Contemporary approaches and future perspectives of antibacterial photodynamic therapy (aPDT) against methicillin-resistant Staphylococcus aureus (MRSA): A systematic review
The high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) causing skin and soft tissue infections in both the community and healthcare settings challenges the limited options of effective antibiotics and motivates the search for alternative therapeutic solutions, such as antibacteria...
Saved in:
Published in | European journal of medicinal chemistry Vol. 200; p. 112341 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Masson SAS
15.08.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0223-5234 1768-3254 1768-3254 |
DOI | 10.1016/j.ejmech.2020.112341 |
Cover
Abstract | The high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) causing skin and soft tissue infections in both the community and healthcare settings challenges the limited options of effective antibiotics and motivates the search for alternative therapeutic solutions, such as antibacterial photodynamic therapy (aPDT). While many publications have described the promising anti-bacterial activities of PDT in vitro, its applications in vivo and in the clinic have been very limited. This limited availability may in part be due to variabilities in the selected photosensitizing agents (PS), the variable testing conditions used to examine anti-bacterial activities and their effectiveness in treating MRSA infections. We thus sought to systematically review and examine the evidence from existing studies on aPDT associated with MRSA and to critically appraise its current state of development and areas to be addressed in future studies.
In 2018, we developed and registered a review protocol in the International Prospective Register of Systematic Reviews (PROSPERO) with registration No: CRD42018086736. Three bibliographical databases were consulted (PUBMED, MEDLINE, and EMBASE), and a total of 113 studies were included in this systematic review based on our eligibility criteria. Many variables, such as the use of a wide range of solvents, pre-irradiation times, irradiation times, light sources and light doses, have been used in the methods reported by researchers, which significantly affect the inter-study comparability and results. On another note, new approaches of linking immunoglobulin G (IgG), antibodies, efflux pump inhibitors, and bacteriophages with photosensitizers (PSs) and the incorporation of PSs into nano-scale delivery systems exert a direct effect on improving aPDT. Enhanced activities have also been achieved by optimizing the physicochemical properties of the PSs, such as the introduction of highly lipophilic, poly-cationic and site-specific modifications of the compounds. However, few in vivo studies (n = 17) have been conducted to translate aPDT into preclinical studies. We anticipate that further standardization of the experimental conditions and assessing the efficacy in vivo would allow this technology to be further applied in preclinical trials, so that aPDT would develop to become a sustainable, alternative therapeutic option against MRSA infection in the future.
[Display omitted]
•There are 113 studies being reported for aPDT against MRSA.•Cationic PSs are effective in aPDT against MRSA.•PSs linking with IgG, antibody, efflux pump inhibitors and bacteriophage increase the potency of aPDT against MRSA.•There are still but few in vivo aPDT studies that had been carried out against MRSA infections (n = 17). |
---|---|
AbstractList | The high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) causing skin and soft tissue infections in both the community and healthcare settings challenges the limited options of effective antibiotics and motivates the search for alternative therapeutic solutions, such as antibacterial photodynamic therapy (aPDT). While many publications have described the promising anti-bacterial activities of PDT in vitro, its applications in vivo and in the clinic have been very limited. This limited availability may in part be due to variabilities in the selected photosensitizing agents (PS), the variable testing conditions used to examine anti-bacterial activities and their effectiveness in treating MRSA infections. We thus sought to systematically review and examine the evidence from existing studies on aPDT associated with MRSA and to critically appraise its current state of development and areas to be addressed in future studies.
In 2018, we developed and registered a review protocol in the International Prospective Register of Systematic Reviews (PROSPERO) with registration No: CRD42018086736. Three bibliographical databases were consulted (PUBMED, MEDLINE, and EMBASE), and a total of 113 studies were included in this systematic review based on our eligibility criteria. Many variables, such as the use of a wide range of solvents, pre-irradiation times, irradiation times, light sources and light doses, have been used in the methods reported by researchers, which significantly affect the inter-study comparability and results. On another note, new approaches of linking immunoglobulin G (IgG), antibodies, efflux pump inhibitors, and bacteriophages with photosensitizers (PSs) and the incorporation of PSs into nano-scale delivery systems exert a direct effect on improving aPDT. Enhanced activities have also been achieved by optimizing the physicochemical properties of the PSs, such as the introduction of highly lipophilic, poly-cationic and site-specific modifications of the compounds. However, few in vivo studies (n = 17) have been conducted to translate aPDT into preclinical studies. We anticipate that further standardization of the experimental conditions and assessing the efficacy in vivo would allow this technology to be further applied in preclinical trials, so that aPDT would develop to become a sustainable, alternative therapeutic option against MRSA infection in the future.
[Display omitted]
•There are 113 studies being reported for aPDT against MRSA.•Cationic PSs are effective in aPDT against MRSA.•PSs linking with IgG, antibody, efflux pump inhibitors and bacteriophage increase the potency of aPDT against MRSA.•There are still but few in vivo aPDT studies that had been carried out against MRSA infections (n = 17). The high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) causing skin and soft tissue infections in both the community and healthcare settings challenges the limited options of effective antibiotics and motivates the search for alternative therapeutic solutions, such as antibacterial photodynamic therapy (aPDT). While many publications have described the promising anti-bacterial activities of PDT in vitro, its applications in vivo and in the clinic have been very limited. This limited availability may in part be due to variabilities in the selected photosensitizing agents (PS), the variable testing conditions used to examine anti-bacterial activities and their effectiveness in treating MRSA infections. We thus sought to systematically review and examine the evidence from existing studies on aPDT associated with MRSA and to critically appraise its current state of development and areas to be addressed in future studies. In 2018, we developed and registered a review protocol in the International Prospective Register of Systematic Reviews (PROSPERO) with registration No: CRD42018086736. Three bibliographical databases were consulted (PUBMED, MEDLINE, and EMBASE), and a total of 113 studies were included in this systematic review based on our eligibility criteria. Many variables, such as the use of a wide range of solvents, pre-irradiation times, irradiation times, light sources and light doses, have been used in the methods reported by researchers, which significantly affect the inter-study comparability and results. On another note, new approaches of linking immunoglobulin G (IgG), antibodies, efflux pump inhibitors, and bacteriophages with photosensitizers (PSs) and the incorporation of PSs into nano-scale delivery systems exert a direct effect on improving aPDT. Enhanced activities have also been achieved by optimizing the physicochemical properties of the PSs, such as the introduction of highly lipophilic, poly-cationic and site-specific modifications of the compounds. However, few in vivo studies (n = 17) have been conducted to translate aPDT into preclinical studies. We anticipate that further standardization of the experimental conditions and assessing the efficacy in vivo would allow this technology to be further applied in preclinical trials, so that aPDT would develop to become a sustainable, alternative therapeutic option against MRSA infection in the future.The high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) causing skin and soft tissue infections in both the community and healthcare settings challenges the limited options of effective antibiotics and motivates the search for alternative therapeutic solutions, such as antibacterial photodynamic therapy (aPDT). While many publications have described the promising anti-bacterial activities of PDT in vitro, its applications in vivo and in the clinic have been very limited. This limited availability may in part be due to variabilities in the selected photosensitizing agents (PS), the variable testing conditions used to examine anti-bacterial activities and their effectiveness in treating MRSA infections. We thus sought to systematically review and examine the evidence from existing studies on aPDT associated with MRSA and to critically appraise its current state of development and areas to be addressed in future studies. In 2018, we developed and registered a review protocol in the International Prospective Register of Systematic Reviews (PROSPERO) with registration No: CRD42018086736. Three bibliographical databases were consulted (PUBMED, MEDLINE, and EMBASE), and a total of 113 studies were included in this systematic review based on our eligibility criteria. Many variables, such as the use of a wide range of solvents, pre-irradiation times, irradiation times, light sources and light doses, have been used in the methods reported by researchers, which significantly affect the inter-study comparability and results. On another note, new approaches of linking immunoglobulin G (IgG), antibodies, efflux pump inhibitors, and bacteriophages with photosensitizers (PSs) and the incorporation of PSs into nano-scale delivery systems exert a direct effect on improving aPDT. Enhanced activities have also been achieved by optimizing the physicochemical properties of the PSs, such as the introduction of highly lipophilic, poly-cationic and site-specific modifications of the compounds. However, few in vivo studies (n = 17) have been conducted to translate aPDT into preclinical studies. We anticipate that further standardization of the experimental conditions and assessing the efficacy in vivo would allow this technology to be further applied in preclinical trials, so that aPDT would develop to become a sustainable, alternative therapeutic option against MRSA infection in the future. |
ArticleNumber | 112341 |
Author | Fung, Kwok Pui Dharmaratne, Priyanga Wang, Baiyan IP, Margaret Chan, Chung Lap Sapugahawatte, Dulmini Nanayakkara Ng, Dennis KP Lau, Kit-Man Lau, Clara BS |
Author_xml | – sequence: 1 givenname: Priyanga surname: Dharmaratne fullname: Dharmaratne, Priyanga email: priyanga@cuhk.edu.hk organization: School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China – sequence: 2 givenname: Dulmini Nanayakkara surname: Sapugahawatte fullname: Sapugahawatte, Dulmini Nanayakkara email: dulmini87@hotmail.com organization: Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China – sequence: 3 givenname: Baiyan surname: Wang fullname: Wang, Baiyan email: tinawang@cuhk.edu.hk organization: School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China – sequence: 4 givenname: Chung Lap surname: Chan fullname: Chan, Chung Lap email: benchan99@cuhk.edu.hk organization: Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, China – sequence: 5 givenname: Kit-Man surname: Lau fullname: Lau, Kit-Man email: virginialau@cuhk.edu.hk organization: Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, China – sequence: 6 givenname: Clara BS surname: Lau fullname: Lau, Clara BS email: claralau@cuhk.edu.hk organization: Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, China – sequence: 7 givenname: Kwok Pui surname: Fung fullname: Fung, Kwok Pui email: dkpn@cuhk.edu.hk organization: School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China – sequence: 8 givenname: Dennis KP surname: Ng fullname: Ng, Dennis KP organization: Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Hong Kong (SAR), China – sequence: 9 givenname: Margaret surname: IP fullname: IP, Margaret email: margaretip@cuhk.edu.hk organization: Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China |
BookMark | eNqFkU1v1DAQhiNUJLaFf8DBx-0hiz_i7KYHpNXyKRWBaDlbk8mEeJXEwXaK8p_4kbgKJw5wGmlm3nfs97nMLkY3Upa9FHwnuChfnXd0Hgi7neQytYRUhXiSbcS-PORK6uIi23ApVa7T4Fl2GcKZc65LzjfZr5MbIw2T8-AXBtPkHWBHgcHYsHaOsyc2kQ8TYbQPqe_aNIq2BozkLfRs6lx0zTLCYJHFjjxMC9vClzf31wy-gx1DZAPFzqLtezvmnoINMXmwuwhTt_QOHeKcLqZbqWw_fb07Xt-wIwtLSE-DmHw9PVj6-Tx72kIf6MWfepV9e_f2_vQhv_38_uPpeJujOuiYU1vSQexR6IaqWu9F25QcJQgphaoqoRpeqVZUZUOA9UHW4lAXrULVgtYcUF1l29U3pfFjphDNYANS38NIbg5GFoLvhdaVTqvFuoreheCpNZO3Q8rSCG4e4ZizWeGYRzhmhZNkN3_J0Mb00wTDg-3_J369iillkHLxJqClEamxPmEyjbP_NvgNFjizrw |
CitedBy_id | crossref_primary_10_71267_mencom_7573 crossref_primary_10_1080_10717544_2022_2058650 crossref_primary_10_1016_j_jphotochem_2024_115700 crossref_primary_10_1016_j_tifs_2021_01_012 crossref_primary_10_1016_j_jphotobiol_2024_112860 crossref_primary_10_1016_j_molstruc_2021_130674 crossref_primary_10_1039_D1NJ00150G crossref_primary_10_1002_pat_6155 crossref_primary_10_1016_j_cej_2024_158345 crossref_primary_10_1002_adma_202205653 crossref_primary_10_3390_ijms25115751 crossref_primary_10_1039_D1RA03417K crossref_primary_10_1002_adtp_202000204 crossref_primary_10_1515_nanoph_2021_0254 crossref_primary_10_1016_j_pdpdt_2024_104075 crossref_primary_10_1016_j_ultramic_2021_113388 crossref_primary_10_2174_0118715265264388231128045954 crossref_primary_10_1016_j_molstruc_2021_132007 crossref_primary_10_1016_j_dyepig_2022_110806 crossref_primary_10_1039_D4CC01022A crossref_primary_10_1021_acs_bioconjchem_2c00067 crossref_primary_10_1021_acs_biomac_4c01162 crossref_primary_10_1002_cptc_202300028 crossref_primary_10_1016_j_drudis_2023_103493 crossref_primary_10_3390_molecules29225336 crossref_primary_10_1021_acsami_1c10031 crossref_primary_10_3390_pharmaceutics13091399 crossref_primary_10_1007_s10593_023_03257_0 crossref_primary_10_1039_D0ME00150C crossref_primary_10_1002_ardp_202000223 crossref_primary_10_1016_j_ejmech_2024_116703 crossref_primary_10_1051_bioconf_20248302001 crossref_primary_10_1038_s41598_023_38812_4 crossref_primary_10_3390_ijms22010234 crossref_primary_10_1007_s11172_024_4343_2 crossref_primary_10_1007_s43630_021_00102_1 crossref_primary_10_1016_j_jphotochem_2022_113789 crossref_primary_10_1021_acsami_3c09516 crossref_primary_10_1080_22221751_2020_1790305 crossref_primary_10_1002_jobm_202300579 crossref_primary_10_1021_acsami_1c10600 crossref_primary_10_3389_fmed_2021_673408 crossref_primary_10_3390_ma14040787 crossref_primary_10_1371_journal_pone_0245350 crossref_primary_10_1002_adhm_202302490 crossref_primary_10_1080_08927014_2022_2103804 crossref_primary_10_3390_ijms242115970 crossref_primary_10_1007_s43630_022_00194_3 crossref_primary_10_3390_fishes9030099 crossref_primary_10_1186_s12866_023_03018_1 crossref_primary_10_1016_j_dyepig_2021_109557 crossref_primary_10_3390_microorganisms11051143 crossref_primary_10_1021_acsabm_4c00659 crossref_primary_10_1111_phpp_12978 crossref_primary_10_3390_toxins13110804 crossref_primary_10_1021_acsnano_4c15730 crossref_primary_10_1051_bioconf_202410803012 crossref_primary_10_1007_s10103_022_03505_3 crossref_primary_10_1016_j_micpath_2020_104528 crossref_primary_10_3390_molecules26175312 crossref_primary_10_1142_S1088424622500316 crossref_primary_10_1021_acsabm_0c01341 crossref_primary_10_1016_j_nantod_2023_101892 crossref_primary_10_1186_s12951_024_02637_8 crossref_primary_10_3390_molecules27093024 crossref_primary_10_1016_j_procbio_2024_07_024 crossref_primary_10_1073_pnas_2208378119 |
Cites_doi | 10.3390/molecules200610604 10.1111/j.1600-0765.2008.01187.x 10.1007/s10096-013-1987-5 10.1111/php.12040 10.1016/j.bmc.2007.04.069 10.1111/aos.13409 10.18388/abp.2007_3240 10.1089/pho.2008.2319 10.1016/j.pdpdt.2011.11.004 10.1016/j.ejmech.2017.09.072 10.1007/s10103-013-1354-x 10.1021/jm1009555 10.1089/pho.2013.3663 10.1002/lsm.21103 10.1111/j.1751-1097.2010.00772.x 10.1007/s10103-017-2247-1 10.1016/j.jphotobiol.2009.06.010 10.1002/asia.201402025 10.1016/j.ajo.2016.03.014 10.1016/j.jconrel.2006.03.009 10.1111/j.1524-4725.2005.31924 10.1016/j.jphotobiol.2013.09.006 10.1007/s101030200027 10.1016/j.ijpharm.2013.06.067 10.1021/j100223a022 10.1016/j.ejmech.2014.12.029 10.1142/S1793545808000169 10.1039/B9PP00154A 10.1007/s10295-012-1103-3 10.1111/j.1574-6968.1998.tb12908.x 10.1063/1.1671818 10.18388/abp.2008_3204 10.1016/j.pdpdt.2016.04.009 10.2147/IJN.S71365 10.1089/clm.1994.12.133 10.1167/iovs.07-1592 10.1093/jac/dkp157 10.1371/journal.pone.0111792 10.1088/0957-4484/21/6/065102 10.1002/lsm.20887 10.1016/0006-291X(68)90118-6 10.1007/BF00414437 10.1007/s10103-013-1488-x 10.1093/jnci/90.12.889 10.1021/acsami.6b02132 10.1016/0959-8049(93)90105-O 10.1021/jp208520v 10.1111/j.1751-1097.2012.01085.x 10.1002/lsm.22785 10.1016/j.jep.2010.07.034 10.1016/S0733-8635(18)30277-8 10.1016/j.amjmed.2006.01.004 10.1007/s10103-015-1859-6 10.1016/j.pdpdt.2017.12.011 10.1186/2046-4053-4-1 10.1038/nrc1894 10.4155/fmc.13.211 10.1016/j.pdpdt.2012.04.002 10.1016/j.pdpdt.2017.06.012 10.1016/S1052-5157(18)30112-0 10.1111/j.1365-2133.2011.10232.x 10.1186/1471-2180-9-27 10.1016/j.jphotobiol.2017.10.036 10.1007/s10156-006-0501-8 10.1039/b614770d 10.3390/ma6030817 10.2307/30141013 10.1039/b200977c 10.1128/JCM.27.6.1372-1374.1989 10.1002/lsm.1900160309 10.1371/journal.pone.0108500 10.1016/j.ijpharm.2017.02.004 10.1016/j.pdpdt.2013.07.001 10.1055/s-0029-1243083 10.1017/S0007114509993667 10.1039/f19837901335 10.1002/chem.201504935 10.1016/j.jphotobiol.2017.07.009 10.1002/lsm.20754 10.1136/bmj.1.5219.124-a 10.1093/jac/40.6.873 10.1055/s-2004-827153 10.5946/ce.2013.46.1.24 10.1021/jp073113e 10.1006/phrs.2001.0855 10.1089/pho.2010.2854 10.1016/j.jddst.2016.12.007 10.1002/lsm.1900090308 10.1021/acsinfecdis.7b00004 10.1002/alr.21134 10.1016/j.jconrel.2011.06.034 10.1016/0005-2787(65)90182-6 10.1016/S1011-1344(96)07453-2 10.1016/j.ejmech.2014.07.022 10.1111/j.1751-1097.1996.tb03093.x 10.1016/j.jphotobiol.2016.10.016 10.1002/lsm.1105 10.1016/j.jprot.2012.09.007 10.1021/acsinfecdis.7b00095 10.1016/j.jmii.2014.12.007 10.1039/c2pp25105a 10.1001/jama.279.8.593 10.1016/0195-6701(95)90327-5 10.1111/j.1751-1097.2012.01117.x 10.1371/journal.pone.0039823 10.1016/j.ejmech.2019.04.057 10.3201/eid0902.020233 10.1039/c1pp05100h 10.1007/s10103-014-1681-6 10.1111/j.1751-1097.1993.tb04990.x 10.2217/fmb.14.114 10.3389/fmicb.2016.00267 10.1186/1471-2180-10-323 10.1128/AAC.00550-10 10.1039/B206554A 10.1007/s10103-010-0803-z 10.1039/C6NR07188K 10.1016/j.freeradbiomed.2014.10.514 10.1002/lsm.21037 10.1016/j.biocel.2007.02.001 10.1039/9781847551658-00001 10.1016/j.micpath.2015.11.012 10.1371/journal.pone.0011674 10.1021/ja00049a034 10.1016/j.pdpdt.2011.09.004 10.1039/b502125a 10.1002/lsm.10145 10.1021/acsinfecdis.8b00125 10.1089/1076629041310000 10.1016/j.jphotobiol.2016.07.007 10.1179/joc.2002.14.5.431 10.18388/abp.2008_3064 10.1016/j.jphotobiol.2013.10.006 10.1128/AEM.02945-05 10.1007/s10096-011-1314-y 10.1021/jm100585j 10.1111/ceo.12723 10.1007/s10103-012-1064-9 10.1021/bm900533r 10.1089/104454902753759690 10.1039/C7PP00389G 10.1002/anie.201507140 10.1039/c3pp50282a 10.1128/AAC.00988-07 10.1111/j.1751-1097.2011.01005.x 10.1007/s10103-017-2394-4 10.1021/jm040802v 10.1128/AAC.00467-17 10.1016/j.pdpdt.2013.02.004 10.1039/C8PP00127H 10.3390/ijms161125999 10.2217/nnm.14.131 10.3390/ijms16047851 10.1002/jbio.201200121 10.1166/jnn.2008.18137 10.1128/AAC.49.9.3690-3696.2005 10.1089/pho.2009.2622 10.2174/1568011023354137 10.1111/j.1574-6968.2009.01555.x 10.1039/C8NR01967C 10.1093/jac/dkf209 10.1016/j.jaad.2010.02.039 10.1007/978-1-60761-697-9_13 10.1016/j.dsi.2017.08.003 10.1016/j.jphotobiol.2007.11.002 10.1128/AAC.49.4.1542-1552.2005 10.1039/c0pp00147c |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier Masson SAS.. All rights reserved. |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Masson SAS.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION 7X8 |
DOI | 10.1016/j.ejmech.2020.112341 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1768-3254 |
ExternalDocumentID | 10_1016_j_ejmech_2020_112341 S0223523420303111 |
GroupedDBID | --- --K --M .~1 0R~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATCM AAXUO ABFRF ABGSF ABJNI ABMAC ABOCM ABUDA ABYKQ ABZDS ACDAQ ACGFO ACIUM ACRLP ADBBV ADECG ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV AJSZI ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA J1W KOM M2Y M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SES SPC SPCBC SSK SSP SSU SSZ T5K ~G- 1B1 29G 53G AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMS HMT HVGLF HZ~ IHE R2- RIG SCB SEW SOC SPT SSH WUQ 7X8 EFKBS |
ID | FETCH-LOGICAL-c385t-ef6e817c15de9b571fd60c2a122139913d093f196deacb82b18b4f3c3fa550ac3 |
IEDL.DBID | AIKHN |
ISSN | 0223-5234 1768-3254 |
IngestDate | Fri Sep 05 08:02:35 EDT 2025 Thu Apr 24 23:06:31 EDT 2025 Tue Jul 01 03:42:00 EDT 2025 Fri Feb 23 02:47:10 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Antibacterial photodynamic therapy (aPDT) Methicillin-resistant Staphylococcus aureus (MRSA) Photosensitizers |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-ef6e817c15de9b571fd60c2a122139913d093f196deacb82b18b4f3c3fa550ac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0223523420303111 |
PQID | 2410715595 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2410715595 crossref_primary_10_1016_j_ejmech_2020_112341 crossref_citationtrail_10_1016_j_ejmech_2020_112341 elsevier_sciencedirect_doi_10_1016_j_ejmech_2020_112341 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-15 |
PublicationDateYYYYMMDD | 2020-08-15 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | European journal of medicinal chemistry |
PublicationYear | 2020 |
Publisher | Elsevier Masson SAS |
Publisher_xml | – name: Elsevier Masson SAS |
References | Mantareva, Kussovski, Angelov, Borisova, Avramov, Schnurpfeil (bib92) 2007; 15 Sobotta, Skupin-Mrugalska, Piskorz, Mielcarek (bib6) 2019; 175 Xavier, David, Rubén, Dai, Agut, Hamblin (bib176) 2010; 53 Grinholc, Rapacka-Zdonczyk, Rybak, Szabados, Bielawski (bib28) 2014; 32 Tsugita, Okada, Uchara (bib152) 1965; 103 Hudson, Sou, Berger, Mcmillin (bib74) 1992; 114 Kobayashi, Koyama, Nakazato, Miyoshi, Wolff, Daikuzono (bib168) 1994; 12 Fekrazad, Zare, Sepahvand, Morsali (bib118) 2014; 5 Briggs, Blunn, Hislop, Ramalhete, Bagley, Mckenna (bib135) 2017; 33 Dougherty (bib1) 1993; 58 Tanaka, Mroz, Dai, Huang, Morimoto, Kinoshita (bib121) 2012; 7 Tseng, Hung, Chen, Lin, Jiang, Chiu (bib139) 2017; 50 Ma, Wang, Zang, Jiang, Zhang, Bi (bib80) 2019; 18 Tanaka, Kinoshita, Yoshihara, Shinomiya, Seki, Nemoto (bib127) 2011; 88 Szpakowska, Lasocki, Grzybowski, Graczyk (bib33) 2001; 44 Rook, Wood, Duvic, Vonderheid, Tobia, Cabana (bib157) 2010; 63 Yin, Wang, Huang, Landi, Vecchio, Chiang (bib172) 2015; 79 Gurtovenko, Anwar (bib51) 2007; 111 Hope, Packer, Wilson, Nair (bib116) 2009; 64 Hanawa, Fokialakis, Skaltsounis (bib167) 2004; 70 Dougherty, Gomer, Henderson, Jori, Kessel, Korbelik (bib9) 1998; 90 Biel (bib123) 2010 Jang, Nakagishi, Nishiyama, Kawauchi, Morimoto, Kikuchi (bib35) 2006; 113 Bamfield (bib4) 2007 Yang, Gitter, Rüger, Wieland, Chen, Liu (bib69) 2011; 10 Zhang, Huang, Wang, Chen, Liu, Hu (bib108) 2018; 10 Iluz, Maor, Keller, Malik (bib76) 2018; 50 Ochsner (bib12) 1997; 47 Riley, Rouse (bib16) 1995; 29 Lightdale (bib8) 2000; 10 Maisch, Bosl, Szeimies, Lehn, Abels (bib62) 2005; 49 Rossetti, Lopes, Carollo, Thomazini, Tedesco, Bentley (bib93) 2011; 155 Epstein, Sanderson, Mc Donald (bib145) 2010; 103 Liu, Hu, Ma, Lei, Xu (bib41) 2015; 31 Fontana, Abernethy, Som, Ruggiero, Doucette, Marcantonio (bib124) 2009; 44 Kossakowska, Nakonieczna, Kawiak, Kurlenda, Bielawski, Grinholc (bib52) 2013; 10 Ferro, Jori, Sortino, Stancanelli, Nikolov, Tognon (bib81) 2009; 10 Morales-De-Echegaray, Maltais, Lin, Younis, Kadasala, Seleem (bib47) 2018; 4 Embleton, Nair, Cookson, Wilson (bib114) 2004; 10 Pushpan, Venkatraman, Anand, Sankar, Parmeswaran, Ganesan (bib10) 2002; 2 Grinholc, Nakonieczna, Negri, Rapacka-Zdonczyk, Motyka, Fila (bib29) 2013; 129 Valle-Molinares, Romero, Quigua, Vallejo, Diaz, Arboleda (bib110) 2015; 2 Darabpour, Kashef, Amini, Kharrazi, Djavid (bib133) 2017; 37 Griffiths (bib90) 1997; 40 Boyle, Dolphin (bib34) 1996; 64 Skwor, Klemm, Zhang, Schardt, Blaszczyk, Bork (bib72) 2016; 165 Wong, Cheng, Hsieh, Liang (bib166) 2017; 173 Hoorijani, Rostami, Pourhajibagher, Chiniforush, Heidari, Pourakbari (bib140) 2017; 19 Embleton (bib112) 2002; 50 Gutierrez, Zanatta, Ortega, Balastegui, Sanitá, Pavarina (bib151) 2017; 12 Primo, Bentley, Tedesco (bib94) 2008; 8 López-Chicón, Paz-Cristobal, Rezusta, Aspiroz, Royo-Cañas, Andres-Ciriano (bib158) 2012; 11 Dosselli, Millioni, Puricelli, Tessari, Arrigoni, Franchin (bib85) 2012; 77 Grinholc, Zawacka-Pankau, Gwizdek-Wiśniewska, Bielawski (bib43) 2010; 86 Huang, Szewczyk, Sarna, Hamblin (bib68) 2017; 3 Mantareva, Angelov, Kussovski, Wöhrle, Dimitrov (bib105) 2009; 62 Tsai, Chien, Wang, Huang, Ker, Chen (bib38) 2011; 55 Ormond, Freeman (bib11) 2013; 6 El-Khordagui, El-Sayed, Galal, El-Gowelli, Omar, Mohamed (bib134) 2017; 520 Lambrechts, Demidova, Aalders, Hasan, Hamblin (bib53) 2005; 4 Wainwright, Crossley (bib21) 2002; 14 Saddiqe, Naeem, Maimoona (bib155) 2010; 131 Yow, Tang, Chu, Huang (bib159) 2012; 88 Nafee, Youssef, El-Gowelli, Asem, Kandil (bib160) 2013; 454 Strausbaugh, Crossley, Nurse, Thrupp (bib18) 1996; 17 Yow, Fung, Wong (bib142) 2011; 17 Kussovski, Mantareva, Angelov, Orozova, Wã¶Hrle, Schnurpfeil (bib104) 2009; 294 Zhang, Dai, Wang, Vecchio, Chiang, Hamblin (bib173) 2015; 10 Eaton, Charney (bib73) 1969; 51 Maisch, Spannberger, Regensburger, Felgenträger, Bäumler (bib59) 2012; 39 Biel, Sievert, Usacheva, Teichert, Wedell, Loebel (bib130) 2011; 43 Brancaleon, Moseley (bib55) 2002; 17 Frimannsson, Grossi, Murtagh, Paradisi, O’Shea (bib174) 2010; 53 Ribeiro, Pavarina, Dovigo, Brunetti, Bagnato, Vergani (bib147) 2012; 28 Tomé, Maria, Neves, Tomé, Cavaleiro, Soncin, Magaraggia (bib84) 2004; 47 Donnelly, Cassidy, Loughlin, Brown, Tunney, Jenkins (bib86) 2009; 96 Roy, Shetty, Hota, Baek, Kim, Kim (bib109) 2015; 54 (bib31) 2013 Fournier, Boutonnier, Bouvet (bib45) 1989; 27 Mccoy, O’Neil, Cowley, Carson, Baróid, Gdowski (bib60) 2014; 9 Zhao, Li, Meng, Li, Wang, Liu (bib101) 2013; 29 Ghajar, Harmon (bib50) 1968; 32 Wilson, Pratten (bib113) 1995; 16 Topaloglu, Güney, Yuksel, Gülsoy (bib181) 2015; 20 Dimaano, Rozario, Nerandzic, Donskey, Lam, Baron (bib106) 2015; 16 Maisch, Eichner, Späth, Gollmer, König, Regensburger (bib164) 2014; 9 Lui, Anderson (bib3) 1993; 11 Sharma, Visai, Bragheri, Cristiani, Gupta, Speziale (bib137) 2007; 52 Nishiwaki, Nakamura, Sakaguchi (bib169) 1989; 9 Jevons (bib14) 1961; 1 Ribeiro, Andrade, Bagnato, Vergani, Primo, Tedesco (bib91) 2013; 30 Dahl, Mc Gowan, Shand, Srinivasan (bib146) 1989; 151 Bartolomeu, Rocha, Cunha, Neves, Faustino, Almeida (bib24) 2016; 7 Schastak, Ziganshyna, Gitter, Wiedemann, Claudepierre (bib64) 2010; 5 Bugaj (bib156) 2011; 10 Fickweiler, Szeimies, Bäumler, Steinbach, Karrer, Goetz (bib180) 1997; 38 Nakonieczna, Grinholc (bib79) 2012; 9 Lauro, Pretto, Covolo, Jori, Bertoloni (bib26) 2002; 1 Spaeth, Graeler, Maisch, Plaetzer (bib32) 2018; 159 Ruiz-González, Agut, Reddi, Nonell (bib177) 2015; 16 Grinholc, Szramka, Kurlenda, Graczyk, Bielawski (bib44) 2008; 90 Burda, Fields, Gill, Burt, Shepherd, Zhang (bib75) 2011; 31 Paoli, Marles-Wright, Smith (bib46) 2002; 21 Kalyanasundaram, Neumann-Spallart (bib71) 1982; 86 Shamban (bib58) 2009; 25 Berg (bib96) 1996 J. Moan, Q. Peng, An outline of the history of PDT, Photodynamic Therapy. (n.d.) 1–18. doi:10.1039/9781847551658-00001. Tsai, Yang, Wang, Chien, Chen (bib36) 2009; 41 Halili, Arboleda, Durkee, Taneja, Miller, Alawa (bib165) 2016; 166 Raulin, Greve, Grema (bib57) 2003; 32 Huang, Wang, Huang, El-Hussein, Wolf, Chiang (bib120) 2018; 17 Tanaka, Mroz, Dai, Huang, Morimoto, Kinoshita (bib125) 2013; 89 Zolfaghari, Packer, Singer, Nair, Bennett, Street (bib129) 2009; 9 Wen, Zhang, Szewczyk, El-Hussein, Huang, Sarna (bib179) 2017; 61 García, Ballesta, Gilaberte, Rezusta, Pascual (bib161) 2015; 10 Harriman, Porter, Walters (bib70) 1983; 79 Taslı, Akbıyık, Topaloğlu, Alptüzün, Parlar (bib83) 2018; 56 Latief, Chikama, Shibasaki, Sasaki, Ko, Kiuchi (bib88) 2014; 30 Soncin, Fabris, Busetti, Dei, Nistri, Roncucci (bib95) 2002; 1 Allison, Moghissi (bib37) 2013; 46 Embleton, Nair, Heywood, Menon, Cookson, Wilson (bib115) 2005; 49 Darabpour, Kashef, Mashayekhan (bib132) 2016; 14 Herold (bib15) 1998; 279 Biel, Pedigo, Gibbs, Loebel (bib131) 2013; 3 Dastgheyb, Eckmann, Composto, Hickok (bib61) 2013; 129 Lipson, Baldes, Olsen (bib7) 1961 Makdoumi, Bäckman (bib153) 2016; 44 Simonetti, Cirioni, Orlando, Alongi, Lucarini, Silvestri (bib99) 2011; 164 Yamamoto, Iriuchishima, Aizawa, Okano, Goto, Nagai (bib170) 2009; 27 Tang, Yow, Hamblin (bib136) 2007; 13 Usacheva, Teichert, Biel (bib20) 2001; 29 Almeida, Pereira, Rodrigues, Leal, Marques, Rosa (bib148) 2017; 32 Castano, Mroz, Hamblin (bib126) 2006; 6 Makdoumi, Goodrich, Bäckman (bib154) 2017; 95 Grinholc, Szramka, Olender, Graczyk (bib77) 2007; 54 Kashef, Abadi, Djavid (bib141) 2012; 9 Alves, Faustino, Neves, Cunha, Tome, Almeida (bib30) 2014; 6 Maisch, Bosl, Szeimies, Love, Abels (bib63) 2007; 6 Ke, Eastel, Ngai, Cheung, Chan, Hui (bib98) 2014; 9 Magaraggia, Jori, Soncin, Schofield, Russell (bib87) 2013; 12 Li, Lin, Lin, Xie (bib39) 2008 Vecchio, Dai, Huang, Fantetti, Roncucci, Hamblin (bib100) 2012; 6 Fu, Fang, Yao (bib5) 2013 Nakonieczna, Michta, Rybicka, Grinholc, Gwizdek-Wiśniewska, Bielawski (bib48) 2010; 10 Rineh, Dolla, Ball, Magana, Bremner, Hamblin (bib128) 2017; 3 Martins, Combs, Noguera, Camacho, Wittmann, Walther (bib163) 2008; 49 Rapacka-Zdonczyk, Larsen, Empel, Patel, Grinholc (bib49) 2013; 33 Carpenter, Feese, Sadeghifar, Argyropoulos, Ghiladi (bib89) 2012; 88 Galstyan, Kauscher, Block, Ravoo, Strassert (bib107) 2016; 8 Wong, Wu, Ko, Lee, Hor, Huang (bib182) 2018; 36 Dai, Tegos, Zhiyentayev, Mylonakis, Hamblin (bib23) 2010; 42 Mantareva, Kussovski, Angelov, Wöhrle, Dimitrov, Popova (bib103) 2011; 10 Araújo, Rodrigues, Santos, Oliveira, Rosa, Bagnato (bib149) 2018; 21 Meng, Xu, Hong, Zhao, Zhao, Guo (bib82) 2015; 92 Renwick, Simpkin, Mossialos (bib13) 2016; 45 Carpenter, Situ, Scholle, Bartelmess, Weare, Ghiladi (bib175) 2015; 20 Crum, Lee, Thornton, Stine, Wallace, Barrozo (bib19) 2006; 119 Liu, Qin, Zaat, Breukink, Heger (bib22) 2015 Moher, Shamseer, Clarke, Ghersi, Liberati, Petticrew (bib27) 2015; 4 Street, Pedigo, Loebel (bib122) 2010; 28 Grinholc, Kawiak, Kurlenda, Graczyk, Bielawski (bib42) 2008; 55 Tanaka, Kinoshita, Yoshihara, Shinomiya, Seki, Nemoto (bib67) 2011; 43 Ye, Li, Fang (bib150) 2014 Ferro, Ricchelli, Monti, Mancini, Jori (bib65) 2007; 39 Ke, Eastel, Ngai, Cheung, Chan, Hui (bib97) 2014; 84 Guo, Rogelj, Zhang (bib178) 2010; 21 Pu, Chen, Yu (bib40) 2012; 9 Winkler, Simon, Finke, Bleses, Birke, Szentmáry (bib119) 2016; 162 Jurczak, Szramka, Grinholc, Legendziewicz, Bielawski (bib54) 2008; 55 Galstyan, Block, Niemann, Grüner, Abbruzzetti, Oneto (bib111) 2016; 22 Wang, He, Li, Su (bib171) 2011; 116 Arenas, Monro, Shi, Mandel, Mcfarland, Lilge (bib183) 2013; 10 Li, Cui, Yin, Zhu, Ma, Qian (bib102) 2017; 9 Kotilainen, Routamaa, Peltonen, Oksi, Rintala, Meurman (bib17) 2003; 9 Decraene, Pratten, Wilson (bib143) 2006; 72 Grinholc, Richter, Nakonieczna, Fila, Bielawski (bib78) 2011; 29 Wainwright (bib144) 1998; 160 Abouelfetouh, Nafee, Moussa (bib162) 2016; 91 Khan, Dougherty, Mang (bib2) 1993; 29 Dai, Tegos, Zhiyentayev, Mylonakis, Hamblin (bib117) 2010; 42 Hajim, Salih, Rassam (bib138) 2010; 25 Goldman, Weiss, Weiss (bib56) 2006; 31 Huang, El-Hussein, Xuan, Hamblin (bib66) 2018; 178 Shamban (10.1016/j.ejmech.2020.112341_bib58) 2009; 25 Dosselli (10.1016/j.ejmech.2020.112341_bib85) 2012; 77 Khan (10.1016/j.ejmech.2020.112341_bib2) 1993; 29 Kussovski (10.1016/j.ejmech.2020.112341_bib104) 2009; 294 Fickweiler (10.1016/j.ejmech.2020.112341_bib180) 1997; 38 Castano (10.1016/j.ejmech.2020.112341_bib126) 2006; 6 Bartolomeu (10.1016/j.ejmech.2020.112341_bib24) 2016; 7 Ke (10.1016/j.ejmech.2020.112341_bib97) 2014; 84 Pushpan (10.1016/j.ejmech.2020.112341_bib10) 2002; 2 Embleton (10.1016/j.ejmech.2020.112341_bib112) 2002; 50 Nakonieczna (10.1016/j.ejmech.2020.112341_bib79) 2012; 9 García (10.1016/j.ejmech.2020.112341_bib161) 2015; 10 Kashef (10.1016/j.ejmech.2020.112341_bib141) 2012; 9 Hanawa (10.1016/j.ejmech.2020.112341_bib167) 2004; 70 Sobotta (10.1016/j.ejmech.2020.112341_bib6) 2019; 175 Grinholc (10.1016/j.ejmech.2020.112341_bib78) 2011; 29 Rineh (10.1016/j.ejmech.2020.112341_bib128) 2017; 3 Soncin (10.1016/j.ejmech.2020.112341_bib95) 2002; 1 Grinholc (10.1016/j.ejmech.2020.112341_bib43) 2010; 86 Ormond (10.1016/j.ejmech.2020.112341_bib11) 2013; 6 Tanaka (10.1016/j.ejmech.2020.112341_bib121) 2012; 7 Harriman (10.1016/j.ejmech.2020.112341_bib70) 1983; 79 Simonetti (10.1016/j.ejmech.2020.112341_bib99) 2011; 164 Araújo (10.1016/j.ejmech.2020.112341_bib149) 2018; 21 Dastgheyb (10.1016/j.ejmech.2020.112341_bib61) 2013; 129 Huang (10.1016/j.ejmech.2020.112341_bib68) 2017; 3 Sharma (10.1016/j.ejmech.2020.112341_bib137) 2007; 52 Lauro (10.1016/j.ejmech.2020.112341_bib26) 2002; 1 Grinholc (10.1016/j.ejmech.2020.112341_bib28) 2014; 32 Griffiths (10.1016/j.ejmech.2020.112341_bib90) 1997; 40 Allison (10.1016/j.ejmech.2020.112341_bib37) 2013; 46 Briggs (10.1016/j.ejmech.2020.112341_bib135) 2017; 33 Roy (10.1016/j.ejmech.2020.112341_bib109) 2015; 54 Bamfield (10.1016/j.ejmech.2020.112341_bib4) 2007 (10.1016/j.ejmech.2020.112341_bib31) 2013 Darabpour (10.1016/j.ejmech.2020.112341_bib133) 2017; 37 Dougherty (10.1016/j.ejmech.2020.112341_bib1) 1993; 58 Tsai (10.1016/j.ejmech.2020.112341_bib38) 2011; 55 Carpenter (10.1016/j.ejmech.2020.112341_bib175) 2015; 20 Wainwright (10.1016/j.ejmech.2020.112341_bib21) 2002; 14 Halili (10.1016/j.ejmech.2020.112341_bib165) 2016; 166 Valle-Molinares (10.1016/j.ejmech.2020.112341_bib110) 2015; 2 Ye (10.1016/j.ejmech.2020.112341_bib150) 2014 Rossetti (10.1016/j.ejmech.2020.112341_bib93) 2011; 155 Saddiqe (10.1016/j.ejmech.2020.112341_bib155) 2010; 131 Almeida (10.1016/j.ejmech.2020.112341_bib148) 2017; 32 Ma (10.1016/j.ejmech.2020.112341_bib80) 2019; 18 Pu (10.1016/j.ejmech.2020.112341_bib40) 2012; 9 Tanaka (10.1016/j.ejmech.2020.112341_bib67) 2011; 43 Zolfaghari (10.1016/j.ejmech.2020.112341_bib129) 2009; 9 Biel (10.1016/j.ejmech.2020.112341_bib131) 2013; 3 Taslı (10.1016/j.ejmech.2020.112341_bib83) 2018; 56 Mccoy (10.1016/j.ejmech.2020.112341_bib60) 2014; 9 Ferro (10.1016/j.ejmech.2020.112341_bib81) 2009; 10 Eaton (10.1016/j.ejmech.2020.112341_bib73) 1969; 51 Berg (10.1016/j.ejmech.2020.112341_bib96) 1996 Magaraggia (10.1016/j.ejmech.2020.112341_bib87) 2013; 12 Vecchio (10.1016/j.ejmech.2020.112341_bib100) 2012; 6 Biel (10.1016/j.ejmech.2020.112341_bib130) 2011; 43 Wen (10.1016/j.ejmech.2020.112341_bib179) 2017; 61 Renwick (10.1016/j.ejmech.2020.112341_bib13) 2016; 45 Grinholc (10.1016/j.ejmech.2020.112341_bib77) 2007; 54 Yang (10.1016/j.ejmech.2020.112341_bib69) 2011; 10 Dai (10.1016/j.ejmech.2020.112341_bib23) 2010; 42 Fontana (10.1016/j.ejmech.2020.112341_bib124) 2009; 44 Kotilainen (10.1016/j.ejmech.2020.112341_bib17) 2003; 9 Alves (10.1016/j.ejmech.2020.112341_bib30) 2014; 6 Zhang (10.1016/j.ejmech.2020.112341_bib173) 2015; 10 Bugaj (10.1016/j.ejmech.2020.112341_bib156) 2011; 10 Tanaka (10.1016/j.ejmech.2020.112341_bib125) 2013; 89 10.1016/j.ejmech.2020.112341_bib25 Donnelly (10.1016/j.ejmech.2020.112341_bib86) 2009; 96 Maisch (10.1016/j.ejmech.2020.112341_bib164) 2014; 9 Arenas (10.1016/j.ejmech.2020.112341_bib183) 2013; 10 Raulin (10.1016/j.ejmech.2020.112341_bib57) 2003; 32 Jurczak (10.1016/j.ejmech.2020.112341_bib54) 2008; 55 Dahl (10.1016/j.ejmech.2020.112341_bib146) 1989; 151 Tang (10.1016/j.ejmech.2020.112341_bib136) 2007; 13 Herold (10.1016/j.ejmech.2020.112341_bib15) 1998; 279 Tsai (10.1016/j.ejmech.2020.112341_bib36) 2009; 41 Skwor (10.1016/j.ejmech.2020.112341_bib72) 2016; 165 Galstyan (10.1016/j.ejmech.2020.112341_bib107) 2016; 8 Paoli (10.1016/j.ejmech.2020.112341_bib46) 2002; 21 Maisch (10.1016/j.ejmech.2020.112341_bib62) 2005; 49 Brancaleon (10.1016/j.ejmech.2020.112341_bib55) 2002; 17 Maisch (10.1016/j.ejmech.2020.112341_bib59) 2012; 39 Grinholc (10.1016/j.ejmech.2020.112341_bib44) 2008; 90 Carpenter (10.1016/j.ejmech.2020.112341_bib89) 2012; 88 Embleton (10.1016/j.ejmech.2020.112341_bib114) 2004; 10 Mantareva (10.1016/j.ejmech.2020.112341_bib103) 2011; 10 Abouelfetouh (10.1016/j.ejmech.2020.112341_bib162) 2016; 91 Li (10.1016/j.ejmech.2020.112341_bib102) 2017; 9 Fournier (10.1016/j.ejmech.2020.112341_bib45) 1989; 27 Gurtovenko (10.1016/j.ejmech.2020.112341_bib51) 2007; 111 Lightdale (10.1016/j.ejmech.2020.112341_bib8) 2000; 10 Kalyanasundaram (10.1016/j.ejmech.2020.112341_bib71) 1982; 86 Yamamoto (10.1016/j.ejmech.2020.112341_bib170) 2009; 27 Martins (10.1016/j.ejmech.2020.112341_bib163) 2008; 49 Mantareva (10.1016/j.ejmech.2020.112341_bib92) 2007; 15 Mantareva (10.1016/j.ejmech.2020.112341_bib105) 2009; 62 Ochsner (10.1016/j.ejmech.2020.112341_bib12) 1997; 47 Liu (10.1016/j.ejmech.2020.112341_bib41) 2015; 31 Nakonieczna (10.1016/j.ejmech.2020.112341_bib48) 2010; 10 Dai (10.1016/j.ejmech.2020.112341_bib117) 2010; 42 Ke (10.1016/j.ejmech.2020.112341_bib98) 2014; 9 Hoorijani (10.1016/j.ejmech.2020.112341_bib140) 2017; 19 Spaeth (10.1016/j.ejmech.2020.112341_bib32) 2018; 159 Burda (10.1016/j.ejmech.2020.112341_bib75) 2011; 31 Guo (10.1016/j.ejmech.2020.112341_bib178) 2010; 21 Boyle (10.1016/j.ejmech.2020.112341_bib34) 1996; 64 Riley (10.1016/j.ejmech.2020.112341_bib16) 1995; 29 Maisch (10.1016/j.ejmech.2020.112341_bib63) 2007; 6 Wainwright (10.1016/j.ejmech.2020.112341_bib144) 1998; 160 Lipson (10.1016/j.ejmech.2020.112341_bib7) 1961 Hope (10.1016/j.ejmech.2020.112341_bib116) 2009; 64 Darabpour (10.1016/j.ejmech.2020.112341_bib132) 2016; 14 Moher (10.1016/j.ejmech.2020.112341_bib27) 2015; 4 Szpakowska (10.1016/j.ejmech.2020.112341_bib33) 2001; 44 Dougherty (10.1016/j.ejmech.2020.112341_bib9) 1998; 90 Liu (10.1016/j.ejmech.2020.112341_bib22) 2015 Ribeiro (10.1016/j.ejmech.2020.112341_bib147) 2012; 28 Hudson (10.1016/j.ejmech.2020.112341_bib74) 1992; 114 Gutierrez (10.1016/j.ejmech.2020.112341_bib151) 2017; 12 Galstyan (10.1016/j.ejmech.2020.112341_bib111) 2016; 22 Crum (10.1016/j.ejmech.2020.112341_bib19) 2006; 119 Street (10.1016/j.ejmech.2020.112341_bib122) 2010; 28 Topaloglu (10.1016/j.ejmech.2020.112341_bib181) 2015; 20 Tanaka (10.1016/j.ejmech.2020.112341_bib127) 2011; 88 Wong (10.1016/j.ejmech.2020.112341_bib182) 2018; 36 Wang (10.1016/j.ejmech.2020.112341_bib171) 2011; 116 Usacheva (10.1016/j.ejmech.2020.112341_bib20) 2001; 29 Nafee (10.1016/j.ejmech.2020.112341_bib160) 2013; 454 Strausbaugh (10.1016/j.ejmech.2020.112341_bib18) 1996; 17 Grinholc (10.1016/j.ejmech.2020.112341_bib42) 2008; 55 Kobayashi (10.1016/j.ejmech.2020.112341_bib168) 1994; 12 Fekrazad (10.1016/j.ejmech.2020.112341_bib118) 2014; 5 Frimannsson (10.1016/j.ejmech.2020.112341_bib174) 2010; 53 Jang (10.1016/j.ejmech.2020.112341_bib35) 2006; 113 Winkler (10.1016/j.ejmech.2020.112341_bib119) 2016; 162 Rapacka-Zdonczyk (10.1016/j.ejmech.2020.112341_bib49) 2013; 33 Makdoumi (10.1016/j.ejmech.2020.112341_bib154) 2017; 95 Goldman (10.1016/j.ejmech.2020.112341_bib56) 2006; 31 El-Khordagui (10.1016/j.ejmech.2020.112341_bib134) 2017; 520 Lui (10.1016/j.ejmech.2020.112341_bib3) 1993; 11 Li (10.1016/j.ejmech.2020.112341_bib39) 2008 López-Chicón (10.1016/j.ejmech.2020.112341_bib158) 2012; 11 Fu (10.1016/j.ejmech.2020.112341_bib5) 2013 Wilson (10.1016/j.ejmech.2020.112341_bib113) 1995; 16 Hajim (10.1016/j.ejmech.2020.112341_bib138) 2010; 25 Tsugita (10.1016/j.ejmech.2020.112341_bib152) 1965; 103 Rook (10.1016/j.ejmech.2020.112341_bib157) 2010; 63 Schastak (10.1016/j.ejmech.2020.112341_bib64) 2010; 5 Ribeiro (10.1016/j.ejmech.2020.112341_bib91) 2013; 30 Yin (10.1016/j.ejmech.2020.112341_bib172) 2015; 79 Ghajar (10.1016/j.ejmech.2020.112341_bib50) 1968; 32 Embleton (10.1016/j.ejmech.2020.112341_bib115) 2005; 49 Wong (10.1016/j.ejmech.2020.112341_bib166) 2017; 173 Zhao (10.1016/j.ejmech.2020.112341_bib101) 2013; 29 Tseng (10.1016/j.ejmech.2020.112341_bib139) 2017; 50 Yow (10.1016/j.ejmech.2020.112341_bib142) 2011; 17 Yow (10.1016/j.ejmech.2020.112341_bib159) 2012; 88 Iluz (10.1016/j.ejmech.2020.112341_bib76) 2018; 50 Decraene (10.1016/j.ejmech.2020.112341_bib143) 2006; 72 Tomé (10.1016/j.ejmech.2020.112341_bib84) 2004; 47 Latief (10.1016/j.ejmech.2020.112341_bib88) 2014; 30 Dimaano (10.1016/j.ejmech.2020.112341_bib106) 2015; 16 Makdoumi (10.1016/j.ejmech.2020.112341_bib153) 2016; 44 Primo (10.1016/j.ejmech.2020.112341_bib94) 2008; 8 Jevons (10.1016/j.ejmech.2020.112341_bib14) 1961; 1 Xavier (10.1016/j.ejmech.2020.112341_bib176) 2010; 53 Huang (10.1016/j.ejmech.2020.112341_bib120) 2018; 17 Ferro (10.1016/j.ejmech.2020.112341_bib65) 2007; 39 Kossakowska (10.1016/j.ejmech.2020.112341_bib52) 2013; 10 Huang (10.1016/j.ejmech.2020.112341_bib66) 2018; 178 Biel (10.1016/j.ejmech.2020.112341_bib123) 2010 Lambrechts (10.1016/j.ejmech.2020.112341_bib53) 2005; 4 Meng (10.1016/j.ejmech.2020.112341_bib82) 2015; 92 Morales-De-Echegaray (10.1016/j.ejmech.2020.112341_bib47) 2018; 4 Grinholc (10.1016/j.ejmech.2020.112341_bib29) 2013; 129 Nishiwaki (10.1016/j.ejmech.2020.112341_bib169) 1989; 9 Ruiz-González (10.1016/j.ejmech.2020.112341_bib177) 2015; 16 Zhang (10.1016/j.ejmech.2020.112341_bib108) 2018; 10 Epstein (10.1016/j.ejmech.2020.112341_bib145) 2010; 103 |
References_xml | – volume: 1 start-page: 113 year: 1961 end-page: 114 ident: bib14 article-title: Celbenin"-resistant staphylococci publication-title: Br. Med. J. – start-page: 1 year: 2013 end-page: 9 ident: bib5 article-title: Antimicrobial photodynamic therapy for methicillin-ResistantStaphylococcus aureusInfection publication-title: BioMed Res. Int. – volume: 22 start-page: 5243 year: 2016 end-page: 5252 ident: bib111 article-title: Labeling and selective inactivation of gram-positive bacteria employing bimodal photoprobes with dual readouts publication-title: Chem. Eur J. – volume: 32 start-page: 1337 year: 2017 end-page: 1342 ident: bib148 article-title: Photodynamic therapy controls of Staphylococcus aureus intradermal infection in mice publication-title: Laser Med. Sci. – volume: 294 start-page: 133 year: 2009 end-page: 140 ident: bib104 article-title: Photodynamic inactivation ofAeromonas hydrophilaby cationic phthalocyanines with different hydrophobicity publication-title: FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett. – volume: 155 start-page: 400 year: 2011 end-page: 408 ident: bib93 article-title: A delivery system to avoid self-aggregation and to improve in vitro and in vivo skin delivery of a phthalocyanine derivative used in the photodynamic therapy publication-title: J. Contr. Release – volume: 88 start-page: 626 year: 2012 end-page: 632 ident: bib159 article-title: Hypericin-mediated photodynamic antimicrobial effect on clinically isolated pathogens† publication-title: Photochem. Photobiol. – volume: 90 start-page: 889 year: 1998 end-page: 905 ident: bib9 article-title: Photodynamic therapy publication-title: JNCI Journal of the National Cancer Institute – volume: 88 year: 2012 ident: bib89 article-title: Porphyrin-cellulose nanocrystals: a photobactericidal material that exhibits broad spectrum antimicrobial activity† publication-title: Photochem. Photobiol. – volume: 6 start-page: 141 year: 2014 end-page: 164 ident: bib30 article-title: An insight on bacterial cellular targets of photodynamic inactivation publication-title: Future Med. Chem. – volume: 19 start-page: 249 year: 2017 end-page: 255 ident: bib140 article-title: The effect of antimicrobial photodynamic therapy on the expression of novel methicillin resistance markers determined using cDNA-AFLP approach in Staphylococcus aureus publication-title: Photodiagnosis Photodyn. Ther. – volume: 46 start-page: 24 year: 2013 ident: bib37 article-title: Photodynamic therapy (PDT): PDT mechanisms publication-title: Clinical Endoscopy – volume: 49 start-page: 3690 year: 2005 end-page: 3696 ident: bib115 article-title: Development of a novel targeting system for lethal photosensitization of antibiotic-resistant strains of Staphylococcus aureus publication-title: Antimicrob. Agents Chemother. – volume: 54 start-page: 15152 year: 2015 end-page: 15155 ident: bib109 article-title: A multifunctional subphthalocyanine nanosphere for targeting, labeling, and killing of antibiotic-resistant bacteria publication-title: Angew. Chem. Int. Ed. – volume: 165 start-page: 51 year: 2016 end-page: 57 ident: bib72 article-title: Photodynamic inactivation of methicillin-resistant Staphylococcus aureus and Escherichia coli: a metalloporphyrin comparison publication-title: J. Photochem. Photobiol. B Biol. – volume: 58 start-page: 895 year: 1993 end-page: 900 ident: bib1 article-title: Photodynamic therapy publication-title: Photochem. Photobiol. – volume: 2 start-page: 187 year: 2002 end-page: 207 ident: bib10 article-title: Porphyrins in photodynamic therapy - a search for ideal photosensitizers publication-title: Curr. Med. Chem. Anti Canc. Agents – volume: 50 start-page: 535 year: 2018 end-page: 551 ident: bib76 article-title: The synergistic effect of PDT and oxacillin on clinical isolates of publication-title: Laser Surg. Med. – volume: 30 start-page: 549 year: 2013 end-page: 559 ident: bib91 article-title: Antimicrobial photodynamic therapy against pathogenic bacterial suspensions and biofilms using chloro-aluminum phthalocyanine encapsulated in nanoemulsions publication-title: Laser Med. Sci. – volume: 16 start-page: 272 year: 1995 end-page: 276 ident: bib113 article-title: Lethal photosensitisation ofStaphylococcus aureus in vitro: effect of growth phase, serum, and pre-irradiation time publication-title: Laser Surg. Med. – volume: 96 start-page: 223 year: 2009 end-page: 231 ident: bib86 article-title: Delivery of Methylene Blue and meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate from cross-linked poly(vinyl alcohol) hydrogels: a potential means of photodynamic therapy of infected wounds publication-title: J. Photochem. Photobiol. B Biol. – volume: 25 start-page: 337 year: 2009 end-page: 346 ident: bib58 article-title: Current and new treatments of photodamaged skin publication-title: Facial Plast. Surg. – volume: 6 start-page: 545 year: 2007 ident: bib63 article-title: Determination of the antibacterial efficacy of a new porphyrin-based photosensitizer against MRSA ex vivo publication-title: Photochem. Photobiol. Sci. – volume: 20 start-page: 10604 year: 2015 end-page: 10621 ident: bib175 article-title: Antiviral, antifungal and antibacterial activities of a BODIPY-based photosensitizer publication-title: Molecules – volume: 173 start-page: 672 year: 2017 end-page: 680 ident: bib166 article-title: Effects of blue or violet light on the inactivation of Staphylococcus aureus by riboflavin-5′-phosphate photolysis publication-title: J. Photochem. Photobiol. B Biol. – volume: 33 start-page: 577 year: 2013 end-page: 586 ident: bib49 article-title: Association between susceptibility to photodynamic oxidation and the genetic background of publication-title: Eur. J. Clin. Microbiol. Infect. Dis. – volume: 10 start-page: 603 year: 2015 end-page: 614 ident: bib173 article-title: Potentiation of antimicrobial photodynamic inactivation mediated by a cationic fullerene by added iodide: in vitro and in vivo studies publication-title: Nanomedicine – volume: 279 start-page: 593 year: 1998 ident: bib15 article-title: Community-acquired methicillin-resistant Staphylococcus aureus in children with No identified predisposing risk publication-title: J. Am. Med. Assoc. – volume: 17 start-page: 638 year: 2018 end-page: 651 ident: bib120 article-title: Progressive cationic functionalization of chlorin derivatives for antimicrobial photodynamic inactivation and related vancomycin conjugates publication-title: Photochem. Photobiol. Sci. – volume: 1 start-page: 468 year: 2002 end-page: 470 ident: bib26 article-title: Photoinactivation of bacterial strains involved in periodontal diseases sensitized by porphycene–polylysine conjugates publication-title: Photochem. Photobiol. Sci. – volume: 131 start-page: 511 year: 2010 end-page: 521 ident: bib155 article-title: A review of the antibacterial activity of Hypericum perforatum L. publication-title: J. Ethnopharmacol. – volume: 44 start-page: 751 year: 2009 end-page: 759 ident: bib124 article-title: The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms publication-title: J. Periodontal. Res. – volume: 114 start-page: 8997 year: 1992 end-page: 9002 ident: bib74 article-title: Luminescence studies of the intercalation of Cu(TMpyP4) into DNA publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 1099 year: 2012 ident: bib158 article-title: On the mechanism of Candida spp. photoinactivation by hypericin publication-title: Photochem. Photobiol. Sci. – volume: 2 start-page: 131 year: 2015 end-page: 137 ident: bib110 article-title: Antimicrobial activity of metallo tetra (4-carboxyphenyl) phthalocyanine useful in photodynamic therapy publication-title: Pharmacologyonline – volume: 32 start-page: 121 year: 2014 end-page: 129 ident: bib28 article-title: Multiresistant strains are as susceptible to photodynamic inactivation as their naïve counterparts: protoporphyrin IX-mediated photoinactivation reveals differences between methicillin-resistant and methicillin-sensitive Staphylococcus aureus strains publication-title: Photomedicine and Laser Surgery – volume: 10 start-page: 15485 year: 2018 end-page: 15495 ident: bib108 article-title: Near-infrared-triggered antibacterial and antifungal photodynamic therapy based on lanthanide-doped upconversion nanoparticles publication-title: Nanoscale – volume: 44 start-page: 582 year: 2016 end-page: 586 ident: bib153 article-title: Photodynamic UVA-riboflavin bacterial elimination in antibiotic-resistant bacteria publication-title: Clin. Exp. Ophthalmol. – volume: 10 start-page: 347 year: 2015 end-page: 356 ident: bib161 article-title: Antimicrobial photodynamic activity of hypericin against methicillin-susceptible and resistant Staphylococcus aureus biofilms publication-title: Future Microbiol. – volume: 53 start-page: 7337 year: 2010 end-page: 7343 ident: bib174 article-title: Light induced antimicrobial properties of a brominated boron difluoride (BF2) chelated tetraarylazadipyrromethene photosensitizer publication-title: J. Med. Chem. – volume: 51 start-page: 4502 year: 1969 end-page: 4505 ident: bib73 article-title: Near-infrared absorption and circular dichroism spectra of ferrocytochrome c: d→d transitions publication-title: J. Chem. Phys. – volume: 29 start-page: 1131 year: 2013 end-page: 1138 ident: bib101 article-title: Susceptibility of methicillin-resistant Staphylococcus aureus to photodynamic antimicrobial chemotherapy with α-d-galactopyranosyl zinc phthalocyanines: in vitro study publication-title: Laser Med. Sci. – volume: 42 start-page: 38 year: 2010 end-page: 44 ident: bib117 article-title: Photodynamic therapy for methicillin-resistantStaphylococcus aureusinfection in a mouse skin abrasion model publication-title: Laser Surg. Med. – volume: 32 start-page: 940 year: 1968 end-page: 944 ident: bib50 article-title: The effect of dimethyl sulfoxide (DMSO) on permeability of publication-title: Biochem. Biophys. Res. Commun. – volume: 14 start-page: 211 year: 2016 end-page: 217 ident: bib132 article-title: Chitosan nanoparticles enhance the efficiency of methylene blue-mediated antimicrobial photodynamic inactivation of bacterial biofilms: an in vitro study publication-title: Photodiagnosis Photodyn. Ther. – volume: 29 start-page: 1686 year: 1993 end-page: 1690 ident: bib2 article-title: An evaluation of photodynamic therapy in the management of cutaneous metastases of breast cancer publication-title: Eur. J. Canc. – volume: 18 start-page: 92 year: 2019 end-page: 97 ident: bib80 article-title: Bactericidal effects of hematoporphyrin monomethyl ether-mediated blue-light photodynamic therapy against Staphylococcus aureus publication-title: Photochem. Photobiol. Sci. – volume: 55 start-page: 85 year: 2008 end-page: 90 ident: bib42 article-title: Photodynamic effect of protoporphyrin diarginate (PPArg2) on methicillin-resistant Staphylococcus aureus and human dermal fibroblasts publication-title: Acta Biochim. Pol. – start-page: 5157 year: 2014 ident: bib150 article-title: Upconversion nanoparticles conjugated with curcumin as a photosensitizer to inhibit methicillin-resistant Staphylococcus aureus in lung under near infrared light publication-title: Int. J. Nanomed. – volume: 9 start-page: 254 year: 1989 end-page: 263 ident: bib169 article-title: New method of photosensitizer accumulation for photodynamic therapy in an experimental liver tumor publication-title: Laser Surg. Med. – volume: 10 start-page: 323 year: 2010 ident: bib48 article-title: Superoxide dismutase is upregulated in publication-title: BMC Microbiol. – volume: 111 start-page: 10453 year: 2007 end-page: 10460 ident: bib51 article-title: Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide publication-title: J. Phys. Chem. B – volume: 116 start-page: 255 year: 2011 end-page: 262 ident: bib171 article-title: Photophysical and electronic properties of five PCBM-like C60 derivatives: spectral and quantum chemical view publication-title: J. Phys. Chem. – volume: 27 start-page: 1372 year: 1989 end-page: 1374 ident: bib45 article-title: strains which are not identified by rapid agglutination methods are of capsular serotype 5 publication-title: J. Clin. Microbiol. – volume: 14 start-page: 431 year: 2002 end-page: 443 ident: bib21 article-title: Methylene blue - a therapeutic dye for all seasons? publication-title: J. Chemother. – volume: 151 start-page: 183 year: 1989 end-page: 185 ident: bib146 article-title: Photokilling of bacteria by the natural dye curcumin publication-title: Arch. Microbiol. – volume: 10 start-page: 1097 year: 2011 ident: bib156 article-title: Targeted photodynamic therapy – a promising strategy of tumor treatment publication-title: Photochem. Photobiol. Sci. – volume: 5 year: 2010 ident: bib64 article-title: Efficient photodynamic therapy against gram-positive and gram-negative bacteria using THPTS, a cationic photosensitizer excited by infrared wavelength publication-title: PloS One – volume: 4 start-page: 503 year: 2005 ident: bib53 article-title: Photodynamic therapy for publication-title: Photochem. Photobiol. Sci. – volume: 47 start-page: 6649 year: 2004 end-page: 6652 ident: bib84 article-title: Synthesis and antibacterial activity of new poly-S-lysine−Porphyrin conjugates publication-title: J. Med. Chem. – volume: 31 start-page: 297 year: 2015 end-page: 304 ident: bib41 article-title: Photodynamic inactivation of antibiotic-resistant bacteria and biofilms by hematoporphyrin monomethyl ether publication-title: Laser Med. Sci. – volume: 6 start-page: 535 year: 2006 end-page: 545 ident: bib126 article-title: Photodynamic therapy and anti-tumour immunity publication-title: Nat. Rev. Canc. – volume: 89 start-page: 679 year: 2013 end-page: 682 ident: bib125 article-title: Linezolid and vancomycin decrease the therapeutic effect of methylene blue-photodynamic therapy in a mouse model of MRSA bacterial arthritis publication-title: Photochem. Photobiol. – volume: 9 start-page: 359 year: 2012 end-page: 361 ident: bib79 article-title: Photodynamic inactivation requires innovative approach concerning numerous bacterial isolates and multicomponent sensitizing agents publication-title: Photodiagnosis Photodyn. Ther. – volume: 44 start-page: 243 year: 2001 end-page: 246 ident: bib33 article-title: Photodynamic activity of the haematoporphyrin derivative with rutin and arginine substituents (HpD-Rut2- Arg2) against staphylococcus aureus and pseudomonas aeruginosa publication-title: Pharmacol. Res. – volume: 52 start-page: 299 year: 2007 end-page: 305 ident: bib137 article-title: Toluidine blue-mediated photodynamic effects on staphylococcal biofilms publication-title: Antimicrob. Agents Chemother. – volume: 41 start-page: 316 year: 2009 end-page: 322 ident: bib36 article-title: Improved photodynamic inactivation of gram-positive bacteria using hematoporphyrin encapsulated in liposomes and micelles publication-title: Laser Surg. Med. – volume: 10 start-page: 1593 year: 2011 ident: bib69 article-title: Antimicrobial peptide-modified liposomes for bacteria targeted delivery of temoporfin in photodynamic antimicrobial chemotherapy publication-title: Photochem. Photobiol. Sci. – volume: 10 start-page: 397 year: 2000 end-page: 408 ident: bib8 article-title: Role of photodynamic therapy in the management of advanced esophageal cancer publication-title: Gastrointestinal Endoscopy Clinics of North America – volume: 159 start-page: 423 year: 2018 end-page: 440 ident: bib32 article-title: CureCuma–cationic curcuminoids with improved properties and enhanced antimicrobial photodynamic activity publication-title: Eur. J. Med. Chem. – start-page: 141 year: 2008 end-page: 149 ident: bib39 article-title: Singlet oxygen quantum yields of porphyrin-based photosensitizers for photodynamic therapy publication-title: Journal of Innovative Optical Health Sciences – volume: 27 start-page: 849 year: 2009 end-page: 853 ident: bib170 article-title: Bactericidal effect of photodynamic therapy using Na-pheophorbide a: evaluation of adequate light source publication-title: Photomedicine and Laser Surgery – volume: 79 start-page: 14 year: 2015 end-page: 27 ident: bib172 article-title: Antimicrobial photodynamic inactivation with decacationic functionalized fullerenes: oxygen-independent photokilling in presence of azide and new mechanistic insights publication-title: Free Radic. Biol. Med. – volume: 92 start-page: 35 year: 2015 end-page: 48 ident: bib82 article-title: Synthesis, characterization and in vitro photodynamic antimicrobial activity of basic amino acid–porphyrin conjugates publication-title: Eur. J. Med. Chem. – volume: 72 start-page: 4436 year: 2006 end-page: 4439 ident: bib143 article-title: Cellulose acetate containing toluidine blue and Rose bengal is an effective antimicrobial coating when exposed to white light publication-title: Appl. Environ. Microbiol. – volume: 103 start-page: 1545 year: 2010 end-page: 1557 ident: bib145 article-title: Curcumin as a therapeutic agent: the evidence from in vitro, animal and human studies publication-title: Br. J. Nutr. – volume: 47 start-page: 1185 year: 1997 end-page: 1194 ident: bib12 article-title: Photodynamic therapy: the clinical perspective. Review on applications for control of diverse tumorous and non-tumorous diseases publication-title: Arzneim. Forsch. – volume: 30 start-page: 383 year: 2014 end-page: 387 ident: bib88 article-title: Antimicrobial action from a novel porphyrin derivative in photodynamic antimicrobial chemotherapy in vitro publication-title: Laser Med. Sci. – volume: 15 start-page: 4829 year: 2007 end-page: 4835 ident: bib92 article-title: Photodynamic activity of water-soluble phthalocyanine zinc(II) complexes against pathogenic microorganisms publication-title: Bioorg. Med. Chem. – volume: 28 start-page: 391 year: 2012 end-page: 398 ident: bib147 article-title: Phototoxic effect of curcumin on methicillin-resistant Staphylococcus aureus and L929 fibroblasts publication-title: Laser Med. Sci. – volume: 38 start-page: 178 year: 1997 end-page: 183 ident: bib180 article-title: Indocyanine green: intracellular uptake and phototherapeutic effects in vitro publication-title: J. Photochem. Photobiol. B Biol. – volume: 49 start-page: 1542 year: 2005 end-page: 1552 ident: bib62 article-title: Photodynamic effects of novel XF porphyrin derivatives on prokaryotic and eukaryotic cells publication-title: Antimicrob. Agents Chemother. – volume: 43 start-page: 586 year: 2011 end-page: 590 ident: bib130 article-title: Reduction of endotracheal tube biofilms using antimicrobial photodynamic therapy publication-title: Laser Surg. Med. – volume: 45 year: 2016 ident: bib13 article-title: Targeting innovation in antibiotic drug discovery and development: the need for a one Health – one Europe – one world framework publication-title: European Observatory on Health Systems and Policies Health, Policy Series – volume: 113 start-page: 73 year: 2006 end-page: 79 ident: bib35 article-title: Polyion complex micelles for photodynamic therapy: incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property publication-title: J. Contr. Release – volume: 37 start-page: 134 year: 2017 end-page: 140 ident: bib133 article-title: Fast and effective photodynamic inactivation of 4-day-old biofilm of methicillin-resistant Staphylococcus aureus using methylene blue-conjugated gold nanoparticles publication-title: J. Drug Deliv. Sci. Technol. – volume: 32 start-page: 78 year: 2003 end-page: 87 ident: bib57 article-title: IPL technology: a review publication-title: Laser Surg. Med. – volume: 10 start-page: 92 year: 2004 end-page: 97 ident: bib114 article-title: Antibody-directed photodynamic therapy of MethicillinResistant Staphylococcus aureus publication-title: Microb. Drug Resist. – volume: 164 start-page: 987 year: 2011 end-page: 995 ident: bib99 article-title: Effectiveness of antimicrobial photodynamic therapy with a single treatment of RLP068/Cl in an experimental model of Staphylococcus aureus wound infection publication-title: Br. J. Dermatol. – volume: 12 start-page: 2170 year: 2013 ident: bib87 article-title: Porphyrin–silica microparticle conjugates as an efficient tool for the photosensitised disinfection of water contaminated by bacterial pathogens publication-title: Photochem. Photobiol. Sci. – volume: 50 start-page: 46 year: 2017 end-page: 54 ident: bib139 article-title: Effects of toluidine blue O (TBO)-photodynamic inactivation on community-associated methicillin-resistant Staphylococcus aureus isolates publication-title: J. Microbiol. Immunol. Infect. – volume: 178 start-page: 277 year: 2018 end-page: 286 ident: bib66 article-title: Potentiation by potassium iodide reveals that the anionic porphyrin TPPS4 is a surprisingly effective photosensitizer for antimicrobial photodynamic inactivation publication-title: J. Photochem. Photobiol. B Biol. – volume: 29 start-page: 165 year: 2001 end-page: 173 ident: bib20 article-title: Comparison of the methylene blue and toluidine blue photobactericidal efficacy against gram-positive and gram-negative microorganisms publication-title: Laser Surg. Med. – volume: 20 year: 2015 ident: bib181 article-title: Antibacterial photodynamic therapy with 808-nm laser and indocyanine green on abrasion wound models publication-title: J. Biomed. Optic. – volume: 119 start-page: 943 year: 2006 end-page: 951 ident: bib19 article-title: Fifteen-year study of the changing epidemiology of methicillin-resistant Staphylococcus aureus publication-title: Am. J. Med. – volume: 91 start-page: 54 year: 2016 end-page: 60 ident: bib162 article-title: The degree of virulence does not necessarily affect MRSA biofilm strength and response to photodynamic therapy publication-title: Microb. Pathog. – volume: 40 start-page: 873 year: 1997 end-page: 876 ident: bib90 article-title: Killing of methicillin-resistant Staphylococcus aureus in vitro using aluminium disulphonated phthalocyanine, a light-activated antimicrobial agent publication-title: J. Antimicrob. Chemother. – volume: 8 start-page: 12631 year: 2016 end-page: 12637 ident: bib107 article-title: Silicon(IV) phthalocyanine-decorated cyclodextrin vesicles as a self-assembled phototherapeutic agent against MRSA publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 413 year: 2011 end-page: 419 ident: bib78 article-title: The connection between agr and SCCmec elements of publication-title: Photomedicine and Laser Surgery – volume: 160 start-page: 177 year: 1998 end-page: 181 ident: bib144 article-title: Photobactericidal activity of phenothiazinium dyes against methicillin-resistant strains of Staphylococcus aureus publication-title: FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett. – volume: 9 start-page: 180 year: 2012 end-page: 185 ident: bib40 article-title: Research progress of hemoporfin – part one: preclinical study publication-title: Photodiagnosis Photodyn. Ther. – volume: 129 start-page: 27 year: 2013 end-page: 35 ident: bib61 article-title: Photo-activated porphyrin in combination with antibiotics: therapies against Staphylococci publication-title: J. Photochem. Photobiol. B Biol. – volume: 3 start-page: 320 year: 2017 end-page: 328 ident: bib68 article-title: Potassium iodide potentiates broad-spectrum antimicrobial photodynamic inactivation using photofrin publication-title: ACS Infect. Dis. – volume: 10 start-page: 2592 year: 2009 end-page: 2600 ident: bib81 article-title: Inclusion of 5-[4-(1-Dodecanoylpyridinium)]-10,15,20-triphenylporphine in supramolecular aggregates of cationic amphiphilic cyclodextrins: physicochemical characterization of the complexes and strengthening of the antimicrobial photosensitizing activity publication-title: Biomacromolecules – volume: 77 start-page: 329 year: 2012 end-page: 343 ident: bib85 article-title: Molecular targets of antimicrobial photodynamic therapy identified by a proteomic approach publication-title: Journal of Proteomics – volume: 17 start-page: 24 year: 2011 end-page: 28 ident: bib142 article-title: Photodynamic inactivation of multidrug resistant pathogens in Hong Kong publication-title: Hong Kong Med. J. – volume: 10 start-page: 348 year: 2013 end-page: 355 ident: bib52 article-title: Discovering the mechanisms of strain-dependent response of publication-title: Photodiagnosis Photodyn. Ther. – volume: 3 start-page: 756 year: 2017 end-page: 766 ident: bib128 article-title: Attaching the NorA efflux pump inhibitor INF55 to methylene blue enhances antimicrobial photodynamic inactivation of methicillin-resistant Staphylococcus aureus in vitro and in vivo publication-title: ACS Infect. Dis. – volume: 10 start-page: 91 year: 2011 end-page: 102 ident: bib103 article-title: Non-aggregated Ga(iii)-phthalocyanines in the photodynamic inactivation of planktonic and biofilm cultures of pathogenic microorganisms publication-title: Photochem. Photobiol. Sci. – volume: 28 year: 2010 ident: bib122 article-title: Energy dose parameters affect antimicrobial photodynamic therapy–mediated eradication of periopathogenic biofilm and planktonic cultures publication-title: Photomedicine and Laser Surgery – volume: 55 start-page: 1883 year: 2011 end-page: 1890 ident: bib38 article-title: Chitosan augments photodynamic inactivation of gram-positive and gram-negative bacteria publication-title: Antimicrob. Agents Chemother. – volume: 86 start-page: 5163 year: 1982 end-page: 5169 ident: bib71 article-title: Photophysical and redox properties of water-soluble porphyrins in aqueous media publication-title: J. Phys. Chem. – volume: 33 start-page: 523 year: 2017 end-page: 532 ident: bib135 article-title: Antimicrobial photodynamic therapy—a promising treatment for prosthetic joint infections publication-title: Laser Med. Sci. – volume: 162 start-page: 340 year: 2016 end-page: 347 ident: bib119 article-title: Photodynamic inactivation of multidrug-resistant Staphylococcus aureus by chlorin e6 and red light (λ = 670 nm) publication-title: J. Photochem. Photobiol. B Biol. – volume: 13 start-page: 87 year: 2007 end-page: 91 ident: bib136 article-title: A comparative in vitro photoinactivation study of clinical isolates of multidrug-resistant pathogens publication-title: J. Infect. Chemother. – volume: 25 start-page: 743 year: 2010 end-page: 748 ident: bib138 article-title: Laser light combined with a photosensitizer may eliminate methicillin-resistant strains of Staphylococcus aureus publication-title: Laser Med. Sci. – volume: 29 start-page: 177 year: 1995 end-page: 188 ident: bib16 article-title: Methicillin-resistant publication-title: J. Hosp. Infect. – volume: 17 start-page: 173 year: 2002 end-page: 186 ident: bib55 article-title: Laser and non-laser light sources for photodynamic therapy publication-title: Laser Med. Sci. – volume: 39 start-page: 1026 year: 2007 end-page: 1034 ident: bib65 article-title: Efficient photoinactivation of methicillin-resistant Staphylococcus aureus by a novel porphyrin incorporated into a poly-cationic liposome publication-title: Int. J. Biochem. Cell Biol. – volume: 9 start-page: 1868 year: 2014 end-page: 1875 ident: bib98 article-title: Oligolysine-conjugated zinc(II) phthalocyanines as efficient photosensitizers for antimicrobial photodynamic therapy publication-title: Chem. Asian J. – volume: 64 start-page: 469 year: 1996 end-page: 485 ident: bib34 article-title: Structure and biodistribution relationships of photodynamic sensitizers publication-title: Photochem. Photobiol. – volume: 10 start-page: 615 year: 2013 end-page: 625 ident: bib183 article-title: Photodynamic inactivation of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus with Ru(II)-based type I/type II photosensitizers publication-title: Photodiagnosis Photodyn. Ther. – volume: 6 start-page: 817 year: 2013 end-page: 840 ident: bib11 article-title: Dye sensitizers for photodynamic therapy publication-title: Materials – volume: 84 start-page: 278 year: 2014 end-page: 283 ident: bib97 article-title: Photodynamic inactivation of bacteria and viruses using two monosubstituted zinc(II) phthalocyanines publication-title: Eur. J. Med. Chem. – volume: 50 start-page: 857 year: 2002 end-page: 864 ident: bib112 article-title: Selective lethal photosensitization of methicillin-resistant Staphylococcus aureus using an IgG-tin (IV) chlorin e6 conjugate publication-title: J. Antimicrob. Chemother. – volume: 16 start-page: 27072 year: 2015 end-page: 27086 ident: bib177 article-title: A comparative study on two cationic porphycenes: photophysical and antimicrobial photoinactivation evaluation publication-title: Int. J. Mol. Sci. – volume: 21 start-page: 219 year: 2018 end-page: 223 ident: bib149 article-title: Reduced methicillin-resistant Staphylococcus aureus biofilm formation in bone cavities by photodynamic therapy publication-title: Photodiagnosis Photodyn. Ther. – volume: 16 start-page: 7851 year: 2015 end-page: 7860 ident: bib106 article-title: The photodynamic antibacterial effects of silicon phthalocyanine (Pc) 4 publication-title: Int. J. Mol. Sci. – start-page: 7 year: 2007 end-page: 74 ident: bib4 article-title: Phenomena Involving a Reversible Colour Change, Chromic Phenomena – volume: 9 start-page: 3912 year: 2017 end-page: 3924 ident: bib102 article-title: Dual antibacterial activities of a chitosan-modified upconversion photodynamic therapy system against drug-resistant bacteria in deep tissue publication-title: Nanoscale – volume: 8 start-page: 340 year: 2008 end-page: 347 ident: bib94 article-title: Photophysical studies and in vitro skin permeation/retention of Foscan/nanoemulsion (NE) applicable to photodynamic therapy skin cancer treatment publication-title: J. Nanosci. Nanotechnol. – volume: 21 year: 2010 ident: bib178 article-title: Rose Bengal-decorated silica nanoparticles as photosensitizers for inactivation of gram-positive bacteria publication-title: Nanotechnology – start-page: 175 year: 2010 end-page: 194 ident: bib123 article-title: Photodynamic therapy of bacterial and fungal biofilm infections publication-title: Methods in Molecular Biology Photodynamic Therapy – volume: 63 start-page: 984 year: 2010 end-page: 990 ident: bib157 article-title: A phase II placebo-controlled study of photodynamic therapy with topical hypericin and visible light irradiation in the treatment of cutaneous T-cell lymphoma and psoriasis publication-title: J. Am. Acad. Dermatol. – volume: 11 start-page: 1 year: 1993 end-page: 13 ident: bib3 article-title: Photodynamic therapy in dermatology: recent developments publication-title: Dermatol. Clin. – volume: 4 start-page: 1 year: 2015 end-page: 9 ident: bib27 article-title: Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement, BioMed Centrals publication-title: Syst. Rev. – volume: 520 start-page: 139 year: 2017 end-page: 148 ident: bib134 article-title: Photosensitizer-eluting nanofibers for enhanced photodynamic therapy of wounds: a preclinical study in immunocompromized rats publication-title: Int. J. Pharm. – volume: 61 year: 2017 ident: bib179 article-title: Potassium iodide potentiates antimicrobial photodynamic inactivation mediated by Rose bengal in in vitro and in vivo studies publication-title: Antimicrob. Agents Chemother. – volume: 9 year: 2014 ident: bib60 article-title: Photodynamic antimicrobial polymers for infection control publication-title: PloS One – volume: 43 start-page: 221 year: 2011 end-page: 229 ident: bib67 article-title: Photodynamic therapy using intra-articular photofrin for murine MRSA arthritis: biphasic light dose response for neutrophil-mediated antibacterial effect publication-title: Laser Surg. Med. – volume: 9 year: 2014 ident: bib164 article-title: Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives publication-title: PloS One – volume: 86 start-page: 1118 year: 2010 end-page: 1126 ident: bib43 article-title: Evaluation of the role of the pharmacological inhibition of Staphylococcus aureus multidrug resistance pumps and the variable levels of the uptake of the sensitizer in the strain-dependent response of Staphylococcus aureus to PPArg2-based photodynamic ina publication-title: Photochem. Photobiol. – volume: 36 start-page: 8 year: 2018 end-page: 15 ident: bib182 article-title: Photodynamic inactivation of methicillin-resistant Staphylococcus aureus by indocyanine green and near infrared light publication-title: Dermatol. Sin. – volume: 7 year: 2016 ident: bib24 article-title: Effect of photodynamic therapy on the virulence factors of Staphylococcus aureus publication-title: Front. Microbiol. – volume: 454 start-page: 249 year: 2013 end-page: 258 ident: bib160 article-title: Antibiotic-free nanotherapeutics: hypericin nanoparticles thereof for improved in vitro and in vivo antimicrobial photodynamic therapy and wound healing publication-title: Int. J. Pharm. – volume: 9 start-page: 11 year: 2012 end-page: 15 ident: bib141 article-title: Phototoxicity of phenothiazinium dyes against methicillin-resistant Staphylococcus aureus and multi-drug resistant Escherichia coli publication-title: Photodiagnosis Photodyn. Ther. – volume: 55 start-page: 581 year: 2008 end-page: 585 ident: bib54 article-title: Photodynamic effect of lanthanide derivatives of meso-tetra(N-methyl4-pyridyl) porphine against publication-title: Acta biochimica polonca – volume: 6 start-page: 733 year: 2012 end-page: 742 ident: bib100 article-title: Antimicrobial photodynamic therapy with RLP068 kills methicillin-resistantStaphylococcus aureusand improves wound healing in a mouse model of infected skin abrasion PDT with RLP068/Cl in infected mouse skin abrasion publication-title: J. Biophot. – volume: 12 start-page: 133 year: 1994 end-page: 138 ident: bib168 article-title: Oxygen-independent photocleavage of DNA, and uptake of chlorophyll derivatives by cellular nuclei and mitochondria publication-title: J. Clin. Laser Med. Surg. – volume: 49 start-page: 3402 year: 2008 ident: bib163 article-title: Antimicrobial efficacy of riboflavin/UVA combination (365 nm) in vitro for bacterial and fungal isolates: a potential new treatment for infectious keratitis publication-title: Investigative Opthalmology & Visual Science – volume: 88 start-page: 227 year: 2011 end-page: 232 ident: bib127 article-title: Optimal photosensitizers for photodynamic therapy of infections should kill bacteria but spare neutrophils publication-title: Photochem. Photobiol. – volume: 64 start-page: 59 year: 2009 end-page: 61 ident: bib116 article-title: The inability of a bacteriophage to infect Staphylococcus aureus does not prevent it from specifically delivering a photosensitizer to the bacterium enabling its lethal photosensitization publication-title: J. Antimicrob. Chemother. – volume: 12 year: 2017 ident: bib151 article-title: Encapsulation of curcumin in polymeric nanoparticles for antimicrobial Photodynamic Therapy publication-title: PloS One – volume: 21 start-page: 271 year: 2002 end-page: 280 ident: bib46 article-title: Structure–function relationships in heme-proteins publication-title: DNA Cell Biol. – volume: 5 start-page: 82 year: 2014 end-page: 85 ident: bib118 article-title: The effect of antimicrobial photodynamic therapy with Radachlorin® on Staphylococcus aureus and Escherichia coli: an in vitro study publication-title: J. Laser Med. Sci. – reference: J. Moan, Q. Peng, An outline of the history of PDT, Photodynamic Therapy. (n.d.) 1–18. doi:10.1039/9781847551658-00001. – volume: 70 start-page: 531 year: 2004 end-page: 535 ident: bib167 article-title: Photo-activated DNA binding and antimicrobial activities of furoquinoline and pyranoquinalone alkaloids from Rutaceae publication-title: Planta Medicine – volume: 56 start-page: 828 year: 2018 end-page: 837 ident: bib83 article-title: Photodynamic antimicrobial activity of new porphyrin derivatives against methicillin resistant Staphylococcus aureus publication-title: J. Microbiol. – volume: 7 year: 2012 ident: bib121 article-title: Photodynamic therapy can induce a protective innate immune response against murine bacterial arthritis via neutrophil accumulation publication-title: PloS One – volume: 9 start-page: 27 year: 2009 ident: bib129 article-title: In vivo killing of Staphylococcus aureus using a light-activated antimicrobial agent publication-title: BMC Microbiol. – volume: 39 start-page: 1013 year: 2012 end-page: 1021 ident: bib59 article-title: Fast and effective: intense pulse light photodynamic inactivation of bacteria publication-title: J. Ind. Microbiol. Biotechnol. – volume: 103 start-page: 360 year: 1965 end-page: 363 ident: bib152 article-title: Photosensitized inactivation of ribonucleic acids in the presence of riboflavin publication-title: Biochim. Biophys. Acta – year: 1961 ident: bib7 article-title: The use of a derivative of hematoporphyrin in tumor Detection23, JNCI publication-title: J. Natl. Cancer Inst. – volume: 90 start-page: 57 year: 2008 end-page: 63 ident: bib44 article-title: Bactericidal effect of photodynamic inactivation against methicillin-resistant and methicillin-susceptible Staphylococcus aureus is strain-dependent publication-title: J. Photochem. Photobiol. B Biol. – year: 2013 ident: bib31 publication-title: Anti-Infective Drugs Advisory Committee Meeting – year: 1996 ident: bib96 article-title: Mechanisms of cell damage in photodynamic therapy publication-title: The Fundamental Basis of Phototherapy – volume: 62 start-page: 1521 year: 2009 end-page: 1526 ident: bib105 article-title: Metallophthalocyanines as photodynamic sensitizers for treatment of pathogenic bacteria. Synthesis and singlet oxygen formation publication-title: C. R. Acad. Bulg. Sci. – volume: 166 start-page: 194 year: 2016 end-page: 202 ident: bib165 article-title: Rose bengal– and riboflavin-mediated photodynamic therapy to inhibit methicillin-resistant Staphylococcus aureus keratitis isolates publication-title: Am. J. Ophthalmol. – volume: 4 start-page: 1564 year: 2018 end-page: 1573 ident: bib47 article-title: Rapid uptake and photodynamic inactivation of staphylococci by Ga(III)-Protoporphyrin IX publication-title: ACS Infect. Dis. – volume: 3 start-page: 468 year: 2013 end-page: 473 ident: bib131 article-title: Photodynamic therapy of antibiotic-resistant biofilms in a maxillary sinus model publication-title: International Forum of Allergy & Rhinology – volume: 31 start-page: 1179 year: 2006 end-page: 1187 ident: bib56 article-title: Intense pulsed light as a nonablative approach to photoaging publication-title: Dermatol. Surg. – volume: 54 year: 2007 ident: bib77 article-title: Bactericidal effect of photodynamic therapy against methicillin-resistant publication-title: Acta Biochim. Pol. – year: 2015 ident: bib22 article-title: Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections publication-title: Journal of Clinical and Translational Research – volume: 1 start-page: 815 year: 2002 end-page: 819 ident: bib95 article-title: Approaches to selectivity in the Zn(ii)–phthalocyanine-photosensitized inactivation of wild-type and antibiotic-resistant Staphylococcus aureus publication-title: Photochem. Photobiol. Sci. – volume: 42 start-page: 38 year: 2010 end-page: 44 ident: bib23 article-title: Photodynamic therapy for methicillin-resistant publication-title: Laser Surg. Med. – volume: 17 start-page: 129 year: 1996 end-page: 140 ident: bib18 article-title: Antimicrobial resistance in long-term-care facilities publication-title: Infect. Control Hosp. Epidemiol. – volume: 129 start-page: 100 year: 2013 end-page: 107 ident: bib29 article-title: The agr function and polymorphism: impact on Staphylococcus aureus susceptibility to photoinactivation publication-title: J. Photochem. Photobiol. B Biol. – volume: 175 start-page: 72 year: 2019 end-page: 106 ident: bib6 article-title: Porphyrinoid photosensitizers mediated photodynamic inactivation against bacteria publication-title: Eur. J. Med. Chem. – volume: 53 start-page: 7796 year: 2010 end-page: 7803 ident: bib176 article-title: Cationic porphycenes as potential photosensitizers for antimicrobial photodynamic therapy publication-title: J. Med. Chem. – volume: 9 start-page: 169 year: 2003 end-page: 175 ident: bib17 article-title: Elimination of epidemic methicillin-ResistantStaphylococcus aureusfrom a university hospital and district institutions, Finland publication-title: Emerg. Infect. Dis. – volume: 31 start-page: 327 year: 2011 end-page: 335 ident: bib75 article-title: Neutral metallated and meso-substituted porphyrins as antimicrobial agents against Gram-positive pathogens publication-title: Eur. J. Clin. Microbiol. Infect. Dis. – volume: 79 start-page: 1335 year: 1983 ident: bib70 article-title: Photo-oxidation of metalloporphyrins in aqueous solution publication-title: J. Chem. Soc., Faraday Trans. 1: Physical Chemistry in Condensed Phases – volume: 95 start-page: 498 year: 2017 end-page: 502 ident: bib154 article-title: Photochemical eradication of methicillin-resistant Staphylococcus aureus by blue light activation of riboflavin publication-title: Acta Ophthalmol. – volume: 20 start-page: 10604 year: 2015 ident: 10.1016/j.ejmech.2020.112341_bib175 article-title: Antiviral, antifungal and antibacterial activities of a BODIPY-based photosensitizer publication-title: Molecules doi: 10.3390/molecules200610604 – volume: 44 start-page: 751 year: 2009 ident: 10.1016/j.ejmech.2020.112341_bib124 article-title: The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms publication-title: J. Periodontal. Res. doi: 10.1111/j.1600-0765.2008.01187.x – volume: 33 start-page: 577 year: 2013 ident: 10.1016/j.ejmech.2020.112341_bib49 article-title: Association between susceptibility to photodynamic oxidation and the genetic background of Staphylococcus aureus publication-title: Eur. J. Clin. Microbiol. Infect. Dis. doi: 10.1007/s10096-013-1987-5 – volume: 89 start-page: 679 year: 2013 ident: 10.1016/j.ejmech.2020.112341_bib125 article-title: Linezolid and vancomycin decrease the therapeutic effect of methylene blue-photodynamic therapy in a mouse model of MRSA bacterial arthritis publication-title: Photochem. Photobiol. doi: 10.1111/php.12040 – volume: 15 start-page: 4829 year: 2007 ident: 10.1016/j.ejmech.2020.112341_bib92 article-title: Photodynamic activity of water-soluble phthalocyanine zinc(II) complexes against pathogenic microorganisms publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2007.04.069 – volume: 95 start-page: 498 year: 2017 ident: 10.1016/j.ejmech.2020.112341_bib154 article-title: Photochemical eradication of methicillin-resistant Staphylococcus aureus by blue light activation of riboflavin publication-title: Acta Ophthalmol. doi: 10.1111/aos.13409 – volume: 54 year: 2007 ident: 10.1016/j.ejmech.2020.112341_bib77 article-title: Bactericidal effect of photodynamic therapy against methicillin-resistant Staphylococcus aureus strain with the use of various porphyrin photosensitizers publication-title: Acta Biochim. Pol. doi: 10.18388/abp.2007_3240 – volume: 27 start-page: 849 year: 2009 ident: 10.1016/j.ejmech.2020.112341_bib170 article-title: Bactericidal effect of photodynamic therapy using Na-pheophorbide a: evaluation of adequate light source publication-title: Photomedicine and Laser Surgery doi: 10.1089/pho.2008.2319 – volume: 9 start-page: 11 year: 2012 ident: 10.1016/j.ejmech.2020.112341_bib141 article-title: Phototoxicity of phenothiazinium dyes against methicillin-resistant Staphylococcus aureus and multi-drug resistant Escherichia coli publication-title: Photodiagnosis Photodyn. Ther. doi: 10.1016/j.pdpdt.2011.11.004 – volume: 159 start-page: 423 year: 2018 ident: 10.1016/j.ejmech.2020.112341_bib32 article-title: CureCuma–cationic curcuminoids with improved properties and enhanced antimicrobial photodynamic activity publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2017.09.072 – volume: 30 start-page: 549 year: 2013 ident: 10.1016/j.ejmech.2020.112341_bib91 article-title: Antimicrobial photodynamic therapy against pathogenic bacterial suspensions and biofilms using chloro-aluminum phthalocyanine encapsulated in nanoemulsions publication-title: Laser Med. Sci. doi: 10.1007/s10103-013-1354-x – volume: 53 start-page: 7796 year: 2010 ident: 10.1016/j.ejmech.2020.112341_bib176 article-title: Cationic porphycenes as potential photosensitizers for antimicrobial photodynamic therapy publication-title: J. Med. Chem. doi: 10.1021/jm1009555 – volume: 32 start-page: 121 year: 2014 ident: 10.1016/j.ejmech.2020.112341_bib28 article-title: Multiresistant strains are as susceptible to photodynamic inactivation as their naïve counterparts: protoporphyrin IX-mediated photoinactivation reveals differences between methicillin-resistant and methicillin-sensitive Staphylococcus aureus strains publication-title: Photomedicine and Laser Surgery doi: 10.1089/pho.2013.3663 – volume: 43 start-page: 586 year: 2011 ident: 10.1016/j.ejmech.2020.112341_bib130 article-title: Reduction of endotracheal tube biofilms using antimicrobial photodynamic therapy publication-title: Laser Surg. Med. doi: 10.1002/lsm.21103 – volume: 86 start-page: 1118 year: 2010 ident: 10.1016/j.ejmech.2020.112341_bib43 article-title: Evaluation of the role of the pharmacological inhibition of Staphylococcus aureus multidrug resistance pumps and the variable levels of the uptake of the sensitizer in the strain-dependent response of Staphylococcus aureus to PPArg2-based photodynamic ina publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.2010.00772.x – volume: 32 start-page: 1337 year: 2017 ident: 10.1016/j.ejmech.2020.112341_bib148 article-title: Photodynamic therapy controls of Staphylococcus aureus intradermal infection in mice publication-title: Laser Med. Sci. doi: 10.1007/s10103-017-2247-1 – volume: 96 start-page: 223 year: 2009 ident: 10.1016/j.ejmech.2020.112341_bib86 article-title: Delivery of Methylene Blue and meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate from cross-linked poly(vinyl alcohol) hydrogels: a potential means of photodynamic therapy of infected wounds publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/j.jphotobiol.2009.06.010 – volume: 9 start-page: 1868 year: 2014 ident: 10.1016/j.ejmech.2020.112341_bib98 article-title: Oligolysine-conjugated zinc(II) phthalocyanines as efficient photosensitizers for antimicrobial photodynamic therapy publication-title: Chem. Asian J. doi: 10.1002/asia.201402025 – volume: 166 start-page: 194 year: 2016 ident: 10.1016/j.ejmech.2020.112341_bib165 article-title: Rose bengal– and riboflavin-mediated photodynamic therapy to inhibit methicillin-resistant Staphylococcus aureus keratitis isolates publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2016.03.014 – volume: 113 start-page: 73 year: 2006 ident: 10.1016/j.ejmech.2020.112341_bib35 article-title: Polyion complex micelles for photodynamic therapy: incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2006.03.009 – volume: 31 start-page: 1179 year: 2006 ident: 10.1016/j.ejmech.2020.112341_bib56 article-title: Intense pulsed light as a nonablative approach to photoaging publication-title: Dermatol. Surg. doi: 10.1111/j.1524-4725.2005.31924 – volume: 129 start-page: 27 year: 2013 ident: 10.1016/j.ejmech.2020.112341_bib61 article-title: Photo-activated porphyrin in combination with antibiotics: therapies against Staphylococci publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/j.jphotobiol.2013.09.006 – volume: 17 start-page: 173 year: 2002 ident: 10.1016/j.ejmech.2020.112341_bib55 article-title: Laser and non-laser light sources for photodynamic therapy publication-title: Laser Med. Sci. doi: 10.1007/s101030200027 – volume: 454 start-page: 249 year: 2013 ident: 10.1016/j.ejmech.2020.112341_bib160 article-title: Antibiotic-free nanotherapeutics: hypericin nanoparticles thereof for improved in vitro and in vivo antimicrobial photodynamic therapy and wound healing publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2013.06.067 – volume: 86 start-page: 5163 year: 1982 ident: 10.1016/j.ejmech.2020.112341_bib71 article-title: Photophysical and redox properties of water-soluble porphyrins in aqueous media publication-title: J. Phys. Chem. doi: 10.1021/j100223a022 – volume: 92 start-page: 35 year: 2015 ident: 10.1016/j.ejmech.2020.112341_bib82 article-title: Synthesis, characterization and in vitro photodynamic antimicrobial activity of basic amino acid–porphyrin conjugates publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2014.12.029 – start-page: 141 year: 2008 ident: 10.1016/j.ejmech.2020.112341_bib39 article-title: Singlet oxygen quantum yields of porphyrin-based photosensitizers for photodynamic therapy publication-title: Journal of Innovative Optical Health Sciences doi: 10.1142/S1793545808000169 – volume: 10 start-page: 91 year: 2011 ident: 10.1016/j.ejmech.2020.112341_bib103 article-title: Non-aggregated Ga(iii)-phthalocyanines in the photodynamic inactivation of planktonic and biofilm cultures of pathogenic microorganisms publication-title: Photochem. Photobiol. Sci. doi: 10.1039/B9PP00154A – volume: 39 start-page: 1013 year: 2012 ident: 10.1016/j.ejmech.2020.112341_bib59 article-title: Fast and effective: intense pulse light photodynamic inactivation of bacteria publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1007/s10295-012-1103-3 – volume: 160 start-page: 177 year: 1998 ident: 10.1016/j.ejmech.2020.112341_bib144 article-title: Photobactericidal activity of phenothiazinium dyes against methicillin-resistant strains of Staphylococcus aureus publication-title: FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett. doi: 10.1111/j.1574-6968.1998.tb12908.x – volume: 51 start-page: 4502 year: 1969 ident: 10.1016/j.ejmech.2020.112341_bib73 article-title: Near-infrared absorption and circular dichroism spectra of ferrocytochrome c: d→d transitions publication-title: J. Chem. Phys. doi: 10.1063/1.1671818 – volume: 55 start-page: 85 year: 2008 ident: 10.1016/j.ejmech.2020.112341_bib42 article-title: Photodynamic effect of protoporphyrin diarginate (PPArg2) on methicillin-resistant Staphylococcus aureus and human dermal fibroblasts publication-title: Acta Biochim. Pol. doi: 10.18388/abp.2008_3204 – volume: 14 start-page: 211 year: 2016 ident: 10.1016/j.ejmech.2020.112341_bib132 article-title: Chitosan nanoparticles enhance the efficiency of methylene blue-mediated antimicrobial photodynamic inactivation of bacterial biofilms: an in vitro study publication-title: Photodiagnosis Photodyn. Ther. doi: 10.1016/j.pdpdt.2016.04.009 – start-page: 5157 year: 2014 ident: 10.1016/j.ejmech.2020.112341_bib150 article-title: Upconversion nanoparticles conjugated with curcumin as a photosensitizer to inhibit methicillin-resistant Staphylococcus aureus in lung under near infrared light publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S71365 – volume: 12 start-page: 133 year: 1994 ident: 10.1016/j.ejmech.2020.112341_bib168 article-title: Oxygen-independent photocleavage of DNA, and uptake of chlorophyll derivatives by cellular nuclei and mitochondria publication-title: J. Clin. Laser Med. Surg. doi: 10.1089/clm.1994.12.133 – volume: 49 start-page: 3402 year: 2008 ident: 10.1016/j.ejmech.2020.112341_bib163 article-title: Antimicrobial efficacy of riboflavin/UVA combination (365 nm) in vitro for bacterial and fungal isolates: a potential new treatment for infectious keratitis publication-title: Investigative Opthalmology & Visual Science doi: 10.1167/iovs.07-1592 – volume: 64 start-page: 59 year: 2009 ident: 10.1016/j.ejmech.2020.112341_bib116 article-title: The inability of a bacteriophage to infect Staphylococcus aureus does not prevent it from specifically delivering a photosensitizer to the bacterium enabling its lethal photosensitization publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkp157 – volume: 9 year: 2014 ident: 10.1016/j.ejmech.2020.112341_bib164 article-title: Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives publication-title: PloS One doi: 10.1371/journal.pone.0111792 – volume: 21 year: 2010 ident: 10.1016/j.ejmech.2020.112341_bib178 article-title: Rose Bengal-decorated silica nanoparticles as photosensitizers for inactivation of gram-positive bacteria publication-title: Nanotechnology doi: 10.1088/0957-4484/21/6/065102 – volume: 42 start-page: 38 year: 2010 ident: 10.1016/j.ejmech.2020.112341_bib117 article-title: Photodynamic therapy for methicillin-resistantStaphylococcus aureusinfection in a mouse skin abrasion model publication-title: Laser Surg. Med. doi: 10.1002/lsm.20887 – volume: 32 start-page: 940 year: 1968 ident: 10.1016/j.ejmech.2020.112341_bib50 article-title: The effect of dimethyl sulfoxide (DMSO) on permeability of Staphylococcus aureus publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(68)90118-6 – volume: 151 start-page: 183 year: 1989 ident: 10.1016/j.ejmech.2020.112341_bib146 article-title: Photokilling of bacteria by the natural dye curcumin publication-title: Arch. Microbiol. doi: 10.1007/BF00414437 – volume: 29 start-page: 1131 year: 2013 ident: 10.1016/j.ejmech.2020.112341_bib101 article-title: Susceptibility of methicillin-resistant Staphylococcus aureus to photodynamic antimicrobial chemotherapy with α-d-galactopyranosyl zinc phthalocyanines: in vitro study publication-title: Laser Med. Sci. doi: 10.1007/s10103-013-1488-x – volume: 90 start-page: 889 year: 1998 ident: 10.1016/j.ejmech.2020.112341_bib9 article-title: Photodynamic therapy publication-title: JNCI Journal of the National Cancer Institute doi: 10.1093/jnci/90.12.889 – volume: 8 start-page: 12631 year: 2016 ident: 10.1016/j.ejmech.2020.112341_bib107 article-title: Silicon(IV) phthalocyanine-decorated cyclodextrin vesicles as a self-assembled phototherapeutic agent against MRSA publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b02132 – volume: 29 start-page: 1686 year: 1993 ident: 10.1016/j.ejmech.2020.112341_bib2 article-title: An evaluation of photodynamic therapy in the management of cutaneous metastases of breast cancer publication-title: Eur. J. Canc. doi: 10.1016/0959-8049(93)90105-O – start-page: 1 year: 2013 ident: 10.1016/j.ejmech.2020.112341_bib5 article-title: Antimicrobial photodynamic therapy for methicillin-ResistantStaphylococcus aureusInfection publication-title: BioMed Res. Int. – volume: 116 start-page: 255 year: 2011 ident: 10.1016/j.ejmech.2020.112341_bib171 article-title: Photophysical and electronic properties of five PCBM-like C60 derivatives: spectral and quantum chemical view publication-title: J. Phys. Chem. doi: 10.1021/jp208520v – volume: 88 start-page: 626 year: 2012 ident: 10.1016/j.ejmech.2020.112341_bib159 article-title: Hypericin-mediated photodynamic antimicrobial effect on clinically isolated pathogens† publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.2012.01085.x – volume: 50 start-page: 535 year: 2018 ident: 10.1016/j.ejmech.2020.112341_bib76 article-title: The synergistic effect of PDT and oxacillin on clinical isolates of Staphylococcus aureus publication-title: Laser Surg. Med. doi: 10.1002/lsm.22785 – volume: 131 start-page: 511 year: 2010 ident: 10.1016/j.ejmech.2020.112341_bib155 article-title: A review of the antibacterial activity of Hypericum perforatum L. publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2010.07.034 – volume: 11 start-page: 1 year: 1993 ident: 10.1016/j.ejmech.2020.112341_bib3 article-title: Photodynamic therapy in dermatology: recent developments publication-title: Dermatol. Clin. doi: 10.1016/S0733-8635(18)30277-8 – volume: 119 start-page: 943 year: 2006 ident: 10.1016/j.ejmech.2020.112341_bib19 article-title: Fifteen-year study of the changing epidemiology of methicillin-resistant Staphylococcus aureus publication-title: Am. J. Med. doi: 10.1016/j.amjmed.2006.01.004 – volume: 31 start-page: 297 year: 2015 ident: 10.1016/j.ejmech.2020.112341_bib41 article-title: Photodynamic inactivation of antibiotic-resistant bacteria and biofilms by hematoporphyrin monomethyl ether publication-title: Laser Med. Sci. doi: 10.1007/s10103-015-1859-6 – volume: 21 start-page: 219 year: 2018 ident: 10.1016/j.ejmech.2020.112341_bib149 article-title: Reduced methicillin-resistant Staphylococcus aureus biofilm formation in bone cavities by photodynamic therapy publication-title: Photodiagnosis Photodyn. Ther. doi: 10.1016/j.pdpdt.2017.12.011 – volume: 4 start-page: 1 year: 2015 ident: 10.1016/j.ejmech.2020.112341_bib27 article-title: Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement, BioMed Centrals publication-title: Syst. Rev. doi: 10.1186/2046-4053-4-1 – volume: 6 start-page: 535 year: 2006 ident: 10.1016/j.ejmech.2020.112341_bib126 article-title: Photodynamic therapy and anti-tumour immunity publication-title: Nat. Rev. Canc. doi: 10.1038/nrc1894 – volume: 6 start-page: 141 year: 2014 ident: 10.1016/j.ejmech.2020.112341_bib30 article-title: An insight on bacterial cellular targets of photodynamic inactivation publication-title: Future Med. Chem. doi: 10.4155/fmc.13.211 – volume: 9 start-page: 359 year: 2012 ident: 10.1016/j.ejmech.2020.112341_bib79 article-title: Photodynamic inactivation requires innovative approach concerning numerous bacterial isolates and multicomponent sensitizing agents publication-title: Photodiagnosis Photodyn. Ther. doi: 10.1016/j.pdpdt.2012.04.002 – volume: 19 start-page: 249 year: 2017 ident: 10.1016/j.ejmech.2020.112341_bib140 article-title: The effect of antimicrobial photodynamic therapy on the expression of novel methicillin resistance markers determined using cDNA-AFLP approach in Staphylococcus aureus publication-title: Photodiagnosis Photodyn. Ther. doi: 10.1016/j.pdpdt.2017.06.012 – volume: 10 start-page: 397 year: 2000 ident: 10.1016/j.ejmech.2020.112341_bib8 article-title: Role of photodynamic therapy in the management of advanced esophageal cancer publication-title: Gastrointestinal Endoscopy Clinics of North America doi: 10.1016/S1052-5157(18)30112-0 – volume: 164 start-page: 987 year: 2011 ident: 10.1016/j.ejmech.2020.112341_bib99 article-title: Effectiveness of antimicrobial photodynamic therapy with a single treatment of RLP068/Cl in an experimental model of Staphylococcus aureus wound infection publication-title: Br. J. Dermatol. doi: 10.1111/j.1365-2133.2011.10232.x – volume: 9 start-page: 27 year: 2009 ident: 10.1016/j.ejmech.2020.112341_bib129 article-title: In vivo killing of Staphylococcus aureus using a light-activated antimicrobial agent publication-title: BMC Microbiol. doi: 10.1186/1471-2180-9-27 – volume: 178 start-page: 277 year: 2018 ident: 10.1016/j.ejmech.2020.112341_bib66 article-title: Potentiation by potassium iodide reveals that the anionic porphyrin TPPS4 is a surprisingly effective photosensitizer for antimicrobial photodynamic inactivation publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/j.jphotobiol.2017.10.036 – volume: 13 start-page: 87 year: 2007 ident: 10.1016/j.ejmech.2020.112341_bib136 article-title: A comparative in vitro photoinactivation study of clinical isolates of multidrug-resistant pathogens publication-title: J. Infect. Chemother. doi: 10.1007/s10156-006-0501-8 – volume: 6 start-page: 545 year: 2007 ident: 10.1016/j.ejmech.2020.112341_bib63 article-title: Determination of the antibacterial efficacy of a new porphyrin-based photosensitizer against MRSA ex vivo publication-title: Photochem. Photobiol. Sci. doi: 10.1039/b614770d – start-page: 7 year: 2007 ident: 10.1016/j.ejmech.2020.112341_bib4 – volume: 6 start-page: 817 year: 2013 ident: 10.1016/j.ejmech.2020.112341_bib11 article-title: Dye sensitizers for photodynamic therapy publication-title: Materials doi: 10.3390/ma6030817 – volume: 17 start-page: 129 year: 1996 ident: 10.1016/j.ejmech.2020.112341_bib18 article-title: Antimicrobial resistance in long-term-care facilities publication-title: Infect. Control Hosp. Epidemiol. doi: 10.2307/30141013 – volume: 1 start-page: 468 year: 2002 ident: 10.1016/j.ejmech.2020.112341_bib26 article-title: Photoinactivation of bacterial strains involved in periodontal diseases sensitized by porphycene–polylysine conjugates publication-title: Photochem. Photobiol. Sci. doi: 10.1039/b200977c – volume: 27 start-page: 1372 year: 1989 ident: 10.1016/j.ejmech.2020.112341_bib45 article-title: Staphylococcus aureus strains which are not identified by rapid agglutination methods are of capsular serotype 5 publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.27.6.1372-1374.1989 – volume: 16 start-page: 272 year: 1995 ident: 10.1016/j.ejmech.2020.112341_bib113 article-title: Lethal photosensitisation ofStaphylococcus aureus in vitro: effect of growth phase, serum, and pre-irradiation time publication-title: Laser Surg. Med. doi: 10.1002/lsm.1900160309 – volume: 9 year: 2014 ident: 10.1016/j.ejmech.2020.112341_bib60 article-title: Photodynamic antimicrobial polymers for infection control publication-title: PloS One doi: 10.1371/journal.pone.0108500 – volume: 520 start-page: 139 year: 2017 ident: 10.1016/j.ejmech.2020.112341_bib134 article-title: Photosensitizer-eluting nanofibers for enhanced photodynamic therapy of wounds: a preclinical study in immunocompromized rats publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2017.02.004 – volume: 10 start-page: 615 year: 2013 ident: 10.1016/j.ejmech.2020.112341_bib183 article-title: Photodynamic inactivation of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus with Ru(II)-based type I/type II photosensitizers publication-title: Photodiagnosis Photodyn. Ther. doi: 10.1016/j.pdpdt.2013.07.001 – volume: 25 start-page: 337 year: 2009 ident: 10.1016/j.ejmech.2020.112341_bib58 article-title: Current and new treatments of photodamaged skin publication-title: Facial Plast. Surg. doi: 10.1055/s-0029-1243083 – volume: 103 start-page: 1545 year: 2010 ident: 10.1016/j.ejmech.2020.112341_bib145 article-title: Curcumin as a therapeutic agent: the evidence from in vitro, animal and human studies publication-title: Br. J. Nutr. doi: 10.1017/S0007114509993667 – volume: 79 start-page: 1335 year: 1983 ident: 10.1016/j.ejmech.2020.112341_bib70 article-title: Photo-oxidation of metalloporphyrins in aqueous solution publication-title: J. Chem. Soc., Faraday Trans. 1: Physical Chemistry in Condensed Phases doi: 10.1039/f19837901335 – volume: 22 start-page: 5243 year: 2016 ident: 10.1016/j.ejmech.2020.112341_bib111 article-title: Labeling and selective inactivation of gram-positive bacteria employing bimodal photoprobes with dual readouts publication-title: Chem. Eur J. doi: 10.1002/chem.201504935 – volume: 173 start-page: 672 year: 2017 ident: 10.1016/j.ejmech.2020.112341_bib166 article-title: Effects of blue or violet light on the inactivation of Staphylococcus aureus by riboflavin-5′-phosphate photolysis publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/j.jphotobiol.2017.07.009 – volume: 41 start-page: 316 year: 2009 ident: 10.1016/j.ejmech.2020.112341_bib36 article-title: Improved photodynamic inactivation of gram-positive bacteria using hematoporphyrin encapsulated in liposomes and micelles publication-title: Laser Surg. Med. doi: 10.1002/lsm.20754 – volume: 1 start-page: 113 year: 1961 ident: 10.1016/j.ejmech.2020.112341_bib14 article-title: Celbenin"-resistant staphylococci publication-title: Br. Med. J. doi: 10.1136/bmj.1.5219.124-a – volume: 47 start-page: 1185 year: 1997 ident: 10.1016/j.ejmech.2020.112341_bib12 article-title: Photodynamic therapy: the clinical perspective. Review on applications for control of diverse tumorous and non-tumorous diseases publication-title: Arzneim. Forsch. – volume: 40 start-page: 873 year: 1997 ident: 10.1016/j.ejmech.2020.112341_bib90 article-title: Killing of methicillin-resistant Staphylococcus aureus in vitro using aluminium disulphonated phthalocyanine, a light-activated antimicrobial agent publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/40.6.873 – volume: 70 start-page: 531 year: 2004 ident: 10.1016/j.ejmech.2020.112341_bib167 article-title: Photo-activated DNA binding and antimicrobial activities of furoquinoline and pyranoquinalone alkaloids from Rutaceae publication-title: Planta Medicine doi: 10.1055/s-2004-827153 – year: 1961 ident: 10.1016/j.ejmech.2020.112341_bib7 article-title: The use of a derivative of hematoporphyrin in tumor Detection23, JNCI publication-title: J. Natl. Cancer Inst. – volume: 46 start-page: 24 year: 2013 ident: 10.1016/j.ejmech.2020.112341_bib37 article-title: Photodynamic therapy (PDT): PDT mechanisms publication-title: Clinical Endoscopy doi: 10.5946/ce.2013.46.1.24 – volume: 111 start-page: 10453 year: 2007 ident: 10.1016/j.ejmech.2020.112341_bib51 article-title: Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide publication-title: J. Phys. Chem. B doi: 10.1021/jp073113e – volume: 44 start-page: 243 year: 2001 ident: 10.1016/j.ejmech.2020.112341_bib33 article-title: Photodynamic activity of the haematoporphyrin derivative with rutin and arginine substituents (HpD-Rut2- Arg2) against staphylococcus aureus and pseudomonas aeruginosa publication-title: Pharmacol. Res. doi: 10.1006/phrs.2001.0855 – volume: 29 start-page: 413 year: 2011 ident: 10.1016/j.ejmech.2020.112341_bib78 article-title: The connection between agr and SCCmec elements of Staphylococcus aureus strains and their response to photodynamic inactivation publication-title: Photomedicine and Laser Surgery doi: 10.1089/pho.2010.2854 – volume: 37 start-page: 134 year: 2017 ident: 10.1016/j.ejmech.2020.112341_bib133 article-title: Fast and effective photodynamic inactivation of 4-day-old biofilm of methicillin-resistant Staphylococcus aureus using methylene blue-conjugated gold nanoparticles publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2016.12.007 – volume: 12 year: 2017 ident: 10.1016/j.ejmech.2020.112341_bib151 article-title: Encapsulation of curcumin in polymeric nanoparticles for antimicrobial Photodynamic Therapy publication-title: PloS One – volume: 9 start-page: 254 year: 1989 ident: 10.1016/j.ejmech.2020.112341_bib169 article-title: New method of photosensitizer accumulation for photodynamic therapy in an experimental liver tumor publication-title: Laser Surg. Med. doi: 10.1002/lsm.1900090308 – volume: 3 start-page: 320 year: 2017 ident: 10.1016/j.ejmech.2020.112341_bib68 article-title: Potassium iodide potentiates broad-spectrum antimicrobial photodynamic inactivation using photofrin publication-title: ACS Infect. Dis. doi: 10.1021/acsinfecdis.7b00004 – volume: 3 start-page: 468 year: 2013 ident: 10.1016/j.ejmech.2020.112341_bib131 article-title: Photodynamic therapy of antibiotic-resistant biofilms in a maxillary sinus model publication-title: International Forum of Allergy & Rhinology doi: 10.1002/alr.21134 – volume: 42 start-page: 38 year: 2010 ident: 10.1016/j.ejmech.2020.112341_bib23 article-title: Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model publication-title: Laser Surg. Med. doi: 10.1002/lsm.20887 – volume: 155 start-page: 400 year: 2011 ident: 10.1016/j.ejmech.2020.112341_bib93 article-title: A delivery system to avoid self-aggregation and to improve in vitro and in vivo skin delivery of a phthalocyanine derivative used in the photodynamic therapy publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2011.06.034 – volume: 103 start-page: 360 year: 1965 ident: 10.1016/j.ejmech.2020.112341_bib152 article-title: Photosensitized inactivation of ribonucleic acids in the presence of riboflavin publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2787(65)90182-6 – volume: 38 start-page: 178 year: 1997 ident: 10.1016/j.ejmech.2020.112341_bib180 article-title: Indocyanine green: intracellular uptake and phototherapeutic effects in vitro publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/S1011-1344(96)07453-2 – volume: 84 start-page: 278 year: 2014 ident: 10.1016/j.ejmech.2020.112341_bib97 article-title: Photodynamic inactivation of bacteria and viruses using two monosubstituted zinc(II) phthalocyanines publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2014.07.022 – volume: 64 start-page: 469 year: 1996 ident: 10.1016/j.ejmech.2020.112341_bib34 article-title: Structure and biodistribution relationships of photodynamic sensitizers publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1996.tb03093.x – volume: 165 start-page: 51 year: 2016 ident: 10.1016/j.ejmech.2020.112341_bib72 article-title: Photodynamic inactivation of methicillin-resistant Staphylococcus aureus and Escherichia coli: a metalloporphyrin comparison publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/j.jphotobiol.2016.10.016 – volume: 29 start-page: 165 year: 2001 ident: 10.1016/j.ejmech.2020.112341_bib20 article-title: Comparison of the methylene blue and toluidine blue photobactericidal efficacy against gram-positive and gram-negative microorganisms publication-title: Laser Surg. Med. doi: 10.1002/lsm.1105 – volume: 77 start-page: 329 year: 2012 ident: 10.1016/j.ejmech.2020.112341_bib85 article-title: Molecular targets of antimicrobial photodynamic therapy identified by a proteomic approach publication-title: Journal of Proteomics doi: 10.1016/j.jprot.2012.09.007 – volume: 5 start-page: 82 year: 2014 ident: 10.1016/j.ejmech.2020.112341_bib118 article-title: The effect of antimicrobial photodynamic therapy with Radachlorin® on Staphylococcus aureus and Escherichia coli: an in vitro study publication-title: J. Laser Med. Sci. – volume: 3 start-page: 756 year: 2017 ident: 10.1016/j.ejmech.2020.112341_bib128 article-title: Attaching the NorA efflux pump inhibitor INF55 to methylene blue enhances antimicrobial photodynamic inactivation of methicillin-resistant Staphylococcus aureus in vitro and in vivo publication-title: ACS Infect. Dis. doi: 10.1021/acsinfecdis.7b00095 – volume: 50 start-page: 46 year: 2017 ident: 10.1016/j.ejmech.2020.112341_bib139 article-title: Effects of toluidine blue O (TBO)-photodynamic inactivation on community-associated methicillin-resistant Staphylococcus aureus isolates publication-title: J. Microbiol. Immunol. Infect. doi: 10.1016/j.jmii.2014.12.007 – volume: 56 start-page: 828 year: 2018 ident: 10.1016/j.ejmech.2020.112341_bib83 article-title: Photodynamic antimicrobial activity of new porphyrin derivatives against methicillin resistant Staphylococcus aureus publication-title: J. Microbiol. – volume: 11 start-page: 1099 year: 2012 ident: 10.1016/j.ejmech.2020.112341_bib158 article-title: On the mechanism of Candida spp. photoinactivation by hypericin publication-title: Photochem. Photobiol. Sci. doi: 10.1039/c2pp25105a – volume: 279 start-page: 593 year: 1998 ident: 10.1016/j.ejmech.2020.112341_bib15 article-title: Community-acquired methicillin-resistant Staphylococcus aureus in children with No identified predisposing risk publication-title: J. Am. Med. Assoc. doi: 10.1001/jama.279.8.593 – volume: 29 start-page: 177 year: 1995 ident: 10.1016/j.ejmech.2020.112341_bib16 article-title: Methicillin-resistant Staphylococcus aureus in western Australia, 1983–1992 publication-title: J. Hosp. Infect. doi: 10.1016/0195-6701(95)90327-5 – volume: 88 year: 2012 ident: 10.1016/j.ejmech.2020.112341_bib89 article-title: Porphyrin-cellulose nanocrystals: a photobactericidal material that exhibits broad spectrum antimicrobial activity† publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.2012.01117.x – volume: 7 year: 2012 ident: 10.1016/j.ejmech.2020.112341_bib121 article-title: Photodynamic therapy can induce a protective innate immune response against murine bacterial arthritis via neutrophil accumulation publication-title: PloS One doi: 10.1371/journal.pone.0039823 – volume: 175 start-page: 72 year: 2019 ident: 10.1016/j.ejmech.2020.112341_bib6 article-title: Porphyrinoid photosensitizers mediated photodynamic inactivation against bacteria publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2019.04.057 – volume: 9 start-page: 169 year: 2003 ident: 10.1016/j.ejmech.2020.112341_bib17 article-title: Elimination of epidemic methicillin-ResistantStaphylococcus aureusfrom a university hospital and district institutions, Finland publication-title: Emerg. Infect. Dis. doi: 10.3201/eid0902.020233 – volume: 10 start-page: 1593 year: 2011 ident: 10.1016/j.ejmech.2020.112341_bib69 article-title: Antimicrobial peptide-modified liposomes for bacteria targeted delivery of temoporfin in photodynamic antimicrobial chemotherapy publication-title: Photochem. Photobiol. Sci. doi: 10.1039/c1pp05100h – volume: 30 start-page: 383 year: 2014 ident: 10.1016/j.ejmech.2020.112341_bib88 article-title: Antimicrobial action from a novel porphyrin derivative in photodynamic antimicrobial chemotherapy in vitro publication-title: Laser Med. Sci. doi: 10.1007/s10103-014-1681-6 – volume: 58 start-page: 895 year: 1993 ident: 10.1016/j.ejmech.2020.112341_bib1 article-title: Photodynamic therapy publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1993.tb04990.x – volume: 10 start-page: 347 year: 2015 ident: 10.1016/j.ejmech.2020.112341_bib161 article-title: Antimicrobial photodynamic activity of hypericin against methicillin-susceptible and resistant Staphylococcus aureus biofilms publication-title: Future Microbiol. doi: 10.2217/fmb.14.114 – volume: 7 year: 2016 ident: 10.1016/j.ejmech.2020.112341_bib24 article-title: Effect of photodynamic therapy on the virulence factors of Staphylococcus aureus publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.00267 – volume: 10 start-page: 323 year: 2010 ident: 10.1016/j.ejmech.2020.112341_bib48 article-title: Superoxide dismutase is upregulated in Staphylococcus aureus following protoporphyrin-mediated photodynamic inactivation and does not directly influence the response to photodynamic treatment publication-title: BMC Microbiol. doi: 10.1186/1471-2180-10-323 – volume: 55 start-page: 1883 year: 2011 ident: 10.1016/j.ejmech.2020.112341_bib38 article-title: Chitosan augments photodynamic inactivation of gram-positive and gram-negative bacteria publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00550-10 – volume: 17 start-page: 24 year: 2011 ident: 10.1016/j.ejmech.2020.112341_bib142 article-title: Photodynamic inactivation of multidrug resistant pathogens in Hong Kong publication-title: Hong Kong Med. J. – volume: 1 start-page: 815 year: 2002 ident: 10.1016/j.ejmech.2020.112341_bib95 article-title: Approaches to selectivity in the Zn(ii)–phthalocyanine-photosensitized inactivation of wild-type and antibiotic-resistant Staphylococcus aureus publication-title: Photochem. Photobiol. Sci. doi: 10.1039/B206554A – volume: 25 start-page: 743 year: 2010 ident: 10.1016/j.ejmech.2020.112341_bib138 article-title: Laser light combined with a photosensitizer may eliminate methicillin-resistant strains of Staphylococcus aureus publication-title: Laser Med. Sci. doi: 10.1007/s10103-010-0803-z – volume: 9 start-page: 3912 year: 2017 ident: 10.1016/j.ejmech.2020.112341_bib102 article-title: Dual antibacterial activities of a chitosan-modified upconversion photodynamic therapy system against drug-resistant bacteria in deep tissue publication-title: Nanoscale doi: 10.1039/C6NR07188K – volume: 79 start-page: 14 year: 2015 ident: 10.1016/j.ejmech.2020.112341_bib172 article-title: Antimicrobial photodynamic inactivation with decacationic functionalized fullerenes: oxygen-independent photokilling in presence of azide and new mechanistic insights publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2014.10.514 – volume: 43 start-page: 221 year: 2011 ident: 10.1016/j.ejmech.2020.112341_bib67 article-title: Photodynamic therapy using intra-articular photofrin for murine MRSA arthritis: biphasic light dose response for neutrophil-mediated antibacterial effect publication-title: Laser Surg. Med. doi: 10.1002/lsm.21037 – volume: 39 start-page: 1026 year: 2007 ident: 10.1016/j.ejmech.2020.112341_bib65 article-title: Efficient photoinactivation of methicillin-resistant Staphylococcus aureus by a novel porphyrin incorporated into a poly-cationic liposome publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2007.02.001 – ident: 10.1016/j.ejmech.2020.112341_bib25 doi: 10.1039/9781847551658-00001 – volume: 91 start-page: 54 year: 2016 ident: 10.1016/j.ejmech.2020.112341_bib162 article-title: The degree of virulence does not necessarily affect MRSA biofilm strength and response to photodynamic therapy publication-title: Microb. Pathog. doi: 10.1016/j.micpath.2015.11.012 – volume: 5 year: 2010 ident: 10.1016/j.ejmech.2020.112341_bib64 article-title: Efficient photodynamic therapy against gram-positive and gram-negative bacteria using THPTS, a cationic photosensitizer excited by infrared wavelength publication-title: PloS One doi: 10.1371/journal.pone.0011674 – volume: 45 year: 2016 ident: 10.1016/j.ejmech.2020.112341_bib13 article-title: Targeting innovation in antibiotic drug discovery and development: the need for a one Health – one Europe – one world framework publication-title: European Observatory on Health Systems and Policies Health, Policy Series – volume: 114 start-page: 8997 year: 1992 ident: 10.1016/j.ejmech.2020.112341_bib74 article-title: Luminescence studies of the intercalation of Cu(TMpyP4) into DNA publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00049a034 – volume: 9 start-page: 180 year: 2012 ident: 10.1016/j.ejmech.2020.112341_bib40 article-title: Research progress of hemoporfin – part one: preclinical study publication-title: Photodiagnosis Photodyn. Ther. doi: 10.1016/j.pdpdt.2011.09.004 – volume: 62 start-page: 1521 year: 2009 ident: 10.1016/j.ejmech.2020.112341_bib105 article-title: Metallophthalocyanines as photodynamic sensitizers for treatment of pathogenic bacteria. Synthesis and singlet oxygen formation publication-title: C. R. Acad. Bulg. Sci. – volume: 4 start-page: 503 year: 2005 ident: 10.1016/j.ejmech.2020.112341_bib53 article-title: Photodynamic therapy for Staphylococcus aureus infected burn wounds in mice publication-title: Photochem. Photobiol. Sci. doi: 10.1039/b502125a – volume: 32 start-page: 78 year: 2003 ident: 10.1016/j.ejmech.2020.112341_bib57 article-title: IPL technology: a review publication-title: Laser Surg. Med. doi: 10.1002/lsm.10145 – volume: 4 start-page: 1564 year: 2018 ident: 10.1016/j.ejmech.2020.112341_bib47 article-title: Rapid uptake and photodynamic inactivation of staphylococci by Ga(III)-Protoporphyrin IX publication-title: ACS Infect. Dis. doi: 10.1021/acsinfecdis.8b00125 – volume: 10 start-page: 92 year: 2004 ident: 10.1016/j.ejmech.2020.112341_bib114 article-title: Antibody-directed photodynamic therapy of MethicillinResistant Staphylococcus aureus publication-title: Microb. Drug Resist. doi: 10.1089/1076629041310000 – volume: 162 start-page: 340 year: 2016 ident: 10.1016/j.ejmech.2020.112341_bib119 article-title: Photodynamic inactivation of multidrug-resistant Staphylococcus aureus by chlorin e6 and red light (λ = 670 nm) publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/j.jphotobiol.2016.07.007 – volume: 14 start-page: 431 year: 2002 ident: 10.1016/j.ejmech.2020.112341_bib21 article-title: Methylene blue - a therapeutic dye for all seasons? publication-title: J. Chemother. doi: 10.1179/joc.2002.14.5.431 – volume: 55 start-page: 581 issue: 3 year: 2008 ident: 10.1016/j.ejmech.2020.112341_bib54 article-title: Photodynamic effect of lanthanide derivatives of meso-tetra(N-methyl4-pyridyl) porphine against Staphylococcus aureus publication-title: Acta biochimica polonca doi: 10.18388/abp.2008_3064 – volume: 129 start-page: 100 year: 2013 ident: 10.1016/j.ejmech.2020.112341_bib29 article-title: The agr function and polymorphism: impact on Staphylococcus aureus susceptibility to photoinactivation publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/j.jphotobiol.2013.10.006 – volume: 72 start-page: 4436 year: 2006 ident: 10.1016/j.ejmech.2020.112341_bib143 article-title: Cellulose acetate containing toluidine blue and Rose bengal is an effective antimicrobial coating when exposed to white light publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02945-05 – volume: 31 start-page: 327 year: 2011 ident: 10.1016/j.ejmech.2020.112341_bib75 article-title: Neutral metallated and meso-substituted porphyrins as antimicrobial agents against Gram-positive pathogens publication-title: Eur. J. Clin. Microbiol. Infect. Dis. doi: 10.1007/s10096-011-1314-y – volume: 53 start-page: 7337 year: 2010 ident: 10.1016/j.ejmech.2020.112341_bib174 article-title: Light induced antimicrobial properties of a brominated boron difluoride (BF2) chelated tetraarylazadipyrromethene photosensitizer publication-title: J. Med. Chem. doi: 10.1021/jm100585j – volume: 44 start-page: 582 year: 2016 ident: 10.1016/j.ejmech.2020.112341_bib153 article-title: Photodynamic UVA-riboflavin bacterial elimination in antibiotic-resistant bacteria publication-title: Clin. Exp. Ophthalmol. doi: 10.1111/ceo.12723 – volume: 28 start-page: 391 year: 2012 ident: 10.1016/j.ejmech.2020.112341_bib147 article-title: Phototoxic effect of curcumin on methicillin-resistant Staphylococcus aureus and L929 fibroblasts publication-title: Laser Med. Sci. doi: 10.1007/s10103-012-1064-9 – volume: 10 start-page: 2592 year: 2009 ident: 10.1016/j.ejmech.2020.112341_bib81 article-title: Inclusion of 5-[4-(1-Dodecanoylpyridinium)]-10,15,20-triphenylporphine in supramolecular aggregates of cationic amphiphilic cyclodextrins: physicochemical characterization of the complexes and strengthening of the antimicrobial photosensitizing activity publication-title: Biomacromolecules doi: 10.1021/bm900533r – volume: 21 start-page: 271 year: 2002 ident: 10.1016/j.ejmech.2020.112341_bib46 article-title: Structure–function relationships in heme-proteins publication-title: DNA Cell Biol. doi: 10.1089/104454902753759690 – volume: 17 start-page: 638 year: 2018 ident: 10.1016/j.ejmech.2020.112341_bib120 article-title: Progressive cationic functionalization of chlorin derivatives for antimicrobial photodynamic inactivation and related vancomycin conjugates publication-title: Photochem. Photobiol. Sci. doi: 10.1039/C7PP00389G – volume: 54 start-page: 15152 year: 2015 ident: 10.1016/j.ejmech.2020.112341_bib109 article-title: A multifunctional subphthalocyanine nanosphere for targeting, labeling, and killing of antibiotic-resistant bacteria publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201507140 – volume: 2 start-page: 131 year: 2015 ident: 10.1016/j.ejmech.2020.112341_bib110 article-title: Antimicrobial activity of metallo tetra (4-carboxyphenyl) phthalocyanine useful in photodynamic therapy publication-title: Pharmacologyonline – volume: 12 start-page: 2170 year: 2013 ident: 10.1016/j.ejmech.2020.112341_bib87 article-title: Porphyrin–silica microparticle conjugates as an efficient tool for the photosensitised disinfection of water contaminated by bacterial pathogens publication-title: Photochem. Photobiol. Sci. doi: 10.1039/c3pp50282a – volume: 52 start-page: 299 year: 2007 ident: 10.1016/j.ejmech.2020.112341_bib137 article-title: Toluidine blue-mediated photodynamic effects on staphylococcal biofilms publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00988-07 – volume: 88 start-page: 227 year: 2011 ident: 10.1016/j.ejmech.2020.112341_bib127 article-title: Optimal photosensitizers for photodynamic therapy of infections should kill bacteria but spare neutrophils publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.2011.01005.x – volume: 33 start-page: 523 year: 2017 ident: 10.1016/j.ejmech.2020.112341_bib135 article-title: Antimicrobial photodynamic therapy—a promising treatment for prosthetic joint infections publication-title: Laser Med. Sci. doi: 10.1007/s10103-017-2394-4 – volume: 20 year: 2015 ident: 10.1016/j.ejmech.2020.112341_bib181 article-title: Antibacterial photodynamic therapy with 808-nm laser and indocyanine green on abrasion wound models publication-title: J. Biomed. Optic. – year: 2015 ident: 10.1016/j.ejmech.2020.112341_bib22 article-title: Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections publication-title: Journal of Clinical and Translational Research – volume: 47 start-page: 6649 year: 2004 ident: 10.1016/j.ejmech.2020.112341_bib84 article-title: Synthesis and antibacterial activity of new poly-S-lysine−Porphyrin conjugates publication-title: J. Med. Chem. doi: 10.1021/jm040802v – volume: 61 year: 2017 ident: 10.1016/j.ejmech.2020.112341_bib179 article-title: Potassium iodide potentiates antimicrobial photodynamic inactivation mediated by Rose bengal in in vitro and in vivo studies publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00467-17 – volume: 10 start-page: 348 year: 2013 ident: 10.1016/j.ejmech.2020.112341_bib52 article-title: Discovering the mechanisms of strain-dependent response of Staphylococcus aureus to photoinactivation: oxidative stress toleration, endogenous porphyrin level and strains virulence publication-title: Photodiagnosis Photodyn. Ther. doi: 10.1016/j.pdpdt.2013.02.004 – volume: 18 start-page: 92 year: 2019 ident: 10.1016/j.ejmech.2020.112341_bib80 article-title: Bactericidal effects of hematoporphyrin monomethyl ether-mediated blue-light photodynamic therapy against Staphylococcus aureus publication-title: Photochem. Photobiol. Sci. doi: 10.1039/C8PP00127H – volume: 16 start-page: 27072 year: 2015 ident: 10.1016/j.ejmech.2020.112341_bib177 article-title: A comparative study on two cationic porphycenes: photophysical and antimicrobial photoinactivation evaluation publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms161125999 – volume: 10 start-page: 603 year: 2015 ident: 10.1016/j.ejmech.2020.112341_bib173 article-title: Potentiation of antimicrobial photodynamic inactivation mediated by a cationic fullerene by added iodide: in vitro and in vivo studies publication-title: Nanomedicine doi: 10.2217/nnm.14.131 – volume: 16 start-page: 7851 year: 2015 ident: 10.1016/j.ejmech.2020.112341_bib106 article-title: The photodynamic antibacterial effects of silicon phthalocyanine (Pc) 4 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms16047851 – volume: 6 start-page: 733 year: 2012 ident: 10.1016/j.ejmech.2020.112341_bib100 article-title: Antimicrobial photodynamic therapy with RLP068 kills methicillin-resistantStaphylococcus aureusand improves wound healing in a mouse model of infected skin abrasion PDT with RLP068/Cl in infected mouse skin abrasion publication-title: J. Biophot. doi: 10.1002/jbio.201200121 – year: 1996 ident: 10.1016/j.ejmech.2020.112341_bib96 article-title: Mechanisms of cell damage in photodynamic therapy – volume: 8 start-page: 340 year: 2008 ident: 10.1016/j.ejmech.2020.112341_bib94 article-title: Photophysical studies and in vitro skin permeation/retention of Foscan/nanoemulsion (NE) applicable to photodynamic therapy skin cancer treatment publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2008.18137 – volume: 49 start-page: 3690 year: 2005 ident: 10.1016/j.ejmech.2020.112341_bib115 article-title: Development of a novel targeting system for lethal photosensitization of antibiotic-resistant strains of Staphylococcus aureus publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.49.9.3690-3696.2005 – volume: 28 year: 2010 ident: 10.1016/j.ejmech.2020.112341_bib122 article-title: Energy dose parameters affect antimicrobial photodynamic therapy–mediated eradication of periopathogenic biofilm and planktonic cultures publication-title: Photomedicine and Laser Surgery doi: 10.1089/pho.2009.2622 – volume: 2 start-page: 187 year: 2002 ident: 10.1016/j.ejmech.2020.112341_bib10 article-title: Porphyrins in photodynamic therapy - a search for ideal photosensitizers publication-title: Curr. Med. Chem. Anti Canc. Agents doi: 10.2174/1568011023354137 – volume: 294 start-page: 133 year: 2009 ident: 10.1016/j.ejmech.2020.112341_bib104 article-title: Photodynamic inactivation ofAeromonas hydrophilaby cationic phthalocyanines with different hydrophobicity publication-title: FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett. doi: 10.1111/j.1574-6968.2009.01555.x – volume: 10 start-page: 15485 year: 2018 ident: 10.1016/j.ejmech.2020.112341_bib108 article-title: Near-infrared-triggered antibacterial and antifungal photodynamic therapy based on lanthanide-doped upconversion nanoparticles publication-title: Nanoscale doi: 10.1039/C8NR01967C – volume: 50 start-page: 857 year: 2002 ident: 10.1016/j.ejmech.2020.112341_bib112 article-title: Selective lethal photosensitization of methicillin-resistant Staphylococcus aureus using an IgG-tin (IV) chlorin e6 conjugate publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkf209 – volume: 63 start-page: 984 year: 2010 ident: 10.1016/j.ejmech.2020.112341_bib157 article-title: A phase II placebo-controlled study of photodynamic therapy with topical hypericin and visible light irradiation in the treatment of cutaneous T-cell lymphoma and psoriasis publication-title: J. Am. Acad. Dermatol. doi: 10.1016/j.jaad.2010.02.039 – start-page: 175 year: 2010 ident: 10.1016/j.ejmech.2020.112341_bib123 article-title: Photodynamic therapy of bacterial and fungal biofilm infections publication-title: Methods in Molecular Biology Photodynamic Therapy doi: 10.1007/978-1-60761-697-9_13 – volume: 36 start-page: 8 year: 2018 ident: 10.1016/j.ejmech.2020.112341_bib182 article-title: Photodynamic inactivation of methicillin-resistant Staphylococcus aureus by indocyanine green and near infrared light publication-title: Dermatol. Sin. doi: 10.1016/j.dsi.2017.08.003 – volume: 90 start-page: 57 year: 2008 ident: 10.1016/j.ejmech.2020.112341_bib44 article-title: Bactericidal effect of photodynamic inactivation against methicillin-resistant and methicillin-susceptible Staphylococcus aureus is strain-dependent publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/j.jphotobiol.2007.11.002 – volume: 49 start-page: 1542 year: 2005 ident: 10.1016/j.ejmech.2020.112341_bib62 article-title: Photodynamic effects of novel XF porphyrin derivatives on prokaryotic and eukaryotic cells publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.49.4.1542-1552.2005 – volume: 10 start-page: 1097 year: 2011 ident: 10.1016/j.ejmech.2020.112341_bib156 article-title: Targeted photodynamic therapy – a promising strategy of tumor treatment publication-title: Photochem. Photobiol. Sci. doi: 10.1039/c0pp00147c – year: 2013 ident: 10.1016/j.ejmech.2020.112341_bib31 |
SSID | ssj0005600 |
Score | 2.5670087 |
SecondaryResourceType | review_article |
Snippet | The high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) causing skin and soft tissue infections in both the community and healthcare settings... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 112341 |
SubjectTerms | Antibacterial photodynamic therapy (aPDT) Methicillin-resistant Staphylococcus aureus (MRSA) Photosensitizers |
Title | Contemporary approaches and future perspectives of antibacterial photodynamic therapy (aPDT) against methicillin-resistant Staphylococcus aureus (MRSA): A systematic review |
URI | https://dx.doi.org/10.1016/j.ejmech.2020.112341 https://www.proquest.com/docview/2410715595 |
Volume | 200 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXK9gAXVAqIQqkGCVWtVLNrO87G3FZbqgXUakW3Um-R49iQCpIVmz3shV_Ej2QcJw0goUqconzYiTLOzBvH7w0hr_lYSYmJB7VWKRrpkaDajjR1sTLaRi7izZzu-UU8u4o-XMvrLTLtuDB-WWXr-4NPb7x1e2TYvs3hsiiGlxh9ED0I7A3dMPP83m0uVCwHZHvy_uPsol_pEQcmCl7v866oY9A1y7zszTfb_JXgDZ1GROxfEeovX90EoLMd8rBFjjAJD_eIbNlyl9yfdgXbdsnhPMhQb05g0bOqVidwCPNeoHrzmPz8XZIKOlVxuwJd5hBERmDZkzBXUDk8VRdZUHbGh1h-qeoqD8XsIVC4NnCk56eLY9CfdYGYE3xt6sL46ZySYk7vcWpZA4JbNCxG0MqYNd4R74Wbo_NPl5PjtzCBXlkaAqvmCbk6e7eYzmhbtYEakciaWhfbhI0Nk7lVmRwzl8cjwzXjHNGmYiIfKeHww8_R52cJz1iSRU4Y4TRmS9qIp2RQVqV9RiBBrOWs0irHrM1ELMs4s9gcnTt2LJM9IjpLpaaVNPeVNb6m3dq1mzTYN_X2TYN99wi9bbUMkh53XD_uBkH6x9BMMerc0fJVN2ZSHAv-V4wubbVepYibENthNief_3fvL8gDv-cnuJncJ4P6-9q-RIRUZwfk3psf7KD9Dn4BaVAT8Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELam8TBe0Bggxs9DQtMmzbSO4yTmrSpMBdapYp20N8txbMg0koqmD33hL-KP5BwndCChSTxVamInyjl33zn3fUfI6yiVQmDiQa2VksZ6yKm2Q01dIo22sYujdk93epZMLuKPl-Jyi4x7Lowvq-x8f_Dprbfu_hl0T3OwKMvBOUYfRA8cZ0M3zDy_904seOrr-t78uFHnkQQeCp7ts66458-1RV726pttv0lELZmGx-xf8ekvT92Gn5Ndcq_DjTAKt3afbNlqj-yM-3Zte-RgFkSo18cw33CqlsdwALONPPX6Afl5U5AKek1xuwRdFRAkRmCxoWAuoXZ4qCnzoOuMN7H4Wjd1EVrZQyBwreFQz97Nj0B_0SUiTvCdqUvjN3Mqihm9R6lVAwht0awYP2tjVnhFvBb-HE4_n4-O3sIINrrSEDg1D8nFyfv5eEK7ng3U8Ew01LrEZiw1TBRW5iJlrkiGJtIsihBrSsaLoeQOX_sCPX6eRTnL8thxw53GXEkb_ohsV3VlHxPIEGk5K7UsMGczMcvziFkcjq4dJxbZPuG9pZTpBM19X41r1VeuXalgX-Xtq4J99wn9PWoRBD1uOT_tF4H6Y2EqjDm3jHzVrxmFa8F_iNGVrVdLhagJkR3mcuLJf8_-kuxM5tNTdfrh7NNTctcf8VvdTDwj2833lX2OWKnJX7Tvwi_J9RS8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contemporary+approaches+and+future+perspectives+of+antibacterial+photodynamic+therapy+%28aPDT%29+against+methicillin-resistant+Staphylococcus+aureus+%28MRSA%29%3A+A+systematic+review&rft.jtitle=European+journal+of+medicinal+chemistry&rft.au=Dharmaratne%2C+Priyanga&rft.au=Sapugahawatte%2C+Dulmini+Nanayakkara&rft.au=Wang%2C+Baiyan&rft.au=Chan%2C+Chung+Lap&rft.date=2020-08-15&rft.pub=Elsevier+Masson+SAS&rft.issn=0223-5234&rft.eissn=1768-3254&rft.volume=200&rft_id=info:doi/10.1016%2Fj.ejmech.2020.112341&rft.externalDocID=S0223523420303111 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0223-5234&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0223-5234&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0223-5234&client=summon |