Classification of olive leaf diseases using deep convolutional neural networks
In recent years, there have been significant achievements in object classification with various techniques using several deep learning architectures. These architectures are now also used for classification and detection of many plant diseases. Olives are important plant species which are grown in c...
Saved in:
Published in | Neural computing & applications Vol. 33; no. 9; pp. 4133 - 4149 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.05.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, there have been significant achievements in object classification with various techniques using several deep learning architectures. These architectures are now also used for classification and detection of many plant diseases. Olives are important plant species which are grown in certain regions of the world. The disease types that affect the olive plants vary on the region where it is grown. This study presents a data set consisting of 3400 olive leaves samples which also includes healthy leaves so as to detect Aculus olearius and Olive peacock spot diseases, which are common olive plant diseases in Turkey. This experimental study used transfer learning methods on VGG16 and VGG19 architectures, as well as on our proposed CNN architecture. Effects of data augmentation on performance were one aim of this research. In the experimental studies which applied data augmentation the highest success value in trained models was 95%, whereas in the experiments without data augmentation the highest value was 88%. Another subject of this research is the Adam, AdaGrad, Stochastic gradient descent and RMS Prop optimization algorithms’ effect on the network’s performance. As a result of the conducted experiments, Adam and SGD optimization algorithms were generally observed to generate superior results. |
---|---|
AbstractList | In recent years, there have been significant achievements in object classification with various techniques using several deep learning architectures. These architectures are now also used for classification and detection of many plant diseases. Olives are important plant species which are grown in certain regions of the world. The disease types that affect the olive plants vary on the region where it is grown. This study presents a data set consisting of 3400 olive leaves samples which also includes healthy leaves so as to detect Aculus olearius and Olive peacock spot diseases, which are common olive plant diseases in Turkey. This experimental study used transfer learning methods on VGG16 and VGG19 architectures, as well as on our proposed CNN architecture. Effects of data augmentation on performance were one aim of this research. In the experimental studies which applied data augmentation the highest success value in trained models was 95%, whereas in the experiments without data augmentation the highest value was 88%. Another subject of this research is the Adam, AdaGrad, Stochastic gradient descent and RMS Prop optimization algorithms’ effect on the network’s performance. As a result of the conducted experiments, Adam and SGD optimization algorithms were generally observed to generate superior results. |
Author | Uysal, Nese Uğuz, Sinan |
Author_xml | – sequence: 1 givenname: Sinan orcidid: 0000-0003-4397-6196 surname: Uğuz fullname: Uğuz, Sinan email: sinanuguz@isparta.edu.tr organization: Department of Computer Engineering, Isparta University of Applied Sciences – sequence: 2 givenname: Nese orcidid: 0000-0002-0527-791X surname: Uysal fullname: Uysal, Nese organization: Department of Mechatronics Engineering, Isparta University of Applied Sciences |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz6uTr_04SvELil70HLKb2ZK6bmqyW_Hfm7aC4KGnGZj3mRmeGZn0vkdCLhlcM4DiJgIozjLgkKVGqEydkCmTQmQCVDkhU6hkGudSnJFZjGsAkHmppuR50ZkYXesaMzjfU99S37kt0g5NS62LaCJGOkbXr6hF3NDG91vfjbu06WiPY9iX4cuH93hOTlvTRbz4rXPydn_3unjMli8PT4vbZdaIUg0ZIpe25qIorYQ2F7LCqi4aZfIWuFK1agwKW0tlVV1UVqYkszWCYHXBpKrEnFwd9m6C_xwxDnrtx5AeiporludQAhcpxQ-pJvgYA7Z6E9yHCd-agd550wdvOnnTe29aJaj8BzVu2MsZgnHdcVQc0Jju9CsMf18doX4AHdWETQ |
CitedBy_id | crossref_primary_10_1016_j_dib_2025_111379 crossref_primary_10_1007_s11042_024_18867_9 crossref_primary_10_1007_s00521_024_10409_6 crossref_primary_10_1016_j_ecoinf_2023_101998 crossref_primary_10_1016_j_aej_2023_03_081 crossref_primary_10_1371_journal_pone_0313113 crossref_primary_10_1002_uar2_20053 crossref_primary_10_1007_s11694_022_01795_3 crossref_primary_10_1007_s00500_023_09048_1 crossref_primary_10_1109_ACCESS_2024_3511456 crossref_primary_10_48175_IJARSCT_19238 crossref_primary_10_3389_fpls_2023_1281386 crossref_primary_10_1109_ACCESS_2023_3286730 crossref_primary_10_47947_ijnls_1031087 crossref_primary_10_1007_s00521_023_08496_y crossref_primary_10_1007_s10462_024_10944_7 crossref_primary_10_32628_IJSRSET2512160 crossref_primary_10_3390_su142013610 crossref_primary_10_1038_s41598_022_18337_y crossref_primary_10_3390_app122010278 crossref_primary_10_1007_s11042_023_16238_4 crossref_primary_10_1007_s11760_024_03134_z crossref_primary_10_1155_2022_2546873 crossref_primary_10_3389_fpls_2022_850666 crossref_primary_10_1007_s00217_023_04386_8 crossref_primary_10_1007_s00521_022_07743_y crossref_primary_10_1002_jemt_24451 crossref_primary_10_1007_s11042_023_17600_2 crossref_primary_10_1007_s00521_023_09111_w crossref_primary_10_7831_ras_13_1_81 crossref_primary_10_1016_j_compag_2024_109720 crossref_primary_10_1155_2022_3998193 crossref_primary_10_1007_s11042_023_15940_7 crossref_primary_10_3389_fpls_2023_1276728 crossref_primary_10_1007_s12046_023_02309_7 crossref_primary_10_1155_2022_8531213 crossref_primary_10_1007_s11042_022_12759_6 crossref_primary_10_21597_jist_1265769 crossref_primary_10_1016_j_aej_2023_07_037 crossref_primary_10_1111_exsy_13473 crossref_primary_10_1109_ACCESS_2024_3388169 crossref_primary_10_3390_electronics11010148 crossref_primary_10_1016_j_asoc_2023_110534 crossref_primary_10_1080_03772063_2024_2425775 crossref_primary_10_34133_plantphenomics_0153 crossref_primary_10_1109_TAFE_2024_3433348 crossref_primary_10_1080_10106049_2022_2112300 crossref_primary_10_3389_fpls_2024_1392409 crossref_primary_10_1016_j_engappai_2024_109646 crossref_primary_10_1007_s00521_022_07951_6 crossref_primary_10_1007_s00521_021_06066_8 crossref_primary_10_1007_s41348_024_00915_z crossref_primary_10_1111_jfpe_14303 crossref_primary_10_32604_cmc_2022_021875 crossref_primary_10_1080_10942912_2022_2158863 crossref_primary_10_32604_cmc_2024_047604 crossref_primary_10_1007_s11042_023_16886_6 crossref_primary_10_1016_j_aej_2023_10_057 crossref_primary_10_1016_j_ecoinf_2023_102276 crossref_primary_10_1016_j_jer_2023_09_033 crossref_primary_10_1016_j_compag_2024_109467 crossref_primary_10_3390_su151813723 crossref_primary_10_1007_s11277_024_11374_y crossref_primary_10_36306_konjes_1078358 |
Cites_doi | 10.3389/fpls.2017.01741 10.1016/j.compag.2018.02.016 10.1186/s13007-019-0475-z 10.3390/sym10010011 10.1016/j.still.2011.11.002 10.1016/j.inpa.2019.10.003 10.1007/s11831-018-9255-6 10.1109/JSTARS.2016.2575360 10.1016/j.scienta.2012.02.024 10.1093/jxb/erp080 10.3390/s17092022 10.1016/j.proeng.2012.07.321 10.1016/j.eaef.2019.05.001 10.1109/5.726791 10.1016/j.biosystemseng.2019.02.002 10.1016/j.cropro.2005.05.003 10.1007/978-3-031-01821-3 10.1109/SPIN.2019.8711701 10.1109/DICTA.2016.7797091 10.3389/fpls.2016.01419 10.1016/j.compag.2018.01.009 10.1016/j.ecolecon.2013.10.005 10.1016/j.cropro.2008.04.007 10.1016/j.compag.2017.09.012 10.1016/j.compeleceng.2019.04.011 10.1016/j.compag.2019.01.041 10.1007/s00521-019-04228-3 10.1016/j.compag.2018.03.032 |
ContentType | Journal Article |
Copyright | Springer-Verlag London Ltd., part of Springer Nature 2020 Springer-Verlag London Ltd., part of Springer Nature 2020. |
Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2020 – notice: Springer-Verlag London Ltd., part of Springer Nature 2020. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s00521-020-05235-5 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-3058 |
EndPage | 4149 |
ExternalDocumentID | 10_1007_s00521_020_05235_5 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c385t-ee24db2378d40f6349e9b7c5a6f0255b5cae3db45d5b79d42371dbe031b714593 |
IEDL.DBID | U2A |
ISSN | 0941-0643 |
IngestDate | Fri Jul 25 05:58:00 EDT 2025 Tue Jul 01 01:46:56 EDT 2025 Thu Apr 24 23:03:17 EDT 2025 Fri Feb 21 02:48:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Deep learning Data augmentation Convolutional neural networks Transfer learning Olive plant disease |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-ee24db2378d40f6349e9b7c5a6f0255b5cae3db45d5b79d42371dbe031b714593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4397-6196 0000-0002-0527-791X |
PQID | 2516608023 |
PQPubID | 2043988 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2516608023 crossref_primary_10_1007_s00521_020_05235_5 crossref_citationtrail_10_1007_s00521_020_05235_5 springer_journals_10_1007_s00521_020_05235_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Neural computing & applications |
PublicationTitleAbbrev | Neural Comput & Applic |
PublicationYear | 2021 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | MohantySPHughesDPSalathéMUsing deep learning for image-based plant disease detectionFront Plant Sci20167141910.3389/fpls.2016.01419 PriyadharshiniRAArivazhaganSArunMMirnaliniAMaize leaf disease classification using deep convolutional neural networksNeural Comput Appl201931128887889510.1007/s00521-019-04228-3 LisuCYuanyuanSKeWRapid diagnosis of nitrogen nutrition status in rice based on static scanning and extraction of leaf and sheath characteristicsInt J Agric Biol Eng2017103158164 LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc IEEE199886112278232410.1109/5.726791 Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:150203167 ObanorFOJaspersMVJonesEEWalterMGreenhouse and field evaluation of fungicides for control of olive leaf spot in New ZealandCrop Prot200827101335134210.1016/j.cropro.2008.04.007 SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: a simple way to prevent neural networks from overfittingJ Mach Learn Res20141511929195832315921318.68153 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, 2012. pp 1097–1105 FuentesAYoonSKimSParkDA robust deep-learning-based detector for real-time tomato plant diseases and pests recognitionSensors2017179202210.3390/s17092022 AlruwailiMAlanaziSEl-GhanySAShehabAAn efficient deep learning model for olive diseases detectionInt J Adv Comput Sci Appl2019108486492 United Nations DoE, Social Affairs PD (2019) World population prospects 2019: highlights GeetharamaniGPandianAIdentification of plant leaf diseases using a nine-layer deep convolutional neural networkComput Electr Eng20197632333810.1016/j.compeleceng.2019.04.011 BarbedoJGAPlant disease identification from individual lesions and spots using deep learningBiosys Eng20191809610710.1016/j.biosystemseng.2019.02.002 Francis M, Deisy C (2019) Disease detection and classification in agricultural plants using convolutional neural networks—a visual understanding. In: 2019 6th ınternational conference on signal processing and ıntegrated networks (SPIN). IEEE, pp 1063–1068 DongHZhangXChoenYZhouYLiWLiZDry mycelium of Penicillium chrysogenum protects cotton plants against wilt diseases and increases yield under field conditionsCrop Prot200625432433010.1016/j.cropro.2005.05.003 Ji-YongSXiao-BoZJie-WenZKai-LiangWZheng-WeiCXiao-WeiHDe-TaoZHolmesMNondestructive diagnostics of nitrogen deficiency by cucumber leaf chlorophyll distribution map based on near infrared hyperspectral imagingSci Hortic201213819019710.1016/j.scienta.2012.02.024 Wallelign S, Polceanu M, Buche C (2018) Soybean plant disease ıdentification using convolutional neural network. In: The thirty-first ınternational flairs conference, 2018 UğuzSMakine öğrenmesi-Teorik yönleri ve Python uygulamaları ile bir yapay zeka ekolü2019TurkeyNobel Academic Publish(in Turkish) FerentinosKPDeep learning models for plant disease detection and diagnosisComput Electron Agric201814531131810.1016/j.compag.2018.01.009 AdeelAKhanMASharifMAzamFShahJHUmerTWanSDiagnosis and recognition of grape leaf diseases: an automated system based on a novel saliency approach and canonical correlation analysis based multiple features fusionSustain Comput Inform Syst201924100349 JiMZhangLWuQAutomatic grape leaf diseases identification via UnitedModel based on multiple convolutional neural networksInf Process Agric201910.1016/j.inpa.2019.10.003 VasilevISlaterDSpacagnaGRoelantsPZoccaVPython deep learning: exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow2019BirminghamPack Publishing Chollet F (2015) Keras. https://github.com/fchollet/keras BraunackMGarsideAMagareyRReduced tillage planting and the long-term effect on soil-borne disease and yield of sugarcane (Saccharum inter-specific hybrid) in Queensland, AustraliaSoil Tillage Res2012120859110.1016/j.still.2011.11.002 Wong SC, Gatt A, Stamatescu V, McDonnell MD (2016) Understanding data augmentation for classification: when to warp? In: 2016 international conference on digital image computing: techniques and applications (DICTA), 2016. IEEE, pp 1–6 CruzACLuvisiADe BellisLAmpatzidisYX-FIDO: an effective application for detecting olive quick decline syndrome with deep learning and data fusionFront Plant Sci20178174110.3389/fpls.2017.01741 AshourlooDAghighiHMatkanAAMobasheriMRRadAMAn investigation into machine learning regression techniques for the leaf rust disease detection using hyperspectral measurementIEEE J Sel Top Appl Earth Observ Remote Sens2016994344435110.1109/JSTARS.2016.2575360 HuGYangXZhangYWanMIdentification of tea leaf diseases by using an improved deep convolutional neural networkSustain Comput Info Syst201924100353 Al-TarawnehMSAn empirical investigation of olive leave spot disease using auto-cropping segmentation and fuzzy C-means classificationWorld Appl Sci J201323912071211 Zeytin ve Zeytin Yağı Raporu (2018). T.C. Gümrük ve Ticaret Bakanlığı Kooperatifçilik Genel Müdürlüğü AsrafHMNooritawatiMRizamMSA comparative study in kernel-based support vector machine of oil palm leaves nutrient diseaseProc Eng2012411353135910.1016/j.proeng.2012.07.321 AshqarBAAbu-NaserSSImage-based tomato leaves diseases detection using deep learningInt J Acad Eng Res20182121016 ZhangKXuZDongSCenCWuQIdentification of peach leaf disease infected by Xanthomonas campestris with deep learningEng Agric Environ Food201912438839610.1016/j.eaef.2019.05.001 LuJHuJZhaoGMeiFZhangCAn in-field automatic wheat disease diagnosis systemComput Electron Agric201714236937910.1016/j.compag.2017.09.012 ÇetinHAlaogluOMut (Mersin) ilcesindeki zeytin agaclarnda bulunan eriophyid akar turleri ve zarar sekilleriTurk Entomol Derg2006304303315 SubramanianVDeep learning with PyTorch: a practical approach to building neural network models using PyTorch2018BirminghamPackt Publishing Ltd GregoryPJJohnsonSNNewtonACIngramJSIntegrating pests and pathogens into the climate change/food security debateJ Exp Bot200960102827283810.1093/jxb/erp080 KaurSPandeySGoelSPlants disease identification and classification through leaf images: a surveyArch Comput Methods Eng201926250753010.1007/s11831-018-9255-6 Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556 OdegardIVan der VoetEThe future of food—scenarios and the effect on natural resource use in agriculture in 2050Ecol Econ201497515910.1016/j.ecolecon.2013.10.005 Council IO (2018) World oil production. https://www.internationaloliveoil.org/what-we-do/economic-affairs-promotion-unit/. Accessed 13 Dec 2019 TooECYujianLNjukiSYingchunLA comparative study of fine-tuning deep learning models for plant disease identificationComput Electron Agric201916127227910.1016/j.compag.2018.03.032 KamilarisAPrenafeta-BoldúFXDeep learning in agriculture: a surveyComput Electron Agric2018147709010.1016/j.compag.2018.02.016 KhanSRahmaniHShahSAABennamounMA guide to convolutional neural networks for computer visionSynth Lect Comput Vis2018811207 BorhanMPanigrahiSSatterMGuHEvaluation of computer imaging technique for predicting the SPAD readings in potato leavesInform Process Agric201744275282 KayaAKeceliASCatalCYalicHYTemucinHTekinerdoganBAnalysis of transfer learning for deep neural network based plant classification modelsComput Electron Agric2019158202910.1016/j.compag.2019.01.041 LiuBZhangYHeDLiYIdentification of apple leaf diseases based on deep convolutional neural networksSymmetry20181011110.3390/sym10010011 SelvarajMGVergaraARuizHSafariNElayabalanSOcimatiWBlommeGAI-powered banana diseases and pest detectionPlant Methods20191519210.1186/s13007-019-0475-z V Subramanian (5235_CR46) 2018 HM Asraf (5235_CR17) 2012; 41 A Kamilaris (5235_CR40) 2018; 147 J Lu (5235_CR26) 2017; 142 H Çetin (5235_CR10) 2006; 30 MS Al-Tarawneh (5235_CR14) 2013; 23 A Fuentes (5235_CR25) 2017; 17 B Liu (5235_CR27) 2018; 10 I Odegard (5235_CR2) 2014; 97 BA Ashqar (5235_CR12) 2018; 2 FO Obanor (5235_CR11) 2008; 27 I Vasilev (5235_CR47) 2019 G Hu (5235_CR28) 2019; 24 KP Ferentinos (5235_CR32) 2018; 145 S Kaur (5235_CR7) 2019; 26 PJ Gregory (5235_CR3) 2009; 60 H Dong (5235_CR5) 2006; 25 D Ashourloo (5235_CR15) 2016; 9 5235_CR1 N Srivastava (5235_CR44) 2014; 15 AC Cruz (5235_CR34) 2017; 8 5235_CR38 SP Mohanty (5235_CR4) 2016; 7 5235_CR39 G Geetharamani (5235_CR30) 2019; 76 5235_CR36 5235_CR8 S Khan (5235_CR43) 2018; 8 5235_CR9 5235_CR41 5235_CR42 M Borhan (5235_CR18) 2017; 4 JGA Barbedo (5235_CR29) 2019; 180 M Braunack (5235_CR6) 2012; 120 A Adeel (5235_CR13) 2019; 24 S Ji-Yong (5235_CR19) 2012; 138 EC Too (5235_CR31) 2019; 161 C Lisu (5235_CR16) 2017; 10 MG Selvaraj (5235_CR20) 2019; 15 A Kaya (5235_CR48) 2019; 158 M Ji (5235_CR23) 2019 RA Priyadharshini (5235_CR22) 2019; 31 M Alruwaili (5235_CR33) 2019; 10 S Uğuz (5235_CR37) 2019 Y LeCun (5235_CR35) 1998; 86 5235_CR45 K Zhang (5235_CR21) 2019; 12 5235_CR24 |
References_xml | – reference: Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556 – reference: Ji-YongSXiao-BoZJie-WenZKai-LiangWZheng-WeiCXiao-WeiHDe-TaoZHolmesMNondestructive diagnostics of nitrogen deficiency by cucumber leaf chlorophyll distribution map based on near infrared hyperspectral imagingSci Hortic201213819019710.1016/j.scienta.2012.02.024 – reference: Wong SC, Gatt A, Stamatescu V, McDonnell MD (2016) Understanding data augmentation for classification: when to warp? In: 2016 international conference on digital image computing: techniques and applications (DICTA), 2016. IEEE, pp 1–6 – reference: Zeytin ve Zeytin Yağı Raporu (2018). T.C. Gümrük ve Ticaret Bakanlığı Kooperatifçilik Genel Müdürlüğü – reference: AlruwailiMAlanaziSEl-GhanySAShehabAAn efficient deep learning model for olive diseases detectionInt J Adv Comput Sci Appl2019108486492 – reference: HuGYangXZhangYWanMIdentification of tea leaf diseases by using an improved deep convolutional neural networkSustain Comput Info Syst201924100353 – reference: AdeelAKhanMASharifMAzamFShahJHUmerTWanSDiagnosis and recognition of grape leaf diseases: an automated system based on a novel saliency approach and canonical correlation analysis based multiple features fusionSustain Comput Inform Syst201924100349 – reference: LiuBZhangYHeDLiYIdentification of apple leaf diseases based on deep convolutional neural networksSymmetry20181011110.3390/sym10010011 – reference: JiMZhangLWuQAutomatic grape leaf diseases identification via UnitedModel based on multiple convolutional neural networksInf Process Agric201910.1016/j.inpa.2019.10.003 – reference: BraunackMGarsideAMagareyRReduced tillage planting and the long-term effect on soil-borne disease and yield of sugarcane (Saccharum inter-specific hybrid) in Queensland, AustraliaSoil Tillage Res2012120859110.1016/j.still.2011.11.002 – reference: PriyadharshiniRAArivazhaganSArunMMirnaliniAMaize leaf disease classification using deep convolutional neural networksNeural Comput Appl201931128887889510.1007/s00521-019-04228-3 – reference: Chollet F (2015) Keras. https://github.com/fchollet/keras – reference: FerentinosKPDeep learning models for plant disease detection and diagnosisComput Electron Agric201814531131810.1016/j.compag.2018.01.009 – reference: DongHZhangXChoenYZhouYLiWLiZDry mycelium of Penicillium chrysogenum protects cotton plants against wilt diseases and increases yield under field conditionsCrop Prot200625432433010.1016/j.cropro.2005.05.003 – reference: AshourlooDAghighiHMatkanAAMobasheriMRRadAMAn investigation into machine learning regression techniques for the leaf rust disease detection using hyperspectral measurementIEEE J Sel Top Appl Earth Observ Remote Sens2016994344435110.1109/JSTARS.2016.2575360 – reference: Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:150203167 – reference: ObanorFOJaspersMVJonesEEWalterMGreenhouse and field evaluation of fungicides for control of olive leaf spot in New ZealandCrop Prot200827101335134210.1016/j.cropro.2008.04.007 – reference: SelvarajMGVergaraARuizHSafariNElayabalanSOcimatiWBlommeGAI-powered banana diseases and pest detectionPlant Methods20191519210.1186/s13007-019-0475-z – reference: KhanSRahmaniHShahSAABennamounMA guide to convolutional neural networks for computer visionSynth Lect Comput Vis2018811207 – reference: CruzACLuvisiADe BellisLAmpatzidisYX-FIDO: an effective application for detecting olive quick decline syndrome with deep learning and data fusionFront Plant Sci20178174110.3389/fpls.2017.01741 – reference: LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc IEEE199886112278232410.1109/5.726791 – reference: KamilarisAPrenafeta-BoldúFXDeep learning in agriculture: a surveyComput Electron Agric2018147709010.1016/j.compag.2018.02.016 – reference: LisuCYuanyuanSKeWRapid diagnosis of nitrogen nutrition status in rice based on static scanning and extraction of leaf and sheath characteristicsInt J Agric Biol Eng2017103158164 – reference: AshqarBAAbu-NaserSSImage-based tomato leaves diseases detection using deep learningInt J Acad Eng Res20182121016 – reference: MohantySPHughesDPSalathéMUsing deep learning for image-based plant disease detectionFront Plant Sci20167141910.3389/fpls.2016.01419 – reference: BarbedoJGAPlant disease identification from individual lesions and spots using deep learningBiosys Eng20191809610710.1016/j.biosystemseng.2019.02.002 – reference: Francis M, Deisy C (2019) Disease detection and classification in agricultural plants using convolutional neural networks—a visual understanding. In: 2019 6th ınternational conference on signal processing and ıntegrated networks (SPIN). IEEE, pp 1063–1068 – reference: AsrafHMNooritawatiMRizamMSA comparative study in kernel-based support vector machine of oil palm leaves nutrient diseaseProc Eng2012411353135910.1016/j.proeng.2012.07.321 – reference: LuJHuJZhaoGMeiFZhangCAn in-field automatic wheat disease diagnosis systemComput Electron Agric201714236937910.1016/j.compag.2017.09.012 – reference: GregoryPJJohnsonSNNewtonACIngramJSIntegrating pests and pathogens into the climate change/food security debateJ Exp Bot200960102827283810.1093/jxb/erp080 – reference: Wallelign S, Polceanu M, Buche C (2018) Soybean plant disease ıdentification using convolutional neural network. In: The thirty-first ınternational flairs conference, 2018 – reference: FuentesAYoonSKimSParkDA robust deep-learning-based detector for real-time tomato plant diseases and pests recognitionSensors2017179202210.3390/s17092022 – reference: ÇetinHAlaogluOMut (Mersin) ilcesindeki zeytin agaclarnda bulunan eriophyid akar turleri ve zarar sekilleriTurk Entomol Derg2006304303315 – reference: United Nations DoE, Social Affairs PD (2019) World population prospects 2019: highlights – reference: VasilevISlaterDSpacagnaGRoelantsPZoccaVPython deep learning: exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow2019BirminghamPack Publishing – reference: BorhanMPanigrahiSSatterMGuHEvaluation of computer imaging technique for predicting the SPAD readings in potato leavesInform Process Agric201744275282 – reference: Council IO (2018) World oil production. https://www.internationaloliveoil.org/what-we-do/economic-affairs-promotion-unit/. Accessed 13 Dec 2019 – reference: Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, 2012. pp 1097–1105 – reference: GeetharamaniGPandianAIdentification of plant leaf diseases using a nine-layer deep convolutional neural networkComput Electr Eng20197632333810.1016/j.compeleceng.2019.04.011 – reference: UğuzSMakine öğrenmesi-Teorik yönleri ve Python uygulamaları ile bir yapay zeka ekolü2019TurkeyNobel Academic Publish(in Turkish) – reference: ZhangKXuZDongSCenCWuQIdentification of peach leaf disease infected by Xanthomonas campestris with deep learningEng Agric Environ Food201912438839610.1016/j.eaef.2019.05.001 – reference: KayaAKeceliASCatalCYalicHYTemucinHTekinerdoganBAnalysis of transfer learning for deep neural network based plant classification modelsComput Electron Agric2019158202910.1016/j.compag.2019.01.041 – reference: OdegardIVan der VoetEThe future of food—scenarios and the effect on natural resource use in agriculture in 2050Ecol Econ201497515910.1016/j.ecolecon.2013.10.005 – reference: SubramanianVDeep learning with PyTorch: a practical approach to building neural network models using PyTorch2018BirminghamPackt Publishing Ltd – reference: KaurSPandeySGoelSPlants disease identification and classification through leaf images: a surveyArch Comput Methods Eng201926250753010.1007/s11831-018-9255-6 – reference: Al-TarawnehMSAn empirical investigation of olive leave spot disease using auto-cropping segmentation and fuzzy C-means classificationWorld Appl Sci J201323912071211 – reference: SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: a simple way to prevent neural networks from overfittingJ Mach Learn Res20141511929195832315921318.68153 – reference: TooECYujianLNjukiSYingchunLA comparative study of fine-tuning deep learning models for plant disease identificationComput Electron Agric201916127227910.1016/j.compag.2018.03.032 – volume: 30 start-page: 303 issue: 4 year: 2006 ident: 5235_CR10 publication-title: Turk Entomol Derg – volume: 8 start-page: 1741 year: 2017 ident: 5235_CR34 publication-title: Front Plant Sci doi: 10.3389/fpls.2017.01741 – volume: 147 start-page: 70 year: 2018 ident: 5235_CR40 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.02.016 – volume: 15 start-page: 92 issue: 1 year: 2019 ident: 5235_CR20 publication-title: Plant Methods doi: 10.1186/s13007-019-0475-z – volume: 10 start-page: 11 issue: 1 year: 2018 ident: 5235_CR27 publication-title: Symmetry doi: 10.3390/sym10010011 – volume: 120 start-page: 85 year: 2012 ident: 5235_CR6 publication-title: Soil Tillage Res doi: 10.1016/j.still.2011.11.002 – ident: 5235_CR36 – volume: 24 start-page: 100349 year: 2019 ident: 5235_CR13 publication-title: Sustain Comput Inform Syst – year: 2019 ident: 5235_CR23 publication-title: Inf Process Agric doi: 10.1016/j.inpa.2019.10.003 – volume: 26 start-page: 507 issue: 2 year: 2019 ident: 5235_CR7 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-018-9255-6 – volume: 9 start-page: 4344 issue: 9 year: 2016 ident: 5235_CR15 publication-title: IEEE J Sel Top Appl Earth Observ Remote Sens doi: 10.1109/JSTARS.2016.2575360 – volume: 138 start-page: 190 year: 2012 ident: 5235_CR19 publication-title: Sci Hortic doi: 10.1016/j.scienta.2012.02.024 – volume: 60 start-page: 2827 issue: 10 year: 2009 ident: 5235_CR3 publication-title: J Exp Bot doi: 10.1093/jxb/erp080 – volume: 17 start-page: 2022 issue: 9 year: 2017 ident: 5235_CR25 publication-title: Sensors doi: 10.3390/s17092022 – ident: 5235_CR1 – volume: 2 start-page: 10 issue: 12 year: 2018 ident: 5235_CR12 publication-title: Int J Acad Eng Res – volume: 10 start-page: 158 issue: 3 year: 2017 ident: 5235_CR16 publication-title: Int J Agric Biol Eng – volume: 41 start-page: 1353 year: 2012 ident: 5235_CR17 publication-title: Proc Eng doi: 10.1016/j.proeng.2012.07.321 – volume: 4 start-page: 275 issue: 4 year: 2017 ident: 5235_CR18 publication-title: Inform Process Agric – volume: 12 start-page: 388 issue: 4 year: 2019 ident: 5235_CR21 publication-title: Eng Agric Environ Food doi: 10.1016/j.eaef.2019.05.001 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 5235_CR35 publication-title: Proc IEEE doi: 10.1109/5.726791 – volume: 180 start-page: 96 year: 2019 ident: 5235_CR29 publication-title: Biosys Eng doi: 10.1016/j.biosystemseng.2019.02.002 – volume: 25 start-page: 324 issue: 4 year: 2006 ident: 5235_CR5 publication-title: Crop Prot doi: 10.1016/j.cropro.2005.05.003 – ident: 5235_CR9 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 5235_CR43 publication-title: Synth Lect Comput Vis doi: 10.1007/978-3-031-01821-3 – ident: 5235_CR45 doi: 10.1109/SPIN.2019.8711701 – ident: 5235_CR38 doi: 10.1109/DICTA.2016.7797091 – ident: 5235_CR42 – volume-title: Makine öğrenmesi-Teorik yönleri ve Python uygulamaları ile bir yapay zeka ekolü year: 2019 ident: 5235_CR37 – volume: 7 start-page: 1419 year: 2016 ident: 5235_CR4 publication-title: Front Plant Sci doi: 10.3389/fpls.2016.01419 – volume: 145 start-page: 311 year: 2018 ident: 5235_CR32 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.01.009 – volume-title: Python deep learning: exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow year: 2019 ident: 5235_CR47 – volume: 97 start-page: 51 year: 2014 ident: 5235_CR2 publication-title: Ecol Econ doi: 10.1016/j.ecolecon.2013.10.005 – volume: 24 start-page: 100353 year: 2019 ident: 5235_CR28 publication-title: Sustain Comput Info Syst – ident: 5235_CR39 – volume: 27 start-page: 1335 issue: 10 year: 2008 ident: 5235_CR11 publication-title: Crop Prot doi: 10.1016/j.cropro.2008.04.007 – volume: 142 start-page: 369 year: 2017 ident: 5235_CR26 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2017.09.012 – volume: 76 start-page: 323 year: 2019 ident: 5235_CR30 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2019.04.011 – volume: 158 start-page: 20 year: 2019 ident: 5235_CR48 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2019.01.041 – volume: 31 start-page: 8887 issue: 12 year: 2019 ident: 5235_CR22 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04228-3 – volume: 10 start-page: 486 issue: 8 year: 2019 ident: 5235_CR33 publication-title: Int J Adv Comput Sci Appl – volume: 161 start-page: 272 year: 2019 ident: 5235_CR31 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.03.032 – ident: 5235_CR8 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 5235_CR44 publication-title: J Mach Learn Res – volume-title: Deep learning with PyTorch: a practical approach to building neural network models using PyTorch year: 2018 ident: 5235_CR46 – ident: 5235_CR41 – volume: 23 start-page: 1207 issue: 9 year: 2013 ident: 5235_CR14 publication-title: World Appl Sci J – ident: 5235_CR24 |
SSID | ssj0004685 |
Score | 2.509059 |
Snippet | In recent years, there have been significant achievements in object classification with various techniques using several deep learning architectures. These... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4133 |
SubjectTerms | Algorithms Artificial Intelligence Artificial neural networks Classification Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data augmentation Data Mining and Knowledge Discovery Image Processing and Computer Vision Machine learning Olives Optimization Optimization algorithms Original Article Plant diseases Probability and Statistics in Computer Science |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu3DhjRgMlAM3qGibV3tCgDZNHCaEmLRb1SQul2kddPx_4izdAAlOlfpIJSd2HPuzP0KujLEqgczpd5xAxKUuI62zKmLSecfOXWDS-G6fYzma8KepmIaAWxNgla1N9Iba1gZj5LduH5YSC0PZ3eI9QtYozK4GCo1t0nUmOMs6pPswGD-_fKuM9KSc7gyD-B7OQtmML57DiKi7m2IyOGUiEj-3po2_-StF6nee4T7ZDS4jvV_N8QHZgvkh2WvpGGjQziMy9gSXCP3x0qZ1ReuZM2Z0BmVFQyamoYh0f6MWYEERch6WnvsBtrb0Fw8Mb47JZDh4fRxFgS4hMiwTywgg5VanTGWWx5VkPIdcKyNKWeHBQQtTArOaCyu0yi3iYRKrwWm1VgkXOTshnXk9h1NCZVxhI3ej8LgIPNFCa60gUYbbCmLdI0krqcKEXuJIaTEr1l2QvXQLJ93CS7cQPXK9_max6qTx79v9dgKKoFVNsVkDPXLTTsrm8d-jnf0_2jnZSRGq4nGMfdJZfnzChfM1lvoyLKgv9WLPAQ priority: 102 providerName: ProQuest |
Title | Classification of olive leaf diseases using deep convolutional neural networks |
URI | https://link.springer.com/article/10.1007/s00521-020-05235-5 https://www.proquest.com/docview/2516608023 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdmHhjSiUygMbREriVzK20LQCqUKISmWK4kdYqrYi5f9ju04LCJCYPMRxpDuf_V3uuzuAKykVj3Ri7DuMdECYKAIhkjLAzKBjAxcwk67a55iNJuR-Sqc-Kayq2e51SNKd1JtkN_sH07i-sQ3expgGtAEtanx3S-SaxL1P2ZCuEafxWyynh2CfKvPzGl-voy3G_BYWdbdNdgB7Hiai3lqvh7Cj50ewX7dgQN4ij2Hsmlpauo-TMFqUaDEzBxia6aJEPvpSIctuf0VK6yWyNHO_3cwHbDlLNzgyeHUCk2zwfDsKfIuEQOKErgKtY6JEjHmiSFgyTFKdCi5pwUrrLAgqC42VIFRRwVNlOTCREtpYsuARoSk-heZ8MddngFhY2uLtklsXUZNIUCEE1xGXRJU6FG2Iaknl0tcPt20sZvmm8rGTbm6kmzvp5rQN15t3luvqGX_O7tQKyL0lVbnBX4zZhGDchptaKdvHv692_r_pF7AbW7qK4zJ2oLl6e9eXBm-sRBcaSTbsQqvXv-tndhy-PAzM2B-MH5-6bvN9AHA90AA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4YPOjFtxFF3YOetJF2H4WDMUZFFOSEibfK7k69EEDBGP-Uv9GdpQU1kRunJn1sk5nZeex8MwNwZIyNQ6y4_V0OMRBKdwKtK2nAlfOOnbvAlfHdPluq_ijun-TTAnzltTAEq8x1olfUtm_ojPzM2WGlqDCUXwxeA5oaRdnVfITGWCwa-PnhQrbh-d214-9xFNVu2lf1IJsqEBhekaMAMRJWRzyuWFFOFRdVrOrYyI5Kyb_W0nSQWy2klTquWoKNhFajE34dh0JS8yWn8hcFd5acKtNrtz_qMP0IUBcxEZpI8KxIx5fq0fmruxtR6jniMpC_DeHUu_2TkPV2rrYGK5mDyi7HErUOC9jbgNV8-APLdMEmtPw4TQIaed6yfsr6Xac6WRc7KcvyPkNGuPoXZhEHjADumaC7H1AjTX_xMPThFjzOhYzbUOj1e7gDTJVTahtvYgpOUYRaaq1jDGMjbIplXYQwp1Riss7lNECjm0x6LnvqJo66iaduIotwMvlmMO7bMfPtUs6AJNvDw2QqcUU4zZkyffz_aruzVzuEpXr7oZk071qNPViOCCTjEZQlKIze3nHfeTkjfeBFi8HzvGX5GxnhClo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIiFN6JQwAMbRCTxKxkroCoPVQxU6mblbIelSisa_j-267QFARJThjiOdPbFd7nv-w6hS6W0SExm_TtOTEQ5FBFAVkaE2-jYhguEK6_2OeD9IX0csdEKi9-j3ZuS5JzT4FSaqvpmqsubBfHN_c20aXDqCrkpYRFbRxvUsYHtjh6m3RVmpG_KaXMYh--hJNBmfp7j69G0jDe_lUj9ydPbRdshZMTd-RrvoTVT7aOdph0DDt55gAa-waWD_nhr40mJJ2P7McNjU5Q4VGJm2CHd37A2Zood5DxsPfsCJ23pLx4YPjtEw979620_Cu0SIkUyVkfGpFRDSkSmaVxyQnOTg1Cs4KVLHICpwhANlGkGItcOD5NoMNarQSSU5eQItapJZY4R5nHphNyVcOmioQkwABAmEYrq0sTQRkljKamClrhraTGWCxVkb11prSu9dSVro6vFM9O5ksafozvNAsjgVTNpYzHOHTmYtNF1syjL27_PdvK_4Rdo8-WuJ58fBk-naCt1KBYPceygVv3-Yc5sGFLDud9pnyxp0aA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+olive+leaf+diseases+using+deep+convolutional+neural+networks&rft.jtitle=Neural+computing+%26+applications&rft.au=U%C4%9Fuz%2C+Sinan&rft.au=Uysal%2C+Nese&rft.date=2021-05-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=9&rft.spage=4133&rft.epage=4149&rft_id=info:doi/10.1007%2Fs00521-020-05235-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_020_05235_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |