Classification of olive leaf diseases using deep convolutional neural networks

In recent years, there have been significant achievements in object classification with various techniques using several deep learning architectures. These architectures are now also used for classification and detection of many plant diseases. Olives are important plant species which are grown in c...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 33; no. 9; pp. 4133 - 4149
Main Authors Uğuz, Sinan, Uysal, Nese
Format Journal Article
LanguageEnglish
Published London Springer London 01.05.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, there have been significant achievements in object classification with various techniques using several deep learning architectures. These architectures are now also used for classification and detection of many plant diseases. Olives are important plant species which are grown in certain regions of the world. The disease types that affect the olive plants vary on the region where it is grown. This study presents a data set consisting of 3400 olive leaves samples which also includes healthy leaves so as to detect Aculus olearius and Olive peacock spot diseases, which are common olive plant diseases in Turkey. This experimental study used transfer learning methods on VGG16 and VGG19 architectures, as well as on our proposed CNN architecture. Effects of data augmentation on performance were one aim of this research. In the experimental studies which applied data augmentation the highest success value in trained models was 95%, whereas in the experiments without data augmentation the highest value was 88%. Another subject of this research is the Adam, AdaGrad, Stochastic gradient descent and RMS Prop optimization algorithms’ effect on the network’s performance. As a result of the conducted experiments, Adam and SGD optimization algorithms were generally observed to generate superior results.
AbstractList In recent years, there have been significant achievements in object classification with various techniques using several deep learning architectures. These architectures are now also used for classification and detection of many plant diseases. Olives are important plant species which are grown in certain regions of the world. The disease types that affect the olive plants vary on the region where it is grown. This study presents a data set consisting of 3400 olive leaves samples which also includes healthy leaves so as to detect Aculus olearius and Olive peacock spot diseases, which are common olive plant diseases in Turkey. This experimental study used transfer learning methods on VGG16 and VGG19 architectures, as well as on our proposed CNN architecture. Effects of data augmentation on performance were one aim of this research. In the experimental studies which applied data augmentation the highest success value in trained models was 95%, whereas in the experiments without data augmentation the highest value was 88%. Another subject of this research is the Adam, AdaGrad, Stochastic gradient descent and RMS Prop optimization algorithms’ effect on the network’s performance. As a result of the conducted experiments, Adam and SGD optimization algorithms were generally observed to generate superior results.
Author Uysal, Nese
Uğuz, Sinan
Author_xml – sequence: 1
  givenname: Sinan
  orcidid: 0000-0003-4397-6196
  surname: Uğuz
  fullname: Uğuz, Sinan
  email: sinanuguz@isparta.edu.tr
  organization: Department of Computer Engineering, Isparta University of Applied Sciences
– sequence: 2
  givenname: Nese
  orcidid: 0000-0002-0527-791X
  surname: Uysal
  fullname: Uysal, Nese
  organization: Department of Mechatronics Engineering, Isparta University of Applied Sciences
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz6uTr_04SvELil70HLKb2ZK6bmqyW_Hfm7aC4KGnGZj3mRmeGZn0vkdCLhlcM4DiJgIozjLgkKVGqEydkCmTQmQCVDkhU6hkGudSnJFZjGsAkHmppuR50ZkYXesaMzjfU99S37kt0g5NS62LaCJGOkbXr6hF3NDG91vfjbu06WiPY9iX4cuH93hOTlvTRbz4rXPydn_3unjMli8PT4vbZdaIUg0ZIpe25qIorYQ2F7LCqi4aZfIWuFK1agwKW0tlVV1UVqYkszWCYHXBpKrEnFwd9m6C_xwxDnrtx5AeiporludQAhcpxQ-pJvgYA7Z6E9yHCd-agd550wdvOnnTe29aJaj8BzVu2MsZgnHdcVQc0Jju9CsMf18doX4AHdWETQ
CitedBy_id crossref_primary_10_1016_j_dib_2025_111379
crossref_primary_10_1007_s11042_024_18867_9
crossref_primary_10_1007_s00521_024_10409_6
crossref_primary_10_1016_j_ecoinf_2023_101998
crossref_primary_10_1016_j_aej_2023_03_081
crossref_primary_10_1371_journal_pone_0313113
crossref_primary_10_1002_uar2_20053
crossref_primary_10_1007_s11694_022_01795_3
crossref_primary_10_1007_s00500_023_09048_1
crossref_primary_10_1109_ACCESS_2024_3511456
crossref_primary_10_48175_IJARSCT_19238
crossref_primary_10_3389_fpls_2023_1281386
crossref_primary_10_1109_ACCESS_2023_3286730
crossref_primary_10_47947_ijnls_1031087
crossref_primary_10_1007_s00521_023_08496_y
crossref_primary_10_1007_s10462_024_10944_7
crossref_primary_10_32628_IJSRSET2512160
crossref_primary_10_3390_su142013610
crossref_primary_10_1038_s41598_022_18337_y
crossref_primary_10_3390_app122010278
crossref_primary_10_1007_s11042_023_16238_4
crossref_primary_10_1007_s11760_024_03134_z
crossref_primary_10_1155_2022_2546873
crossref_primary_10_3389_fpls_2022_850666
crossref_primary_10_1007_s00217_023_04386_8
crossref_primary_10_1007_s00521_022_07743_y
crossref_primary_10_1002_jemt_24451
crossref_primary_10_1007_s11042_023_17600_2
crossref_primary_10_1007_s00521_023_09111_w
crossref_primary_10_7831_ras_13_1_81
crossref_primary_10_1016_j_compag_2024_109720
crossref_primary_10_1155_2022_3998193
crossref_primary_10_1007_s11042_023_15940_7
crossref_primary_10_3389_fpls_2023_1276728
crossref_primary_10_1007_s12046_023_02309_7
crossref_primary_10_1155_2022_8531213
crossref_primary_10_1007_s11042_022_12759_6
crossref_primary_10_21597_jist_1265769
crossref_primary_10_1016_j_aej_2023_07_037
crossref_primary_10_1111_exsy_13473
crossref_primary_10_1109_ACCESS_2024_3388169
crossref_primary_10_3390_electronics11010148
crossref_primary_10_1016_j_asoc_2023_110534
crossref_primary_10_1080_03772063_2024_2425775
crossref_primary_10_34133_plantphenomics_0153
crossref_primary_10_1109_TAFE_2024_3433348
crossref_primary_10_1080_10106049_2022_2112300
crossref_primary_10_3389_fpls_2024_1392409
crossref_primary_10_1016_j_engappai_2024_109646
crossref_primary_10_1007_s00521_022_07951_6
crossref_primary_10_1007_s00521_021_06066_8
crossref_primary_10_1007_s41348_024_00915_z
crossref_primary_10_1111_jfpe_14303
crossref_primary_10_32604_cmc_2022_021875
crossref_primary_10_1080_10942912_2022_2158863
crossref_primary_10_32604_cmc_2024_047604
crossref_primary_10_1007_s11042_023_16886_6
crossref_primary_10_1016_j_aej_2023_10_057
crossref_primary_10_1016_j_ecoinf_2023_102276
crossref_primary_10_1016_j_jer_2023_09_033
crossref_primary_10_1016_j_compag_2024_109467
crossref_primary_10_3390_su151813723
crossref_primary_10_1007_s11277_024_11374_y
crossref_primary_10_36306_konjes_1078358
Cites_doi 10.3389/fpls.2017.01741
10.1016/j.compag.2018.02.016
10.1186/s13007-019-0475-z
10.3390/sym10010011
10.1016/j.still.2011.11.002
10.1016/j.inpa.2019.10.003
10.1007/s11831-018-9255-6
10.1109/JSTARS.2016.2575360
10.1016/j.scienta.2012.02.024
10.1093/jxb/erp080
10.3390/s17092022
10.1016/j.proeng.2012.07.321
10.1016/j.eaef.2019.05.001
10.1109/5.726791
10.1016/j.biosystemseng.2019.02.002
10.1016/j.cropro.2005.05.003
10.1007/978-3-031-01821-3
10.1109/SPIN.2019.8711701
10.1109/DICTA.2016.7797091
10.3389/fpls.2016.01419
10.1016/j.compag.2018.01.009
10.1016/j.ecolecon.2013.10.005
10.1016/j.cropro.2008.04.007
10.1016/j.compag.2017.09.012
10.1016/j.compeleceng.2019.04.011
10.1016/j.compag.2019.01.041
10.1007/s00521-019-04228-3
10.1016/j.compag.2018.03.032
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2020
Springer-Verlag London Ltd., part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2020
– notice: Springer-Verlag London Ltd., part of Springer Nature 2020.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-020-05235-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 4149
ExternalDocumentID 10_1007_s00521_020_05235_5
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c385t-ee24db2378d40f6349e9b7c5a6f0255b5cae3db45d5b79d42371dbe031b714593
IEDL.DBID U2A
ISSN 0941-0643
IngestDate Fri Jul 25 05:58:00 EDT 2025
Tue Jul 01 01:46:56 EDT 2025
Thu Apr 24 23:03:17 EDT 2025
Fri Feb 21 02:48:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Deep learning
Data augmentation
Convolutional neural networks
Transfer learning
Olive plant disease
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-ee24db2378d40f6349e9b7c5a6f0255b5cae3db45d5b79d42371dbe031b714593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4397-6196
0000-0002-0527-791X
PQID 2516608023
PQPubID 2043988
PageCount 17
ParticipantIDs proquest_journals_2516608023
crossref_primary_10_1007_s00521_020_05235_5
crossref_citationtrail_10_1007_s00521_020_05235_5
springer_journals_10_1007_s00521_020_05235_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2021
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References MohantySPHughesDPSalathéMUsing deep learning for image-based plant disease detectionFront Plant Sci20167141910.3389/fpls.2016.01419
PriyadharshiniRAArivazhaganSArunMMirnaliniAMaize leaf disease classification using deep convolutional neural networksNeural Comput Appl201931128887889510.1007/s00521-019-04228-3
LisuCYuanyuanSKeWRapid diagnosis of nitrogen nutrition status in rice based on static scanning and extraction of leaf and sheath characteristicsInt J Agric Biol Eng2017103158164
LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc IEEE199886112278232410.1109/5.726791
Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:150203167
ObanorFOJaspersMVJonesEEWalterMGreenhouse and field evaluation of fungicides for control of olive leaf spot in New ZealandCrop Prot200827101335134210.1016/j.cropro.2008.04.007
SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: a simple way to prevent neural networks from overfittingJ Mach Learn Res20141511929195832315921318.68153
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, 2012. pp 1097–1105
FuentesAYoonSKimSParkDA robust deep-learning-based detector for real-time tomato plant diseases and pests recognitionSensors2017179202210.3390/s17092022
AlruwailiMAlanaziSEl-GhanySAShehabAAn efficient deep learning model for olive diseases detectionInt J Adv Comput Sci Appl2019108486492
United Nations DoE, Social Affairs PD (2019) World population prospects 2019: highlights
GeetharamaniGPandianAIdentification of plant leaf diseases using a nine-layer deep convolutional neural networkComput Electr Eng20197632333810.1016/j.compeleceng.2019.04.011
BarbedoJGAPlant disease identification from individual lesions and spots using deep learningBiosys Eng20191809610710.1016/j.biosystemseng.2019.02.002
Francis M, Deisy C (2019) Disease detection and classification in agricultural plants using convolutional neural networks—a visual understanding. In: 2019 6th ınternational conference on signal processing and ıntegrated networks (SPIN). IEEE, pp 1063–1068
DongHZhangXChoenYZhouYLiWLiZDry mycelium of Penicillium chrysogenum protects cotton plants against wilt diseases and increases yield under field conditionsCrop Prot200625432433010.1016/j.cropro.2005.05.003
Ji-YongSXiao-BoZJie-WenZKai-LiangWZheng-WeiCXiao-WeiHDe-TaoZHolmesMNondestructive diagnostics of nitrogen deficiency by cucumber leaf chlorophyll distribution map based on near infrared hyperspectral imagingSci Hortic201213819019710.1016/j.scienta.2012.02.024
Wallelign S, Polceanu M, Buche C (2018) Soybean plant disease ıdentification using convolutional neural network. In: The thirty-first ınternational flairs conference, 2018
UğuzSMakine öğrenmesi-Teorik yönleri ve Python uygulamaları ile bir yapay zeka ekolü2019TurkeyNobel Academic Publish(in Turkish)
FerentinosKPDeep learning models for plant disease detection and diagnosisComput Electron Agric201814531131810.1016/j.compag.2018.01.009
AdeelAKhanMASharifMAzamFShahJHUmerTWanSDiagnosis and recognition of grape leaf diseases: an automated system based on a novel saliency approach and canonical correlation analysis based multiple features fusionSustain Comput Inform Syst201924100349
JiMZhangLWuQAutomatic grape leaf diseases identification via UnitedModel based on multiple convolutional neural networksInf Process Agric201910.1016/j.inpa.2019.10.003
VasilevISlaterDSpacagnaGRoelantsPZoccaVPython deep learning: exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow2019BirminghamPack Publishing
Chollet F (2015) Keras. https://github.com/fchollet/keras
BraunackMGarsideAMagareyRReduced tillage planting and the long-term effect on soil-borne disease and yield of sugarcane (Saccharum inter-specific hybrid) in Queensland, AustraliaSoil Tillage Res2012120859110.1016/j.still.2011.11.002
Wong SC, Gatt A, Stamatescu V, McDonnell MD (2016) Understanding data augmentation for classification: when to warp? In: 2016 international conference on digital image computing: techniques and applications (DICTA), 2016. IEEE, pp 1–6
CruzACLuvisiADe BellisLAmpatzidisYX-FIDO: an effective application for detecting olive quick decline syndrome with deep learning and data fusionFront Plant Sci20178174110.3389/fpls.2017.01741
AshourlooDAghighiHMatkanAAMobasheriMRRadAMAn investigation into machine learning regression techniques for the leaf rust disease detection using hyperspectral measurementIEEE J Sel Top Appl Earth Observ Remote Sens2016994344435110.1109/JSTARS.2016.2575360
HuGYangXZhangYWanMIdentification of tea leaf diseases by using an improved deep convolutional neural networkSustain Comput Info Syst201924100353
Al-TarawnehMSAn empirical investigation of olive leave spot disease using auto-cropping segmentation and fuzzy C-means classificationWorld Appl Sci J201323912071211
Zeytin ve Zeytin Yağı Raporu (2018). T.C. Gümrük ve Ticaret Bakanlığı Kooperatifçilik Genel Müdürlüğü
AsrafHMNooritawatiMRizamMSA comparative study in kernel-based support vector machine of oil palm leaves nutrient diseaseProc Eng2012411353135910.1016/j.proeng.2012.07.321
AshqarBAAbu-NaserSSImage-based tomato leaves diseases detection using deep learningInt J Acad Eng Res20182121016
ZhangKXuZDongSCenCWuQIdentification of peach leaf disease infected by Xanthomonas campestris with deep learningEng Agric Environ Food201912438839610.1016/j.eaef.2019.05.001
LuJHuJZhaoGMeiFZhangCAn in-field automatic wheat disease diagnosis systemComput Electron Agric201714236937910.1016/j.compag.2017.09.012
ÇetinHAlaogluOMut (Mersin) ilcesindeki zeytin agaclarnda bulunan eriophyid akar turleri ve zarar sekilleriTurk Entomol Derg2006304303315
SubramanianVDeep learning with PyTorch: a practical approach to building neural network models using PyTorch2018BirminghamPackt Publishing Ltd
GregoryPJJohnsonSNNewtonACIngramJSIntegrating pests and pathogens into the climate change/food security debateJ Exp Bot200960102827283810.1093/jxb/erp080
KaurSPandeySGoelSPlants disease identification and classification through leaf images: a surveyArch Comput Methods Eng201926250753010.1007/s11831-018-9255-6
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556
OdegardIVan der VoetEThe future of food—scenarios and the effect on natural resource use in agriculture in 2050Ecol Econ201497515910.1016/j.ecolecon.2013.10.005
Council IO (2018) World oil production. https://www.internationaloliveoil.org/what-we-do/economic-affairs-promotion-unit/. Accessed 13 Dec 2019
TooECYujianLNjukiSYingchunLA comparative study of fine-tuning deep learning models for plant disease identificationComput Electron Agric201916127227910.1016/j.compag.2018.03.032
KamilarisAPrenafeta-BoldúFXDeep learning in agriculture: a surveyComput Electron Agric2018147709010.1016/j.compag.2018.02.016
KhanSRahmaniHShahSAABennamounMA guide to convolutional neural networks for computer visionSynth Lect Comput Vis2018811207
BorhanMPanigrahiSSatterMGuHEvaluation of computer imaging technique for predicting the SPAD readings in potato leavesInform Process Agric201744275282
KayaAKeceliASCatalCYalicHYTemucinHTekinerdoganBAnalysis of transfer learning for deep neural network based plant classification modelsComput Electron Agric2019158202910.1016/j.compag.2019.01.041
LiuBZhangYHeDLiYIdentification of apple leaf diseases based on deep convolutional neural networksSymmetry20181011110.3390/sym10010011
SelvarajMGVergaraARuizHSafariNElayabalanSOcimatiWBlommeGAI-powered banana diseases and pest detectionPlant Methods20191519210.1186/s13007-019-0475-z
V Subramanian (5235_CR46) 2018
HM Asraf (5235_CR17) 2012; 41
A Kamilaris (5235_CR40) 2018; 147
J Lu (5235_CR26) 2017; 142
H Çetin (5235_CR10) 2006; 30
MS Al-Tarawneh (5235_CR14) 2013; 23
A Fuentes (5235_CR25) 2017; 17
B Liu (5235_CR27) 2018; 10
I Odegard (5235_CR2) 2014; 97
BA Ashqar (5235_CR12) 2018; 2
FO Obanor (5235_CR11) 2008; 27
I Vasilev (5235_CR47) 2019
G Hu (5235_CR28) 2019; 24
KP Ferentinos (5235_CR32) 2018; 145
S Kaur (5235_CR7) 2019; 26
PJ Gregory (5235_CR3) 2009; 60
H Dong (5235_CR5) 2006; 25
D Ashourloo (5235_CR15) 2016; 9
5235_CR1
N Srivastava (5235_CR44) 2014; 15
AC Cruz (5235_CR34) 2017; 8
5235_CR38
SP Mohanty (5235_CR4) 2016; 7
5235_CR39
G Geetharamani (5235_CR30) 2019; 76
5235_CR36
5235_CR8
S Khan (5235_CR43) 2018; 8
5235_CR9
5235_CR41
5235_CR42
M Borhan (5235_CR18) 2017; 4
JGA Barbedo (5235_CR29) 2019; 180
M Braunack (5235_CR6) 2012; 120
A Adeel (5235_CR13) 2019; 24
S Ji-Yong (5235_CR19) 2012; 138
EC Too (5235_CR31) 2019; 161
C Lisu (5235_CR16) 2017; 10
MG Selvaraj (5235_CR20) 2019; 15
A Kaya (5235_CR48) 2019; 158
M Ji (5235_CR23) 2019
RA Priyadharshini (5235_CR22) 2019; 31
M Alruwaili (5235_CR33) 2019; 10
S Uğuz (5235_CR37) 2019
Y LeCun (5235_CR35) 1998; 86
5235_CR45
K Zhang (5235_CR21) 2019; 12
5235_CR24
References_xml – reference: Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556
– reference: Ji-YongSXiao-BoZJie-WenZKai-LiangWZheng-WeiCXiao-WeiHDe-TaoZHolmesMNondestructive diagnostics of nitrogen deficiency by cucumber leaf chlorophyll distribution map based on near infrared hyperspectral imagingSci Hortic201213819019710.1016/j.scienta.2012.02.024
– reference: Wong SC, Gatt A, Stamatescu V, McDonnell MD (2016) Understanding data augmentation for classification: when to warp? In: 2016 international conference on digital image computing: techniques and applications (DICTA), 2016. IEEE, pp 1–6
– reference: Zeytin ve Zeytin Yağı Raporu (2018). T.C. Gümrük ve Ticaret Bakanlığı Kooperatifçilik Genel Müdürlüğü
– reference: AlruwailiMAlanaziSEl-GhanySAShehabAAn efficient deep learning model for olive diseases detectionInt J Adv Comput Sci Appl2019108486492
– reference: HuGYangXZhangYWanMIdentification of tea leaf diseases by using an improved deep convolutional neural networkSustain Comput Info Syst201924100353
– reference: AdeelAKhanMASharifMAzamFShahJHUmerTWanSDiagnosis and recognition of grape leaf diseases: an automated system based on a novel saliency approach and canonical correlation analysis based multiple features fusionSustain Comput Inform Syst201924100349
– reference: LiuBZhangYHeDLiYIdentification of apple leaf diseases based on deep convolutional neural networksSymmetry20181011110.3390/sym10010011
– reference: JiMZhangLWuQAutomatic grape leaf diseases identification via UnitedModel based on multiple convolutional neural networksInf Process Agric201910.1016/j.inpa.2019.10.003
– reference: BraunackMGarsideAMagareyRReduced tillage planting and the long-term effect on soil-borne disease and yield of sugarcane (Saccharum inter-specific hybrid) in Queensland, AustraliaSoil Tillage Res2012120859110.1016/j.still.2011.11.002
– reference: PriyadharshiniRAArivazhaganSArunMMirnaliniAMaize leaf disease classification using deep convolutional neural networksNeural Comput Appl201931128887889510.1007/s00521-019-04228-3
– reference: Chollet F (2015) Keras. https://github.com/fchollet/keras
– reference: FerentinosKPDeep learning models for plant disease detection and diagnosisComput Electron Agric201814531131810.1016/j.compag.2018.01.009
– reference: DongHZhangXChoenYZhouYLiWLiZDry mycelium of Penicillium chrysogenum protects cotton plants against wilt diseases and increases yield under field conditionsCrop Prot200625432433010.1016/j.cropro.2005.05.003
– reference: AshourlooDAghighiHMatkanAAMobasheriMRRadAMAn investigation into machine learning regression techniques for the leaf rust disease detection using hyperspectral measurementIEEE J Sel Top Appl Earth Observ Remote Sens2016994344435110.1109/JSTARS.2016.2575360
– reference: Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:150203167
– reference: ObanorFOJaspersMVJonesEEWalterMGreenhouse and field evaluation of fungicides for control of olive leaf spot in New ZealandCrop Prot200827101335134210.1016/j.cropro.2008.04.007
– reference: SelvarajMGVergaraARuizHSafariNElayabalanSOcimatiWBlommeGAI-powered banana diseases and pest detectionPlant Methods20191519210.1186/s13007-019-0475-z
– reference: KhanSRahmaniHShahSAABennamounMA guide to convolutional neural networks for computer visionSynth Lect Comput Vis2018811207
– reference: CruzACLuvisiADe BellisLAmpatzidisYX-FIDO: an effective application for detecting olive quick decline syndrome with deep learning and data fusionFront Plant Sci20178174110.3389/fpls.2017.01741
– reference: LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc IEEE199886112278232410.1109/5.726791
– reference: KamilarisAPrenafeta-BoldúFXDeep learning in agriculture: a surveyComput Electron Agric2018147709010.1016/j.compag.2018.02.016
– reference: LisuCYuanyuanSKeWRapid diagnosis of nitrogen nutrition status in rice based on static scanning and extraction of leaf and sheath characteristicsInt J Agric Biol Eng2017103158164
– reference: AshqarBAAbu-NaserSSImage-based tomato leaves diseases detection using deep learningInt J Acad Eng Res20182121016
– reference: MohantySPHughesDPSalathéMUsing deep learning for image-based plant disease detectionFront Plant Sci20167141910.3389/fpls.2016.01419
– reference: BarbedoJGAPlant disease identification from individual lesions and spots using deep learningBiosys Eng20191809610710.1016/j.biosystemseng.2019.02.002
– reference: Francis M, Deisy C (2019) Disease detection and classification in agricultural plants using convolutional neural networks—a visual understanding. In: 2019 6th ınternational conference on signal processing and ıntegrated networks (SPIN). IEEE, pp 1063–1068
– reference: AsrafHMNooritawatiMRizamMSA comparative study in kernel-based support vector machine of oil palm leaves nutrient diseaseProc Eng2012411353135910.1016/j.proeng.2012.07.321
– reference: LuJHuJZhaoGMeiFZhangCAn in-field automatic wheat disease diagnosis systemComput Electron Agric201714236937910.1016/j.compag.2017.09.012
– reference: GregoryPJJohnsonSNNewtonACIngramJSIntegrating pests and pathogens into the climate change/food security debateJ Exp Bot200960102827283810.1093/jxb/erp080
– reference: Wallelign S, Polceanu M, Buche C (2018) Soybean plant disease ıdentification using convolutional neural network. In: The thirty-first ınternational flairs conference, 2018
– reference: FuentesAYoonSKimSParkDA robust deep-learning-based detector for real-time tomato plant diseases and pests recognitionSensors2017179202210.3390/s17092022
– reference: ÇetinHAlaogluOMut (Mersin) ilcesindeki zeytin agaclarnda bulunan eriophyid akar turleri ve zarar sekilleriTurk Entomol Derg2006304303315
– reference: United Nations DoE, Social Affairs PD (2019) World population prospects 2019: highlights
– reference: VasilevISlaterDSpacagnaGRoelantsPZoccaVPython deep learning: exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow2019BirminghamPack Publishing
– reference: BorhanMPanigrahiSSatterMGuHEvaluation of computer imaging technique for predicting the SPAD readings in potato leavesInform Process Agric201744275282
– reference: Council IO (2018) World oil production. https://www.internationaloliveoil.org/what-we-do/economic-affairs-promotion-unit/. Accessed 13 Dec 2019
– reference: Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, 2012. pp 1097–1105
– reference: GeetharamaniGPandianAIdentification of plant leaf diseases using a nine-layer deep convolutional neural networkComput Electr Eng20197632333810.1016/j.compeleceng.2019.04.011
– reference: UğuzSMakine öğrenmesi-Teorik yönleri ve Python uygulamaları ile bir yapay zeka ekolü2019TurkeyNobel Academic Publish(in Turkish)
– reference: ZhangKXuZDongSCenCWuQIdentification of peach leaf disease infected by Xanthomonas campestris with deep learningEng Agric Environ Food201912438839610.1016/j.eaef.2019.05.001
– reference: KayaAKeceliASCatalCYalicHYTemucinHTekinerdoganBAnalysis of transfer learning for deep neural network based plant classification modelsComput Electron Agric2019158202910.1016/j.compag.2019.01.041
– reference: OdegardIVan der VoetEThe future of food—scenarios and the effect on natural resource use in agriculture in 2050Ecol Econ201497515910.1016/j.ecolecon.2013.10.005
– reference: SubramanianVDeep learning with PyTorch: a practical approach to building neural network models using PyTorch2018BirminghamPackt Publishing Ltd
– reference: KaurSPandeySGoelSPlants disease identification and classification through leaf images: a surveyArch Comput Methods Eng201926250753010.1007/s11831-018-9255-6
– reference: Al-TarawnehMSAn empirical investigation of olive leave spot disease using auto-cropping segmentation and fuzzy C-means classificationWorld Appl Sci J201323912071211
– reference: SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: a simple way to prevent neural networks from overfittingJ Mach Learn Res20141511929195832315921318.68153
– reference: TooECYujianLNjukiSYingchunLA comparative study of fine-tuning deep learning models for plant disease identificationComput Electron Agric201916127227910.1016/j.compag.2018.03.032
– volume: 30
  start-page: 303
  issue: 4
  year: 2006
  ident: 5235_CR10
  publication-title: Turk Entomol Derg
– volume: 8
  start-page: 1741
  year: 2017
  ident: 5235_CR34
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.01741
– volume: 147
  start-page: 70
  year: 2018
  ident: 5235_CR40
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.02.016
– volume: 15
  start-page: 92
  issue: 1
  year: 2019
  ident: 5235_CR20
  publication-title: Plant Methods
  doi: 10.1186/s13007-019-0475-z
– volume: 10
  start-page: 11
  issue: 1
  year: 2018
  ident: 5235_CR27
  publication-title: Symmetry
  doi: 10.3390/sym10010011
– volume: 120
  start-page: 85
  year: 2012
  ident: 5235_CR6
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2011.11.002
– ident: 5235_CR36
– volume: 24
  start-page: 100349
  year: 2019
  ident: 5235_CR13
  publication-title: Sustain Comput Inform Syst
– year: 2019
  ident: 5235_CR23
  publication-title: Inf Process Agric
  doi: 10.1016/j.inpa.2019.10.003
– volume: 26
  start-page: 507
  issue: 2
  year: 2019
  ident: 5235_CR7
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-018-9255-6
– volume: 9
  start-page: 4344
  issue: 9
  year: 2016
  ident: 5235_CR15
  publication-title: IEEE J Sel Top Appl Earth Observ Remote Sens
  doi: 10.1109/JSTARS.2016.2575360
– volume: 138
  start-page: 190
  year: 2012
  ident: 5235_CR19
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2012.02.024
– volume: 60
  start-page: 2827
  issue: 10
  year: 2009
  ident: 5235_CR3
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erp080
– volume: 17
  start-page: 2022
  issue: 9
  year: 2017
  ident: 5235_CR25
  publication-title: Sensors
  doi: 10.3390/s17092022
– ident: 5235_CR1
– volume: 2
  start-page: 10
  issue: 12
  year: 2018
  ident: 5235_CR12
  publication-title: Int J Acad Eng Res
– volume: 10
  start-page: 158
  issue: 3
  year: 2017
  ident: 5235_CR16
  publication-title: Int J Agric Biol Eng
– volume: 41
  start-page: 1353
  year: 2012
  ident: 5235_CR17
  publication-title: Proc Eng
  doi: 10.1016/j.proeng.2012.07.321
– volume: 4
  start-page: 275
  issue: 4
  year: 2017
  ident: 5235_CR18
  publication-title: Inform Process Agric
– volume: 12
  start-page: 388
  issue: 4
  year: 2019
  ident: 5235_CR21
  publication-title: Eng Agric Environ Food
  doi: 10.1016/j.eaef.2019.05.001
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 5235_CR35
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
– volume: 180
  start-page: 96
  year: 2019
  ident: 5235_CR29
  publication-title: Biosys Eng
  doi: 10.1016/j.biosystemseng.2019.02.002
– volume: 25
  start-page: 324
  issue: 4
  year: 2006
  ident: 5235_CR5
  publication-title: Crop Prot
  doi: 10.1016/j.cropro.2005.05.003
– ident: 5235_CR9
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 5235_CR43
  publication-title: Synth Lect Comput Vis
  doi: 10.1007/978-3-031-01821-3
– ident: 5235_CR45
  doi: 10.1109/SPIN.2019.8711701
– ident: 5235_CR38
  doi: 10.1109/DICTA.2016.7797091
– ident: 5235_CR42
– volume-title: Makine öğrenmesi-Teorik yönleri ve Python uygulamaları ile bir yapay zeka ekolü
  year: 2019
  ident: 5235_CR37
– volume: 7
  start-page: 1419
  year: 2016
  ident: 5235_CR4
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.01419
– volume: 145
  start-page: 311
  year: 2018
  ident: 5235_CR32
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.01.009
– volume-title: Python deep learning: exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow
  year: 2019
  ident: 5235_CR47
– volume: 97
  start-page: 51
  year: 2014
  ident: 5235_CR2
  publication-title: Ecol Econ
  doi: 10.1016/j.ecolecon.2013.10.005
– volume: 24
  start-page: 100353
  year: 2019
  ident: 5235_CR28
  publication-title: Sustain Comput Info Syst
– ident: 5235_CR39
– volume: 27
  start-page: 1335
  issue: 10
  year: 2008
  ident: 5235_CR11
  publication-title: Crop Prot
  doi: 10.1016/j.cropro.2008.04.007
– volume: 142
  start-page: 369
  year: 2017
  ident: 5235_CR26
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2017.09.012
– volume: 76
  start-page: 323
  year: 2019
  ident: 5235_CR30
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2019.04.011
– volume: 158
  start-page: 20
  year: 2019
  ident: 5235_CR48
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2019.01.041
– volume: 31
  start-page: 8887
  issue: 12
  year: 2019
  ident: 5235_CR22
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04228-3
– volume: 10
  start-page: 486
  issue: 8
  year: 2019
  ident: 5235_CR33
  publication-title: Int J Adv Comput Sci Appl
– volume: 161
  start-page: 272
  year: 2019
  ident: 5235_CR31
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.03.032
– ident: 5235_CR8
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 5235_CR44
  publication-title: J Mach Learn Res
– volume-title: Deep learning with PyTorch: a practical approach to building neural network models using PyTorch
  year: 2018
  ident: 5235_CR46
– ident: 5235_CR41
– volume: 23
  start-page: 1207
  issue: 9
  year: 2013
  ident: 5235_CR14
  publication-title: World Appl Sci J
– ident: 5235_CR24
SSID ssj0004685
Score 2.509059
Snippet In recent years, there have been significant achievements in object classification with various techniques using several deep learning architectures. These...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4133
SubjectTerms Algorithms
Artificial Intelligence
Artificial neural networks
Classification
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data augmentation
Data Mining and Knowledge Discovery
Image Processing and Computer Vision
Machine learning
Olives
Optimization
Optimization algorithms
Original Article
Plant diseases
Probability and Statistics in Computer Science
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu3DhjRgMlAM3qGibV3tCgDZNHCaEmLRb1SQul2kddPx_4izdAAlOlfpIJSd2HPuzP0KujLEqgczpd5xAxKUuI62zKmLSecfOXWDS-G6fYzma8KepmIaAWxNgla1N9Iba1gZj5LduH5YSC0PZ3eI9QtYozK4GCo1t0nUmOMs6pPswGD-_fKuM9KSc7gyD-B7OQtmML57DiKi7m2IyOGUiEj-3po2_-StF6nee4T7ZDS4jvV_N8QHZgvkh2WvpGGjQziMy9gSXCP3x0qZ1ReuZM2Z0BmVFQyamoYh0f6MWYEERch6WnvsBtrb0Fw8Mb47JZDh4fRxFgS4hMiwTywgg5VanTGWWx5VkPIdcKyNKWeHBQQtTArOaCyu0yi3iYRKrwWm1VgkXOTshnXk9h1NCZVxhI3ej8LgIPNFCa60gUYbbCmLdI0krqcKEXuJIaTEr1l2QvXQLJ93CS7cQPXK9_max6qTx79v9dgKKoFVNsVkDPXLTTsrm8d-jnf0_2jnZSRGq4nGMfdJZfnzChfM1lvoyLKgv9WLPAQ
  priority: 102
  providerName: ProQuest
Title Classification of olive leaf diseases using deep convolutional neural networks
URI https://link.springer.com/article/10.1007/s00521-020-05235-5
https://www.proquest.com/docview/2516608023
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdmHhjSiUygMbREriVzK20LQCqUKISmWK4kdYqrYi5f9ju04LCJCYPMRxpDuf_V3uuzuAKykVj3Ri7DuMdECYKAIhkjLAzKBjAxcwk67a55iNJuR-Sqc-Kayq2e51SNKd1JtkN_sH07i-sQ3expgGtAEtanx3S-SaxL1P2ZCuEafxWyynh2CfKvPzGl-voy3G_BYWdbdNdgB7Hiai3lqvh7Cj50ewX7dgQN4ij2Hsmlpauo-TMFqUaDEzBxia6aJEPvpSIctuf0VK6yWyNHO_3cwHbDlLNzgyeHUCk2zwfDsKfIuEQOKErgKtY6JEjHmiSFgyTFKdCi5pwUrrLAgqC42VIFRRwVNlOTCREtpYsuARoSk-heZ8MddngFhY2uLtklsXUZNIUCEE1xGXRJU6FG2Iaknl0tcPt20sZvmm8rGTbm6kmzvp5rQN15t3luvqGX_O7tQKyL0lVbnBX4zZhGDchptaKdvHv692_r_pF7AbW7qK4zJ2oLl6e9eXBm-sRBcaSTbsQqvXv-tndhy-PAzM2B-MH5-6bvN9AHA90AA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4YPOjFtxFF3YOetJF2H4WDMUZFFOSEibfK7k69EEDBGP-Uv9GdpQU1kRunJn1sk5nZeex8MwNwZIyNQ6y4_V0OMRBKdwKtK2nAlfOOnbvAlfHdPluq_ijun-TTAnzltTAEq8x1olfUtm_ojPzM2WGlqDCUXwxeA5oaRdnVfITGWCwa-PnhQrbh-d214-9xFNVu2lf1IJsqEBhekaMAMRJWRzyuWFFOFRdVrOrYyI5Kyb_W0nSQWy2klTquWoKNhFajE34dh0JS8yWn8hcFd5acKtNrtz_qMP0IUBcxEZpI8KxIx5fq0fmruxtR6jniMpC_DeHUu_2TkPV2rrYGK5mDyi7HErUOC9jbgNV8-APLdMEmtPw4TQIaed6yfsr6Xac6WRc7KcvyPkNGuPoXZhEHjADumaC7H1AjTX_xMPThFjzOhYzbUOj1e7gDTJVTahtvYgpOUYRaaq1jDGMjbIplXYQwp1Riss7lNECjm0x6LnvqJo66iaduIotwMvlmMO7bMfPtUs6AJNvDw2QqcUU4zZkyffz_aruzVzuEpXr7oZk071qNPViOCCTjEZQlKIze3nHfeTkjfeBFi8HzvGX5GxnhClo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIiFN6JQwAMbRCTxKxkroCoPVQxU6mblbIelSisa_j-267QFARJThjiOdPbFd7nv-w6hS6W0SExm_TtOTEQ5FBFAVkaE2-jYhguEK6_2OeD9IX0csdEKi9-j3ZuS5JzT4FSaqvpmqsubBfHN_c20aXDqCrkpYRFbRxvUsYHtjh6m3RVmpG_KaXMYh--hJNBmfp7j69G0jDe_lUj9ydPbRdshZMTd-RrvoTVT7aOdph0DDt55gAa-waWD_nhr40mJJ2P7McNjU5Q4VGJm2CHd37A2Zood5DxsPfsCJ23pLx4YPjtEw979620_Cu0SIkUyVkfGpFRDSkSmaVxyQnOTg1Cs4KVLHICpwhANlGkGItcOD5NoMNarQSSU5eQItapJZY4R5nHphNyVcOmioQkwABAmEYrq0sTQRkljKamClrhraTGWCxVkb11prSu9dSVro6vFM9O5ksafozvNAsjgVTNpYzHOHTmYtNF1syjL27_PdvK_4Rdo8-WuJ58fBk-naCt1KBYPceygVv3-Yc5sGFLDud9pnyxp0aA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+olive+leaf+diseases+using+deep+convolutional+neural+networks&rft.jtitle=Neural+computing+%26+applications&rft.au=U%C4%9Fuz%2C+Sinan&rft.au=Uysal%2C+Nese&rft.date=2021-05-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=9&rft.spage=4133&rft.epage=4149&rft_id=info:doi/10.1007%2Fs00521-020-05235-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_020_05235_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon