2019; 70
Demattê, Dotto, Bedin, Sayão, Souza (bb0125) 2019; 337
Otaka, Hokura, Nakai (bb0290) 2014; 147
Bishop, Lane, Dyar, King, Brown, Swayze (bb0065) 2014; 99
Nocita, Stevens, van Wesemael, Aitkenhead, Bachmann, Barthès, Ben Dor, Brown, Clairotte, Csorba, Dardenne, Demattê, Genot, Guerrero, Knadel, Montanarella, Noon, Ramirez-Lopez, Robertson, Sakai, Soriano-Disla, Shepherd, Stenberg, Towett, Vargas, Wetterlind (bb0285) 2015
Bashour, Sayegh (bb0025) 2007
Wang, Li, Li, Liu (bb0460) 2013; 178
Dotto, Dalmolin, Caten, Gris, Ruiz (bb0140) 2017
Minasny, McBratney (bb0250) 2006; 32
Janvier (bb0215) 2015; 06
Zheng, Ryu, Jiao, Xie, Cui, Shang (bb0525) 2019; 11
Reeves, Smith (bb0300) 2009; 24
Lee, Li, Shi, Cheung, Thornton (bb0225) 2006; 356
Swanhart (10.1016/j.geodrs.2022.e00484_bb0385) 2014; 179
Bashour (10.1016/j.geodrs.2022.e00484_bb0025) 2007
Ben-Dor (10.1016/j.geodrs.2022.e00484_bb0040) 2002
Weindorf (10.1016/j.geodrs.2022.e00484_bb0485) 2016; 67
Soriano-Disla (10.1016/j.geodrs.2022.e00484_bb0360) 2014; 49
Bogrekci (10.1016/j.geodrs.2022.e00484_bb0070) 2005; 91
Wang (10.1016/j.geodrs.2022.e00484_bb0460) 2013; 178
Stumpe (10.1016/j.geodrs.2022.e00484_bb0380) 2011; 62
Tavakkoli (10.1016/j.geodrs.2022.e00484_bb0390) 2010; 61
Hunt (10.1016/j.geodrs.2022.e00484_bb0200) 1971
Comstock (10.1016/j.geodrs.2022.e00484_bb0110) 2019; 14
Bishop (10.1016/j.geodrs.2022.e00484_bb0065) 2014; 99
Weindorf (10.1016/j.geodrs.2022.e00484_bb0475) 2013; 77
Weindorf (10.1016/j.geodrs.2022.e00484_bb0480) 2014; 128
Janik (10.1016/j.geodrs.2022.e00484_bb0210) 1998; 38
Zhu (10.1016/j.geodrs.2022.e00484_bb0535) 2011; 167–168
Bellon-Maurel (10.1016/j.geodrs.2022.e00484_bb0035) 2010; 29
Chabrillat (10.1016/j.geodrs.2022.e00484_bb0075) 2013; 2013
Dotto (10.1016/j.geodrs.2022.e00484_bb0140) 2017
Löwemark (10.1016/j.geodrs.2022.e00484_bb0240) 2011; 40
Fischer (10.1016/j.geodrs.2022.e00484_bb0150) 1977; 140
Reeves (10.1016/j.geodrs.2022.e00484_bb0300) 2009; 24
Gomez (10.1016/j.geodrs.2022.e00484_bb0175) 2008; 148
Zeraatpisheh (10.1016/j.geodrs.2022.e00484_bb0510) 2019; 338
Hürkamp (10.1016/j.geodrs.2022.e00484_bb0205) 2009; 110
Hesse (10.1016/j.geodrs.2022.e00484_bb0185) 1976; 44
Soil Conservation Service (10.1016/j.geodrs.2022.e00484_bb0340) 1972
Zolfaghari (10.1016/j.geodrs.2022.e00484_bb0540) 2015; 31
Mohamed (10.1016/j.geodrs.2022.e00484_bb0260) 2018; 21
Shaverdi (10.1016/j.geodrs.2022.e00484_bb0320) 2004
Viscarra Rossel (10.1016/j.geodrs.2022.e00484_bb0435) 2011
Clark (10.1016/j.geodrs.2022.e00484_bb0095) 1990; 95
Mehra (10.1016/j.geodrs.2022.e00484_bb0245) 1960; 7
Gee (10.1016/j.geodrs.2022.e00484_bb0165) 2018
Vasava (10.1016/j.geodrs.2022.e00484_bb0420) 2019; 337
Nguyen (10.1016/j.geodrs.2022.e00484_bb0280) 1991; 29
Vohland (10.1016/j.geodrs.2022.e00484_bb0445) 2014; 223–225
Sila (10.1016/j.geodrs.2022.e00484_bb0330) 2016; 153
Ben-Dor (10.1016/j.geodrs.2022.e00484_bb0050) 1995; 59
Viscarra Rossel (10.1016/j.geodrs.2022.e00484_bb0430) 2006; 131
Wold (10.1016/j.geodrs.2022.e00484_bb0495) 1983
Choudhary (10.1016/j.geodrs.2022.e00484_bb0090) 2018
Ravansari (10.1016/j.geodrs.2022.e00484_bb0295) 2018; 319
Zheng (10.1016/j.geodrs.2022.e00484_bb0525) 2019; 11
Janvier (10.1016/j.geodrs.2022.e00484_bb0215) 2015; 06
Minasny (10.1016/j.geodrs.2022.e00484_bb0250) 2006; 32
Minasny (10.1016/j.geodrs.2022.e00484_bb0255) 2009; 153
Gomez (10.1016/j.geodrs.2022.e00484_bb0170) 2018; 330
Henaka Arachchi (10.1016/j.geodrs.2022.e00484_bb0180) 2016; 267
Asgari (10.1016/j.geodrs.2022.e00484_bb0015) 2020
Khayamim (10.1016/j.geodrs.2022.e00484_bb0220) 2015; 23
Weindorf (10.1016/j.geodrs.2022.e00484_bb0465) 2009; 174
Ayoubi (10.1016/j.geodrs.2022.e00484_bb0020) 2018; 190
Sharma (10.1016/j.geodrs.2022.e00484_bb0310) 2014; 232–234
Ben-Dor (10.1016/j.geodrs.2022.e00484_bb0045) 1990; 44
Terra (10.1016/j.geodrs.2022.e00484_bb0400) 2015; 255–256
Gates (10.1016/j.geodrs.2022.e00484_bb0155) 2018
Hobley (10.1016/j.geodrs.2022.e00484_bb0190) 2019; 70
Stenberg (10.1016/j.geodrs.2022.e00484_bb0365) 2010
Naimi (10.1016/j.geodrs.2022.e00484_bb0270) 2021; 13
Naimi (10.1016/j.geodrs.2022.e00484_bb0265) 2021; 1–24
Lee (10.1016/j.geodrs.2022.e00484_bb0225) 2006; 356
Vicente (10.1016/j.geodrs.2022.e00484_bb0425) 2011; 115
Zhu (10.1016/j.geodrs.2022.e00484_bb0530) 2009; 174
Otaka (10.1016/j.geodrs.2022.e00484_bb0290) 2014; 147
Soon (10.1016/j.geodrs.2022.e00484_bb0350) 1990; 70
Demattê (10.1016/j.geodrs.2022.e00484_bb0120) 2004; 121
Lemiere (10.1016/j.geodrs.2022.e00484_bb0230) 2014
Edelman (10.1016/j.geodrs.2022.e00484_bb0145) 1986
Stockmann (10.1016/j.geodrs.2022.e00484_bb0375) 2016; 139
Terra (10.1016/j.geodrs.2022.e00484_bb0405) 2018; 318
Volkan Bilgili (10.1016/j.geodrs.2022.e00484_bb0450) 2010; 74
Shi (10.1016/j.geodrs.2022.e00484_bb0325) 2015; 66
Sharma (10.1016/j.geodrs.2022.e00484_bb0315) 2015; 239–240
Stevenson (10.1016/j.geodrs.2022.e00484_bb0370) 1982
Bellon-Maurel (10.1016/j.geodrs.2022.e00484_bb0030) 2011; 43
Towett (10.1016/j.geodrs.2022.e00484_bb0410) 2015; 5
Chang (10.1016/j.geodrs.2022.e00484_bb0085) 2001; 65
Hunt (10.1016/j.geodrs.2022.e00484_bb0195) 1980
Sorensen (10.1016/j.geodrs.2022.e00484_bb0355) 2005; 69
Coblinski (10.1016/j.geodrs.2022.e00484_bb0105) 2020; 189
Nocita (10.1016/j.geodrs.2022.e00484_bb0285) 2015
Chang (10.1016/j.geodrs.2022.e00484_bb0080) 2002; 167
Doner (10.1016/j.geodrs.2022.e00484_bb0135) 1989
Viscarra Rossel (10.1016/j.geodrs.2022.e00484_bb0440) 2016; 155
Aldabaa (10.1016/j.geodrs.2022.e00484_bb0005) 2015; 239–240
Ben-Dor (10.1016/j.geodrs.2022.e00484_bb0060) 2008; 72
Nanni (10.1016/j.geodrs.2022.e00484_bb0275) 2006; 70
Ge (10.1016/j.geodrs.2022.e00484_bb0160) 2014; 213
Weindorf (10.1016/j.geodrs.2022.e00484_bb0470) 2012; 76
Wiedenbeck (10.1016/j.geodrs.2022.e00484_bb0490) 2013; 9
Clay (10.1016/j.geodrs.2022.e00484_bb0100) 2001; 32
Zeraatpisheh (10.1016/j.geodrs.2022.e00484_bb0515) 2020; 188
Demattê (10.1016/j.geodrs.2022.e00484_bb0125) 2019; 337
Tümsavaş (10.1016/j.geodrs.2022.e00484_bb0415) 2019; 177
Zeraatpisheh (10.1016/j.geodrs.2022.e00484_bb0505) 2017; 285
Zhang (10.1016/j.geodrs.2022.e00484_bb0520) 2018; 70
Walkley (10.1016/j.geodrs.2022.e00484_bb0455) 1934; 37
Demattê (10.1016/j.geodrs.2022.e00484_bb0115) 2014; 217–218
Soil Survey Staff (10.1016/j.geodrs.2022.e00484_bb0345) 2014
Terra (10.1016/j.geodrs.2022.e00484_bb0395) 2012
Rengasamy (10.1016/j.geodrs.2022.e00484_bb0305) 2006; 57
Loeppert (10.1016/j.geodrs.2022.e00484_bb0235) 1996
Ben-Dor (10.1016/j.geodrs.2022.e00484_bb0055) 2006; 131
Silva (10.1016/j.geodrs.2022.e00484_bb0335) 2020; 362
Yu (10.1016/j.geodrs.2022.e00484_bb0500) 2014; 72
Ames (10.1016/j.geodrs.2022.e00484_bb0010) 1995
References_xml – year: 1995
  ident: bb0010
  article-title: Background concentrations of metals in soils from selected regions in the State of Washington
  publication-title: USGS Water Resour. Invest (No. 95–4018)
– start-page: 163
  year: 2010
  end-page: 215
  ident: bb0365
  article-title: Visible and Near infrared spectroscopy in soil science
  publication-title: Advances in Agronomy
– volume: 29
  start-page: 49
  year: 1991
  end-page: 67
  ident: bb0280
  article-title: Diffuse reflectance infrared fourier transform (DRIFT) spectroscopy in soil studies
  publication-title: Soil Res
– start-page: 353
  year: 2018
  end-page: 384
  ident: bb0090
  article-title: Soil Salinity and Sodicity
– start-page: 89
  year: 1986
  end-page: 99
  ident: bb0145
  article-title: Background Values of 32 Elements in Dutch Topsoils, Determined with Non-Destructive Neutron Activation Analysis
  publication-title: Contaminated Soil: First International TNO Conference on Contaminated Soil 11–15 November, 1985, Utrecht, The Netherlands
– volume: 70
  start-page: 393
  year: 2006
  end-page: 407
  ident: bb0275
  article-title: Spectral reflectance methodology in comparison to traditional soil analysis
  publication-title: Soil Sci. Soc. Am. J.
– volume: 110
  start-page: 28
  year: 2009
  end-page: 36
  ident: bb0205
  article-title: Two and three-dimensional quantification of lead contamination in alluvial soils of a historic mining area using field portable X-ray fluorescence (FPXRF) analysis
  publication-title: Geomorphology
– volume: 338
  start-page: 445
  year: 2019
  end-page: 452
  ident: bb0510
  article-title: Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran
  publication-title: Geoderma
– year: 1996
  ident: bb0235
  article-title: Carbonate and gypsum
  publication-title: Method of Soil Analysis
– volume: 318
  start-page: 123
  year: 2018
  end-page: 136
  ident: bb0405
  article-title: Proximal spectral sensing in pedological assessments: Vis–NIR spectra for soil classification based on weathering and pedogenesis
  publication-title: Geoderma
– volume: 32
  start-page: 1378
  year: 2006
  end-page: 1388
  ident: bb0250
  article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information
  publication-title: Comput. Geosci.
– volume: 49
  start-page: 139
  year: 2014
  end-page: 186
  ident: bb0360
  article-title: The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties
  publication-title: Appl. Spectrosc. Rev.
– year: 1982
  ident: bb0370
  article-title: Humus Chemistry: Genesis, Composition
– volume: 239–240
  start-page: 34
  year: 2015
  end-page: 46
  ident: bb0005
  article-title: Combination of proximal and remote sensing methods for rapid soil salinity quantification
  publication-title: Geoderma
– volume: 362
  year: 2020
  ident: bb0335
  article-title: Soil texture prediction in tropical soils: a portable X-ray fluorescence spectrometry approach
  publication-title: Geoderma
– volume: 66
  start-page: 679
  year: 2015
  end-page: 687
  ident: bb0325
  article-title: Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese Vis–NIR spectral library
  publication-title: Eur. J. Soil Sci.
– volume: 140
  start-page: 247
  year: 1977
  end-page: 248
  ident: bb0150
  article-title: H.W. van der Marel und H. Beutelspacher (Herausg.): Atlas of infrared spectroscopy of clay minerals and their admixtures. Elsevier, Amsterdam 1976. VIII + 396 Seiten, Großformat Dfl. 165, —
  publication-title: Z Pflanzenernaehr Bodenk
– start-page: 173
  year: 2002
  end-page: 243
  ident: bb0040
  article-title: Quantitative remote sensing of soil properties
  publication-title: Advances in Agronomy
– volume: 77
  year: 2013
  ident: bb0475
  article-title: Direct soil gypsum quantification via portable X-ray fluorescence spectrometry
  publication-title: Soil Sci. Soc. Am. J.
– start-page: 5
  year: 1980
  end-page: 45
  ident: bb0195
  article-title: Electromagnetic radiation: The communication link in remote sensing
  publication-title: Remote Sensing in Geology
– volume: 239–240
  start-page: 130
  year: 2015
  end-page: 134
  ident: bb0315
  article-title: Characterizing soils via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC)
  publication-title: Geoderma s
– year: 2017
  ident: bb0140
  article-title: Alrad Spectra: predição de atributos do solo usando dados espectrais
  publication-title: In: Anais do XXXVI Congresso Brasileiro de Ciência do Solo; agosto 2017; Belém
– volume: 356
  start-page: 45
  year: 2006
  end-page: 61
  ident: bb0225
  article-title: Metal contamination in urban, suburban, and country park soils of Hong Kong: a study based on GIS and multivariate statistics
  publication-title: Sci. Total Environ.
– volume: 337
  start-page: 914
  year: 2019
  end-page: 926
  ident: bb0420
  article-title: Assessment of soil texture from spectral reflectance data of bulk soil samples and their dry-sieved aggregate size fractions
  publication-title: Geoderma
– volume: 155
  start-page: 198
  year: 2016
  end-page: 230
  ident: bb0440
  article-title: A global spectral library to characterize the world’s soil
  publication-title: Earth Sci. Rev.
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 3
  ident: bb0075
  article-title: Quantitative soil spectroscopy
  publication-title: Appl Environ Soil Sci
– volume: 174
  start-page: 556
  year: 2009
  end-page: 562
  ident: bb0465
  article-title: Evaluation of portable X-ray fluorescence for gypsum quantification in soils
  publication-title: Soil Sci.
– volume: 74
  start-page: 229
  year: 2010
  end-page: 238
  ident: bb0450
  article-title: Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey
  publication-title: J. Arid Environ.
– volume: 217–218
  start-page: 190
  year: 2014
  end-page: 200
  ident: bb0115
  article-title: Spectral pedology: a new perspective on evaluation of soils along pedogenetic alterations
  publication-title: Geoderma
– start-page: 139
  year: 2015
  end-page: 159
  ident: bb0285
  article-title: Chapter four - soil spectroscopy: an alternative to wet chemistry for soil monitoring
  publication-title: Advances in Agronomy
– volume: 11
  start-page: 2336
  year: 2019
  ident: bb0525
  article-title: Visible and near-infrared reflectance spectroscopy analysis of a coastal soil chronosequence
  publication-title: Remote Sens.
– volume: 177
  start-page: 90
  year: 2019
  end-page: 100
  ident: bb0415
  article-title: Prediction and mapping of soil clay and sand contents using visible and near-infrared spectroscopy
  publication-title: Biosyst. Eng.
– volume: 213
  start-page: 57
  year: 2014
  end-page: 63
  ident: bb0160
  article-title: Mid-infrared attenuated total reflectance spectroscopy for soil carbon and particle size determination
  publication-title: Geoderma
– volume: 44
  start-page: 1064
  year: 1990
  end-page: 1069
  ident: bb0045
  article-title: Near-infrared reflectance analysis of carbonate concentration in soils
  publication-title: Appl. Spectrosc.
– volume: 139
  start-page: 220
  year: 2016
  end-page: 231
  ident: bb0375
  article-title: Utilizing portable X-ray fluorescence spectrometry for in-field investigation of pedogenesis
  publication-title: CATENA
– volume: 72
  start-page: 589
  year: 2014
  end-page: 599
  ident: bb0500
  article-title: The spatial distribution characteristics of soil salinity in coastal zone of the Yellow River Delta
  publication-title: Environ. Earth Sci.
– volume: 43
  start-page: 1398
  year: 2011
  end-page: 1410
  ident: bb0030
  article-title: Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils – critical review and research perspectives
  publication-title: Soil Biol. Biochem.
– volume: 167
  start-page: 110
  year: 2002
  end-page: 116
  ident: bb0080
  article-title: Near-infrared reflectance spectroscopic analysis of soil C and N
  publication-title: Soil Sci.
– volume: 337
  start-page: 111
  year: 2019
  end-page: 121
  ident: bb0125
  article-title: Soil analytical quality control by traditional and spectroscopy techniques: constructing the future of a hybrid laboratory for low environmental impact
  publication-title: Geoderma
– volume: 255–256
  start-page: 81
  year: 2015
  end-page: 93
  ident: bb0400
  article-title: Spectral libraries for quantitative analyses of tropical Brazilian soils: comparing Vis–NIR and mid-IR reflectance data
  publication-title: Geoderma
– volume: 91
  start-page: 305
  year: 2005
  end-page: 312
  ident: bb0070
  article-title: Spectral phosphorus mapping using diffuse reflectance of soils and grass
  publication-title: Biosyst. Eng.
– volume: 38
  start-page: 681
  year: 1998
  end-page: 696
  ident: bb0210
  article-title: Can mid infrared diffuse reflectance analysis replace soil extractions?
  publication-title: Aust. J. Exp. Agric.
– volume: 70
  start-page: 27
  year: 2018
  end-page: 41
  ident: bb0520
  article-title: Digital mapping of a soil profile
  publication-title: Eur. J. Soil Sci.
– volume: 32
  start-page: 2993
  year: 2001
  end-page: 3008
  ident: bb0100
  article-title: Factors influencing spatial variability of soil apparent electrical conductivity
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 1–24
  year: 2021
  ident: bb0265
  article-title: Spatial prediction of soil surface properties in an arid region using synthetic soil image and machine learning
  publication-title: Geocarto Int
– volume: 61
  start-page: 4449
  year: 2010
  end-page: 4459
  ident: bb0390
  article-title: High concentrations of Na+ and cl– ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress
  publication-title: J. Exp. Bot.
– volume: 57
  start-page: 1017
  year: 2006
  end-page: 1023
  ident: bb0305
  article-title: World salinization with emphasis on Australia
  publication-title: J. Exp. Bot.
– year: 2012
  ident: bb0395
  article-title: Espectroscopia de reflectância do visível ao infravermelho médio aplicada aos estudos qualitativos e quantitativos de solos (Doutorado em Solos e Nutrição de Plantas)
– volume: 232–234
  start-page: 141
  year: 2014
  end-page: 147
  ident: bb0310
  article-title: Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH)
  publication-title: Geoderma
– volume: 121
  start-page: 95
  year: 2004
  end-page: 112
  ident: bb0120
  article-title: Visible–NIR reflectance: a new approach on soil evaluation
  publication-title: Geoderma
– start-page: 3
  year: 1971
  ident: bb0200
  article-title: Visible and near infrared spectra of minerals and rocks: IV. Sulphides and sulphates
  publication-title: Modem Gcoloqy
– volume: 128
  start-page: 65
  year: 2014
  end-page: 2113
  ident: bb0480
  article-title: Advances in portable X-ray fluorescence (PXRF) for environmental, pedological, and agronomic applications
  publication-title: Adv. Agron.
– volume: 267
  start-page: 207
  year: 2016
  end-page: 214
  ident: bb0180
  article-title: Quantification of soil carbon from bulk soil samples to predict the aggregate-carbon fractions within using near- and mid-infrared spectroscopic techniques
  publication-title: Geoderma
– year: 1972
  ident: bb0340
  article-title: Soil survey laboratory methods and procedures for collecting soil samples
  publication-title: Rev. ed. USDA-SCS, Soil Survey Investigation Report No. 1
– volume: 40
  start-page: 1250
  year: 2011
  end-page: 1256
  ident: bb0240
  article-title: Normalizing XRF-scanner data: a cautionary note on the interpretation of high-resolution records from organic-rich lakes
  publication-title: J. Asian Earth Sci.
– volume: 59
  start-page: 364
  year: 1995
  end-page: 372
  ident: bb0050
  article-title: Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties
  publication-title: Soil Sci. Soc. Am. J.
– volume: 21
  start-page: 1
  year: 2018
  end-page: 14
  ident: bb0260
  article-title: Application of near-infrared reflectance for quantitative assessment of soil properties
  publication-title: Egypt. J. Remote Sens. Space Sci.
– volume: 115
  start-page: 1824
  year: 2011
  end-page: 1836
  ident: bb0425
  article-title: Identification of mineral components in tropical soils using reflectance spectroscopy and advanced spaceborne thermal emission and reflection radiometer (ASTER) data
  publication-title: Remote Sens. Environ.
– volume: 174
  start-page: 151
  year: 2009
  end-page: 155
  ident: bb0530
  article-title: Determination of soil calcium using field portable X-ray fluorescence
  publication-title: Soil Sci.
– year: 2007
  ident: bb0025
  article-title: Methods of Analysis for Soils of Arid and Semi-Arid Regions
– volume: 31
  start-page: 142
  year: 2015
  end-page: 154
  ident: bb0540
  article-title: ANN-based pedotransfer and soil spatial prediction functions for predicting Atterberg consistency limits and indices from easily available properties at the watershed scale in western Iran
  publication-title: Soil Use Manag.
– volume: 13
  start-page: 4825
  year: 2021
  ident: bb0270
  article-title: Ground observations and environmental covariates integration for mapping of soil salinity: a machine learning-based approach
  publication-title: Remote Sens.
– volume: 44
  start-page: 241
  year: 1976
  end-page: 247
  ident: bb0185
  article-title: Particle size distribution in gypsic soils
  publication-title: Plant Soil
– volume: 23
  start-page: 155
  year: 2015
  end-page: 165
  ident: bb0220
  article-title: Using visible and near infrared spectroscopy to estimate carbonates and gypsum in soils in arid and subhumid regions of Isfahan
  publication-title: Iran J. Near Infrared Spectr.
– volume: 167–168
  start-page: 167
  year: 2011
  end-page: 177
  ident: bb0535
  article-title: Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture
  publication-title: Geoderma
– volume: 69
  start-page: 159
  year: 2005
  ident: bb0355
  article-title: Determination of Clay and other soil properties by near infrared spectroscopy
  publication-title: Soil Sci. Soc. Am. J.
– volume: 188
  year: 2020
  ident: bb0515
  article-title: Conventional and digital soil mapping in Iran: past, present, and future
  publication-title: CATENA
– volume: 14
  year: 2019
  ident: bb0110
  article-title: Carbonate determination in soils by mid-IR spectroscopy with regional and continental scale models
  publication-title: PLoS One
– volume: 9
  start-page: 7
  year: 2013
  end-page: 8
  ident: bb0490
  article-title: Field-portable XRF: a geochemist’s dream?
  publication-title: Elements
– volume: 62
  start-page: 849
  year: 2011
  end-page: 862
  ident: bb0380
  article-title: Sample preparation and selection for qualitative and quantitative analyses of soil organic carbon with mid-infrared reflectance spectroscopy
  publication-title: Eur. J. Soil Sci.
– volume: 29
  start-page: 1073
  year: 2010
  end-page: 1081
  ident: bb0035
  article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy
  publication-title: TrAC Trends Anal. Chem.
– volume: 178
  start-page: 626
  year: 2013
  end-page: 638
  ident: bb0460
  article-title: Prediction of soil texture using FT-NIR spectroscopy and PXRF spectrometry with data fusion
  publication-title: Soil Sci.
– volume: 72
  start-page: 1113
  year: 2008
  end-page: 1123
  ident: bb0060
  article-title: A novel method of classifying soil profiles in the field using optical means
  publication-title: Soil Sci. Soc. Am. J.
– start-page: 243
  year: 2011
  end-page: 291
  ident: bb0435
  article-title: Chapter five - proximal soil sensing: An effective approach for soil measurements in space and time
  publication-title: Advances in Agronomy, Advances in Agronomy
– year: 2020
  ident: bb0015
  article-title: Carbonates and organic matter in soils characterized by reflected energy from 350–25000 nm wavelength
  publication-title: J. Mt. Sci.
– volume: 06
  year: 2015
  ident: bb0215
  article-title: Application of infrared technique in soil properties’ characterization in south Kivu province of DR Congo
  publication-title: Afr J Food Sci Technol
– volume: 65
  start-page: 480
  year: 2001
  end-page: 490
  ident: bb0085
  article-title: Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties
  publication-title: Soil Sci. Soc. Am. J.
– year: 2018
  ident: bb0155
  article-title: A comparison of VNIR and MIR spectroscopy for predicting various soil properties
  publication-title: Dissertations & Theses in Natural Resources
– volume: 190
  start-page: 192
  year: 2018
  ident: bb0020
  article-title: Erodibility of calcareous soils as influenced by land use and intrinsic soil properties in a semiarid region of Central Iran
  publication-title: Environ. Monit. Assess.
– volume: 148
  start-page: 141
  year: 2008
  end-page: 148
  ident: bb0175
  article-title: Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements
  publication-title: Geoderma
– volume: 24
  start-page: 1472
  year: 2009
  end-page: 1481
  ident: bb0300
  article-title: The potential of mid- and near-infrared diffuse reflectance spectroscopy for determining major- and trace-element concentrations in soils from a geochemical survey of North America
  publication-title: Appl. Geochem. Geochem. Stud. North American Soils
– volume: 76
  year: 2012
  ident: bb0470
  article-title: Enhanced pedon horizonation using portable X-ray fluorescence spectrometry
  publication-title: Soil Sci. Soc. Am. J.
– start-page: 5
  year: 2014
  ident: bb0230
  article-title: Field Analytical Techniques for Geochemical Surveys
– volume: 153
  start-page: 92
  year: 2016
  end-page: 105
  ident: bb0330
  article-title: Evaluating the utility of mid-infrared spectral subspaces for predicting soil properties
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 189
  year: 2020
  ident: bb0105
  article-title: Prediction of soil texture classes through different wavelength regions of reflectance spectroscopy at various soil depths
  publication-title: CATENA
– volume: 131
  start-page: 59
  year: 2006
  end-page: 75
  ident: bb0430
  article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties
  publication-title: Geoderma
– volume: 67
  start-page: 173
  year: 2016
  end-page: 183
  ident: bb0485
  article-title: Simultaneous assessment of key properties of arid soil by combined PXRF and Vis–NIR data
  publication-title: Eur. J. Soil Sci.
– volume: 285
  start-page: 186
  year: 2017
  end-page: 204
  ident: bb0505
  article-title: Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran
  publication-title: Geomorphology
– start-page: 383
  year: 2018
  end-page: 411
  ident: bb0165
  article-title: Particle-Size Analysis, in: Methods of Soil Analysis
– volume: 70
  start-page: 277
  year: 1990
  end-page: 288
  ident: bb0350
  article-title: Trace elements in agricultural soils of northwestern ALBERTA
  publication-title: Can. J. Soil Sci.
– volume: 319
  start-page: 175
  year: 2018
  end-page: 184
  ident: bb0295
  article-title: Portable X-ray fluorescence trace metal measurement in organic rich soils: pXRF response as a function of organic matter fraction
  publication-title: Geoderma
– start-page: 286
  year: 1983
  end-page: 293
  ident: bb0495
  article-title: The multivariate calibration problem in chemistry solved by the PLS method
  publication-title: Matrix Pencils
– volume: 7
  start-page: 317
  year: 1960
  end-page: 327
  ident: bb0245
  article-title: Iron oxide removal from soils and clays by a dithionite citrate system with sodium bicarbonate
  publication-title: Clay Clay Miner.
– volume: 99
  start-page: 2105
  year: 2014
  end-page: 2115
  ident: bb0065
  article-title: Spectral properties of ca-sulfates: gypsum, bassanite, and anhydrite
  publication-title: Am. Mineral.
– year: 2004
  ident: bb0320
  article-title: Geological quadrangle map of Iran, No. 6546 (Mozafari)m Scale 1:100000
– year: 2014
  ident: bb0345
  article-title: Keys to Soil Taxonomy
– volume: 37
  start-page: 29
  year: 1934
  end-page: 38
  ident: bb0455
  article-title: An examination of the DEGTJAREFF method for determining soil organic matter, and a proposed modification of the chromic acid titration method
  publication-title: Soil Sci.
– volume: 95
  start-page: 12653
  year: 1990
  ident: bb0095
  article-title: High spectral resolution reflectance spectroscopy of minerals
  publication-title: J. Geophys. Res.
– volume: 147
  start-page: 318
  year: 2014
  end-page: 326
  ident: bb0290
  article-title: Determination of trace elements in soybean by X-ray fluorescence analysis and its application to identification of their production areas
  publication-title: Food Chem.
– volume: 153
  start-page: 155
  year: 2009
  end-page: 162
  ident: bb0255
  article-title: Regional transferability of mid-infrared diffuse reflectance spectroscopic prediction for soil chemical properties
  publication-title: Geoderma
– volume: 131
  start-page: 1
  year: 2006
  end-page: 21
  ident: bb0055
  article-title: Quantitative mapping of the soil rubification process on sand dunes using an airborne hyperspectral sensor
  publication-title: Geoderma
– volume: 70
  start-page: 83
  year: 2019
  end-page: 95
  ident: bb0190
  article-title: Estimating soil texture from Vis–NIR spectra
  publication-title: Eur. J. Soil Sci.
– volume: 330
  year: 2018
  ident: bb0170
  article-title: Importance of the spatial extent for using soil properties estimated by laboratory VNIR/SWIR spectroscopy: examples of the clay and calcium carbonate content
  publication-title: Geoderma
– volume: 5
  start-page: 157
  year: 2015
  end-page: 168
  ident: bb0410
  article-title: Total elemental composition of soils in sub-Saharan Africa and relationship with soil forming factors
  publication-title: Geoderma Reg
– volume: 223–225
  start-page: 88
  year: 2014
  end-page: 96
  ident: bb0445
  article-title: Determination of soil properties with visible to near- and mid-infrared spectroscopy: effects of spectral variable selection
  publication-title: Geoderma
– start-page: 331
  year: 1989
  end-page: 378
  ident: bb0135
  article-title: Carbonate, halide, sulfate, and sulfide minerals. Carbonate, halide, sulfate, and sulfide minerals. Ch. 6
  publication-title: Minerals in Soil Environments
– volume: 179
  start-page: 417
  year: 2014
  end-page: 423
  ident: bb0385
  article-title: Soil salinity measurement via portable X-ray fluorescence spectrometry
  publication-title: Soil Sci.
– volume: 91
  start-page: 305
  year: 2005
  ident: 10.1016/j.geodrs.2022.e00484_bb0070
  article-title: Spectral phosphorus mapping using diffuse reflectance of soils and grass
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2005.04.015
– volume: 1–24
  year: 2021
  ident: 10.1016/j.geodrs.2022.e00484_bb0265
  article-title: Spatial prediction of soil surface properties in an arid region using synthetic soil image and machine learning
  publication-title: Geocarto Int
– volume: 337
  start-page: 914
  year: 2019
  ident: 10.1016/j.geodrs.2022.e00484_bb0420
  article-title: Assessment of soil texture from spectral reflectance data of bulk soil samples and their dry-sieved aggregate size fractions
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.11.004
– volume: 319
  start-page: 175
  year: 2018
  ident: 10.1016/j.geodrs.2022.e00484_bb0295
  article-title: Portable X-ray fluorescence trace metal measurement in organic rich soils: pXRF response as a function of organic matter fraction
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.01.011
– volume: 61
  start-page: 4449
  year: 2010
  ident: 10.1016/j.geodrs.2022.e00484_bb0390
  article-title: High concentrations of Na+ and cl– ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq251
– volume: 40
  start-page: 1250
  year: 2011
  ident: 10.1016/j.geodrs.2022.e00484_bb0240
  article-title: Normalizing XRF-scanner data: a cautionary note on the interpretation of high-resolution records from organic-rich lakes
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2010.06.002
– year: 2018
  ident: 10.1016/j.geodrs.2022.e00484_bb0155
  article-title: A comparison of VNIR and MIR spectroscopy for predicting various soil properties
– year: 2012
  ident: 10.1016/j.geodrs.2022.e00484_bb0395
– volume: 37
  start-page: 29
  year: 1934
  ident: 10.1016/j.geodrs.2022.e00484_bb0455
  article-title: An examination of the DEGTJAREFF method for determining soil organic matter, and a proposed modification of the chromic acid titration method
  publication-title: Soil Sci.
  doi: 10.1097/00010694-193401000-00003
– volume: 362
  year: 2020
  ident: 10.1016/j.geodrs.2022.e00484_bb0335
  article-title: Soil texture prediction in tropical soils: a portable X-ray fluorescence spectrometry approach
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.114136
– volume: 66
  start-page: 679
  year: 2015
  ident: 10.1016/j.geodrs.2022.e00484_bb0325
  article-title: Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese Vis–NIR spectral library
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12272
– volume: 223–225
  start-page: 88
  year: 2014
  ident: 10.1016/j.geodrs.2022.e00484_bb0445
  article-title: Determination of soil properties with visible to near- and mid-infrared spectroscopy: effects of spectral variable selection
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.01.013
– volume: 99
  start-page: 2105
  year: 2014
  ident: 10.1016/j.geodrs.2022.e00484_bb0065
  article-title: Spectral properties of ca-sulfates: gypsum, bassanite, and anhydrite
  publication-title: Am. Mineral.
  doi: 10.2138/am-2014-4756
– volume: 06
  year: 2015
  ident: 10.1016/j.geodrs.2022.e00484_bb0215
  article-title: Application of infrared technique in soil properties’ characterization in south Kivu province of DR Congo
  publication-title: Afr J Food Sci Technol
  doi: 10.14303/ajfst.2015.017
– volume: 121
  start-page: 95
  year: 2004
  ident: 10.1016/j.geodrs.2022.e00484_bb0120
  article-title: Visible–NIR reflectance: a new approach on soil evaluation
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2003.09.012
– year: 1996
  ident: 10.1016/j.geodrs.2022.e00484_bb0235
  article-title: Carbonate and gypsum
– volume: 189
  year: 2020
  ident: 10.1016/j.geodrs.2022.e00484_bb0105
  article-title: Prediction of soil texture classes through different wavelength regions of reflectance spectroscopy at various soil depths
  publication-title: CATENA
  doi: 10.1016/j.catena.2020.104485
– year: 2017
  ident: 10.1016/j.geodrs.2022.e00484_bb0140
  article-title: Alrad Spectra: predição de atributos do solo usando dados espectrais
– volume: 337
  start-page: 111
  year: 2019
  ident: 10.1016/j.geodrs.2022.e00484_bb0125
  article-title: Soil analytical quality control by traditional and spectroscopy techniques: constructing the future of a hybrid laboratory for low environmental impact
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.09.010
– volume: 174
  start-page: 556
  year: 2009
  ident: 10.1016/j.geodrs.2022.e00484_bb0465
  article-title: Evaluation of portable X-ray fluorescence for gypsum quantification in soils
  publication-title: Soil Sci.
  doi: 10.1097/SS.0b013e3181bbbd0b
– year: 2004
  ident: 10.1016/j.geodrs.2022.e00484_bb0320
– volume: 330
  year: 2018
  ident: 10.1016/j.geodrs.2022.e00484_bb0170
  article-title: Importance of the spatial extent for using soil properties estimated by laboratory VNIR/SWIR spectroscopy: examples of the clay and calcium carbonate content
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.06.006
– volume: 147
  start-page: 318
  year: 2014
  ident: 10.1016/j.geodrs.2022.e00484_bb0290
  article-title: Determination of trace elements in soybean by X-ray fluorescence analysis and its application to identification of their production areas
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2013.09.142
– volume: 21
  start-page: 1
  year: 2018
  ident: 10.1016/j.geodrs.2022.e00484_bb0260
  article-title: Application of near-infrared reflectance for quantitative assessment of soil properties
  publication-title: Egypt. J. Remote Sens. Space Sci.
– volume: 110
  start-page: 28
  year: 2009
  ident: 10.1016/j.geodrs.2022.e00484_bb0205
  article-title: Two and three-dimensional quantification of lead contamination in alluvial soils of a historic mining area using field portable X-ray fluorescence (FPXRF) analysis
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2008.12.021
– volume: 267
  start-page: 207
  year: 2016
  ident: 10.1016/j.geodrs.2022.e00484_bb0180
  article-title: Quantification of soil carbon from bulk soil samples to predict the aggregate-carbon fractions within using near- and mid-infrared spectroscopic techniques
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.12.030
– year: 2014
  ident: 10.1016/j.geodrs.2022.e00484_bb0345
– volume: 7
  start-page: 317
  year: 1960
  ident: 10.1016/j.geodrs.2022.e00484_bb0245
  article-title: Iron oxide removal from soils and clays by a dithionite citrate system with sodium bicarbonate
  publication-title: Clay Clay Miner.
  doi: 10.1346/CCMN.1958.0070122
– volume: 140
  start-page: 247
  year: 1977
  ident: 10.1016/j.geodrs.2022.e00484_bb0150
  article-title: H.W. van der Marel und H. Beutelspacher (Herausg.): Atlas of infrared spectroscopy of clay minerals and their admixtures. Elsevier, Amsterdam 1976. VIII + 396 Seiten, Großformat Dfl. 165, —
  publication-title: Z Pflanzenernaehr Bodenk
  doi: 10.1002/jpln.19771400228
– volume: 57
  start-page: 1017
  year: 2006
  ident: 10.1016/j.geodrs.2022.e00484_bb0305
  article-title: World salinization with emphasis on Australia
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erj108
– volume: 77
  year: 2013
  ident: 10.1016/j.geodrs.2022.e00484_bb0475
  article-title: Direct soil gypsum quantification via portable X-ray fluorescence spectrometry
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2013.05.0170
– volume: 38
  start-page: 681
  year: 1998
  ident: 10.1016/j.geodrs.2022.e00484_bb0210
  article-title: Can mid infrared diffuse reflectance analysis replace soil extractions?
  publication-title: Aust. J. Exp. Agric.
  doi: 10.1071/EA97144
– volume: 72
  start-page: 1113
  year: 2008
  ident: 10.1016/j.geodrs.2022.e00484_bb0060
  article-title: A novel method of classifying soil profiles in the field using optical means
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2006.0059
– volume: 31
  start-page: 142
  year: 2015
  ident: 10.1016/j.geodrs.2022.e00484_bb0540
  article-title: ANN-based pedotransfer and soil spatial prediction functions for predicting Atterberg consistency limits and indices from easily available properties at the watershed scale in western Iran
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12167
– volume: 177
  start-page: 90
  year: 2019
  ident: 10.1016/j.geodrs.2022.e00484_bb0415
  article-title: Prediction and mapping of soil clay and sand contents using visible and near-infrared spectroscopy
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2018.06.008
– start-page: 243
  year: 2011
  ident: 10.1016/j.geodrs.2022.e00484_bb0435
  article-title: Chapter five - proximal soil sensing: An effective approach for soil measurements in space and time
  doi: 10.1016/B978-0-12-386473-4.00005-1
– volume: 255–256
  start-page: 81
  year: 2015
  ident: 10.1016/j.geodrs.2022.e00484_bb0400
  article-title: Spectral libraries for quantitative analyses of tropical Brazilian soils: comparing Vis–NIR and mid-IR reflectance data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.04.017
– volume: 44
  start-page: 1064
  year: 1990
  ident: 10.1016/j.geodrs.2022.e00484_bb0045
  article-title: Near-infrared reflectance analysis of carbonate concentration in soils
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702904086821
– volume: 131
  start-page: 1
  year: 2006
  ident: 10.1016/j.geodrs.2022.e00484_bb0055
  article-title: Quantitative mapping of the soil rubification process on sand dunes using an airborne hyperspectral sensor
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.02.011
– volume: 239–240
  start-page: 130
  year: 2015
  ident: 10.1016/j.geodrs.2022.e00484_bb0315
  article-title: Characterizing soils via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC)
  publication-title: Geoderma s
  doi: 10.1016/j.geoderma.2014.10.001
– volume: 155
  start-page: 198
  year: 2016
  ident: 10.1016/j.geodrs.2022.e00484_bb0440
  article-title: A global spectral library to characterize the world’s soil
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2016.01.012
– year: 2007
  ident: 10.1016/j.geodrs.2022.e00484_bb0025
– volume: 167–168
  start-page: 167
  year: 2011
  ident: 10.1016/j.geodrs.2022.e00484_bb0535
  article-title: Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.08.010
– volume: 49
  start-page: 139
  year: 2014
  ident: 10.1016/j.geodrs.2022.e00484_bb0360
  article-title: The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2013.811081
– volume: 9
  start-page: 7
  year: 2013
  ident: 10.1016/j.geodrs.2022.e00484_bb0490
  article-title: Field-portable XRF: a geochemist’s dream?
  publication-title: Elements
– volume: 190
  start-page: 192
  year: 2018
  ident: 10.1016/j.geodrs.2022.e00484_bb0020
  article-title: Erodibility of calcareous soils as influenced by land use and intrinsic soil properties in a semiarid region of Central Iran
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-018-6557-y
– volume: 11
  start-page: 2336
  year: 2019
  ident: 10.1016/j.geodrs.2022.e00484_bb0525
  article-title: Visible and near-infrared reflectance spectroscopy analysis of a coastal soil chronosequence
  publication-title: Remote Sens.
  doi: 10.3390/rs11202336
– volume: 72
  start-page: 589
  year: 2014
  ident: 10.1016/j.geodrs.2022.e00484_bb0500
  article-title: The spatial distribution characteristics of soil salinity in coastal zone of the Yellow River Delta
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-013-2980-0
– volume: 70
  start-page: 83
  year: 2019
  ident: 10.1016/j.geodrs.2022.e00484_bb0190
  article-title: Estimating soil texture from Vis–NIR spectra
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12733
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.geodrs.2022.e00484_bb0075
  article-title: Quantitative soil spectroscopy
  publication-title: Appl Environ Soil Sci
  doi: 10.1155/2013/616578
– volume: 115
  start-page: 1824
  year: 2011
  ident: 10.1016/j.geodrs.2022.e00484_bb0425
  article-title: Identification of mineral components in tropical soils using reflectance spectroscopy and advanced spaceborne thermal emission and reflection radiometer (ASTER) data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.02.023
– start-page: 173
  year: 2002
  ident: 10.1016/j.geodrs.2022.e00484_bb0040
  article-title: Quantitative remote sensing of soil properties
  doi: 10.1016/S0065-2113(02)75005-0
– volume: 70
  start-page: 27
  year: 2018
  ident: 10.1016/j.geodrs.2022.e00484_bb0520
  article-title: Digital mapping of a soil profile
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12699
– volume: 70
  start-page: 277
  year: 1990
  ident: 10.1016/j.geodrs.2022.e00484_bb0350
  article-title: Trace elements in agricultural soils of northwestern ALBERTA
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/cjss90-029
– start-page: 5
  year: 2014
  ident: 10.1016/j.geodrs.2022.e00484_bb0230
– volume: 23
  start-page: 155
  year: 2015
  ident: 10.1016/j.geodrs.2022.e00484_bb0220
  article-title: Using visible and near infrared spectroscopy to estimate carbonates and gypsum in soils in arid and subhumid regions of Isfahan
  publication-title: Iran J. Near Infrared Spectr.
  doi: 10.1255/jnirs.1157
– volume: 285
  start-page: 186
  year: 2017
  ident: 10.1016/j.geodrs.2022.e00484_bb0505
  article-title: Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.02.015
– volume: 69
  start-page: 159
  year: 2005
  ident: 10.1016/j.geodrs.2022.e00484_bb0355
  article-title: Determination of Clay and other soil properties by near infrared spectroscopy
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0159
– volume: 65
  start-page: 480
  year: 2001
  ident: 10.1016/j.geodrs.2022.e00484_bb0085
  article-title: Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2001.652480x
– volume: 213
  start-page: 57
  year: 2014
  ident: 10.1016/j.geodrs.2022.e00484_bb0160
  article-title: Mid-infrared attenuated total reflectance spectroscopy for soil carbon and particle size determination
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.07.017
– volume: 70
  start-page: 393
  year: 2006
  ident: 10.1016/j.geodrs.2022.e00484_bb0275
  article-title: Spectral reflectance methodology in comparison to traditional soil analysis
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2003.0285
– volume: 14
  year: 2019
  ident: 10.1016/j.geodrs.2022.e00484_bb0110
  article-title: Carbonate determination in soils by mid-IR spectroscopy with regional and continental scale models
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0210235
– volume: 5
  start-page: 157
  year: 2015
  ident: 10.1016/j.geodrs.2022.e00484_bb0410
  article-title: Total elemental composition of soils in sub-Saharan Africa and relationship with soil forming factors
  publication-title: Geoderma Reg
  doi: 10.1016/j.geodrs.2015.06.002
– volume: 32
  start-page: 2993
  year: 2001
  ident: 10.1016/j.geodrs.2022.e00484_bb0100
  article-title: Factors influencing spatial variability of soil apparent electrical conductivity
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1081/CSS-120001102
– volume: 32
  start-page: 1378
  year: 2006
  ident: 10.1016/j.geodrs.2022.e00484_bb0250
  article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2005.12.009
– year: 1995
  ident: 10.1016/j.geodrs.2022.e00484_bb0010
  article-title: Background concentrations of metals in soils from selected regions in the State of Washington
– start-page: 331
  year: 1989
  ident: 10.1016/j.geodrs.2022.e00484_bb0135
  article-title: Carbonate, halide, sulfate, and sulfide minerals. Carbonate, halide, sulfate, and sulfide minerals. Ch. 6
– volume: 44
  start-page: 241
  year: 1976
  ident: 10.1016/j.geodrs.2022.e00484_bb0185
  article-title: Particle size distribution in gypsic soils
  publication-title: Plant Soil
  doi: 10.1007/BF00016973
– year: 2020
  ident: 10.1016/j.geodrs.2022.e00484_bb0015
  article-title: Carbonates and organic matter in soils characterized by reflected energy from 350–25000 nm wavelength
  publication-title: J. Mt. Sci.
  doi: 10.1007/s11629-019-5789-9
– volume: 148
  start-page: 141
  year: 2008
  ident: 10.1016/j.geodrs.2022.e00484_bb0175
  article-title: Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.09.016
– start-page: 139
  year: 2015
  ident: 10.1016/j.geodrs.2022.e00484_bb0285
  article-title: Chapter four - soil spectroscopy: an alternative to wet chemistry for soil monitoring
  doi: 10.1016/bs.agron.2015.02.002
– volume: 217–218
  start-page: 190
  year: 2014
  ident: 10.1016/j.geodrs.2022.e00484_bb0115
  article-title: Spectral pedology: a new perspective on evaluation of soils along pedogenetic alterations
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.11.012
– volume: 338
  start-page: 445
  year: 2019
  ident: 10.1016/j.geodrs.2022.e00484_bb0510
  article-title: Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.09.006
– volume: 131
  start-page: 59
  year: 2006
  ident: 10.1016/j.geodrs.2022.e00484_bb0430
  article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.03.007
– volume: 167
  start-page: 110
  year: 2002
  ident: 10.1016/j.geodrs.2022.e00484_bb0080
  article-title: Near-infrared reflectance spectroscopic analysis of soil C and N
  publication-title: Soil Sci.
  doi: 10.1097/00010694-200202000-00003
– start-page: 89
  year: 1986
  ident: 10.1016/j.geodrs.2022.e00484_bb0145
  article-title: Background Values of 32 Elements in Dutch Topsoils, Determined with Non-Destructive Neutron Activation Analysis
– start-page: 286
  year: 1983
  ident: 10.1016/j.geodrs.2022.e00484_bb0495
  article-title: The multivariate calibration problem in chemistry solved by the PLS method
– volume: 153
  start-page: 92
  year: 2016
  ident: 10.1016/j.geodrs.2022.e00484_bb0330
  article-title: Evaluating the utility of mid-infrared spectral subspaces for predicting soil properties
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2016.02.013
– volume: 179
  start-page: 417
  year: 2014
  ident: 10.1016/j.geodrs.2022.e00484_bb0385
  article-title: Soil salinity measurement via portable X-ray fluorescence spectrometry
  publication-title: Soil Sci.
  doi: 10.1097/SS.0000000000000088
– volume: 178
  start-page: 626
  year: 2013
  ident: 10.1016/j.geodrs.2022.e00484_bb0460
  article-title: Prediction of soil texture using FT-NIR spectroscopy and PXRF spectrometry with data fusion
  publication-title: Soil Sci.
  doi: 10.1097/SS.0000000000000026
– volume: 139
  start-page: 220
  year: 2016
  ident: 10.1016/j.geodrs.2022.e00484_bb0375
  article-title: Utilizing portable X-ray fluorescence spectrometry for in-field investigation of pedogenesis
  publication-title: CATENA
  doi: 10.1016/j.catena.2016.01.007
– year: 1972
  ident: 10.1016/j.geodrs.2022.e00484_bb0340
  article-title: Soil survey laboratory methods and procedures for collecting soil samples
– volume: 188
  year: 2020
  ident: 10.1016/j.geodrs.2022.e00484_bb0515
  article-title: Conventional and digital soil mapping in Iran: past, present, and future
  publication-title: CATENA
  doi: 10.1016/j.catena.2019.104424
– volume: 174
  start-page: 151
  year: 2009
  ident: 10.1016/j.geodrs.2022.e00484_bb0530
  article-title: Determination of soil calcium using field portable X-ray fluorescence
  publication-title: Soil Sci.
  doi: 10.1097/SS.0b013e31819c6e1b
– year: 1982
  ident: 10.1016/j.geodrs.2022.e00484_bb0370
– volume: 62
  start-page: 849
  year: 2011
  ident: 10.1016/j.geodrs.2022.e00484_bb0380
  article-title: Sample preparation and selection for qualitative and quantitative analyses of soil organic carbon with mid-infrared reflectance spectroscopy
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2011.01401.x
– volume: 356
  start-page: 45
  year: 2006
  ident: 10.1016/j.geodrs.2022.e00484_bb0225
  article-title: Metal contamination in urban, suburban, and country park soils of Hong Kong: a study based on GIS and multivariate statistics
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2005.03.024
– volume: 67
  start-page: 173
  year: 2016
  ident: 10.1016/j.geodrs.2022.e00484_bb0485
  article-title: Simultaneous assessment of key properties of arid soil by combined PXRF and Vis–NIR data
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12320
– volume: 29
  start-page: 1073
  year: 2010
  ident: 10.1016/j.geodrs.2022.e00484_bb0035
  article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2010.05.006
– start-page: 5
  year: 1980
  ident: 10.1016/j.geodrs.2022.e00484_bb0195
  article-title: Electromagnetic radiation: The communication link in remote sensing
– start-page: 163
  year: 2010
  ident: 10.1016/j.geodrs.2022.e00484_bb0365
  article-title: Visible and Near infrared spectroscopy in soil science
  doi: 10.1016/S0065-2113(10)07005-7
– volume: 59
  start-page: 364
  year: 1995
  ident: 10.1016/j.geodrs.2022.e00484_bb0050
  article-title: Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1995.03615995005900020014x
– volume: 153
  start-page: 155
  year: 2009
  ident: 10.1016/j.geodrs.2022.e00484_bb0255
  article-title: Regional transferability of mid-infrared diffuse reflectance spectroscopic prediction for soil chemical properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.07.021
– start-page: 383
  year: 2018
  ident: 10.1016/j.geodrs.2022.e00484_bb0165
– volume: 43
  start-page: 1398
  year: 2011
  ident: 10.1016/j.geodrs.2022.e00484_bb0030
  article-title: Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils – critical review and research perspectives
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.02.019
– volume: 239–240
  start-page: 34
  year: 2015
  ident: 10.1016/j.geodrs.2022.e00484_bb0005
  article-title: Combination of proximal and remote sensing methods for rapid soil salinity quantification
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.09.011
– start-page: 353
  year: 2018
  ident: 10.1016/j.geodrs.2022.e00484_bb0090
– volume: 128
  start-page: 65
  year: 2014
  ident: 10.1016/j.geodrs.2022.e00484_bb0480
  article-title: Advances in portable X-ray fluorescence (PXRF) for environmental, pedological, and agronomic applications
  publication-title: Adv. Agron.
– start-page: 3
  year: 1971
  ident: 10.1016/j.geodrs.2022.e00484_bb0200
  article-title: Visible and near infrared spectra of minerals and rocks: IV. Sulphides and sulphates
  publication-title: Modem Gcoloqy
– volume: 74
  start-page: 229
  year: 2010
  ident: 10.1016/j.geodrs.2022.e00484_bb0450
  article-title: Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey
  publication-title: J. Arid Environ.
  doi: 10.1016/j.jaridenv.2009.08.011
– volume: 232–234
  start-page: 141
  year: 2014
  ident: 10.1016/j.geodrs.2022.e00484_bb0310
  article-title: Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH)
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.05.005
– volume: 13
  start-page: 4825
  year: 2021
  ident: 10.1016/j.geodrs.2022.e00484_bb0270
  article-title: Ground observations and environmental covariates integration for mapping of soil salinity: a machine learning-based approach
  publication-title: Remote Sens.
  doi: 10.3390/rs13234825
– volume: 24
  start-page: 1472
  year: 2009
  ident: 10.1016/j.geodrs.2022.e00484_bb0300
  article-title: The potential of mid- and near-infrared diffuse reflectance spectroscopy for determining major- and trace-element concentrations in soils from a geochemical survey of North America
  publication-title: Appl. Geochem. Geochem. Stud. North American Soils
– volume: 318
  start-page: 123
  year: 2018
  ident: 10.1016/j.geodrs.2022.e00484_bb0405
  article-title: Proximal spectral sensing in pedological assessments: Vis–NIR spectra for soil classification based on weathering and pedogenesis
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.10.053
– volume: 76
  year: 2012
  ident: 10.1016/j.geodrs.2022.e00484_bb0470
  article-title: Enhanced pedon horizonation using portable X-ray fluorescence spectrometry
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2011.0174
– volume: 95
  start-page: 12653
  year: 1990
  ident: 10.1016/j.geodrs.2022.e00484_bb0095
  article-title: High spectral resolution reflectance spectroscopy of minerals
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB095iB08p12653
– volume: 29
  start-page: 49
  year: 1991
  ident: 10.1016/j.geodrs.2022.e00484_bb0280
  article-title: Diffuse reflectance infrared fourier transform (DRIFT) spectroscopy in soil studies
  publication-title: Soil Res
  doi: 10.1071/SR9910049
SSID ssj0002953762
Score 2.403941
Snippet The aim of the current research was to examine the effectiveness of Vis-NIR-SWIR (visible, near-infrared, and shortwave infrared spectroscopy: 350–2500 nm),...
The aim of the current research was to examine the effectiveness of Vis-NIR-SWIR (visible, near-infrared, and shortwave infrared spectroscopy: 350–2500 nm),...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e00484
SubjectTerms calcium carbonate
clay
electrical conductivity
fluorescence
gypsum
infrared spectroscopy
Iran
least squares
Mid-IR and pXRF spectroscopy
PLSR, arid region
prediction
salinity
sand
silt
soil organic carbon
soil salinity
Soil spectral behavior
soil texture
Vis-NIR-SWIR
X-radiation
Title Quantification of some intrinsic soil properties using proximal sensing in arid lands: Application of Vis-NIR, MIR, and pXRF spectroscopy
URI https://dx.doi.org/10.1016/j.geodrs.2022.e00484
https://www.proquest.com/docview/2636579968
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA_qXnwRRcVvIvho3EzStPVtiGNzbOB0ureStqlUtC37AP0T_K-9S1tFQQRfWhouodxd7i7J3S-EnKjYjRPthsxALM6kn3gsBDfLtK90HEXcDy188WCoumN5PXEmS-SyroXBtMrK9pc23VrrqqVZcbNZpGnzlgsLGSQ5LwPdZdLgwleg2o12r98dfm61cB8xS7i9Zs7hDPvURXQ20-vR5PEUobs5PzOo0vI3J_XDXFsf1Fkna1XwSNvl_22QJZNtkvebhS4zfiyTaZ7QWf5iaJrNp2kGQoDP9JkWuOs-RfhUirnuj9jwmr7AcDPMYYeGNKOwcI6prf69oO2vo20c8z6dsWFvdEoH-AASWkxGHWorNRERMy_etsi4c3V32WXVBQssEp4zZwmHCR8mbqK9llEaQUEjX4fOuWeclpZxqDgElImSxmit9DmQcpl4JuYiArYbsU1WsjwzO4S6sNINBSiEEBBhtWIttZEe-EevpcDj8V0iao4GUYU-jpdgPAd1mtlTUMohQDkEpRx2CfvsVZToG3_Qu7Wwgm9aFICD-KPncS3bACYYnprozOQLIFJCOS4sC729f4--T1bxq8xdOyAr8-nCHEIwMw-PKmXFd3_00P8ASXT2lw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-wwEA66PuiLKB453iP4eOKuSZq2vi3isqvuwvFy2LeQtqlUtC17Af0J_mtn0taDggi-FJpOQpmZzEySmS-EHKnET1LjR8xCLM5kmAYsAjfLTKhMEsc8jBx88XCk-nfyYuyNF8hZUwuDaZW17a9surPWdUu75ma7zLL2DRcOMkhyXgW6i2QJ0am8FlnqDi77o_etFh4iZgl318x5nGGfpojOZXrd2yKZIHQ358cWVVp-5aQ-mWvng3prZLUOHmm3-r91smDzDfL6d26qjB_HZFqkdFo8WZrls0mWgxDgNXukJe66TxA-lWKu-z02PGdPMNwUc9ihIcspLJwT6qp_T2n3_9E2jvkvm7LR4PoPHeIDSGg5vu5RV6mJiJhF-fKL3PXOb8_6rL5ggcUi8GYs5TDho9RPTdCxyiAoaByayDsJrNcxMokUh4AyVdJaY5Q5AVIu08AmXMTAdis2SSsvcvubUB9WupEAhRACIqxOYqSxMgD_GHQUeDy-RUTDUR3X6ON4CcajbtLMHnQlB41y0JUctgh771VW6Bvf0PuNsPQHLdLgIL7pedjIVsMEw1MTk9tiDkRKKM-HZWGw_ePRD8hy_3Z4pa8Go8sdsoJfqjy2XdKaTeZ2DwKbWbRfK-4bLTH32g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+some+intrinsic+soil+properties+using+proximal+sensing+in+arid+lands%3A+Application+of+Vis-NIR%2C+MIR%2C+and+pXRF+spectroscopy&rft.jtitle=Geoderma+Regional&rft.au=Naimi%2C+Salman&rft.au=Ayoubi%2C+Shamsollah&rft.au=Di+Raimo%2C+Luis+Augusto+Di+Loreto&rft.au=Dematt%C3%AA%2C+Jos%C3%A9+Alexandre+Melo&rft.date=2022-03-01&rft.issn=2352-0094&rft.eissn=2352-0094&rft.volume=28+p.e00484-&rft_id=info:doi/10.1016%2Fj.geodrs.2022.e00484&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon