Contemporary approaches and future perspectives of antibacterial photodynamic therapy (aPDT) against methicillin-resistant Staphylococcus aureus (MRSA): A systematic review

The high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) causing skin and soft tissue infections in both the community and healthcare settings challenges the limited options of effective antibiotics and motivates the search for alternative therapeutic solutions, such as antibacteria...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of medicinal chemistry Vol. 200; p. 112341
Main Authors Dharmaratne, Priyanga, Sapugahawatte, Dulmini Nanayakkara, Wang, Baiyan, Chan, Chung Lap, Lau, Kit-Man, Lau, Clara BS, Fung, Kwok Pui, Ng, Dennis KP, IP, Margaret
Format Journal Article
LanguageEnglish
Published Elsevier Masson SAS 15.08.2020
Subjects
Online AccessGet full text
ISSN0223-5234
1768-3254
1768-3254
DOI10.1016/j.ejmech.2020.112341

Cover

Abstract The high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) causing skin and soft tissue infections in both the community and healthcare settings challenges the limited options of effective antibiotics and motivates the search for alternative therapeutic solutions, such as antibacterial photodynamic therapy (aPDT). While many publications have described the promising anti-bacterial activities of PDT in vitro, its applications in vivo and in the clinic have been very limited. This limited availability may in part be due to variabilities in the selected photosensitizing agents (PS), the variable testing conditions used to examine anti-bacterial activities and their effectiveness in treating MRSA infections. We thus sought to systematically review and examine the evidence from existing studies on aPDT associated with MRSA and to critically appraise its current state of development and areas to be addressed in future studies. In 2018, we developed and registered a review protocol in the International Prospective Register of Systematic Reviews (PROSPERO) with registration No: CRD42018086736. Three bibliographical databases were consulted (PUBMED, MEDLINE, and EMBASE), and a total of 113 studies were included in this systematic review based on our eligibility criteria. Many variables, such as the use of a wide range of solvents, pre-irradiation times, irradiation times, light sources and light doses, have been used in the methods reported by researchers, which significantly affect the inter-study comparability and results. On another note, new approaches of linking immunoglobulin G (IgG), antibodies, efflux pump inhibitors, and bacteriophages with photosensitizers (PSs) and the incorporation of PSs into nano-scale delivery systems exert a direct effect on improving aPDT. Enhanced activities have also been achieved by optimizing the physicochemical properties of the PSs, such as the introduction of highly lipophilic, poly-cationic and site-specific modifications of the compounds. However, few in vivo studies (n = 17) have been conducted to translate aPDT into preclinical studies. We anticipate that further standardization of the experimental conditions and assessing the efficacy in vivo would allow this technology to be further applied in preclinical trials, so that aPDT would develop to become a sustainable, alternative therapeutic option against MRSA infection in the future. [Display omitted] •There are 113 studies being reported for aPDT against MRSA.•Cationic PSs are effective in aPDT against MRSA.•PSs linking with IgG, antibody, efflux pump inhibitors and bacteriophage increase the potency of aPDT against MRSA.•There are still but few in vivo aPDT studies that had been carried out against MRSA infections (n = 17).
AbstractList The high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) causing skin and soft tissue infections in both the community and healthcare settings challenges the limited options of effective antibiotics and motivates the search for alternative therapeutic solutions, such as antibacterial photodynamic therapy (aPDT). While many publications have described the promising anti-bacterial activities of PDT in vitro, its applications in vivo and in the clinic have been very limited. This limited availability may in part be due to variabilities in the selected photosensitizing agents (PS), the variable testing conditions used to examine anti-bacterial activities and their effectiveness in treating MRSA infections. We thus sought to systematically review and examine the evidence from existing studies on aPDT associated with MRSA and to critically appraise its current state of development and areas to be addressed in future studies. In 2018, we developed and registered a review protocol in the International Prospective Register of Systematic Reviews (PROSPERO) with registration No: CRD42018086736. Three bibliographical databases were consulted (PUBMED, MEDLINE, and EMBASE), and a total of 113 studies were included in this systematic review based on our eligibility criteria. Many variables, such as the use of a wide range of solvents, pre-irradiation times, irradiation times, light sources and light doses, have been used in the methods reported by researchers, which significantly affect the inter-study comparability and results. On another note, new approaches of linking immunoglobulin G (IgG), antibodies, efflux pump inhibitors, and bacteriophages with photosensitizers (PSs) and the incorporation of PSs into nano-scale delivery systems exert a direct effect on improving aPDT. Enhanced activities have also been achieved by optimizing the physicochemical properties of the PSs, such as the introduction of highly lipophilic, poly-cationic and site-specific modifications of the compounds. However, few in vivo studies (n = 17) have been conducted to translate aPDT into preclinical studies. We anticipate that further standardization of the experimental conditions and assessing the efficacy in vivo would allow this technology to be further applied in preclinical trials, so that aPDT would develop to become a sustainable, alternative therapeutic option against MRSA infection in the future. [Display omitted] •There are 113 studies being reported for aPDT against MRSA.•Cationic PSs are effective in aPDT against MRSA.•PSs linking with IgG, antibody, efflux pump inhibitors and bacteriophage increase the potency of aPDT against MRSA.•There are still but few in vivo aPDT studies that had been carried out against MRSA infections (n = 17).
The high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) causing skin and soft tissue infections in both the community and healthcare settings challenges the limited options of effective antibiotics and motivates the search for alternative therapeutic solutions, such as antibacterial photodynamic therapy (aPDT). While many publications have described the promising anti-bacterial activities of PDT in vitro, its applications in vivo and in the clinic have been very limited. This limited availability may in part be due to variabilities in the selected photosensitizing agents (PS), the variable testing conditions used to examine anti-bacterial activities and their effectiveness in treating MRSA infections. We thus sought to systematically review and examine the evidence from existing studies on aPDT associated with MRSA and to critically appraise its current state of development and areas to be addressed in future studies. In 2018, we developed and registered a review protocol in the International Prospective Register of Systematic Reviews (PROSPERO) with registration No: CRD42018086736. Three bibliographical databases were consulted (PUBMED, MEDLINE, and EMBASE), and a total of 113 studies were included in this systematic review based on our eligibility criteria. Many variables, such as the use of a wide range of solvents, pre-irradiation times, irradiation times, light sources and light doses, have been used in the methods reported by researchers, which significantly affect the inter-study comparability and results. On another note, new approaches of linking immunoglobulin G (IgG), antibodies, efflux pump inhibitors, and bacteriophages with photosensitizers (PSs) and the incorporation of PSs into nano-scale delivery systems exert a direct effect on improving aPDT. Enhanced activities have also been achieved by optimizing the physicochemical properties of the PSs, such as the introduction of highly lipophilic, poly-cationic and site-specific modifications of the compounds. However, few in vivo studies (n = 17) have been conducted to translate aPDT into preclinical studies. We anticipate that further standardization of the experimental conditions and assessing the efficacy in vivo would allow this technology to be further applied in preclinical trials, so that aPDT would develop to become a sustainable, alternative therapeutic option against MRSA infection in the future.The high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) causing skin and soft tissue infections in both the community and healthcare settings challenges the limited options of effective antibiotics and motivates the search for alternative therapeutic solutions, such as antibacterial photodynamic therapy (aPDT). While many publications have described the promising anti-bacterial activities of PDT in vitro, its applications in vivo and in the clinic have been very limited. This limited availability may in part be due to variabilities in the selected photosensitizing agents (PS), the variable testing conditions used to examine anti-bacterial activities and their effectiveness in treating MRSA infections. We thus sought to systematically review and examine the evidence from existing studies on aPDT associated with MRSA and to critically appraise its current state of development and areas to be addressed in future studies. In 2018, we developed and registered a review protocol in the International Prospective Register of Systematic Reviews (PROSPERO) with registration No: CRD42018086736. Three bibliographical databases were consulted (PUBMED, MEDLINE, and EMBASE), and a total of 113 studies were included in this systematic review based on our eligibility criteria. Many variables, such as the use of a wide range of solvents, pre-irradiation times, irradiation times, light sources and light doses, have been used in the methods reported by researchers, which significantly affect the inter-study comparability and results. On another note, new approaches of linking immunoglobulin G (IgG), antibodies, efflux pump inhibitors, and bacteriophages with photosensitizers (PSs) and the incorporation of PSs into nano-scale delivery systems exert a direct effect on improving aPDT. Enhanced activities have also been achieved by optimizing the physicochemical properties of the PSs, such as the introduction of highly lipophilic, poly-cationic and site-specific modifications of the compounds. However, few in vivo studies (n = 17) have been conducted to translate aPDT into preclinical studies. We anticipate that further standardization of the experimental conditions and assessing the efficacy in vivo would allow this technology to be further applied in preclinical trials, so that aPDT would develop to become a sustainable, alternative therapeutic option against MRSA infection in the future.
ArticleNumber 112341
Author Fung, Kwok Pui
Dharmaratne, Priyanga
Wang, Baiyan
IP, Margaret
Chan, Chung Lap
Sapugahawatte, Dulmini Nanayakkara
Ng, Dennis KP
Lau, Kit-Man
Lau, Clara BS
Author_xml – sequence: 1
  givenname: Priyanga
  surname: Dharmaratne
  fullname: Dharmaratne, Priyanga
  email: priyanga@cuhk.edu.hk
  organization: School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China
– sequence: 2
  givenname: Dulmini Nanayakkara
  surname: Sapugahawatte
  fullname: Sapugahawatte, Dulmini Nanayakkara
  email: dulmini87@hotmail.com
  organization: Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China
– sequence: 3
  givenname: Baiyan
  surname: Wang
  fullname: Wang, Baiyan
  email: tinawang@cuhk.edu.hk
  organization: School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China
– sequence: 4
  givenname: Chung Lap
  surname: Chan
  fullname: Chan, Chung Lap
  email: benchan99@cuhk.edu.hk
  organization: Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, China
– sequence: 5
  givenname: Kit-Man
  surname: Lau
  fullname: Lau, Kit-Man
  email: virginialau@cuhk.edu.hk
  organization: Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, China
– sequence: 6
  givenname: Clara BS
  surname: Lau
  fullname: Lau, Clara BS
  email: claralau@cuhk.edu.hk
  organization: Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, China
– sequence: 7
  givenname: Kwok Pui
  surname: Fung
  fullname: Fung, Kwok Pui
  email: dkpn@cuhk.edu.hk
  organization: School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China
– sequence: 8
  givenname: Dennis KP
  surname: Ng
  fullname: Ng, Dennis KP
  organization: Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Hong Kong (SAR), China
– sequence: 9
  givenname: Margaret
  surname: IP
  fullname: IP, Margaret
  email: margaretip@cuhk.edu.hk
  organization: Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China
BookMark eNqFkU1v1DAQhiNUJLaFf8DBx-0hiz_i7KYHpNXyKRWBaDlbk8mEeJXEwXaK8p_4kbgKJw5wGmlm3nfs97nMLkY3Upa9FHwnuChfnXd0Hgi7neQytYRUhXiSbcS-PORK6uIi23ApVa7T4Fl2GcKZc65LzjfZr5MbIw2T8-AXBtPkHWBHgcHYsHaOsyc2kQ8TYbQPqe_aNIq2BozkLfRs6lx0zTLCYJHFjjxMC9vClzf31wy-gx1DZAPFzqLtezvmnoINMXmwuwhTt_QOHeKcLqZbqWw_fb07Xt-wIwtLSE-DmHw9PVj6-Tx72kIf6MWfepV9e_f2_vQhv_38_uPpeJujOuiYU1vSQexR6IaqWu9F25QcJQgphaoqoRpeqVZUZUOA9UHW4lAXrULVgtYcUF1l29U3pfFjphDNYANS38NIbg5GFoLvhdaVTqvFuoreheCpNZO3Q8rSCG4e4ZizWeGYRzhmhZNkN3_J0Mb00wTDg-3_J369iillkHLxJqClEamxPmEyjbP_NvgNFjizrw
CitedBy_id crossref_primary_10_71267_mencom_7573
crossref_primary_10_1080_10717544_2022_2058650
crossref_primary_10_1016_j_jphotochem_2024_115700
crossref_primary_10_1016_j_tifs_2021_01_012
crossref_primary_10_1016_j_jphotobiol_2024_112860
crossref_primary_10_1016_j_molstruc_2021_130674
crossref_primary_10_1039_D1NJ00150G
crossref_primary_10_1002_pat_6155
crossref_primary_10_1016_j_cej_2024_158345
crossref_primary_10_1002_adma_202205653
crossref_primary_10_3390_ijms25115751
crossref_primary_10_1039_D1RA03417K
crossref_primary_10_1002_adtp_202000204
crossref_primary_10_1515_nanoph_2021_0254
crossref_primary_10_1016_j_pdpdt_2024_104075
crossref_primary_10_1016_j_ultramic_2021_113388
crossref_primary_10_2174_0118715265264388231128045954
crossref_primary_10_1016_j_molstruc_2021_132007
crossref_primary_10_1016_j_dyepig_2022_110806
crossref_primary_10_1039_D4CC01022A
crossref_primary_10_1021_acs_bioconjchem_2c00067
crossref_primary_10_1021_acs_biomac_4c01162
crossref_primary_10_1002_cptc_202300028
crossref_primary_10_1016_j_drudis_2023_103493
crossref_primary_10_3390_molecules29225336
crossref_primary_10_1021_acsami_1c10031
crossref_primary_10_3390_pharmaceutics13091399
crossref_primary_10_1007_s10593_023_03257_0
crossref_primary_10_1039_D0ME00150C
crossref_primary_10_1002_ardp_202000223
crossref_primary_10_1016_j_ejmech_2024_116703
crossref_primary_10_1051_bioconf_20248302001
crossref_primary_10_1038_s41598_023_38812_4
crossref_primary_10_3390_ijms22010234
crossref_primary_10_1007_s11172_024_4343_2
crossref_primary_10_1007_s43630_021_00102_1
crossref_primary_10_1016_j_jphotochem_2022_113789
crossref_primary_10_1021_acsami_3c09516
crossref_primary_10_1080_22221751_2020_1790305
crossref_primary_10_1002_jobm_202300579
crossref_primary_10_1021_acsami_1c10600
crossref_primary_10_3389_fmed_2021_673408
crossref_primary_10_3390_ma14040787
crossref_primary_10_1371_journal_pone_0245350
crossref_primary_10_1002_adhm_202302490
crossref_primary_10_1080_08927014_2022_2103804
crossref_primary_10_3390_ijms242115970
crossref_primary_10_1007_s43630_022_00194_3
crossref_primary_10_3390_fishes9030099
crossref_primary_10_1186_s12866_023_03018_1
crossref_primary_10_1016_j_dyepig_2021_109557
crossref_primary_10_3390_microorganisms11051143
crossref_primary_10_1021_acsabm_4c00659
crossref_primary_10_1111_phpp_12978
crossref_primary_10_3390_toxins13110804
crossref_primary_10_1021_acsnano_4c15730
crossref_primary_10_1051_bioconf_202410803012
crossref_primary_10_1007_s10103_022_03505_3
crossref_primary_10_1016_j_micpath_2020_104528
crossref_primary_10_3390_molecules26175312
crossref_primary_10_1142_S1088424622500316
crossref_primary_10_1021_acsabm_0c01341
crossref_primary_10_1016_j_nantod_2023_101892
crossref_primary_10_1186_s12951_024_02637_8
crossref_primary_10_3390_molecules27093024
crossref_primary_10_1016_j_procbio_2024_07_024
crossref_primary_10_1073_pnas_2208378119
Cites_doi 10.3390/molecules200610604
10.1111/j.1600-0765.2008.01187.x
10.1007/s10096-013-1987-5
10.1111/php.12040
10.1016/j.bmc.2007.04.069
10.1111/aos.13409
10.18388/abp.2007_3240
10.1089/pho.2008.2319
10.1016/j.pdpdt.2011.11.004
10.1016/j.ejmech.2017.09.072
10.1007/s10103-013-1354-x
10.1021/jm1009555
10.1089/pho.2013.3663
10.1002/lsm.21103
10.1111/j.1751-1097.2010.00772.x
10.1007/s10103-017-2247-1
10.1016/j.jphotobiol.2009.06.010
10.1002/asia.201402025
10.1016/j.ajo.2016.03.014
10.1016/j.jconrel.2006.03.009
10.1111/j.1524-4725.2005.31924
10.1016/j.jphotobiol.2013.09.006
10.1007/s101030200027
10.1016/j.ijpharm.2013.06.067
10.1021/j100223a022
10.1016/j.ejmech.2014.12.029
10.1142/S1793545808000169
10.1039/B9PP00154A
10.1007/s10295-012-1103-3
10.1111/j.1574-6968.1998.tb12908.x
10.1063/1.1671818
10.18388/abp.2008_3204
10.1016/j.pdpdt.2016.04.009
10.2147/IJN.S71365
10.1089/clm.1994.12.133
10.1167/iovs.07-1592
10.1093/jac/dkp157
10.1371/journal.pone.0111792
10.1088/0957-4484/21/6/065102
10.1002/lsm.20887
10.1016/0006-291X(68)90118-6
10.1007/BF00414437
10.1007/s10103-013-1488-x
10.1093/jnci/90.12.889
10.1021/acsami.6b02132
10.1016/0959-8049(93)90105-O
10.1021/jp208520v
10.1111/j.1751-1097.2012.01085.x
10.1002/lsm.22785
10.1016/j.jep.2010.07.034
10.1016/S0733-8635(18)30277-8
10.1016/j.amjmed.2006.01.004
10.1007/s10103-015-1859-6
10.1016/j.pdpdt.2017.12.011
10.1186/2046-4053-4-1
10.1038/nrc1894
10.4155/fmc.13.211
10.1016/j.pdpdt.2012.04.002
10.1016/j.pdpdt.2017.06.012
10.1016/S1052-5157(18)30112-0
10.1111/j.1365-2133.2011.10232.x
10.1186/1471-2180-9-27
10.1016/j.jphotobiol.2017.10.036
10.1007/s10156-006-0501-8
10.1039/b614770d
10.3390/ma6030817
10.2307/30141013
10.1039/b200977c
10.1128/JCM.27.6.1372-1374.1989
10.1002/lsm.1900160309
10.1371/journal.pone.0108500
10.1016/j.ijpharm.2017.02.004
10.1016/j.pdpdt.2013.07.001
10.1055/s-0029-1243083
10.1017/S0007114509993667
10.1039/f19837901335
10.1002/chem.201504935
10.1016/j.jphotobiol.2017.07.009
10.1002/lsm.20754
10.1136/bmj.1.5219.124-a
10.1093/jac/40.6.873
10.1055/s-2004-827153
10.5946/ce.2013.46.1.24
10.1021/jp073113e
10.1006/phrs.2001.0855
10.1089/pho.2010.2854
10.1016/j.jddst.2016.12.007
10.1002/lsm.1900090308
10.1021/acsinfecdis.7b00004
10.1002/alr.21134
10.1016/j.jconrel.2011.06.034
10.1016/0005-2787(65)90182-6
10.1016/S1011-1344(96)07453-2
10.1016/j.ejmech.2014.07.022
10.1111/j.1751-1097.1996.tb03093.x
10.1016/j.jphotobiol.2016.10.016
10.1002/lsm.1105
10.1016/j.jprot.2012.09.007
10.1021/acsinfecdis.7b00095
10.1016/j.jmii.2014.12.007
10.1039/c2pp25105a
10.1001/jama.279.8.593
10.1016/0195-6701(95)90327-5
10.1111/j.1751-1097.2012.01117.x
10.1371/journal.pone.0039823
10.1016/j.ejmech.2019.04.057
10.3201/eid0902.020233
10.1039/c1pp05100h
10.1007/s10103-014-1681-6
10.1111/j.1751-1097.1993.tb04990.x
10.2217/fmb.14.114
10.3389/fmicb.2016.00267
10.1186/1471-2180-10-323
10.1128/AAC.00550-10
10.1039/B206554A
10.1007/s10103-010-0803-z
10.1039/C6NR07188K
10.1016/j.freeradbiomed.2014.10.514
10.1002/lsm.21037
10.1016/j.biocel.2007.02.001
10.1039/9781847551658-00001
10.1016/j.micpath.2015.11.012
10.1371/journal.pone.0011674
10.1021/ja00049a034
10.1016/j.pdpdt.2011.09.004
10.1039/b502125a
10.1002/lsm.10145
10.1021/acsinfecdis.8b00125
10.1089/1076629041310000
10.1016/j.jphotobiol.2016.07.007
10.1179/joc.2002.14.5.431
10.18388/abp.2008_3064
10.1016/j.jphotobiol.2013.10.006
10.1128/AEM.02945-05
10.1007/s10096-011-1314-y
10.1021/jm100585j
10.1111/ceo.12723
10.1007/s10103-012-1064-9
10.1021/bm900533r
10.1089/104454902753759690
10.1039/C7PP00389G
10.1002/anie.201507140
10.1039/c3pp50282a
10.1128/AAC.00988-07
10.1111/j.1751-1097.2011.01005.x
10.1007/s10103-017-2394-4
10.1021/jm040802v
10.1128/AAC.00467-17
10.1016/j.pdpdt.2013.02.004
10.1039/C8PP00127H
10.3390/ijms161125999
10.2217/nnm.14.131
10.3390/ijms16047851
10.1002/jbio.201200121
10.1166/jnn.2008.18137
10.1128/AAC.49.9.3690-3696.2005
10.1089/pho.2009.2622
10.2174/1568011023354137
10.1111/j.1574-6968.2009.01555.x
10.1039/C8NR01967C
10.1093/jac/dkf209
10.1016/j.jaad.2010.02.039
10.1007/978-1-60761-697-9_13
10.1016/j.dsi.2017.08.003
10.1016/j.jphotobiol.2007.11.002
10.1128/AAC.49.4.1542-1552.2005
10.1039/c0pp00147c
ContentType Journal Article
Copyright 2020 The Authors
Copyright © 2020 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
Copyright_xml – notice: 2020 The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
DOI 10.1016/j.ejmech.2020.112341
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Pharmacy, Therapeutics, & Pharmacology
EISSN 1768-3254
ExternalDocumentID 10_1016_j_ejmech_2020_112341
S0223523420303111
GroupedDBID ---
--K
--M
.~1
0R~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AATCM
AAXUO
ABFRF
ABGSF
ABJNI
ABMAC
ABOCM
ABUDA
ABYKQ
ABZDS
ACDAQ
ACGFO
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
J1W
KOM
M2Y
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSK
SSP
SSU
SSZ
T5K
~G-
1B1
29G
53G
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMS
HMT
HVGLF
HZ~
IHE
R2-
RIG
SCB
SEW
SOC
SPT
SSH
WUQ
7X8
EFKBS
ID FETCH-LOGICAL-c385t-ef6e817c15de9b571fd60c2a122139913d093f196deacb82b18b4f3c3fa550ac3
IEDL.DBID AIKHN
ISSN 0223-5234
1768-3254
IngestDate Fri Sep 05 08:02:35 EDT 2025
Thu Apr 24 23:06:31 EDT 2025
Tue Jul 01 03:42:00 EDT 2025
Fri Feb 23 02:47:10 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Antibacterial photodynamic therapy (aPDT)
Methicillin-resistant Staphylococcus aureus (MRSA)
Photosensitizers
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-ef6e817c15de9b571fd60c2a122139913d093f196deacb82b18b4f3c3fa550ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0223523420303111
PQID 2410715595
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2410715595
crossref_primary_10_1016_j_ejmech_2020_112341
crossref_citationtrail_10_1016_j_ejmech_2020_112341
elsevier_sciencedirect_doi_10_1016_j_ejmech_2020_112341
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-15
PublicationDateYYYYMMDD 2020-08-15
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-15
  day: 15
PublicationDecade 2020
PublicationTitle European journal of medicinal chemistry
PublicationYear 2020
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Mantareva, Kussovski, Angelov, Borisova, Avramov, Schnurpfeil (bib92) 2007; 15
Sobotta, Skupin-Mrugalska, Piskorz, Mielcarek (bib6) 2019; 175
Xavier, David, Rubén, Dai, Agut, Hamblin (bib176) 2010; 53
Grinholc, Rapacka-Zdonczyk, Rybak, Szabados, Bielawski (bib28) 2014; 32
Tsugita, Okada, Uchara (bib152) 1965; 103
Hudson, Sou, Berger, Mcmillin (bib74) 1992; 114
Kobayashi, Koyama, Nakazato, Miyoshi, Wolff, Daikuzono (bib168) 1994; 12
Fekrazad, Zare, Sepahvand, Morsali (bib118) 2014; 5
Briggs, Blunn, Hislop, Ramalhete, Bagley, Mckenna (bib135) 2017; 33
Dougherty (bib1) 1993; 58
Tanaka, Mroz, Dai, Huang, Morimoto, Kinoshita (bib121) 2012; 7
Tseng, Hung, Chen, Lin, Jiang, Chiu (bib139) 2017; 50
Ma, Wang, Zang, Jiang, Zhang, Bi (bib80) 2019; 18
Tanaka, Kinoshita, Yoshihara, Shinomiya, Seki, Nemoto (bib127) 2011; 88
Szpakowska, Lasocki, Grzybowski, Graczyk (bib33) 2001; 44
Rook, Wood, Duvic, Vonderheid, Tobia, Cabana (bib157) 2010; 63
Yin, Wang, Huang, Landi, Vecchio, Chiang (bib172) 2015; 79
Gurtovenko, Anwar (bib51) 2007; 111
Hope, Packer, Wilson, Nair (bib116) 2009; 64
Hanawa, Fokialakis, Skaltsounis (bib167) 2004; 70
Dougherty, Gomer, Henderson, Jori, Kessel, Korbelik (bib9) 1998; 90
Biel (bib123) 2010
Jang, Nakagishi, Nishiyama, Kawauchi, Morimoto, Kikuchi (bib35) 2006; 113
Bamfield (bib4) 2007
Yang, Gitter, Rüger, Wieland, Chen, Liu (bib69) 2011; 10
Zhang, Huang, Wang, Chen, Liu, Hu (bib108) 2018; 10
Iluz, Maor, Keller, Malik (bib76) 2018; 50
Ochsner (bib12) 1997; 47
Riley, Rouse (bib16) 1995; 29
Lightdale (bib8) 2000; 10
Maisch, Bosl, Szeimies, Lehn, Abels (bib62) 2005; 49
Rossetti, Lopes, Carollo, Thomazini, Tedesco, Bentley (bib93) 2011; 155
Epstein, Sanderson, Mc Donald (bib145) 2010; 103
Liu, Hu, Ma, Lei, Xu (bib41) 2015; 31
Fontana, Abernethy, Som, Ruggiero, Doucette, Marcantonio (bib124) 2009; 44
Kossakowska, Nakonieczna, Kawiak, Kurlenda, Bielawski, Grinholc (bib52) 2013; 10
Ferro, Jori, Sortino, Stancanelli, Nikolov, Tognon (bib81) 2009; 10
Morales-De-Echegaray, Maltais, Lin, Younis, Kadasala, Seleem (bib47) 2018; 4
Embleton, Nair, Cookson, Wilson (bib114) 2004; 10
Pushpan, Venkatraman, Anand, Sankar, Parmeswaran, Ganesan (bib10) 2002; 2
Grinholc, Nakonieczna, Negri, Rapacka-Zdonczyk, Motyka, Fila (bib29) 2013; 129
Valle-Molinares, Romero, Quigua, Vallejo, Diaz, Arboleda (bib110) 2015; 2
Darabpour, Kashef, Amini, Kharrazi, Djavid (bib133) 2017; 37
Griffiths (bib90) 1997; 40
Boyle, Dolphin (bib34) 1996; 64
Skwor, Klemm, Zhang, Schardt, Blaszczyk, Bork (bib72) 2016; 165
Wong, Cheng, Hsieh, Liang (bib166) 2017; 173
Hoorijani, Rostami, Pourhajibagher, Chiniforush, Heidari, Pourakbari (bib140) 2017; 19
Embleton (bib112) 2002; 50
Gutierrez, Zanatta, Ortega, Balastegui, Sanitá, Pavarina (bib151) 2017; 12
Primo, Bentley, Tedesco (bib94) 2008; 8
López-Chicón, Paz-Cristobal, Rezusta, Aspiroz, Royo-Cañas, Andres-Ciriano (bib158) 2012; 11
Dosselli, Millioni, Puricelli, Tessari, Arrigoni, Franchin (bib85) 2012; 77
Grinholc, Zawacka-Pankau, Gwizdek-Wiśniewska, Bielawski (bib43) 2010; 86
Huang, Szewczyk, Sarna, Hamblin (bib68) 2017; 3
Mantareva, Angelov, Kussovski, Wöhrle, Dimitrov (bib105) 2009; 62
Tsai, Chien, Wang, Huang, Ker, Chen (bib38) 2011; 55
Ormond, Freeman (bib11) 2013; 6
El-Khordagui, El-Sayed, Galal, El-Gowelli, Omar, Mohamed (bib134) 2017; 520
Lambrechts, Demidova, Aalders, Hasan, Hamblin (bib53) 2005; 4
Wainwright, Crossley (bib21) 2002; 14
Saddiqe, Naeem, Maimoona (bib155) 2010; 131
Yow, Tang, Chu, Huang (bib159) 2012; 88
Nafee, Youssef, El-Gowelli, Asem, Kandil (bib160) 2013; 454
Strausbaugh, Crossley, Nurse, Thrupp (bib18) 1996; 17
Yow, Fung, Wong (bib142) 2011; 17
Kussovski, Mantareva, Angelov, Orozova, Wã¶Hrle, Schnurpfeil (bib104) 2009; 294
Zhang, Dai, Wang, Vecchio, Chiang, Hamblin (bib173) 2015; 10
Eaton, Charney (bib73) 1969; 51
Maisch, Spannberger, Regensburger, Felgenträger, Bäumler (bib59) 2012; 39
Biel, Sievert, Usacheva, Teichert, Wedell, Loebel (bib130) 2011; 43
Brancaleon, Moseley (bib55) 2002; 17
Frimannsson, Grossi, Murtagh, Paradisi, O’Shea (bib174) 2010; 53
Ribeiro, Pavarina, Dovigo, Brunetti, Bagnato, Vergani (bib147) 2012; 28
Tomé, Maria, Neves, Tomé, Cavaleiro, Soncin, Magaraggia (bib84) 2004; 47
Donnelly, Cassidy, Loughlin, Brown, Tunney, Jenkins (bib86) 2009; 96
Roy, Shetty, Hota, Baek, Kim, Kim (bib109) 2015; 54
(bib31) 2013
Fournier, Boutonnier, Bouvet (bib45) 1989; 27
Mccoy, O’Neil, Cowley, Carson, Baróid, Gdowski (bib60) 2014; 9
Zhao, Li, Meng, Li, Wang, Liu (bib101) 2013; 29
Ghajar, Harmon (bib50) 1968; 32
Wilson, Pratten (bib113) 1995; 16
Topaloglu, Güney, Yuksel, Gülsoy (bib181) 2015; 20
Dimaano, Rozario, Nerandzic, Donskey, Lam, Baron (bib106) 2015; 16
Maisch, Eichner, Späth, Gollmer, König, Regensburger (bib164) 2014; 9
Lui, Anderson (bib3) 1993; 11
Sharma, Visai, Bragheri, Cristiani, Gupta, Speziale (bib137) 2007; 52
Nishiwaki, Nakamura, Sakaguchi (bib169) 1989; 9
Jevons (bib14) 1961; 1
Ribeiro, Andrade, Bagnato, Vergani, Primo, Tedesco (bib91) 2013; 30
Dahl, Mc Gowan, Shand, Srinivasan (bib146) 1989; 151
Bartolomeu, Rocha, Cunha, Neves, Faustino, Almeida (bib24) 2016; 7
Schastak, Ziganshyna, Gitter, Wiedemann, Claudepierre (bib64) 2010; 5
Bugaj (bib156) 2011; 10
Fickweiler, Szeimies, Bäumler, Steinbach, Karrer, Goetz (bib180) 1997; 38
Nakonieczna, Grinholc (bib79) 2012; 9
Lauro, Pretto, Covolo, Jori, Bertoloni (bib26) 2002; 1
Spaeth, Graeler, Maisch, Plaetzer (bib32) 2018; 159
Ruiz-González, Agut, Reddi, Nonell (bib177) 2015; 16
Grinholc, Szramka, Kurlenda, Graczyk, Bielawski (bib44) 2008; 90
Burda, Fields, Gill, Burt, Shepherd, Zhang (bib75) 2011; 31
Paoli, Marles-Wright, Smith (bib46) 2002; 21
Kalyanasundaram, Neumann-Spallart (bib71) 1982; 86
Shamban (bib58) 2009; 25
Berg (bib96) 1996
J. Moan, Q. Peng, An outline of the history of PDT, Photodynamic Therapy. (n.d.) 1–18. doi:10.1039/9781847551658-00001.
Tsai, Yang, Wang, Chien, Chen (bib36) 2009; 41
Halili, Arboleda, Durkee, Taneja, Miller, Alawa (bib165) 2016; 166
Raulin, Greve, Grema (bib57) 2003; 32
Huang, Wang, Huang, El-Hussein, Wolf, Chiang (bib120) 2018; 17
Tanaka, Mroz, Dai, Huang, Morimoto, Kinoshita (bib125) 2013; 89
Zolfaghari, Packer, Singer, Nair, Bennett, Street (bib129) 2009; 9
Wen, Zhang, Szewczyk, El-Hussein, Huang, Sarna (bib179) 2017; 61
García, Ballesta, Gilaberte, Rezusta, Pascual (bib161) 2015; 10
Harriman, Porter, Walters (bib70) 1983; 79
Taslı, Akbıyık, Topaloğlu, Alptüzün, Parlar (bib83) 2018; 56
Latief, Chikama, Shibasaki, Sasaki, Ko, Kiuchi (bib88) 2014; 30
Soncin, Fabris, Busetti, Dei, Nistri, Roncucci (bib95) 2002; 1
Allison, Moghissi (bib37) 2013; 46
Embleton, Nair, Heywood, Menon, Cookson, Wilson (bib115) 2005; 49
Darabpour, Kashef, Mashayekhan (bib132) 2016; 14
Herold (bib15) 1998; 279
Biel, Pedigo, Gibbs, Loebel (bib131) 2013; 3
Dastgheyb, Eckmann, Composto, Hickok (bib61) 2013; 129
Lipson, Baldes, Olsen (bib7) 1961
Makdoumi, Bäckman (bib153) 2016; 44
Simonetti, Cirioni, Orlando, Alongi, Lucarini, Silvestri (bib99) 2011; 164
Yamamoto, Iriuchishima, Aizawa, Okano, Goto, Nagai (bib170) 2009; 27
Tang, Yow, Hamblin (bib136) 2007; 13
Usacheva, Teichert, Biel (bib20) 2001; 29
Almeida, Pereira, Rodrigues, Leal, Marques, Rosa (bib148) 2017; 32
Castano, Mroz, Hamblin (bib126) 2006; 6
Makdoumi, Goodrich, Bäckman (bib154) 2017; 95
Grinholc, Szramka, Olender, Graczyk (bib77) 2007; 54
Kashef, Abadi, Djavid (bib141) 2012; 9
Alves, Faustino, Neves, Cunha, Tome, Almeida (bib30) 2014; 6
Maisch, Bosl, Szeimies, Love, Abels (bib63) 2007; 6
Ke, Eastel, Ngai, Cheung, Chan, Hui (bib98) 2014; 9
Magaraggia, Jori, Soncin, Schofield, Russell (bib87) 2013; 12
Li, Lin, Lin, Xie (bib39) 2008
Vecchio, Dai, Huang, Fantetti, Roncucci, Hamblin (bib100) 2012; 6
Fu, Fang, Yao (bib5) 2013
Nakonieczna, Michta, Rybicka, Grinholc, Gwizdek-Wiśniewska, Bielawski (bib48) 2010; 10
Rineh, Dolla, Ball, Magana, Bremner, Hamblin (bib128) 2017; 3
Martins, Combs, Noguera, Camacho, Wittmann, Walther (bib163) 2008; 49
Rapacka-Zdonczyk, Larsen, Empel, Patel, Grinholc (bib49) 2013; 33
Carpenter, Feese, Sadeghifar, Argyropoulos, Ghiladi (bib89) 2012; 88
Galstyan, Kauscher, Block, Ravoo, Strassert (bib107) 2016; 8
Wong, Wu, Ko, Lee, Hor, Huang (bib182) 2018; 36
Dai, Tegos, Zhiyentayev, Mylonakis, Hamblin (bib23) 2010; 42
Mantareva, Kussovski, Angelov, Wöhrle, Dimitrov, Popova (bib103) 2011; 10
Araújo, Rodrigues, Santos, Oliveira, Rosa, Bagnato (bib149) 2018; 21
Meng, Xu, Hong, Zhao, Zhao, Guo (bib82) 2015; 92
Renwick, Simpkin, Mossialos (bib13) 2016; 45
Carpenter, Situ, Scholle, Bartelmess, Weare, Ghiladi (bib175) 2015; 20
Crum, Lee, Thornton, Stine, Wallace, Barrozo (bib19) 2006; 119
Liu, Qin, Zaat, Breukink, Heger (bib22) 2015
Moher, Shamseer, Clarke, Ghersi, Liberati, Petticrew (bib27) 2015; 4
Street, Pedigo, Loebel (bib122) 2010; 28
Grinholc, Kawiak, Kurlenda, Graczyk, Bielawski (bib42) 2008; 55
Tanaka, Kinoshita, Yoshihara, Shinomiya, Seki, Nemoto (bib67) 2011; 43
Ye, Li, Fang (bib150) 2014
Ferro, Ricchelli, Monti, Mancini, Jori (bib65) 2007; 39
Ke, Eastel, Ngai, Cheung, Chan, Hui (bib97) 2014; 84
Guo, Rogelj, Zhang (bib178) 2010; 21
Pu, Chen, Yu (bib40) 2012; 9
Winkler, Simon, Finke, Bleses, Birke, Szentmáry (bib119) 2016; 162
Jurczak, Szramka, Grinholc, Legendziewicz, Bielawski (bib54) 2008; 55
Galstyan, Block, Niemann, Grüner, Abbruzzetti, Oneto (bib111) 2016; 22
Wang, He, Li, Su (bib171) 2011; 116
Arenas, Monro, Shi, Mandel, Mcfarland, Lilge (bib183) 2013; 10
Li, Cui, Yin, Zhu, Ma, Qian (bib102) 2017; 9
Kotilainen, Routamaa, Peltonen, Oksi, Rintala, Meurman (bib17) 2003; 9
Decraene, Pratten, Wilson (bib143) 2006; 72
Grinholc, Richter, Nakonieczna, Fila, Bielawski (bib78) 2011; 29
Wainwright (bib144) 1998; 160
Abouelfetouh, Nafee, Moussa (bib162) 2016; 91
Khan, Dougherty, Mang (bib2) 1993; 29
Dai, Tegos, Zhiyentayev, Mylonakis, Hamblin (bib117) 2010; 42
Hajim, Salih, Rassam (bib138) 2010; 25
Goldman, Weiss, Weiss (bib56) 2006; 31
Huang, El-Hussein, Xuan, Hamblin (bib66) 2018; 178
Shamban (10.1016/j.ejmech.2020.112341_bib58) 2009; 25
Dosselli (10.1016/j.ejmech.2020.112341_bib85) 2012; 77
Khan (10.1016/j.ejmech.2020.112341_bib2) 1993; 29
Kussovski (10.1016/j.ejmech.2020.112341_bib104) 2009; 294
Fickweiler (10.1016/j.ejmech.2020.112341_bib180) 1997; 38
Castano (10.1016/j.ejmech.2020.112341_bib126) 2006; 6
Bartolomeu (10.1016/j.ejmech.2020.112341_bib24) 2016; 7
Ke (10.1016/j.ejmech.2020.112341_bib97) 2014; 84
Pushpan (10.1016/j.ejmech.2020.112341_bib10) 2002; 2
Embleton (10.1016/j.ejmech.2020.112341_bib112) 2002; 50
Nakonieczna (10.1016/j.ejmech.2020.112341_bib79) 2012; 9
García (10.1016/j.ejmech.2020.112341_bib161) 2015; 10
Kashef (10.1016/j.ejmech.2020.112341_bib141) 2012; 9
Hanawa (10.1016/j.ejmech.2020.112341_bib167) 2004; 70
Sobotta (10.1016/j.ejmech.2020.112341_bib6) 2019; 175
Grinholc (10.1016/j.ejmech.2020.112341_bib78) 2011; 29
Rineh (10.1016/j.ejmech.2020.112341_bib128) 2017; 3
Soncin (10.1016/j.ejmech.2020.112341_bib95) 2002; 1
Grinholc (10.1016/j.ejmech.2020.112341_bib43) 2010; 86
Ormond (10.1016/j.ejmech.2020.112341_bib11) 2013; 6
Tanaka (10.1016/j.ejmech.2020.112341_bib121) 2012; 7
Harriman (10.1016/j.ejmech.2020.112341_bib70) 1983; 79
Simonetti (10.1016/j.ejmech.2020.112341_bib99) 2011; 164
Araújo (10.1016/j.ejmech.2020.112341_bib149) 2018; 21
Dastgheyb (10.1016/j.ejmech.2020.112341_bib61) 2013; 129
Huang (10.1016/j.ejmech.2020.112341_bib68) 2017; 3
Sharma (10.1016/j.ejmech.2020.112341_bib137) 2007; 52
Lauro (10.1016/j.ejmech.2020.112341_bib26) 2002; 1
Grinholc (10.1016/j.ejmech.2020.112341_bib28) 2014; 32
Griffiths (10.1016/j.ejmech.2020.112341_bib90) 1997; 40
Allison (10.1016/j.ejmech.2020.112341_bib37) 2013; 46
Briggs (10.1016/j.ejmech.2020.112341_bib135) 2017; 33
Roy (10.1016/j.ejmech.2020.112341_bib109) 2015; 54
Bamfield (10.1016/j.ejmech.2020.112341_bib4) 2007
(10.1016/j.ejmech.2020.112341_bib31) 2013
Darabpour (10.1016/j.ejmech.2020.112341_bib133) 2017; 37
Dougherty (10.1016/j.ejmech.2020.112341_bib1) 1993; 58
Tsai (10.1016/j.ejmech.2020.112341_bib38) 2011; 55
Carpenter (10.1016/j.ejmech.2020.112341_bib175) 2015; 20
Wainwright (10.1016/j.ejmech.2020.112341_bib21) 2002; 14
Halili (10.1016/j.ejmech.2020.112341_bib165) 2016; 166
Valle-Molinares (10.1016/j.ejmech.2020.112341_bib110) 2015; 2
Ye (10.1016/j.ejmech.2020.112341_bib150) 2014
Rossetti (10.1016/j.ejmech.2020.112341_bib93) 2011; 155
Saddiqe (10.1016/j.ejmech.2020.112341_bib155) 2010; 131
Almeida (10.1016/j.ejmech.2020.112341_bib148) 2017; 32
Ma (10.1016/j.ejmech.2020.112341_bib80) 2019; 18
Pu (10.1016/j.ejmech.2020.112341_bib40) 2012; 9
Tanaka (10.1016/j.ejmech.2020.112341_bib67) 2011; 43
Zolfaghari (10.1016/j.ejmech.2020.112341_bib129) 2009; 9
Biel (10.1016/j.ejmech.2020.112341_bib131) 2013; 3
Taslı (10.1016/j.ejmech.2020.112341_bib83) 2018; 56
Mccoy (10.1016/j.ejmech.2020.112341_bib60) 2014; 9
Ferro (10.1016/j.ejmech.2020.112341_bib81) 2009; 10
Eaton (10.1016/j.ejmech.2020.112341_bib73) 1969; 51
Berg (10.1016/j.ejmech.2020.112341_bib96) 1996
Magaraggia (10.1016/j.ejmech.2020.112341_bib87) 2013; 12
Vecchio (10.1016/j.ejmech.2020.112341_bib100) 2012; 6
Biel (10.1016/j.ejmech.2020.112341_bib130) 2011; 43
Wen (10.1016/j.ejmech.2020.112341_bib179) 2017; 61
Renwick (10.1016/j.ejmech.2020.112341_bib13) 2016; 45
Grinholc (10.1016/j.ejmech.2020.112341_bib77) 2007; 54
Yang (10.1016/j.ejmech.2020.112341_bib69) 2011; 10
Dai (10.1016/j.ejmech.2020.112341_bib23) 2010; 42
Fontana (10.1016/j.ejmech.2020.112341_bib124) 2009; 44
Kotilainen (10.1016/j.ejmech.2020.112341_bib17) 2003; 9
Alves (10.1016/j.ejmech.2020.112341_bib30) 2014; 6
Zhang (10.1016/j.ejmech.2020.112341_bib173) 2015; 10
Bugaj (10.1016/j.ejmech.2020.112341_bib156) 2011; 10
Tanaka (10.1016/j.ejmech.2020.112341_bib125) 2013; 89
10.1016/j.ejmech.2020.112341_bib25
Donnelly (10.1016/j.ejmech.2020.112341_bib86) 2009; 96
Maisch (10.1016/j.ejmech.2020.112341_bib164) 2014; 9
Arenas (10.1016/j.ejmech.2020.112341_bib183) 2013; 10
Raulin (10.1016/j.ejmech.2020.112341_bib57) 2003; 32
Jurczak (10.1016/j.ejmech.2020.112341_bib54) 2008; 55
Dahl (10.1016/j.ejmech.2020.112341_bib146) 1989; 151
Tang (10.1016/j.ejmech.2020.112341_bib136) 2007; 13
Herold (10.1016/j.ejmech.2020.112341_bib15) 1998; 279
Tsai (10.1016/j.ejmech.2020.112341_bib36) 2009; 41
Skwor (10.1016/j.ejmech.2020.112341_bib72) 2016; 165
Galstyan (10.1016/j.ejmech.2020.112341_bib107) 2016; 8
Paoli (10.1016/j.ejmech.2020.112341_bib46) 2002; 21
Maisch (10.1016/j.ejmech.2020.112341_bib62) 2005; 49
Brancaleon (10.1016/j.ejmech.2020.112341_bib55) 2002; 17
Maisch (10.1016/j.ejmech.2020.112341_bib59) 2012; 39
Grinholc (10.1016/j.ejmech.2020.112341_bib44) 2008; 90
Carpenter (10.1016/j.ejmech.2020.112341_bib89) 2012; 88
Embleton (10.1016/j.ejmech.2020.112341_bib114) 2004; 10
Mantareva (10.1016/j.ejmech.2020.112341_bib103) 2011; 10
Abouelfetouh (10.1016/j.ejmech.2020.112341_bib162) 2016; 91
Li (10.1016/j.ejmech.2020.112341_bib102) 2017; 9
Fournier (10.1016/j.ejmech.2020.112341_bib45) 1989; 27
Gurtovenko (10.1016/j.ejmech.2020.112341_bib51) 2007; 111
Lightdale (10.1016/j.ejmech.2020.112341_bib8) 2000; 10
Kalyanasundaram (10.1016/j.ejmech.2020.112341_bib71) 1982; 86
Yamamoto (10.1016/j.ejmech.2020.112341_bib170) 2009; 27
Martins (10.1016/j.ejmech.2020.112341_bib163) 2008; 49
Mantareva (10.1016/j.ejmech.2020.112341_bib92) 2007; 15
Mantareva (10.1016/j.ejmech.2020.112341_bib105) 2009; 62
Ochsner (10.1016/j.ejmech.2020.112341_bib12) 1997; 47
Liu (10.1016/j.ejmech.2020.112341_bib41) 2015; 31
Nakonieczna (10.1016/j.ejmech.2020.112341_bib48) 2010; 10
Dai (10.1016/j.ejmech.2020.112341_bib117) 2010; 42
Ke (10.1016/j.ejmech.2020.112341_bib98) 2014; 9
Hoorijani (10.1016/j.ejmech.2020.112341_bib140) 2017; 19
Spaeth (10.1016/j.ejmech.2020.112341_bib32) 2018; 159
Burda (10.1016/j.ejmech.2020.112341_bib75) 2011; 31
Guo (10.1016/j.ejmech.2020.112341_bib178) 2010; 21
Boyle (10.1016/j.ejmech.2020.112341_bib34) 1996; 64
Riley (10.1016/j.ejmech.2020.112341_bib16) 1995; 29
Maisch (10.1016/j.ejmech.2020.112341_bib63) 2007; 6
Wainwright (10.1016/j.ejmech.2020.112341_bib144) 1998; 160
Lipson (10.1016/j.ejmech.2020.112341_bib7) 1961
Hope (10.1016/j.ejmech.2020.112341_bib116) 2009; 64
Darabpour (10.1016/j.ejmech.2020.112341_bib132) 2016; 14
Moher (10.1016/j.ejmech.2020.112341_bib27) 2015; 4
Szpakowska (10.1016/j.ejmech.2020.112341_bib33) 2001; 44
Dougherty (10.1016/j.ejmech.2020.112341_bib9) 1998; 90
Liu (10.1016/j.ejmech.2020.112341_bib22) 2015
Ribeiro (10.1016/j.ejmech.2020.112341_bib147) 2012; 28
Hudson (10.1016/j.ejmech.2020.112341_bib74) 1992; 114
Gutierrez (10.1016/j.ejmech.2020.112341_bib151) 2017; 12
Galstyan (10.1016/j.ejmech.2020.112341_bib111) 2016; 22
Crum (10.1016/j.ejmech.2020.112341_bib19) 2006; 119
Street (10.1016/j.ejmech.2020.112341_bib122) 2010; 28
Topaloglu (10.1016/j.ejmech.2020.112341_bib181) 2015; 20
Tanaka (10.1016/j.ejmech.2020.112341_bib127) 2011; 88
Wong (10.1016/j.ejmech.2020.112341_bib182) 2018; 36
Wang (10.1016/j.ejmech.2020.112341_bib171) 2011; 116
Usacheva (10.1016/j.ejmech.2020.112341_bib20) 2001; 29
Nafee (10.1016/j.ejmech.2020.112341_bib160) 2013; 454
Strausbaugh (10.1016/j.ejmech.2020.112341_bib18) 1996; 17
Grinholc (10.1016/j.ejmech.2020.112341_bib42) 2008; 55
Kobayashi (10.1016/j.ejmech.2020.112341_bib168) 1994; 12
Fekrazad (10.1016/j.ejmech.2020.112341_bib118) 2014; 5
Frimannsson (10.1016/j.ejmech.2020.112341_bib174) 2010; 53
Jang (10.1016/j.ejmech.2020.112341_bib35) 2006; 113
Winkler (10.1016/j.ejmech.2020.112341_bib119) 2016; 162
Rapacka-Zdonczyk (10.1016/j.ejmech.2020.112341_bib49) 2013; 33
Makdoumi (10.1016/j.ejmech.2020.112341_bib154) 2017; 95
Goldman (10.1016/j.ejmech.2020.112341_bib56) 2006; 31
El-Khordagui (10.1016/j.ejmech.2020.112341_bib134) 2017; 520
Lui (10.1016/j.ejmech.2020.112341_bib3) 1993; 11
Li (10.1016/j.ejmech.2020.112341_bib39) 2008
López-Chicón (10.1016/j.ejmech.2020.112341_bib158) 2012; 11
Fu (10.1016/j.ejmech.2020.112341_bib5) 2013
Wilson (10.1016/j.ejmech.2020.112341_bib113) 1995; 16
Hajim (10.1016/j.ejmech.2020.112341_bib138) 2010; 25
Tsugita (10.1016/j.ejmech.2020.112341_bib152) 1965; 103
Rook (10.1016/j.ejmech.2020.112341_bib157) 2010; 63
Schastak (10.1016/j.ejmech.2020.112341_bib64) 2010; 5
Ribeiro (10.1016/j.ejmech.2020.112341_bib91) 2013; 30
Yin (10.1016/j.ejmech.2020.112341_bib172) 2015; 79
Ghajar (10.1016/j.ejmech.2020.112341_bib50) 1968; 32
Embleton (10.1016/j.ejmech.2020.112341_bib115) 2005; 49
Wong (10.1016/j.ejmech.2020.112341_bib166) 2017; 173
Zhao (10.1016/j.ejmech.2020.112341_bib101) 2013; 29
Tseng (10.1016/j.ejmech.2020.112341_bib139) 2017; 50
Yow (10.1016/j.ejmech.2020.112341_bib142) 2011; 17
Yow (10.1016/j.ejmech.2020.112341_bib159) 2012; 88
Iluz (10.1016/j.ejmech.2020.112341_bib76) 2018; 50
Decraene (10.1016/j.ejmech.2020.112341_bib143) 2006; 72
Tomé (10.1016/j.ejmech.2020.112341_bib84) 2004; 47
Latief (10.1016/j.ejmech.2020.112341_bib88) 2014; 30
Dimaano (10.1016/j.ejmech.2020.112341_bib106) 2015; 16
Makdoumi (10.1016/j.ejmech.2020.112341_bib153) 2016; 44
Primo (10.1016/j.ejmech.2020.112341_bib94) 2008; 8
Jevons (10.1016/j.ejmech.2020.112341_bib14) 1961; 1
Xavier (10.1016/j.ejmech.2020.112341_bib176) 2010; 53
Huang (10.1016/j.ejmech.2020.112341_bib120) 2018; 17
Ferro (10.1016/j.ejmech.2020.112341_bib65) 2007; 39
Kossakowska (10.1016/j.ejmech.2020.112341_bib52) 2013; 10
Huang (10.1016/j.ejmech.2020.112341_bib66) 2018; 178
Biel (10.1016/j.ejmech.2020.112341_bib123) 2010
Lambrechts (10.1016/j.ejmech.2020.112341_bib53) 2005; 4
Meng (10.1016/j.ejmech.2020.112341_bib82) 2015; 92
Morales-De-Echegaray (10.1016/j.ejmech.2020.112341_bib47) 2018; 4
Grinholc (10.1016/j.ejmech.2020.112341_bib29) 2013; 129
Nishiwaki (10.1016/j.ejmech.2020.112341_bib169) 1989; 9
Ruiz-González (10.1016/j.ejmech.2020.112341_bib177) 2015; 16
Zhang (10.1016/j.ejmech.2020.112341_bib108) 2018; 10
Epstein (10.1016/j.ejmech.2020.112341_bib145) 2010; 103
References_xml – volume: 1
  start-page: 113
  year: 1961
  end-page: 114
  ident: bib14
  article-title: Celbenin"-resistant staphylococci
  publication-title: Br. Med. J.
– start-page: 1
  year: 2013
  end-page: 9
  ident: bib5
  article-title: Antimicrobial photodynamic therapy for methicillin-ResistantStaphylococcus aureusInfection
  publication-title: BioMed Res. Int.
– volume: 22
  start-page: 5243
  year: 2016
  end-page: 5252
  ident: bib111
  article-title: Labeling and selective inactivation of gram-positive bacteria employing bimodal photoprobes with dual readouts
  publication-title: Chem. Eur J.
– volume: 32
  start-page: 1337
  year: 2017
  end-page: 1342
  ident: bib148
  article-title: Photodynamic therapy controls of Staphylococcus aureus intradermal infection in mice
  publication-title: Laser Med. Sci.
– volume: 294
  start-page: 133
  year: 2009
  end-page: 140
  ident: bib104
  article-title: Photodynamic inactivation ofAeromonas hydrophilaby cationic phthalocyanines with different hydrophobicity
  publication-title: FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett.
– volume: 155
  start-page: 400
  year: 2011
  end-page: 408
  ident: bib93
  article-title: A delivery system to avoid self-aggregation and to improve in vitro and in vivo skin delivery of a phthalocyanine derivative used in the photodynamic therapy
  publication-title: J. Contr. Release
– volume: 88
  start-page: 626
  year: 2012
  end-page: 632
  ident: bib159
  article-title: Hypericin-mediated photodynamic antimicrobial effect on clinically isolated pathogens†
  publication-title: Photochem. Photobiol.
– volume: 90
  start-page: 889
  year: 1998
  end-page: 905
  ident: bib9
  article-title: Photodynamic therapy
  publication-title: JNCI Journal of the National Cancer Institute
– volume: 88
  year: 2012
  ident: bib89
  article-title: Porphyrin-cellulose nanocrystals: a photobactericidal material that exhibits broad spectrum antimicrobial activity†
  publication-title: Photochem. Photobiol.
– volume: 6
  start-page: 141
  year: 2014
  end-page: 164
  ident: bib30
  article-title: An insight on bacterial cellular targets of photodynamic inactivation
  publication-title: Future Med. Chem.
– volume: 19
  start-page: 249
  year: 2017
  end-page: 255
  ident: bib140
  article-title: The effect of antimicrobial photodynamic therapy on the expression of novel methicillin resistance markers determined using cDNA-AFLP approach in Staphylococcus aureus
  publication-title: Photodiagnosis Photodyn. Ther.
– volume: 46
  start-page: 24
  year: 2013
  ident: bib37
  article-title: Photodynamic therapy (PDT): PDT mechanisms
  publication-title: Clinical Endoscopy
– volume: 49
  start-page: 3690
  year: 2005
  end-page: 3696
  ident: bib115
  article-title: Development of a novel targeting system for lethal photosensitization of antibiotic-resistant strains of Staphylococcus aureus
  publication-title: Antimicrob. Agents Chemother.
– volume: 54
  start-page: 15152
  year: 2015
  end-page: 15155
  ident: bib109
  article-title: A multifunctional subphthalocyanine nanosphere for targeting, labeling, and killing of antibiotic-resistant bacteria
  publication-title: Angew. Chem. Int. Ed.
– volume: 165
  start-page: 51
  year: 2016
  end-page: 57
  ident: bib72
  article-title: Photodynamic inactivation of methicillin-resistant Staphylococcus aureus and Escherichia coli: a metalloporphyrin comparison
  publication-title: J. Photochem. Photobiol. B Biol.
– volume: 58
  start-page: 895
  year: 1993
  end-page: 900
  ident: bib1
  article-title: Photodynamic therapy
  publication-title: Photochem. Photobiol.
– volume: 2
  start-page: 187
  year: 2002
  end-page: 207
  ident: bib10
  article-title: Porphyrins in photodynamic therapy - a search for ideal photosensitizers
  publication-title: Curr. Med. Chem. Anti Canc. Agents
– volume: 50
  start-page: 535
  year: 2018
  end-page: 551
  ident: bib76
  article-title: The synergistic effect of PDT and oxacillin on clinical isolates of
  publication-title: Laser Surg. Med.
– volume: 30
  start-page: 549
  year: 2013
  end-page: 559
  ident: bib91
  article-title: Antimicrobial photodynamic therapy against pathogenic bacterial suspensions and biofilms using chloro-aluminum phthalocyanine encapsulated in nanoemulsions
  publication-title: Laser Med. Sci.
– volume: 16
  start-page: 272
  year: 1995
  end-page: 276
  ident: bib113
  article-title: Lethal photosensitisation ofStaphylococcus aureus in vitro: effect of growth phase, serum, and pre-irradiation time
  publication-title: Laser Surg. Med.
– volume: 96
  start-page: 223
  year: 2009
  end-page: 231
  ident: bib86
  article-title: Delivery of Methylene Blue and meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate from cross-linked poly(vinyl alcohol) hydrogels: a potential means of photodynamic therapy of infected wounds
  publication-title: J. Photochem. Photobiol. B Biol.
– volume: 25
  start-page: 337
  year: 2009
  end-page: 346
  ident: bib58
  article-title: Current and new treatments of photodamaged skin
  publication-title: Facial Plast. Surg.
– volume: 6
  start-page: 545
  year: 2007
  ident: bib63
  article-title: Determination of the antibacterial efficacy of a new porphyrin-based photosensitizer against MRSA ex vivo
  publication-title: Photochem. Photobiol. Sci.
– volume: 20
  start-page: 10604
  year: 2015
  end-page: 10621
  ident: bib175
  article-title: Antiviral, antifungal and antibacterial activities of a BODIPY-based photosensitizer
  publication-title: Molecules
– volume: 173
  start-page: 672
  year: 2017
  end-page: 680
  ident: bib166
  article-title: Effects of blue or violet light on the inactivation of Staphylococcus aureus by riboflavin-5′-phosphate photolysis
  publication-title: J. Photochem. Photobiol. B Biol.
– volume: 33
  start-page: 577
  year: 2013
  end-page: 586
  ident: bib49
  article-title: Association between susceptibility to photodynamic oxidation and the genetic background of
  publication-title: Eur. J. Clin. Microbiol. Infect. Dis.
– volume: 10
  start-page: 603
  year: 2015
  end-page: 614
  ident: bib173
  article-title: Potentiation of antimicrobial photodynamic inactivation mediated by a cationic fullerene by added iodide: in vitro and in vivo studies
  publication-title: Nanomedicine
– volume: 279
  start-page: 593
  year: 1998
  ident: bib15
  article-title: Community-acquired methicillin-resistant Staphylococcus aureus in children with No identified predisposing risk
  publication-title: J. Am. Med. Assoc.
– volume: 17
  start-page: 638
  year: 2018
  end-page: 651
  ident: bib120
  article-title: Progressive cationic functionalization of chlorin derivatives for antimicrobial photodynamic inactivation and related vancomycin conjugates
  publication-title: Photochem. Photobiol. Sci.
– volume: 1
  start-page: 468
  year: 2002
  end-page: 470
  ident: bib26
  article-title: Photoinactivation of bacterial strains involved in periodontal diseases sensitized by porphycene–polylysine conjugates
  publication-title: Photochem. Photobiol. Sci.
– volume: 131
  start-page: 511
  year: 2010
  end-page: 521
  ident: bib155
  article-title: A review of the antibacterial activity of Hypericum perforatum L.
  publication-title: J. Ethnopharmacol.
– volume: 44
  start-page: 751
  year: 2009
  end-page: 759
  ident: bib124
  article-title: The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms
  publication-title: J. Periodontal. Res.
– volume: 114
  start-page: 8997
  year: 1992
  end-page: 9002
  ident: bib74
  article-title: Luminescence studies of the intercalation of Cu(TMpyP4) into DNA
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 1099
  year: 2012
  ident: bib158
  article-title: On the mechanism of Candida spp. photoinactivation by hypericin
  publication-title: Photochem. Photobiol. Sci.
– volume: 2
  start-page: 131
  year: 2015
  end-page: 137
  ident: bib110
  article-title: Antimicrobial activity of metallo tetra (4-carboxyphenyl) phthalocyanine useful in photodynamic therapy
  publication-title: Pharmacologyonline
– volume: 32
  start-page: 121
  year: 2014
  end-page: 129
  ident: bib28
  article-title: Multiresistant strains are as susceptible to photodynamic inactivation as their naïve counterparts: protoporphyrin IX-mediated photoinactivation reveals differences between methicillin-resistant and methicillin-sensitive Staphylococcus aureus strains
  publication-title: Photomedicine and Laser Surgery
– volume: 10
  start-page: 15485
  year: 2018
  end-page: 15495
  ident: bib108
  article-title: Near-infrared-triggered antibacterial and antifungal photodynamic therapy based on lanthanide-doped upconversion nanoparticles
  publication-title: Nanoscale
– volume: 44
  start-page: 582
  year: 2016
  end-page: 586
  ident: bib153
  article-title: Photodynamic UVA-riboflavin bacterial elimination in antibiotic-resistant bacteria
  publication-title: Clin. Exp. Ophthalmol.
– volume: 10
  start-page: 347
  year: 2015
  end-page: 356
  ident: bib161
  article-title: Antimicrobial photodynamic activity of hypericin against methicillin-susceptible and resistant Staphylococcus aureus biofilms
  publication-title: Future Microbiol.
– volume: 53
  start-page: 7337
  year: 2010
  end-page: 7343
  ident: bib174
  article-title: Light induced antimicrobial properties of a brominated boron difluoride (BF2) chelated tetraarylazadipyrromethene photosensitizer
  publication-title: J. Med. Chem.
– volume: 51
  start-page: 4502
  year: 1969
  end-page: 4505
  ident: bib73
  article-title: Near-infrared absorption and circular dichroism spectra of ferrocytochrome c: d→d transitions
  publication-title: J. Chem. Phys.
– volume: 29
  start-page: 1131
  year: 2013
  end-page: 1138
  ident: bib101
  article-title: Susceptibility of methicillin-resistant Staphylococcus aureus to photodynamic antimicrobial chemotherapy with α-d-galactopyranosyl zinc phthalocyanines: in vitro study
  publication-title: Laser Med. Sci.
– volume: 42
  start-page: 38
  year: 2010
  end-page: 44
  ident: bib117
  article-title: Photodynamic therapy for methicillin-resistantStaphylococcus aureusinfection in a mouse skin abrasion model
  publication-title: Laser Surg. Med.
– volume: 32
  start-page: 940
  year: 1968
  end-page: 944
  ident: bib50
  article-title: The effect of dimethyl sulfoxide (DMSO) on permeability of
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 14
  start-page: 211
  year: 2016
  end-page: 217
  ident: bib132
  article-title: Chitosan nanoparticles enhance the efficiency of methylene blue-mediated antimicrobial photodynamic inactivation of bacterial biofilms: an in vitro study
  publication-title: Photodiagnosis Photodyn. Ther.
– volume: 29
  start-page: 1686
  year: 1993
  end-page: 1690
  ident: bib2
  article-title: An evaluation of photodynamic therapy in the management of cutaneous metastases of breast cancer
  publication-title: Eur. J. Canc.
– volume: 18
  start-page: 92
  year: 2019
  end-page: 97
  ident: bib80
  article-title: Bactericidal effects of hematoporphyrin monomethyl ether-mediated blue-light photodynamic therapy against Staphylococcus aureus
  publication-title: Photochem. Photobiol. Sci.
– volume: 55
  start-page: 85
  year: 2008
  end-page: 90
  ident: bib42
  article-title: Photodynamic effect of protoporphyrin diarginate (PPArg2) on methicillin-resistant Staphylococcus aureus and human dermal fibroblasts
  publication-title: Acta Biochim. Pol.
– start-page: 5157
  year: 2014
  ident: bib150
  article-title: Upconversion nanoparticles conjugated with curcumin as a photosensitizer to inhibit methicillin-resistant Staphylococcus aureus in lung under near infrared light
  publication-title: Int. J. Nanomed.
– volume: 9
  start-page: 254
  year: 1989
  end-page: 263
  ident: bib169
  article-title: New method of photosensitizer accumulation for photodynamic therapy in an experimental liver tumor
  publication-title: Laser Surg. Med.
– volume: 10
  start-page: 323
  year: 2010
  ident: bib48
  article-title: Superoxide dismutase is upregulated in
  publication-title: BMC Microbiol.
– volume: 111
  start-page: 10453
  year: 2007
  end-page: 10460
  ident: bib51
  article-title: Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide
  publication-title: J. Phys. Chem. B
– volume: 116
  start-page: 255
  year: 2011
  end-page: 262
  ident: bib171
  article-title: Photophysical and electronic properties of five PCBM-like C60 derivatives: spectral and quantum chemical view
  publication-title: J. Phys. Chem.
– volume: 27
  start-page: 1372
  year: 1989
  end-page: 1374
  ident: bib45
  article-title: strains which are not identified by rapid agglutination methods are of capsular serotype 5
  publication-title: J. Clin. Microbiol.
– volume: 14
  start-page: 431
  year: 2002
  end-page: 443
  ident: bib21
  article-title: Methylene blue - a therapeutic dye for all seasons?
  publication-title: J. Chemother.
– volume: 151
  start-page: 183
  year: 1989
  end-page: 185
  ident: bib146
  article-title: Photokilling of bacteria by the natural dye curcumin
  publication-title: Arch. Microbiol.
– volume: 10
  start-page: 1097
  year: 2011
  ident: bib156
  article-title: Targeted photodynamic therapy – a promising strategy of tumor treatment
  publication-title: Photochem. Photobiol. Sci.
– volume: 5
  year: 2010
  ident: bib64
  article-title: Efficient photodynamic therapy against gram-positive and gram-negative bacteria using THPTS, a cationic photosensitizer excited by infrared wavelength
  publication-title: PloS One
– volume: 4
  start-page: 503
  year: 2005
  ident: bib53
  article-title: Photodynamic therapy for
  publication-title: Photochem. Photobiol. Sci.
– volume: 47
  start-page: 6649
  year: 2004
  end-page: 6652
  ident: bib84
  article-title: Synthesis and antibacterial activity of new poly-S-lysine−Porphyrin conjugates
  publication-title: J. Med. Chem.
– volume: 31
  start-page: 297
  year: 2015
  end-page: 304
  ident: bib41
  article-title: Photodynamic inactivation of antibiotic-resistant bacteria and biofilms by hematoporphyrin monomethyl ether
  publication-title: Laser Med. Sci.
– volume: 6
  start-page: 535
  year: 2006
  end-page: 545
  ident: bib126
  article-title: Photodynamic therapy and anti-tumour immunity
  publication-title: Nat. Rev. Canc.
– volume: 89
  start-page: 679
  year: 2013
  end-page: 682
  ident: bib125
  article-title: Linezolid and vancomycin decrease the therapeutic effect of methylene blue-photodynamic therapy in a mouse model of MRSA bacterial arthritis
  publication-title: Photochem. Photobiol.
– volume: 9
  start-page: 359
  year: 2012
  end-page: 361
  ident: bib79
  article-title: Photodynamic inactivation requires innovative approach concerning numerous bacterial isolates and multicomponent sensitizing agents
  publication-title: Photodiagnosis Photodyn. Ther.
– volume: 44
  start-page: 243
  year: 2001
  end-page: 246
  ident: bib33
  article-title: Photodynamic activity of the haematoporphyrin derivative with rutin and arginine substituents (HpD-Rut2- Arg2) against staphylococcus aureus and pseudomonas aeruginosa
  publication-title: Pharmacol. Res.
– volume: 52
  start-page: 299
  year: 2007
  end-page: 305
  ident: bib137
  article-title: Toluidine blue-mediated photodynamic effects on staphylococcal biofilms
  publication-title: Antimicrob. Agents Chemother.
– volume: 41
  start-page: 316
  year: 2009
  end-page: 322
  ident: bib36
  article-title: Improved photodynamic inactivation of gram-positive bacteria using hematoporphyrin encapsulated in liposomes and micelles
  publication-title: Laser Surg. Med.
– volume: 10
  start-page: 1593
  year: 2011
  ident: bib69
  article-title: Antimicrobial peptide-modified liposomes for bacteria targeted delivery of temoporfin in photodynamic antimicrobial chemotherapy
  publication-title: Photochem. Photobiol. Sci.
– volume: 10
  start-page: 397
  year: 2000
  end-page: 408
  ident: bib8
  article-title: Role of photodynamic therapy in the management of advanced esophageal cancer
  publication-title: Gastrointestinal Endoscopy Clinics of North America
– volume: 159
  start-page: 423
  year: 2018
  end-page: 440
  ident: bib32
  article-title: CureCuma–cationic curcuminoids with improved properties and enhanced antimicrobial photodynamic activity
  publication-title: Eur. J. Med. Chem.
– start-page: 141
  year: 2008
  end-page: 149
  ident: bib39
  article-title: Singlet oxygen quantum yields of porphyrin-based photosensitizers for photodynamic therapy
  publication-title: Journal of Innovative Optical Health Sciences
– volume: 27
  start-page: 849
  year: 2009
  end-page: 853
  ident: bib170
  article-title: Bactericidal effect of photodynamic therapy using Na-pheophorbide a: evaluation of adequate light source
  publication-title: Photomedicine and Laser Surgery
– volume: 79
  start-page: 14
  year: 2015
  end-page: 27
  ident: bib172
  article-title: Antimicrobial photodynamic inactivation with decacationic functionalized fullerenes: oxygen-independent photokilling in presence of azide and new mechanistic insights
  publication-title: Free Radic. Biol. Med.
– volume: 92
  start-page: 35
  year: 2015
  end-page: 48
  ident: bib82
  article-title: Synthesis, characterization and in vitro photodynamic antimicrobial activity of basic amino acid–porphyrin conjugates
  publication-title: Eur. J. Med. Chem.
– volume: 72
  start-page: 4436
  year: 2006
  end-page: 4439
  ident: bib143
  article-title: Cellulose acetate containing toluidine blue and Rose bengal is an effective antimicrobial coating when exposed to white light
  publication-title: Appl. Environ. Microbiol.
– volume: 103
  start-page: 1545
  year: 2010
  end-page: 1557
  ident: bib145
  article-title: Curcumin as a therapeutic agent: the evidence from in vitro, animal and human studies
  publication-title: Br. J. Nutr.
– volume: 47
  start-page: 1185
  year: 1997
  end-page: 1194
  ident: bib12
  article-title: Photodynamic therapy: the clinical perspective. Review on applications for control of diverse tumorous and non-tumorous diseases
  publication-title: Arzneim. Forsch.
– volume: 30
  start-page: 383
  year: 2014
  end-page: 387
  ident: bib88
  article-title: Antimicrobial action from a novel porphyrin derivative in photodynamic antimicrobial chemotherapy in vitro
  publication-title: Laser Med. Sci.
– volume: 15
  start-page: 4829
  year: 2007
  end-page: 4835
  ident: bib92
  article-title: Photodynamic activity of water-soluble phthalocyanine zinc(II) complexes against pathogenic microorganisms
  publication-title: Bioorg. Med. Chem.
– volume: 28
  start-page: 391
  year: 2012
  end-page: 398
  ident: bib147
  article-title: Phototoxic effect of curcumin on methicillin-resistant Staphylococcus aureus and L929 fibroblasts
  publication-title: Laser Med. Sci.
– volume: 38
  start-page: 178
  year: 1997
  end-page: 183
  ident: bib180
  article-title: Indocyanine green: intracellular uptake and phototherapeutic effects in vitro
  publication-title: J. Photochem. Photobiol. B Biol.
– volume: 49
  start-page: 1542
  year: 2005
  end-page: 1552
  ident: bib62
  article-title: Photodynamic effects of novel XF porphyrin derivatives on prokaryotic and eukaryotic cells
  publication-title: Antimicrob. Agents Chemother.
– volume: 43
  start-page: 586
  year: 2011
  end-page: 590
  ident: bib130
  article-title: Reduction of endotracheal tube biofilms using antimicrobial photodynamic therapy
  publication-title: Laser Surg. Med.
– volume: 45
  year: 2016
  ident: bib13
  article-title: Targeting innovation in antibiotic drug discovery and development: the need for a one Health – one Europe – one world framework
  publication-title: European Observatory on Health Systems and Policies Health, Policy Series
– volume: 113
  start-page: 73
  year: 2006
  end-page: 79
  ident: bib35
  article-title: Polyion complex micelles for photodynamic therapy: incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property
  publication-title: J. Contr. Release
– volume: 37
  start-page: 134
  year: 2017
  end-page: 140
  ident: bib133
  article-title: Fast and effective photodynamic inactivation of 4-day-old biofilm of methicillin-resistant Staphylococcus aureus using methylene blue-conjugated gold nanoparticles
  publication-title: J. Drug Deliv. Sci. Technol.
– volume: 32
  start-page: 78
  year: 2003
  end-page: 87
  ident: bib57
  article-title: IPL technology: a review
  publication-title: Laser Surg. Med.
– volume: 10
  start-page: 92
  year: 2004
  end-page: 97
  ident: bib114
  article-title: Antibody-directed photodynamic therapy of MethicillinResistant Staphylococcus aureus
  publication-title: Microb. Drug Resist.
– volume: 164
  start-page: 987
  year: 2011
  end-page: 995
  ident: bib99
  article-title: Effectiveness of antimicrobial photodynamic therapy with a single treatment of RLP068/Cl in an experimental model of Staphylococcus aureus wound infection
  publication-title: Br. J. Dermatol.
– volume: 12
  start-page: 2170
  year: 2013
  ident: bib87
  article-title: Porphyrin–silica microparticle conjugates as an efficient tool for the photosensitised disinfection of water contaminated by bacterial pathogens
  publication-title: Photochem. Photobiol. Sci.
– volume: 50
  start-page: 46
  year: 2017
  end-page: 54
  ident: bib139
  article-title: Effects of toluidine blue O (TBO)-photodynamic inactivation on community-associated methicillin-resistant Staphylococcus aureus isolates
  publication-title: J. Microbiol. Immunol. Infect.
– volume: 178
  start-page: 277
  year: 2018
  end-page: 286
  ident: bib66
  article-title: Potentiation by potassium iodide reveals that the anionic porphyrin TPPS4 is a surprisingly effective photosensitizer for antimicrobial photodynamic inactivation
  publication-title: J. Photochem. Photobiol. B Biol.
– volume: 29
  start-page: 165
  year: 2001
  end-page: 173
  ident: bib20
  article-title: Comparison of the methylene blue and toluidine blue photobactericidal efficacy against gram-positive and gram-negative microorganisms
  publication-title: Laser Surg. Med.
– volume: 20
  year: 2015
  ident: bib181
  article-title: Antibacterial photodynamic therapy with 808-nm laser and indocyanine green on abrasion wound models
  publication-title: J. Biomed. Optic.
– volume: 119
  start-page: 943
  year: 2006
  end-page: 951
  ident: bib19
  article-title: Fifteen-year study of the changing epidemiology of methicillin-resistant Staphylococcus aureus
  publication-title: Am. J. Med.
– volume: 91
  start-page: 54
  year: 2016
  end-page: 60
  ident: bib162
  article-title: The degree of virulence does not necessarily affect MRSA biofilm strength and response to photodynamic therapy
  publication-title: Microb. Pathog.
– volume: 40
  start-page: 873
  year: 1997
  end-page: 876
  ident: bib90
  article-title: Killing of methicillin-resistant Staphylococcus aureus in vitro using aluminium disulphonated phthalocyanine, a light-activated antimicrobial agent
  publication-title: J. Antimicrob. Chemother.
– volume: 8
  start-page: 12631
  year: 2016
  end-page: 12637
  ident: bib107
  article-title: Silicon(IV) phthalocyanine-decorated cyclodextrin vesicles as a self-assembled phototherapeutic agent against MRSA
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 413
  year: 2011
  end-page: 419
  ident: bib78
  article-title: The connection between agr and SCCmec elements of
  publication-title: Photomedicine and Laser Surgery
– volume: 160
  start-page: 177
  year: 1998
  end-page: 181
  ident: bib144
  article-title: Photobactericidal activity of phenothiazinium dyes against methicillin-resistant strains of Staphylococcus aureus
  publication-title: FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett.
– volume: 9
  start-page: 180
  year: 2012
  end-page: 185
  ident: bib40
  article-title: Research progress of hemoporfin – part one: preclinical study
  publication-title: Photodiagnosis Photodyn. Ther.
– volume: 129
  start-page: 27
  year: 2013
  end-page: 35
  ident: bib61
  article-title: Photo-activated porphyrin in combination with antibiotics: therapies against Staphylococci
  publication-title: J. Photochem. Photobiol. B Biol.
– volume: 3
  start-page: 320
  year: 2017
  end-page: 328
  ident: bib68
  article-title: Potassium iodide potentiates broad-spectrum antimicrobial photodynamic inactivation using photofrin
  publication-title: ACS Infect. Dis.
– volume: 10
  start-page: 2592
  year: 2009
  end-page: 2600
  ident: bib81
  article-title: Inclusion of 5-[4-(1-Dodecanoylpyridinium)]-10,15,20-triphenylporphine in supramolecular aggregates of cationic amphiphilic cyclodextrins: physicochemical characterization of the complexes and strengthening of the antimicrobial photosensitizing activity
  publication-title: Biomacromolecules
– volume: 77
  start-page: 329
  year: 2012
  end-page: 343
  ident: bib85
  article-title: Molecular targets of antimicrobial photodynamic therapy identified by a proteomic approach
  publication-title: Journal of Proteomics
– volume: 17
  start-page: 24
  year: 2011
  end-page: 28
  ident: bib142
  article-title: Photodynamic inactivation of multidrug resistant pathogens in Hong Kong
  publication-title: Hong Kong Med. J.
– volume: 10
  start-page: 348
  year: 2013
  end-page: 355
  ident: bib52
  article-title: Discovering the mechanisms of strain-dependent response of
  publication-title: Photodiagnosis Photodyn. Ther.
– volume: 3
  start-page: 756
  year: 2017
  end-page: 766
  ident: bib128
  article-title: Attaching the NorA efflux pump inhibitor INF55 to methylene blue enhances antimicrobial photodynamic inactivation of methicillin-resistant Staphylococcus aureus in vitro and in vivo
  publication-title: ACS Infect. Dis.
– volume: 10
  start-page: 91
  year: 2011
  end-page: 102
  ident: bib103
  article-title: Non-aggregated Ga(iii)-phthalocyanines in the photodynamic inactivation of planktonic and biofilm cultures of pathogenic microorganisms
  publication-title: Photochem. Photobiol. Sci.
– volume: 28
  year: 2010
  ident: bib122
  article-title: Energy dose parameters affect antimicrobial photodynamic therapy–mediated eradication of periopathogenic biofilm and planktonic cultures
  publication-title: Photomedicine and Laser Surgery
– volume: 55
  start-page: 1883
  year: 2011
  end-page: 1890
  ident: bib38
  article-title: Chitosan augments photodynamic inactivation of gram-positive and gram-negative bacteria
  publication-title: Antimicrob. Agents Chemother.
– volume: 86
  start-page: 5163
  year: 1982
  end-page: 5169
  ident: bib71
  article-title: Photophysical and redox properties of water-soluble porphyrins in aqueous media
  publication-title: J. Phys. Chem.
– volume: 33
  start-page: 523
  year: 2017
  end-page: 532
  ident: bib135
  article-title: Antimicrobial photodynamic therapy—a promising treatment for prosthetic joint infections
  publication-title: Laser Med. Sci.
– volume: 162
  start-page: 340
  year: 2016
  end-page: 347
  ident: bib119
  article-title: Photodynamic inactivation of multidrug-resistant Staphylococcus aureus by chlorin e6 and red light (λ = 670 nm)
  publication-title: J. Photochem. Photobiol. B Biol.
– volume: 13
  start-page: 87
  year: 2007
  end-page: 91
  ident: bib136
  article-title: A comparative in vitro photoinactivation study of clinical isolates of multidrug-resistant pathogens
  publication-title: J. Infect. Chemother.
– volume: 25
  start-page: 743
  year: 2010
  end-page: 748
  ident: bib138
  article-title: Laser light combined with a photosensitizer may eliminate methicillin-resistant strains of Staphylococcus aureus
  publication-title: Laser Med. Sci.
– volume: 29
  start-page: 177
  year: 1995
  end-page: 188
  ident: bib16
  article-title: Methicillin-resistant
  publication-title: J. Hosp. Infect.
– volume: 17
  start-page: 173
  year: 2002
  end-page: 186
  ident: bib55
  article-title: Laser and non-laser light sources for photodynamic therapy
  publication-title: Laser Med. Sci.
– volume: 39
  start-page: 1026
  year: 2007
  end-page: 1034
  ident: bib65
  article-title: Efficient photoinactivation of methicillin-resistant Staphylococcus aureus by a novel porphyrin incorporated into a poly-cationic liposome
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 9
  start-page: 1868
  year: 2014
  end-page: 1875
  ident: bib98
  article-title: Oligolysine-conjugated zinc(II) phthalocyanines as efficient photosensitizers for antimicrobial photodynamic therapy
  publication-title: Chem. Asian J.
– volume: 64
  start-page: 469
  year: 1996
  end-page: 485
  ident: bib34
  article-title: Structure and biodistribution relationships of photodynamic sensitizers
  publication-title: Photochem. Photobiol.
– volume: 10
  start-page: 615
  year: 2013
  end-page: 625
  ident: bib183
  article-title: Photodynamic inactivation of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus with Ru(II)-based type I/type II photosensitizers
  publication-title: Photodiagnosis Photodyn. Ther.
– volume: 6
  start-page: 817
  year: 2013
  end-page: 840
  ident: bib11
  article-title: Dye sensitizers for photodynamic therapy
  publication-title: Materials
– volume: 84
  start-page: 278
  year: 2014
  end-page: 283
  ident: bib97
  article-title: Photodynamic inactivation of bacteria and viruses using two monosubstituted zinc(II) phthalocyanines
  publication-title: Eur. J. Med. Chem.
– volume: 50
  start-page: 857
  year: 2002
  end-page: 864
  ident: bib112
  article-title: Selective lethal photosensitization of methicillin-resistant Staphylococcus aureus using an IgG-tin (IV) chlorin e6 conjugate
  publication-title: J. Antimicrob. Chemother.
– volume: 16
  start-page: 27072
  year: 2015
  end-page: 27086
  ident: bib177
  article-title: A comparative study on two cationic porphycenes: photophysical and antimicrobial photoinactivation evaluation
  publication-title: Int. J. Mol. Sci.
– volume: 21
  start-page: 219
  year: 2018
  end-page: 223
  ident: bib149
  article-title: Reduced methicillin-resistant Staphylococcus aureus biofilm formation in bone cavities by photodynamic therapy
  publication-title: Photodiagnosis Photodyn. Ther.
– volume: 16
  start-page: 7851
  year: 2015
  end-page: 7860
  ident: bib106
  article-title: The photodynamic antibacterial effects of silicon phthalocyanine (Pc) 4
  publication-title: Int. J. Mol. Sci.
– start-page: 7
  year: 2007
  end-page: 74
  ident: bib4
  article-title: Phenomena Involving a Reversible Colour Change, Chromic Phenomena
– volume: 9
  start-page: 3912
  year: 2017
  end-page: 3924
  ident: bib102
  article-title: Dual antibacterial activities of a chitosan-modified upconversion photodynamic therapy system against drug-resistant bacteria in deep tissue
  publication-title: Nanoscale
– volume: 8
  start-page: 340
  year: 2008
  end-page: 347
  ident: bib94
  article-title: Photophysical studies and in vitro skin permeation/retention of Foscan/nanoemulsion (NE) applicable to photodynamic therapy skin cancer treatment
  publication-title: J. Nanosci. Nanotechnol.
– volume: 21
  year: 2010
  ident: bib178
  article-title: Rose Bengal-decorated silica nanoparticles as photosensitizers for inactivation of gram-positive bacteria
  publication-title: Nanotechnology
– start-page: 175
  year: 2010
  end-page: 194
  ident: bib123
  article-title: Photodynamic therapy of bacterial and fungal biofilm infections
  publication-title: Methods in Molecular Biology Photodynamic Therapy
– volume: 63
  start-page: 984
  year: 2010
  end-page: 990
  ident: bib157
  article-title: A phase II placebo-controlled study of photodynamic therapy with topical hypericin and visible light irradiation in the treatment of cutaneous T-cell lymphoma and psoriasis
  publication-title: J. Am. Acad. Dermatol.
– volume: 11
  start-page: 1
  year: 1993
  end-page: 13
  ident: bib3
  article-title: Photodynamic therapy in dermatology: recent developments
  publication-title: Dermatol. Clin.
– volume: 4
  start-page: 1
  year: 2015
  end-page: 9
  ident: bib27
  article-title: Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement, BioMed Centrals
  publication-title: Syst. Rev.
– volume: 520
  start-page: 139
  year: 2017
  end-page: 148
  ident: bib134
  article-title: Photosensitizer-eluting nanofibers for enhanced photodynamic therapy of wounds: a preclinical study in immunocompromized rats
  publication-title: Int. J. Pharm.
– volume: 61
  year: 2017
  ident: bib179
  article-title: Potassium iodide potentiates antimicrobial photodynamic inactivation mediated by Rose bengal in in vitro and in vivo studies
  publication-title: Antimicrob. Agents Chemother.
– volume: 9
  year: 2014
  ident: bib60
  article-title: Photodynamic antimicrobial polymers for infection control
  publication-title: PloS One
– volume: 43
  start-page: 221
  year: 2011
  end-page: 229
  ident: bib67
  article-title: Photodynamic therapy using intra-articular photofrin for murine MRSA arthritis: biphasic light dose response for neutrophil-mediated antibacterial effect
  publication-title: Laser Surg. Med.
– volume: 9
  year: 2014
  ident: bib164
  article-title: Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives
  publication-title: PloS One
– volume: 86
  start-page: 1118
  year: 2010
  end-page: 1126
  ident: bib43
  article-title: Evaluation of the role of the pharmacological inhibition of Staphylococcus aureus multidrug resistance pumps and the variable levels of the uptake of the sensitizer in the strain-dependent response of Staphylococcus aureus to PPArg2-based photodynamic ina
  publication-title: Photochem. Photobiol.
– volume: 36
  start-page: 8
  year: 2018
  end-page: 15
  ident: bib182
  article-title: Photodynamic inactivation of methicillin-resistant Staphylococcus aureus by indocyanine green and near infrared light
  publication-title: Dermatol. Sin.
– volume: 7
  year: 2016
  ident: bib24
  article-title: Effect of photodynamic therapy on the virulence factors of Staphylococcus aureus
  publication-title: Front. Microbiol.
– volume: 454
  start-page: 249
  year: 2013
  end-page: 258
  ident: bib160
  article-title: Antibiotic-free nanotherapeutics: hypericin nanoparticles thereof for improved in vitro and in vivo antimicrobial photodynamic therapy and wound healing
  publication-title: Int. J. Pharm.
– volume: 9
  start-page: 11
  year: 2012
  end-page: 15
  ident: bib141
  article-title: Phototoxicity of phenothiazinium dyes against methicillin-resistant Staphylococcus aureus and multi-drug resistant Escherichia coli
  publication-title: Photodiagnosis Photodyn. Ther.
– volume: 55
  start-page: 581
  year: 2008
  end-page: 585
  ident: bib54
  article-title: Photodynamic effect of lanthanide derivatives of meso-tetra(N-methyl4-pyridyl) porphine against
  publication-title: Acta biochimica polonca
– volume: 6
  start-page: 733
  year: 2012
  end-page: 742
  ident: bib100
  article-title: Antimicrobial photodynamic therapy with RLP068 kills methicillin-resistantStaphylococcus aureusand improves wound healing in a mouse model of infected skin abrasion PDT with RLP068/Cl in infected mouse skin abrasion
  publication-title: J. Biophot.
– volume: 12
  start-page: 133
  year: 1994
  end-page: 138
  ident: bib168
  article-title: Oxygen-independent photocleavage of DNA, and uptake of chlorophyll derivatives by cellular nuclei and mitochondria
  publication-title: J. Clin. Laser Med. Surg.
– volume: 49
  start-page: 3402
  year: 2008
  ident: bib163
  article-title: Antimicrobial efficacy of riboflavin/UVA combination (365 nm) in vitro for bacterial and fungal isolates: a potential new treatment for infectious keratitis
  publication-title: Investigative Opthalmology & Visual Science
– volume: 88
  start-page: 227
  year: 2011
  end-page: 232
  ident: bib127
  article-title: Optimal photosensitizers for photodynamic therapy of infections should kill bacteria but spare neutrophils
  publication-title: Photochem. Photobiol.
– volume: 64
  start-page: 59
  year: 2009
  end-page: 61
  ident: bib116
  article-title: The inability of a bacteriophage to infect Staphylococcus aureus does not prevent it from specifically delivering a photosensitizer to the bacterium enabling its lethal photosensitization
  publication-title: J. Antimicrob. Chemother.
– volume: 12
  year: 2017
  ident: bib151
  article-title: Encapsulation of curcumin in polymeric nanoparticles for antimicrobial Photodynamic Therapy
  publication-title: PloS One
– volume: 21
  start-page: 271
  year: 2002
  end-page: 280
  ident: bib46
  article-title: Structure–function relationships in heme-proteins
  publication-title: DNA Cell Biol.
– volume: 5
  start-page: 82
  year: 2014
  end-page: 85
  ident: bib118
  article-title: The effect of antimicrobial photodynamic therapy with Radachlorin® on Staphylococcus aureus and Escherichia coli: an in vitro study
  publication-title: J. Laser Med. Sci.
– reference: J. Moan, Q. Peng, An outline of the history of PDT, Photodynamic Therapy. (n.d.) 1–18. doi:10.1039/9781847551658-00001.
– volume: 70
  start-page: 531
  year: 2004
  end-page: 535
  ident: bib167
  article-title: Photo-activated DNA binding and antimicrobial activities of furoquinoline and pyranoquinalone alkaloids from Rutaceae
  publication-title: Planta Medicine
– volume: 56
  start-page: 828
  year: 2018
  end-page: 837
  ident: bib83
  article-title: Photodynamic antimicrobial activity of new porphyrin derivatives against methicillin resistant Staphylococcus aureus
  publication-title: J. Microbiol.
– volume: 7
  year: 2012
  ident: bib121
  article-title: Photodynamic therapy can induce a protective innate immune response against murine bacterial arthritis via neutrophil accumulation
  publication-title: PloS One
– volume: 9
  start-page: 27
  year: 2009
  ident: bib129
  article-title: In vivo killing of Staphylococcus aureus using a light-activated antimicrobial agent
  publication-title: BMC Microbiol.
– volume: 39
  start-page: 1013
  year: 2012
  end-page: 1021
  ident: bib59
  article-title: Fast and effective: intense pulse light photodynamic inactivation of bacteria
  publication-title: J. Ind. Microbiol. Biotechnol.
– volume: 103
  start-page: 360
  year: 1965
  end-page: 363
  ident: bib152
  article-title: Photosensitized inactivation of ribonucleic acids in the presence of riboflavin
  publication-title: Biochim. Biophys. Acta
– year: 1961
  ident: bib7
  article-title: The use of a derivative of hematoporphyrin in tumor Detection23, JNCI
  publication-title: J. Natl. Cancer Inst.
– volume: 90
  start-page: 57
  year: 2008
  end-page: 63
  ident: bib44
  article-title: Bactericidal effect of photodynamic inactivation against methicillin-resistant and methicillin-susceptible Staphylococcus aureus is strain-dependent
  publication-title: J. Photochem. Photobiol. B Biol.
– year: 2013
  ident: bib31
  publication-title: Anti-Infective Drugs Advisory Committee Meeting
– year: 1996
  ident: bib96
  article-title: Mechanisms of cell damage in photodynamic therapy
  publication-title: The Fundamental Basis of Phototherapy
– volume: 62
  start-page: 1521
  year: 2009
  end-page: 1526
  ident: bib105
  article-title: Metallophthalocyanines as photodynamic sensitizers for treatment of pathogenic bacteria. Synthesis and singlet oxygen formation
  publication-title: C. R. Acad. Bulg. Sci.
– volume: 166
  start-page: 194
  year: 2016
  end-page: 202
  ident: bib165
  article-title: Rose bengal– and riboflavin-mediated photodynamic therapy to inhibit methicillin-resistant Staphylococcus aureus keratitis isolates
  publication-title: Am. J. Ophthalmol.
– volume: 4
  start-page: 1564
  year: 2018
  end-page: 1573
  ident: bib47
  article-title: Rapid uptake and photodynamic inactivation of staphylococci by Ga(III)-Protoporphyrin IX
  publication-title: ACS Infect. Dis.
– volume: 3
  start-page: 468
  year: 2013
  end-page: 473
  ident: bib131
  article-title: Photodynamic therapy of antibiotic-resistant biofilms in a maxillary sinus model
  publication-title: International Forum of Allergy & Rhinology
– volume: 31
  start-page: 1179
  year: 2006
  end-page: 1187
  ident: bib56
  article-title: Intense pulsed light as a nonablative approach to photoaging
  publication-title: Dermatol. Surg.
– volume: 54
  year: 2007
  ident: bib77
  article-title: Bactericidal effect of photodynamic therapy against methicillin-resistant
  publication-title: Acta Biochim. Pol.
– year: 2015
  ident: bib22
  article-title: Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections
  publication-title: Journal of Clinical and Translational Research
– volume: 1
  start-page: 815
  year: 2002
  end-page: 819
  ident: bib95
  article-title: Approaches to selectivity in the Zn(ii)–phthalocyanine-photosensitized inactivation of wild-type and antibiotic-resistant Staphylococcus aureus
  publication-title: Photochem. Photobiol. Sci.
– volume: 42
  start-page: 38
  year: 2010
  end-page: 44
  ident: bib23
  article-title: Photodynamic therapy for methicillin-resistant
  publication-title: Laser Surg. Med.
– volume: 17
  start-page: 129
  year: 1996
  end-page: 140
  ident: bib18
  article-title: Antimicrobial resistance in long-term-care facilities
  publication-title: Infect. Control Hosp. Epidemiol.
– volume: 129
  start-page: 100
  year: 2013
  end-page: 107
  ident: bib29
  article-title: The agr function and polymorphism: impact on Staphylococcus aureus susceptibility to photoinactivation
  publication-title: J. Photochem. Photobiol. B Biol.
– volume: 175
  start-page: 72
  year: 2019
  end-page: 106
  ident: bib6
  article-title: Porphyrinoid photosensitizers mediated photodynamic inactivation against bacteria
  publication-title: Eur. J. Med. Chem.
– volume: 53
  start-page: 7796
  year: 2010
  end-page: 7803
  ident: bib176
  article-title: Cationic porphycenes as potential photosensitizers for antimicrobial photodynamic therapy
  publication-title: J. Med. Chem.
– volume: 9
  start-page: 169
  year: 2003
  end-page: 175
  ident: bib17
  article-title: Elimination of epidemic methicillin-ResistantStaphylococcus aureusfrom a university hospital and district institutions, Finland
  publication-title: Emerg. Infect. Dis.
– volume: 31
  start-page: 327
  year: 2011
  end-page: 335
  ident: bib75
  article-title: Neutral metallated and meso-substituted porphyrins as antimicrobial agents against Gram-positive pathogens
  publication-title: Eur. J. Clin. Microbiol. Infect. Dis.
– volume: 79
  start-page: 1335
  year: 1983
  ident: bib70
  article-title: Photo-oxidation of metalloporphyrins in aqueous solution
  publication-title: J. Chem. Soc., Faraday Trans. 1: Physical Chemistry in Condensed Phases
– volume: 95
  start-page: 498
  year: 2017
  end-page: 502
  ident: bib154
  article-title: Photochemical eradication of methicillin-resistant Staphylococcus aureus by blue light activation of riboflavin
  publication-title: Acta Ophthalmol.
– volume: 20
  start-page: 10604
  year: 2015
  ident: 10.1016/j.ejmech.2020.112341_bib175
  article-title: Antiviral, antifungal and antibacterial activities of a BODIPY-based photosensitizer
  publication-title: Molecules
  doi: 10.3390/molecules200610604
– volume: 44
  start-page: 751
  year: 2009
  ident: 10.1016/j.ejmech.2020.112341_bib124
  article-title: The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms
  publication-title: J. Periodontal. Res.
  doi: 10.1111/j.1600-0765.2008.01187.x
– volume: 33
  start-page: 577
  year: 2013
  ident: 10.1016/j.ejmech.2020.112341_bib49
  article-title: Association between susceptibility to photodynamic oxidation and the genetic background of Staphylococcus aureus
  publication-title: Eur. J. Clin. Microbiol. Infect. Dis.
  doi: 10.1007/s10096-013-1987-5
– volume: 89
  start-page: 679
  year: 2013
  ident: 10.1016/j.ejmech.2020.112341_bib125
  article-title: Linezolid and vancomycin decrease the therapeutic effect of methylene blue-photodynamic therapy in a mouse model of MRSA bacterial arthritis
  publication-title: Photochem. Photobiol.
  doi: 10.1111/php.12040
– volume: 15
  start-page: 4829
  year: 2007
  ident: 10.1016/j.ejmech.2020.112341_bib92
  article-title: Photodynamic activity of water-soluble phthalocyanine zinc(II) complexes against pathogenic microorganisms
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2007.04.069
– volume: 95
  start-page: 498
  year: 2017
  ident: 10.1016/j.ejmech.2020.112341_bib154
  article-title: Photochemical eradication of methicillin-resistant Staphylococcus aureus by blue light activation of riboflavin
  publication-title: Acta Ophthalmol.
  doi: 10.1111/aos.13409
– volume: 54
  year: 2007
  ident: 10.1016/j.ejmech.2020.112341_bib77
  article-title: Bactericidal effect of photodynamic therapy against methicillin-resistant Staphylococcus aureus strain with the use of various porphyrin photosensitizers
  publication-title: Acta Biochim. Pol.
  doi: 10.18388/abp.2007_3240
– volume: 27
  start-page: 849
  year: 2009
  ident: 10.1016/j.ejmech.2020.112341_bib170
  article-title: Bactericidal effect of photodynamic therapy using Na-pheophorbide a: evaluation of adequate light source
  publication-title: Photomedicine and Laser Surgery
  doi: 10.1089/pho.2008.2319
– volume: 9
  start-page: 11
  year: 2012
  ident: 10.1016/j.ejmech.2020.112341_bib141
  article-title: Phototoxicity of phenothiazinium dyes against methicillin-resistant Staphylococcus aureus and multi-drug resistant Escherichia coli
  publication-title: Photodiagnosis Photodyn. Ther.
  doi: 10.1016/j.pdpdt.2011.11.004
– volume: 159
  start-page: 423
  year: 2018
  ident: 10.1016/j.ejmech.2020.112341_bib32
  article-title: CureCuma–cationic curcuminoids with improved properties and enhanced antimicrobial photodynamic activity
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2017.09.072
– volume: 30
  start-page: 549
  year: 2013
  ident: 10.1016/j.ejmech.2020.112341_bib91
  article-title: Antimicrobial photodynamic therapy against pathogenic bacterial suspensions and biofilms using chloro-aluminum phthalocyanine encapsulated in nanoemulsions
  publication-title: Laser Med. Sci.
  doi: 10.1007/s10103-013-1354-x
– volume: 53
  start-page: 7796
  year: 2010
  ident: 10.1016/j.ejmech.2020.112341_bib176
  article-title: Cationic porphycenes as potential photosensitizers for antimicrobial photodynamic therapy
  publication-title: J. Med. Chem.
  doi: 10.1021/jm1009555
– volume: 32
  start-page: 121
  year: 2014
  ident: 10.1016/j.ejmech.2020.112341_bib28
  article-title: Multiresistant strains are as susceptible to photodynamic inactivation as their naïve counterparts: protoporphyrin IX-mediated photoinactivation reveals differences between methicillin-resistant and methicillin-sensitive Staphylococcus aureus strains
  publication-title: Photomedicine and Laser Surgery
  doi: 10.1089/pho.2013.3663
– volume: 43
  start-page: 586
  year: 2011
  ident: 10.1016/j.ejmech.2020.112341_bib130
  article-title: Reduction of endotracheal tube biofilms using antimicrobial photodynamic therapy
  publication-title: Laser Surg. Med.
  doi: 10.1002/lsm.21103
– volume: 86
  start-page: 1118
  year: 2010
  ident: 10.1016/j.ejmech.2020.112341_bib43
  article-title: Evaluation of the role of the pharmacological inhibition of Staphylococcus aureus multidrug resistance pumps and the variable levels of the uptake of the sensitizer in the strain-dependent response of Staphylococcus aureus to PPArg2-based photodynamic ina
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.2010.00772.x
– volume: 32
  start-page: 1337
  year: 2017
  ident: 10.1016/j.ejmech.2020.112341_bib148
  article-title: Photodynamic therapy controls of Staphylococcus aureus intradermal infection in mice
  publication-title: Laser Med. Sci.
  doi: 10.1007/s10103-017-2247-1
– volume: 96
  start-page: 223
  year: 2009
  ident: 10.1016/j.ejmech.2020.112341_bib86
  article-title: Delivery of Methylene Blue and meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate from cross-linked poly(vinyl alcohol) hydrogels: a potential means of photodynamic therapy of infected wounds
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/j.jphotobiol.2009.06.010
– volume: 9
  start-page: 1868
  year: 2014
  ident: 10.1016/j.ejmech.2020.112341_bib98
  article-title: Oligolysine-conjugated zinc(II) phthalocyanines as efficient photosensitizers for antimicrobial photodynamic therapy
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.201402025
– volume: 166
  start-page: 194
  year: 2016
  ident: 10.1016/j.ejmech.2020.112341_bib165
  article-title: Rose bengal– and riboflavin-mediated photodynamic therapy to inhibit methicillin-resistant Staphylococcus aureus keratitis isolates
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2016.03.014
– volume: 113
  start-page: 73
  year: 2006
  ident: 10.1016/j.ejmech.2020.112341_bib35
  article-title: Polyion complex micelles for photodynamic therapy: incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2006.03.009
– volume: 31
  start-page: 1179
  year: 2006
  ident: 10.1016/j.ejmech.2020.112341_bib56
  article-title: Intense pulsed light as a nonablative approach to photoaging
  publication-title: Dermatol. Surg.
  doi: 10.1111/j.1524-4725.2005.31924
– volume: 129
  start-page: 27
  year: 2013
  ident: 10.1016/j.ejmech.2020.112341_bib61
  article-title: Photo-activated porphyrin in combination with antibiotics: therapies against Staphylococci
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/j.jphotobiol.2013.09.006
– volume: 17
  start-page: 173
  year: 2002
  ident: 10.1016/j.ejmech.2020.112341_bib55
  article-title: Laser and non-laser light sources for photodynamic therapy
  publication-title: Laser Med. Sci.
  doi: 10.1007/s101030200027
– volume: 454
  start-page: 249
  year: 2013
  ident: 10.1016/j.ejmech.2020.112341_bib160
  article-title: Antibiotic-free nanotherapeutics: hypericin nanoparticles thereof for improved in vitro and in vivo antimicrobial photodynamic therapy and wound healing
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2013.06.067
– volume: 86
  start-page: 5163
  year: 1982
  ident: 10.1016/j.ejmech.2020.112341_bib71
  article-title: Photophysical and redox properties of water-soluble porphyrins in aqueous media
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100223a022
– volume: 92
  start-page: 35
  year: 2015
  ident: 10.1016/j.ejmech.2020.112341_bib82
  article-title: Synthesis, characterization and in vitro photodynamic antimicrobial activity of basic amino acid–porphyrin conjugates
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2014.12.029
– start-page: 141
  year: 2008
  ident: 10.1016/j.ejmech.2020.112341_bib39
  article-title: Singlet oxygen quantum yields of porphyrin-based photosensitizers for photodynamic therapy
  publication-title: Journal of Innovative Optical Health Sciences
  doi: 10.1142/S1793545808000169
– volume: 10
  start-page: 91
  year: 2011
  ident: 10.1016/j.ejmech.2020.112341_bib103
  article-title: Non-aggregated Ga(iii)-phthalocyanines in the photodynamic inactivation of planktonic and biofilm cultures of pathogenic microorganisms
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/B9PP00154A
– volume: 39
  start-page: 1013
  year: 2012
  ident: 10.1016/j.ejmech.2020.112341_bib59
  article-title: Fast and effective: intense pulse light photodynamic inactivation of bacteria
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1007/s10295-012-1103-3
– volume: 160
  start-page: 177
  year: 1998
  ident: 10.1016/j.ejmech.2020.112341_bib144
  article-title: Photobactericidal activity of phenothiazinium dyes against methicillin-resistant strains of Staphylococcus aureus
  publication-title: FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett.
  doi: 10.1111/j.1574-6968.1998.tb12908.x
– volume: 51
  start-page: 4502
  year: 1969
  ident: 10.1016/j.ejmech.2020.112341_bib73
  article-title: Near-infrared absorption and circular dichroism spectra of ferrocytochrome c: d→d transitions
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1671818
– volume: 55
  start-page: 85
  year: 2008
  ident: 10.1016/j.ejmech.2020.112341_bib42
  article-title: Photodynamic effect of protoporphyrin diarginate (PPArg2) on methicillin-resistant Staphylococcus aureus and human dermal fibroblasts
  publication-title: Acta Biochim. Pol.
  doi: 10.18388/abp.2008_3204
– volume: 14
  start-page: 211
  year: 2016
  ident: 10.1016/j.ejmech.2020.112341_bib132
  article-title: Chitosan nanoparticles enhance the efficiency of methylene blue-mediated antimicrobial photodynamic inactivation of bacterial biofilms: an in vitro study
  publication-title: Photodiagnosis Photodyn. Ther.
  doi: 10.1016/j.pdpdt.2016.04.009
– start-page: 5157
  year: 2014
  ident: 10.1016/j.ejmech.2020.112341_bib150
  article-title: Upconversion nanoparticles conjugated with curcumin as a photosensitizer to inhibit methicillin-resistant Staphylococcus aureus in lung under near infrared light
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S71365
– volume: 12
  start-page: 133
  year: 1994
  ident: 10.1016/j.ejmech.2020.112341_bib168
  article-title: Oxygen-independent photocleavage of DNA, and uptake of chlorophyll derivatives by cellular nuclei and mitochondria
  publication-title: J. Clin. Laser Med. Surg.
  doi: 10.1089/clm.1994.12.133
– volume: 49
  start-page: 3402
  year: 2008
  ident: 10.1016/j.ejmech.2020.112341_bib163
  article-title: Antimicrobial efficacy of riboflavin/UVA combination (365 nm) in vitro for bacterial and fungal isolates: a potential new treatment for infectious keratitis
  publication-title: Investigative Opthalmology & Visual Science
  doi: 10.1167/iovs.07-1592
– volume: 64
  start-page: 59
  year: 2009
  ident: 10.1016/j.ejmech.2020.112341_bib116
  article-title: The inability of a bacteriophage to infect Staphylococcus aureus does not prevent it from specifically delivering a photosensitizer to the bacterium enabling its lethal photosensitization
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkp157
– volume: 9
  year: 2014
  ident: 10.1016/j.ejmech.2020.112341_bib164
  article-title: Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives
  publication-title: PloS One
  doi: 10.1371/journal.pone.0111792
– volume: 21
  year: 2010
  ident: 10.1016/j.ejmech.2020.112341_bib178
  article-title: Rose Bengal-decorated silica nanoparticles as photosensitizers for inactivation of gram-positive bacteria
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/6/065102
– volume: 42
  start-page: 38
  year: 2010
  ident: 10.1016/j.ejmech.2020.112341_bib117
  article-title: Photodynamic therapy for methicillin-resistantStaphylococcus aureusinfection in a mouse skin abrasion model
  publication-title: Laser Surg. Med.
  doi: 10.1002/lsm.20887
– volume: 32
  start-page: 940
  year: 1968
  ident: 10.1016/j.ejmech.2020.112341_bib50
  article-title: The effect of dimethyl sulfoxide (DMSO) on permeability of Staphylococcus aureus
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(68)90118-6
– volume: 151
  start-page: 183
  year: 1989
  ident: 10.1016/j.ejmech.2020.112341_bib146
  article-title: Photokilling of bacteria by the natural dye curcumin
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00414437
– volume: 29
  start-page: 1131
  year: 2013
  ident: 10.1016/j.ejmech.2020.112341_bib101
  article-title: Susceptibility of methicillin-resistant Staphylococcus aureus to photodynamic antimicrobial chemotherapy with α-d-galactopyranosyl zinc phthalocyanines: in vitro study
  publication-title: Laser Med. Sci.
  doi: 10.1007/s10103-013-1488-x
– volume: 90
  start-page: 889
  year: 1998
  ident: 10.1016/j.ejmech.2020.112341_bib9
  article-title: Photodynamic therapy
  publication-title: JNCI Journal of the National Cancer Institute
  doi: 10.1093/jnci/90.12.889
– volume: 8
  start-page: 12631
  year: 2016
  ident: 10.1016/j.ejmech.2020.112341_bib107
  article-title: Silicon(IV) phthalocyanine-decorated cyclodextrin vesicles as a self-assembled phototherapeutic agent against MRSA
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b02132
– volume: 29
  start-page: 1686
  year: 1993
  ident: 10.1016/j.ejmech.2020.112341_bib2
  article-title: An evaluation of photodynamic therapy in the management of cutaneous metastases of breast cancer
  publication-title: Eur. J. Canc.
  doi: 10.1016/0959-8049(93)90105-O
– start-page: 1
  year: 2013
  ident: 10.1016/j.ejmech.2020.112341_bib5
  article-title: Antimicrobial photodynamic therapy for methicillin-ResistantStaphylococcus aureusInfection
  publication-title: BioMed Res. Int.
– volume: 116
  start-page: 255
  year: 2011
  ident: 10.1016/j.ejmech.2020.112341_bib171
  article-title: Photophysical and electronic properties of five PCBM-like C60 derivatives: spectral and quantum chemical view
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp208520v
– volume: 88
  start-page: 626
  year: 2012
  ident: 10.1016/j.ejmech.2020.112341_bib159
  article-title: Hypericin-mediated photodynamic antimicrobial effect on clinically isolated pathogens†
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.2012.01085.x
– volume: 50
  start-page: 535
  year: 2018
  ident: 10.1016/j.ejmech.2020.112341_bib76
  article-title: The synergistic effect of PDT and oxacillin on clinical isolates of Staphylococcus aureus
  publication-title: Laser Surg. Med.
  doi: 10.1002/lsm.22785
– volume: 131
  start-page: 511
  year: 2010
  ident: 10.1016/j.ejmech.2020.112341_bib155
  article-title: A review of the antibacterial activity of Hypericum perforatum L.
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2010.07.034
– volume: 11
  start-page: 1
  year: 1993
  ident: 10.1016/j.ejmech.2020.112341_bib3
  article-title: Photodynamic therapy in dermatology: recent developments
  publication-title: Dermatol. Clin.
  doi: 10.1016/S0733-8635(18)30277-8
– volume: 119
  start-page: 943
  year: 2006
  ident: 10.1016/j.ejmech.2020.112341_bib19
  article-title: Fifteen-year study of the changing epidemiology of methicillin-resistant Staphylococcus aureus
  publication-title: Am. J. Med.
  doi: 10.1016/j.amjmed.2006.01.004
– volume: 31
  start-page: 297
  year: 2015
  ident: 10.1016/j.ejmech.2020.112341_bib41
  article-title: Photodynamic inactivation of antibiotic-resistant bacteria and biofilms by hematoporphyrin monomethyl ether
  publication-title: Laser Med. Sci.
  doi: 10.1007/s10103-015-1859-6
– volume: 21
  start-page: 219
  year: 2018
  ident: 10.1016/j.ejmech.2020.112341_bib149
  article-title: Reduced methicillin-resistant Staphylococcus aureus biofilm formation in bone cavities by photodynamic therapy
  publication-title: Photodiagnosis Photodyn. Ther.
  doi: 10.1016/j.pdpdt.2017.12.011
– volume: 4
  start-page: 1
  year: 2015
  ident: 10.1016/j.ejmech.2020.112341_bib27
  article-title: Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement, BioMed Centrals
  publication-title: Syst. Rev.
  doi: 10.1186/2046-4053-4-1
– volume: 6
  start-page: 535
  year: 2006
  ident: 10.1016/j.ejmech.2020.112341_bib126
  article-title: Photodynamic therapy and anti-tumour immunity
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc1894
– volume: 6
  start-page: 141
  year: 2014
  ident: 10.1016/j.ejmech.2020.112341_bib30
  article-title: An insight on bacterial cellular targets of photodynamic inactivation
  publication-title: Future Med. Chem.
  doi: 10.4155/fmc.13.211
– volume: 9
  start-page: 359
  year: 2012
  ident: 10.1016/j.ejmech.2020.112341_bib79
  article-title: Photodynamic inactivation requires innovative approach concerning numerous bacterial isolates and multicomponent sensitizing agents
  publication-title: Photodiagnosis Photodyn. Ther.
  doi: 10.1016/j.pdpdt.2012.04.002
– volume: 19
  start-page: 249
  year: 2017
  ident: 10.1016/j.ejmech.2020.112341_bib140
  article-title: The effect of antimicrobial photodynamic therapy on the expression of novel methicillin resistance markers determined using cDNA-AFLP approach in Staphylococcus aureus
  publication-title: Photodiagnosis Photodyn. Ther.
  doi: 10.1016/j.pdpdt.2017.06.012
– volume: 10
  start-page: 397
  year: 2000
  ident: 10.1016/j.ejmech.2020.112341_bib8
  article-title: Role of photodynamic therapy in the management of advanced esophageal cancer
  publication-title: Gastrointestinal Endoscopy Clinics of North America
  doi: 10.1016/S1052-5157(18)30112-0
– volume: 164
  start-page: 987
  year: 2011
  ident: 10.1016/j.ejmech.2020.112341_bib99
  article-title: Effectiveness of antimicrobial photodynamic therapy with a single treatment of RLP068/Cl in an experimental model of Staphylococcus aureus wound infection
  publication-title: Br. J. Dermatol.
  doi: 10.1111/j.1365-2133.2011.10232.x
– volume: 9
  start-page: 27
  year: 2009
  ident: 10.1016/j.ejmech.2020.112341_bib129
  article-title: In vivo killing of Staphylococcus aureus using a light-activated antimicrobial agent
  publication-title: BMC Microbiol.
  doi: 10.1186/1471-2180-9-27
– volume: 178
  start-page: 277
  year: 2018
  ident: 10.1016/j.ejmech.2020.112341_bib66
  article-title: Potentiation by potassium iodide reveals that the anionic porphyrin TPPS4 is a surprisingly effective photosensitizer for antimicrobial photodynamic inactivation
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/j.jphotobiol.2017.10.036
– volume: 13
  start-page: 87
  year: 2007
  ident: 10.1016/j.ejmech.2020.112341_bib136
  article-title: A comparative in vitro photoinactivation study of clinical isolates of multidrug-resistant pathogens
  publication-title: J. Infect. Chemother.
  doi: 10.1007/s10156-006-0501-8
– volume: 6
  start-page: 545
  year: 2007
  ident: 10.1016/j.ejmech.2020.112341_bib63
  article-title: Determination of the antibacterial efficacy of a new porphyrin-based photosensitizer against MRSA ex vivo
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/b614770d
– start-page: 7
  year: 2007
  ident: 10.1016/j.ejmech.2020.112341_bib4
– volume: 6
  start-page: 817
  year: 2013
  ident: 10.1016/j.ejmech.2020.112341_bib11
  article-title: Dye sensitizers for photodynamic therapy
  publication-title: Materials
  doi: 10.3390/ma6030817
– volume: 17
  start-page: 129
  year: 1996
  ident: 10.1016/j.ejmech.2020.112341_bib18
  article-title: Antimicrobial resistance in long-term-care facilities
  publication-title: Infect. Control Hosp. Epidemiol.
  doi: 10.2307/30141013
– volume: 1
  start-page: 468
  year: 2002
  ident: 10.1016/j.ejmech.2020.112341_bib26
  article-title: Photoinactivation of bacterial strains involved in periodontal diseases sensitized by porphycene–polylysine conjugates
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/b200977c
– volume: 27
  start-page: 1372
  year: 1989
  ident: 10.1016/j.ejmech.2020.112341_bib45
  article-title: Staphylococcus aureus strains which are not identified by rapid agglutination methods are of capsular serotype 5
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.27.6.1372-1374.1989
– volume: 16
  start-page: 272
  year: 1995
  ident: 10.1016/j.ejmech.2020.112341_bib113
  article-title: Lethal photosensitisation ofStaphylococcus aureus in vitro: effect of growth phase, serum, and pre-irradiation time
  publication-title: Laser Surg. Med.
  doi: 10.1002/lsm.1900160309
– volume: 9
  year: 2014
  ident: 10.1016/j.ejmech.2020.112341_bib60
  article-title: Photodynamic antimicrobial polymers for infection control
  publication-title: PloS One
  doi: 10.1371/journal.pone.0108500
– volume: 520
  start-page: 139
  year: 2017
  ident: 10.1016/j.ejmech.2020.112341_bib134
  article-title: Photosensitizer-eluting nanofibers for enhanced photodynamic therapy of wounds: a preclinical study in immunocompromized rats
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2017.02.004
– volume: 10
  start-page: 615
  year: 2013
  ident: 10.1016/j.ejmech.2020.112341_bib183
  article-title: Photodynamic inactivation of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus with Ru(II)-based type I/type II photosensitizers
  publication-title: Photodiagnosis Photodyn. Ther.
  doi: 10.1016/j.pdpdt.2013.07.001
– volume: 25
  start-page: 337
  year: 2009
  ident: 10.1016/j.ejmech.2020.112341_bib58
  article-title: Current and new treatments of photodamaged skin
  publication-title: Facial Plast. Surg.
  doi: 10.1055/s-0029-1243083
– volume: 103
  start-page: 1545
  year: 2010
  ident: 10.1016/j.ejmech.2020.112341_bib145
  article-title: Curcumin as a therapeutic agent: the evidence from in vitro, animal and human studies
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114509993667
– volume: 79
  start-page: 1335
  year: 1983
  ident: 10.1016/j.ejmech.2020.112341_bib70
  article-title: Photo-oxidation of metalloporphyrins in aqueous solution
  publication-title: J. Chem. Soc., Faraday Trans. 1: Physical Chemistry in Condensed Phases
  doi: 10.1039/f19837901335
– volume: 22
  start-page: 5243
  year: 2016
  ident: 10.1016/j.ejmech.2020.112341_bib111
  article-title: Labeling and selective inactivation of gram-positive bacteria employing bimodal photoprobes with dual readouts
  publication-title: Chem. Eur J.
  doi: 10.1002/chem.201504935
– volume: 173
  start-page: 672
  year: 2017
  ident: 10.1016/j.ejmech.2020.112341_bib166
  article-title: Effects of blue or violet light on the inactivation of Staphylococcus aureus by riboflavin-5′-phosphate photolysis
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/j.jphotobiol.2017.07.009
– volume: 41
  start-page: 316
  year: 2009
  ident: 10.1016/j.ejmech.2020.112341_bib36
  article-title: Improved photodynamic inactivation of gram-positive bacteria using hematoporphyrin encapsulated in liposomes and micelles
  publication-title: Laser Surg. Med.
  doi: 10.1002/lsm.20754
– volume: 1
  start-page: 113
  year: 1961
  ident: 10.1016/j.ejmech.2020.112341_bib14
  article-title: Celbenin"-resistant staphylococci
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.1.5219.124-a
– volume: 47
  start-page: 1185
  year: 1997
  ident: 10.1016/j.ejmech.2020.112341_bib12
  article-title: Photodynamic therapy: the clinical perspective. Review on applications for control of diverse tumorous and non-tumorous diseases
  publication-title: Arzneim. Forsch.
– volume: 40
  start-page: 873
  year: 1997
  ident: 10.1016/j.ejmech.2020.112341_bib90
  article-title: Killing of methicillin-resistant Staphylococcus aureus in vitro using aluminium disulphonated phthalocyanine, a light-activated antimicrobial agent
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/40.6.873
– volume: 70
  start-page: 531
  year: 2004
  ident: 10.1016/j.ejmech.2020.112341_bib167
  article-title: Photo-activated DNA binding and antimicrobial activities of furoquinoline and pyranoquinalone alkaloids from Rutaceae
  publication-title: Planta Medicine
  doi: 10.1055/s-2004-827153
– year: 1961
  ident: 10.1016/j.ejmech.2020.112341_bib7
  article-title: The use of a derivative of hematoporphyrin in tumor Detection23, JNCI
  publication-title: J. Natl. Cancer Inst.
– volume: 46
  start-page: 24
  year: 2013
  ident: 10.1016/j.ejmech.2020.112341_bib37
  article-title: Photodynamic therapy (PDT): PDT mechanisms
  publication-title: Clinical Endoscopy
  doi: 10.5946/ce.2013.46.1.24
– volume: 111
  start-page: 10453
  year: 2007
  ident: 10.1016/j.ejmech.2020.112341_bib51
  article-title: Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp073113e
– volume: 44
  start-page: 243
  year: 2001
  ident: 10.1016/j.ejmech.2020.112341_bib33
  article-title: Photodynamic activity of the haematoporphyrin derivative with rutin and arginine substituents (HpD-Rut2- Arg2) against staphylococcus aureus and pseudomonas aeruginosa
  publication-title: Pharmacol. Res.
  doi: 10.1006/phrs.2001.0855
– volume: 29
  start-page: 413
  year: 2011
  ident: 10.1016/j.ejmech.2020.112341_bib78
  article-title: The connection between agr and SCCmec elements of Staphylococcus aureus strains and their response to photodynamic inactivation
  publication-title: Photomedicine and Laser Surgery
  doi: 10.1089/pho.2010.2854
– volume: 37
  start-page: 134
  year: 2017
  ident: 10.1016/j.ejmech.2020.112341_bib133
  article-title: Fast and effective photodynamic inactivation of 4-day-old biofilm of methicillin-resistant Staphylococcus aureus using methylene blue-conjugated gold nanoparticles
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2016.12.007
– volume: 12
  year: 2017
  ident: 10.1016/j.ejmech.2020.112341_bib151
  article-title: Encapsulation of curcumin in polymeric nanoparticles for antimicrobial Photodynamic Therapy
  publication-title: PloS One
– volume: 9
  start-page: 254
  year: 1989
  ident: 10.1016/j.ejmech.2020.112341_bib169
  article-title: New method of photosensitizer accumulation for photodynamic therapy in an experimental liver tumor
  publication-title: Laser Surg. Med.
  doi: 10.1002/lsm.1900090308
– volume: 3
  start-page: 320
  year: 2017
  ident: 10.1016/j.ejmech.2020.112341_bib68
  article-title: Potassium iodide potentiates broad-spectrum antimicrobial photodynamic inactivation using photofrin
  publication-title: ACS Infect. Dis.
  doi: 10.1021/acsinfecdis.7b00004
– volume: 3
  start-page: 468
  year: 2013
  ident: 10.1016/j.ejmech.2020.112341_bib131
  article-title: Photodynamic therapy of antibiotic-resistant biofilms in a maxillary sinus model
  publication-title: International Forum of Allergy & Rhinology
  doi: 10.1002/alr.21134
– volume: 42
  start-page: 38
  year: 2010
  ident: 10.1016/j.ejmech.2020.112341_bib23
  article-title: Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model
  publication-title: Laser Surg. Med.
  doi: 10.1002/lsm.20887
– volume: 155
  start-page: 400
  year: 2011
  ident: 10.1016/j.ejmech.2020.112341_bib93
  article-title: A delivery system to avoid self-aggregation and to improve in vitro and in vivo skin delivery of a phthalocyanine derivative used in the photodynamic therapy
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2011.06.034
– volume: 103
  start-page: 360
  year: 1965
  ident: 10.1016/j.ejmech.2020.112341_bib152
  article-title: Photosensitized inactivation of ribonucleic acids in the presence of riboflavin
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2787(65)90182-6
– volume: 38
  start-page: 178
  year: 1997
  ident: 10.1016/j.ejmech.2020.112341_bib180
  article-title: Indocyanine green: intracellular uptake and phototherapeutic effects in vitro
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/S1011-1344(96)07453-2
– volume: 84
  start-page: 278
  year: 2014
  ident: 10.1016/j.ejmech.2020.112341_bib97
  article-title: Photodynamic inactivation of bacteria and viruses using two monosubstituted zinc(II) phthalocyanines
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2014.07.022
– volume: 64
  start-page: 469
  year: 1996
  ident: 10.1016/j.ejmech.2020.112341_bib34
  article-title: Structure and biodistribution relationships of photodynamic sensitizers
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.1996.tb03093.x
– volume: 165
  start-page: 51
  year: 2016
  ident: 10.1016/j.ejmech.2020.112341_bib72
  article-title: Photodynamic inactivation of methicillin-resistant Staphylococcus aureus and Escherichia coli: a metalloporphyrin comparison
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/j.jphotobiol.2016.10.016
– volume: 29
  start-page: 165
  year: 2001
  ident: 10.1016/j.ejmech.2020.112341_bib20
  article-title: Comparison of the methylene blue and toluidine blue photobactericidal efficacy against gram-positive and gram-negative microorganisms
  publication-title: Laser Surg. Med.
  doi: 10.1002/lsm.1105
– volume: 77
  start-page: 329
  year: 2012
  ident: 10.1016/j.ejmech.2020.112341_bib85
  article-title: Molecular targets of antimicrobial photodynamic therapy identified by a proteomic approach
  publication-title: Journal of Proteomics
  doi: 10.1016/j.jprot.2012.09.007
– volume: 5
  start-page: 82
  year: 2014
  ident: 10.1016/j.ejmech.2020.112341_bib118
  article-title: The effect of antimicrobial photodynamic therapy with Radachlorin® on Staphylococcus aureus and Escherichia coli: an in vitro study
  publication-title: J. Laser Med. Sci.
– volume: 3
  start-page: 756
  year: 2017
  ident: 10.1016/j.ejmech.2020.112341_bib128
  article-title: Attaching the NorA efflux pump inhibitor INF55 to methylene blue enhances antimicrobial photodynamic inactivation of methicillin-resistant Staphylococcus aureus in vitro and in vivo
  publication-title: ACS Infect. Dis.
  doi: 10.1021/acsinfecdis.7b00095
– volume: 50
  start-page: 46
  year: 2017
  ident: 10.1016/j.ejmech.2020.112341_bib139
  article-title: Effects of toluidine blue O (TBO)-photodynamic inactivation on community-associated methicillin-resistant Staphylococcus aureus isolates
  publication-title: J. Microbiol. Immunol. Infect.
  doi: 10.1016/j.jmii.2014.12.007
– volume: 56
  start-page: 828
  year: 2018
  ident: 10.1016/j.ejmech.2020.112341_bib83
  article-title: Photodynamic antimicrobial activity of new porphyrin derivatives against methicillin resistant Staphylococcus aureus
  publication-title: J. Microbiol.
– volume: 11
  start-page: 1099
  year: 2012
  ident: 10.1016/j.ejmech.2020.112341_bib158
  article-title: On the mechanism of Candida spp. photoinactivation by hypericin
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/c2pp25105a
– volume: 279
  start-page: 593
  year: 1998
  ident: 10.1016/j.ejmech.2020.112341_bib15
  article-title: Community-acquired methicillin-resistant Staphylococcus aureus in children with No identified predisposing risk
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.279.8.593
– volume: 29
  start-page: 177
  year: 1995
  ident: 10.1016/j.ejmech.2020.112341_bib16
  article-title: Methicillin-resistant Staphylococcus aureus in western Australia, 1983–1992
  publication-title: J. Hosp. Infect.
  doi: 10.1016/0195-6701(95)90327-5
– volume: 88
  year: 2012
  ident: 10.1016/j.ejmech.2020.112341_bib89
  article-title: Porphyrin-cellulose nanocrystals: a photobactericidal material that exhibits broad spectrum antimicrobial activity†
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.2012.01117.x
– volume: 7
  year: 2012
  ident: 10.1016/j.ejmech.2020.112341_bib121
  article-title: Photodynamic therapy can induce a protective innate immune response against murine bacterial arthritis via neutrophil accumulation
  publication-title: PloS One
  doi: 10.1371/journal.pone.0039823
– volume: 175
  start-page: 72
  year: 2019
  ident: 10.1016/j.ejmech.2020.112341_bib6
  article-title: Porphyrinoid photosensitizers mediated photodynamic inactivation against bacteria
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2019.04.057
– volume: 9
  start-page: 169
  year: 2003
  ident: 10.1016/j.ejmech.2020.112341_bib17
  article-title: Elimination of epidemic methicillin-ResistantStaphylococcus aureusfrom a university hospital and district institutions, Finland
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid0902.020233
– volume: 10
  start-page: 1593
  year: 2011
  ident: 10.1016/j.ejmech.2020.112341_bib69
  article-title: Antimicrobial peptide-modified liposomes for bacteria targeted delivery of temoporfin in photodynamic antimicrobial chemotherapy
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/c1pp05100h
– volume: 30
  start-page: 383
  year: 2014
  ident: 10.1016/j.ejmech.2020.112341_bib88
  article-title: Antimicrobial action from a novel porphyrin derivative in photodynamic antimicrobial chemotherapy in vitro
  publication-title: Laser Med. Sci.
  doi: 10.1007/s10103-014-1681-6
– volume: 58
  start-page: 895
  year: 1993
  ident: 10.1016/j.ejmech.2020.112341_bib1
  article-title: Photodynamic therapy
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.1993.tb04990.x
– volume: 10
  start-page: 347
  year: 2015
  ident: 10.1016/j.ejmech.2020.112341_bib161
  article-title: Antimicrobial photodynamic activity of hypericin against methicillin-susceptible and resistant Staphylococcus aureus biofilms
  publication-title: Future Microbiol.
  doi: 10.2217/fmb.14.114
– volume: 7
  year: 2016
  ident: 10.1016/j.ejmech.2020.112341_bib24
  article-title: Effect of photodynamic therapy on the virulence factors of Staphylococcus aureus
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.00267
– volume: 10
  start-page: 323
  year: 2010
  ident: 10.1016/j.ejmech.2020.112341_bib48
  article-title: Superoxide dismutase is upregulated in Staphylococcus aureus following protoporphyrin-mediated photodynamic inactivation and does not directly influence the response to photodynamic treatment
  publication-title: BMC Microbiol.
  doi: 10.1186/1471-2180-10-323
– volume: 55
  start-page: 1883
  year: 2011
  ident: 10.1016/j.ejmech.2020.112341_bib38
  article-title: Chitosan augments photodynamic inactivation of gram-positive and gram-negative bacteria
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00550-10
– volume: 17
  start-page: 24
  year: 2011
  ident: 10.1016/j.ejmech.2020.112341_bib142
  article-title: Photodynamic inactivation of multidrug resistant pathogens in Hong Kong
  publication-title: Hong Kong Med. J.
– volume: 1
  start-page: 815
  year: 2002
  ident: 10.1016/j.ejmech.2020.112341_bib95
  article-title: Approaches to selectivity in the Zn(ii)–phthalocyanine-photosensitized inactivation of wild-type and antibiotic-resistant Staphylococcus aureus
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/B206554A
– volume: 25
  start-page: 743
  year: 2010
  ident: 10.1016/j.ejmech.2020.112341_bib138
  article-title: Laser light combined with a photosensitizer may eliminate methicillin-resistant strains of Staphylococcus aureus
  publication-title: Laser Med. Sci.
  doi: 10.1007/s10103-010-0803-z
– volume: 9
  start-page: 3912
  year: 2017
  ident: 10.1016/j.ejmech.2020.112341_bib102
  article-title: Dual antibacterial activities of a chitosan-modified upconversion photodynamic therapy system against drug-resistant bacteria in deep tissue
  publication-title: Nanoscale
  doi: 10.1039/C6NR07188K
– volume: 79
  start-page: 14
  year: 2015
  ident: 10.1016/j.ejmech.2020.112341_bib172
  article-title: Antimicrobial photodynamic inactivation with decacationic functionalized fullerenes: oxygen-independent photokilling in presence of azide and new mechanistic insights
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2014.10.514
– volume: 43
  start-page: 221
  year: 2011
  ident: 10.1016/j.ejmech.2020.112341_bib67
  article-title: Photodynamic therapy using intra-articular photofrin for murine MRSA arthritis: biphasic light dose response for neutrophil-mediated antibacterial effect
  publication-title: Laser Surg. Med.
  doi: 10.1002/lsm.21037
– volume: 39
  start-page: 1026
  year: 2007
  ident: 10.1016/j.ejmech.2020.112341_bib65
  article-title: Efficient photoinactivation of methicillin-resistant Staphylococcus aureus by a novel porphyrin incorporated into a poly-cationic liposome
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2007.02.001
– ident: 10.1016/j.ejmech.2020.112341_bib25
  doi: 10.1039/9781847551658-00001
– volume: 91
  start-page: 54
  year: 2016
  ident: 10.1016/j.ejmech.2020.112341_bib162
  article-title: The degree of virulence does not necessarily affect MRSA biofilm strength and response to photodynamic therapy
  publication-title: Microb. Pathog.
  doi: 10.1016/j.micpath.2015.11.012
– volume: 5
  year: 2010
  ident: 10.1016/j.ejmech.2020.112341_bib64
  article-title: Efficient photodynamic therapy against gram-positive and gram-negative bacteria using THPTS, a cationic photosensitizer excited by infrared wavelength
  publication-title: PloS One
  doi: 10.1371/journal.pone.0011674
– volume: 45
  year: 2016
  ident: 10.1016/j.ejmech.2020.112341_bib13
  article-title: Targeting innovation in antibiotic drug discovery and development: the need for a one Health – one Europe – one world framework
  publication-title: European Observatory on Health Systems and Policies Health, Policy Series
– volume: 114
  start-page: 8997
  year: 1992
  ident: 10.1016/j.ejmech.2020.112341_bib74
  article-title: Luminescence studies of the intercalation of Cu(TMpyP4) into DNA
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00049a034
– volume: 9
  start-page: 180
  year: 2012
  ident: 10.1016/j.ejmech.2020.112341_bib40
  article-title: Research progress of hemoporfin – part one: preclinical study
  publication-title: Photodiagnosis Photodyn. Ther.
  doi: 10.1016/j.pdpdt.2011.09.004
– volume: 62
  start-page: 1521
  year: 2009
  ident: 10.1016/j.ejmech.2020.112341_bib105
  article-title: Metallophthalocyanines as photodynamic sensitizers for treatment of pathogenic bacteria. Synthesis and singlet oxygen formation
  publication-title: C. R. Acad. Bulg. Sci.
– volume: 4
  start-page: 503
  year: 2005
  ident: 10.1016/j.ejmech.2020.112341_bib53
  article-title: Photodynamic therapy for Staphylococcus aureus infected burn wounds in mice
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/b502125a
– volume: 32
  start-page: 78
  year: 2003
  ident: 10.1016/j.ejmech.2020.112341_bib57
  article-title: IPL technology: a review
  publication-title: Laser Surg. Med.
  doi: 10.1002/lsm.10145
– volume: 4
  start-page: 1564
  year: 2018
  ident: 10.1016/j.ejmech.2020.112341_bib47
  article-title: Rapid uptake and photodynamic inactivation of staphylococci by Ga(III)-Protoporphyrin IX
  publication-title: ACS Infect. Dis.
  doi: 10.1021/acsinfecdis.8b00125
– volume: 10
  start-page: 92
  year: 2004
  ident: 10.1016/j.ejmech.2020.112341_bib114
  article-title: Antibody-directed photodynamic therapy of MethicillinResistant Staphylococcus aureus
  publication-title: Microb. Drug Resist.
  doi: 10.1089/1076629041310000
– volume: 162
  start-page: 340
  year: 2016
  ident: 10.1016/j.ejmech.2020.112341_bib119
  article-title: Photodynamic inactivation of multidrug-resistant Staphylococcus aureus by chlorin e6 and red light (λ = 670 nm)
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/j.jphotobiol.2016.07.007
– volume: 14
  start-page: 431
  year: 2002
  ident: 10.1016/j.ejmech.2020.112341_bib21
  article-title: Methylene blue - a therapeutic dye for all seasons?
  publication-title: J. Chemother.
  doi: 10.1179/joc.2002.14.5.431
– volume: 55
  start-page: 581
  issue: 3
  year: 2008
  ident: 10.1016/j.ejmech.2020.112341_bib54
  article-title: Photodynamic effect of lanthanide derivatives of meso-tetra(N-methyl4-pyridyl) porphine against Staphylococcus aureus
  publication-title: Acta biochimica polonca
  doi: 10.18388/abp.2008_3064
– volume: 129
  start-page: 100
  year: 2013
  ident: 10.1016/j.ejmech.2020.112341_bib29
  article-title: The agr function and polymorphism: impact on Staphylococcus aureus susceptibility to photoinactivation
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/j.jphotobiol.2013.10.006
– volume: 72
  start-page: 4436
  year: 2006
  ident: 10.1016/j.ejmech.2020.112341_bib143
  article-title: Cellulose acetate containing toluidine blue and Rose bengal is an effective antimicrobial coating when exposed to white light
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02945-05
– volume: 31
  start-page: 327
  year: 2011
  ident: 10.1016/j.ejmech.2020.112341_bib75
  article-title: Neutral metallated and meso-substituted porphyrins as antimicrobial agents against Gram-positive pathogens
  publication-title: Eur. J. Clin. Microbiol. Infect. Dis.
  doi: 10.1007/s10096-011-1314-y
– volume: 53
  start-page: 7337
  year: 2010
  ident: 10.1016/j.ejmech.2020.112341_bib174
  article-title: Light induced antimicrobial properties of a brominated boron difluoride (BF2) chelated tetraarylazadipyrromethene photosensitizer
  publication-title: J. Med. Chem.
  doi: 10.1021/jm100585j
– volume: 44
  start-page: 582
  year: 2016
  ident: 10.1016/j.ejmech.2020.112341_bib153
  article-title: Photodynamic UVA-riboflavin bacterial elimination in antibiotic-resistant bacteria
  publication-title: Clin. Exp. Ophthalmol.
  doi: 10.1111/ceo.12723
– volume: 28
  start-page: 391
  year: 2012
  ident: 10.1016/j.ejmech.2020.112341_bib147
  article-title: Phototoxic effect of curcumin on methicillin-resistant Staphylococcus aureus and L929 fibroblasts
  publication-title: Laser Med. Sci.
  doi: 10.1007/s10103-012-1064-9
– volume: 10
  start-page: 2592
  year: 2009
  ident: 10.1016/j.ejmech.2020.112341_bib81
  article-title: Inclusion of 5-[4-(1-Dodecanoylpyridinium)]-10,15,20-triphenylporphine in supramolecular aggregates of cationic amphiphilic cyclodextrins: physicochemical characterization of the complexes and strengthening of the antimicrobial photosensitizing activity
  publication-title: Biomacromolecules
  doi: 10.1021/bm900533r
– volume: 21
  start-page: 271
  year: 2002
  ident: 10.1016/j.ejmech.2020.112341_bib46
  article-title: Structure–function relationships in heme-proteins
  publication-title: DNA Cell Biol.
  doi: 10.1089/104454902753759690
– volume: 17
  start-page: 638
  year: 2018
  ident: 10.1016/j.ejmech.2020.112341_bib120
  article-title: Progressive cationic functionalization of chlorin derivatives for antimicrobial photodynamic inactivation and related vancomycin conjugates
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/C7PP00389G
– volume: 54
  start-page: 15152
  year: 2015
  ident: 10.1016/j.ejmech.2020.112341_bib109
  article-title: A multifunctional subphthalocyanine nanosphere for targeting, labeling, and killing of antibiotic-resistant bacteria
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201507140
– volume: 2
  start-page: 131
  year: 2015
  ident: 10.1016/j.ejmech.2020.112341_bib110
  article-title: Antimicrobial activity of metallo tetra (4-carboxyphenyl) phthalocyanine useful in photodynamic therapy
  publication-title: Pharmacologyonline
– volume: 12
  start-page: 2170
  year: 2013
  ident: 10.1016/j.ejmech.2020.112341_bib87
  article-title: Porphyrin–silica microparticle conjugates as an efficient tool for the photosensitised disinfection of water contaminated by bacterial pathogens
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/c3pp50282a
– volume: 52
  start-page: 299
  year: 2007
  ident: 10.1016/j.ejmech.2020.112341_bib137
  article-title: Toluidine blue-mediated photodynamic effects on staphylococcal biofilms
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00988-07
– volume: 88
  start-page: 227
  year: 2011
  ident: 10.1016/j.ejmech.2020.112341_bib127
  article-title: Optimal photosensitizers for photodynamic therapy of infections should kill bacteria but spare neutrophils
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.2011.01005.x
– volume: 33
  start-page: 523
  year: 2017
  ident: 10.1016/j.ejmech.2020.112341_bib135
  article-title: Antimicrobial photodynamic therapy—a promising treatment for prosthetic joint infections
  publication-title: Laser Med. Sci.
  doi: 10.1007/s10103-017-2394-4
– volume: 20
  year: 2015
  ident: 10.1016/j.ejmech.2020.112341_bib181
  article-title: Antibacterial photodynamic therapy with 808-nm laser and indocyanine green on abrasion wound models
  publication-title: J. Biomed. Optic.
– year: 2015
  ident: 10.1016/j.ejmech.2020.112341_bib22
  article-title: Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections
  publication-title: Journal of Clinical and Translational Research
– volume: 47
  start-page: 6649
  year: 2004
  ident: 10.1016/j.ejmech.2020.112341_bib84
  article-title: Synthesis and antibacterial activity of new poly-S-lysine−Porphyrin conjugates
  publication-title: J. Med. Chem.
  doi: 10.1021/jm040802v
– volume: 61
  year: 2017
  ident: 10.1016/j.ejmech.2020.112341_bib179
  article-title: Potassium iodide potentiates antimicrobial photodynamic inactivation mediated by Rose bengal in in vitro and in vivo studies
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00467-17
– volume: 10
  start-page: 348
  year: 2013
  ident: 10.1016/j.ejmech.2020.112341_bib52
  article-title: Discovering the mechanisms of strain-dependent response of Staphylococcus aureus to photoinactivation: oxidative stress toleration, endogenous porphyrin level and strains virulence
  publication-title: Photodiagnosis Photodyn. Ther.
  doi: 10.1016/j.pdpdt.2013.02.004
– volume: 18
  start-page: 92
  year: 2019
  ident: 10.1016/j.ejmech.2020.112341_bib80
  article-title: Bactericidal effects of hematoporphyrin monomethyl ether-mediated blue-light photodynamic therapy against Staphylococcus aureus
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/C8PP00127H
– volume: 16
  start-page: 27072
  year: 2015
  ident: 10.1016/j.ejmech.2020.112341_bib177
  article-title: A comparative study on two cationic porphycenes: photophysical and antimicrobial photoinactivation evaluation
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms161125999
– volume: 10
  start-page: 603
  year: 2015
  ident: 10.1016/j.ejmech.2020.112341_bib173
  article-title: Potentiation of antimicrobial photodynamic inactivation mediated by a cationic fullerene by added iodide: in vitro and in vivo studies
  publication-title: Nanomedicine
  doi: 10.2217/nnm.14.131
– volume: 16
  start-page: 7851
  year: 2015
  ident: 10.1016/j.ejmech.2020.112341_bib106
  article-title: The photodynamic antibacterial effects of silicon phthalocyanine (Pc) 4
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms16047851
– volume: 6
  start-page: 733
  year: 2012
  ident: 10.1016/j.ejmech.2020.112341_bib100
  article-title: Antimicrobial photodynamic therapy with RLP068 kills methicillin-resistantStaphylococcus aureusand improves wound healing in a mouse model of infected skin abrasion PDT with RLP068/Cl in infected mouse skin abrasion
  publication-title: J. Biophot.
  doi: 10.1002/jbio.201200121
– year: 1996
  ident: 10.1016/j.ejmech.2020.112341_bib96
  article-title: Mechanisms of cell damage in photodynamic therapy
– volume: 8
  start-page: 340
  year: 2008
  ident: 10.1016/j.ejmech.2020.112341_bib94
  article-title: Photophysical studies and in vitro skin permeation/retention of Foscan/nanoemulsion (NE) applicable to photodynamic therapy skin cancer treatment
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2008.18137
– volume: 49
  start-page: 3690
  year: 2005
  ident: 10.1016/j.ejmech.2020.112341_bib115
  article-title: Development of a novel targeting system for lethal photosensitization of antibiotic-resistant strains of Staphylococcus aureus
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.49.9.3690-3696.2005
– volume: 28
  year: 2010
  ident: 10.1016/j.ejmech.2020.112341_bib122
  article-title: Energy dose parameters affect antimicrobial photodynamic therapy–mediated eradication of periopathogenic biofilm and planktonic cultures
  publication-title: Photomedicine and Laser Surgery
  doi: 10.1089/pho.2009.2622
– volume: 2
  start-page: 187
  year: 2002
  ident: 10.1016/j.ejmech.2020.112341_bib10
  article-title: Porphyrins in photodynamic therapy - a search for ideal photosensitizers
  publication-title: Curr. Med. Chem. Anti Canc. Agents
  doi: 10.2174/1568011023354137
– volume: 294
  start-page: 133
  year: 2009
  ident: 10.1016/j.ejmech.2020.112341_bib104
  article-title: Photodynamic inactivation ofAeromonas hydrophilaby cationic phthalocyanines with different hydrophobicity
  publication-title: FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2009.01555.x
– volume: 10
  start-page: 15485
  year: 2018
  ident: 10.1016/j.ejmech.2020.112341_bib108
  article-title: Near-infrared-triggered antibacterial and antifungal photodynamic therapy based on lanthanide-doped upconversion nanoparticles
  publication-title: Nanoscale
  doi: 10.1039/C8NR01967C
– volume: 50
  start-page: 857
  year: 2002
  ident: 10.1016/j.ejmech.2020.112341_bib112
  article-title: Selective lethal photosensitization of methicillin-resistant Staphylococcus aureus using an IgG-tin (IV) chlorin e6 conjugate
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkf209
– volume: 63
  start-page: 984
  year: 2010
  ident: 10.1016/j.ejmech.2020.112341_bib157
  article-title: A phase II placebo-controlled study of photodynamic therapy with topical hypericin and visible light irradiation in the treatment of cutaneous T-cell lymphoma and psoriasis
  publication-title: J. Am. Acad. Dermatol.
  doi: 10.1016/j.jaad.2010.02.039
– start-page: 175
  year: 2010
  ident: 10.1016/j.ejmech.2020.112341_bib123
  article-title: Photodynamic therapy of bacterial and fungal biofilm infections
  publication-title: Methods in Molecular Biology Photodynamic Therapy
  doi: 10.1007/978-1-60761-697-9_13
– volume: 36
  start-page: 8
  year: 2018
  ident: 10.1016/j.ejmech.2020.112341_bib182
  article-title: Photodynamic inactivation of methicillin-resistant Staphylococcus aureus by indocyanine green and near infrared light
  publication-title: Dermatol. Sin.
  doi: 10.1016/j.dsi.2017.08.003
– volume: 90
  start-page: 57
  year: 2008
  ident: 10.1016/j.ejmech.2020.112341_bib44
  article-title: Bactericidal effect of photodynamic inactivation against methicillin-resistant and methicillin-susceptible Staphylococcus aureus is strain-dependent
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/j.jphotobiol.2007.11.002
– volume: 49
  start-page: 1542
  year: 2005
  ident: 10.1016/j.ejmech.2020.112341_bib62
  article-title: Photodynamic effects of novel XF porphyrin derivatives on prokaryotic and eukaryotic cells
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.49.4.1542-1552.2005
– volume: 10
  start-page: 1097
  year: 2011
  ident: 10.1016/j.ejmech.2020.112341_bib156
  article-title: Targeted photodynamic therapy – a promising strategy of tumor treatment
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/c0pp00147c
– year: 2013
  ident: 10.1016/j.ejmech.2020.112341_bib31
SSID ssj0005600
Score 2.5670087
SecondaryResourceType review_article
Snippet The high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) causing skin and soft tissue infections in both the community and healthcare settings...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112341
SubjectTerms Antibacterial photodynamic therapy (aPDT)
Methicillin-resistant Staphylococcus aureus (MRSA)
Photosensitizers
Title Contemporary approaches and future perspectives of antibacterial photodynamic therapy (aPDT) against methicillin-resistant Staphylococcus aureus (MRSA): A systematic review
URI https://dx.doi.org/10.1016/j.ejmech.2020.112341
https://www.proquest.com/docview/2410715595
Volume 200
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXK9gAXVAqIQqkGCVWtVLNrO87G3FZbqgXUakW3Um-R49iQCpIVmz3shV_Ej2QcJw0goUqconzYiTLOzBvH7w0hr_lYSYmJB7VWKRrpkaDajjR1sTLaRi7izZzu-UU8u4o-XMvrLTLtuDB-WWXr-4NPb7x1e2TYvs3hsiiGlxh9ED0I7A3dMPP83m0uVCwHZHvy_uPsol_pEQcmCl7v866oY9A1y7zszTfb_JXgDZ1GROxfEeovX90EoLMd8rBFjjAJD_eIbNlyl9yfdgXbdsnhPMhQb05g0bOqVidwCPNeoHrzmPz8XZIKOlVxuwJd5hBERmDZkzBXUDk8VRdZUHbGh1h-qeoqD8XsIVC4NnCk56eLY9CfdYGYE3xt6sL46ZySYk7vcWpZA4JbNCxG0MqYNd4R74Wbo_NPl5PjtzCBXlkaAqvmCbk6e7eYzmhbtYEakciaWhfbhI0Nk7lVmRwzl8cjwzXjHNGmYiIfKeHww8_R52cJz1iSRU4Y4TRmS9qIp2RQVqV9RiBBrOWs0irHrM1ELMs4s9gcnTt2LJM9IjpLpaaVNPeVNb6m3dq1mzTYN_X2TYN99wi9bbUMkh53XD_uBkH6x9BMMerc0fJVN2ZSHAv-V4wubbVepYibENthNief_3fvL8gDv-cnuJncJ4P6-9q-RIRUZwfk3psf7KD9Dn4BaVAT8Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELam8TBe0Bggxs9DQtMmzbSO4yTmrSpMBdapYp20N8txbMg0koqmD33hL-KP5BwndCChSTxVamInyjl33zn3fUfI6yiVQmDiQa2VksZ6yKm2Q01dIo22sYujdk93epZMLuKPl-Jyi4x7Lowvq-x8f_Dprbfu_hl0T3OwKMvBOUYfRA8cZ0M3zDy_904seOrr-t78uFHnkQQeCp7ts66458-1RV726pttv0lELZmGx-xf8ekvT92Gn5Ndcq_DjTAKt3afbNlqj-yM-3Zte-RgFkSo18cw33CqlsdwALONPPX6Afl5U5AKek1xuwRdFRAkRmCxoWAuoXZ4qCnzoOuMN7H4Wjd1EVrZQyBwreFQz97Nj0B_0SUiTvCdqUvjN3Mqihm9R6lVAwht0awYP2tjVnhFvBb-HE4_n4-O3sIINrrSEDg1D8nFyfv5eEK7ng3U8Ew01LrEZiw1TBRW5iJlrkiGJtIsihBrSsaLoeQOX_sCPX6eRTnL8thxw53GXEkb_ohsV3VlHxPIEGk5K7UsMGczMcvziFkcjq4dJxbZPuG9pZTpBM19X41r1VeuXalgX-Xtq4J99wn9PWoRBD1uOT_tF4H6Y2EqjDm3jHzVrxmFa8F_iNGVrVdLhagJkR3mcuLJf8_-kuxM5tNTdfrh7NNTctcf8VvdTDwj2833lX2OWKnJX7Tvwi_J9RS8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contemporary+approaches+and+future+perspectives+of+antibacterial+photodynamic+therapy+%28aPDT%29+against+methicillin-resistant+Staphylococcus+aureus+%28MRSA%29%3A+A+systematic+review&rft.jtitle=European+journal+of+medicinal+chemistry&rft.au=Dharmaratne%2C+Priyanga&rft.au=Sapugahawatte%2C+Dulmini+Nanayakkara&rft.au=Wang%2C+Baiyan&rft.au=Chan%2C+Chung+Lap&rft.date=2020-08-15&rft.pub=Elsevier+Masson+SAS&rft.issn=0223-5234&rft.eissn=1768-3254&rft.volume=200&rft_id=info:doi/10.1016%2Fj.ejmech.2020.112341&rft.externalDocID=S0223523420303111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0223-5234&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0223-5234&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0223-5234&client=summon