Features and models for human activity recognition

Human Activity Recognition (HAR) is aimed at identifying current subject task performed by a person as a result of analyzing data from wearable sensors. HAR is a very challenging task that has been applied in different areas such as rehabilitation and localization. During the past ten years, plenty...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 167; pp. 52 - 60
Main Authors González, Silvia, Sedano, Javier, Villar, José R., Corchado, Emilio, Herrero, Álvaro, Baruque, Bruno
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human Activity Recognition (HAR) is aimed at identifying current subject task performed by a person as a result of analyzing data from wearable sensors. HAR is a very challenging task that has been applied in different areas such as rehabilitation and localization. During the past ten years, plenty of models, number of sensors and sensor placements, and feature transformations have been reported for this task. From this bunch of previous ideas, what seems to be clear is that the very specific applications drive to the selection of the best choices for each case. Present research is focused on early diagnosis of stroke, what involves reducing the feature space of gathered data and subsequent HAR, among other tasks. In this study, an Information Correlation Coefficient (ICC) analysis was carried out followed by a wrapper Feature Selection (FS) method on the reduced input space. Additionally, a novel HAR method is proposed for this specific problem of stroke early diagnosing, comprising an adaptation of the well-known Genetic Fuzzy Finite State Machine (GFFSM) method. To the best of the author׳s knowledge, this is the very first analysis of the feature space concerning all the previously published feature transformations on raw acceleration data. The main contributions of this study are the optimization of the sample rate, selection of the best feature subset, and learning of a suitable HAR method based on GFFSM to be applied to the HAR problem.
AbstractList Human Activity Recognition (HAR) is aimed at identifying current subject task performed by a person as a result of analyzing data from wearable sensors. HAR is a very challenging task that has been applied in different areas such as rehabilitation and localization. During the past ten years, plenty of models, number of sensors and sensor placements, and feature transformations have been reported for this task. From this bunch of previous ideas, what seems to be clear is that the very specific applications drive to the selection of the best choices for each case. Present research is focused on early diagnosis of stroke, what involves reducing the feature space of gathered data and subsequent HAR, among other tasks. In this study, an Information Correlation Coefficient (ICC) analysis was carried out followed by a wrapper Feature Selection (FS) method on the reduced input space. Additionally, a novel HAR method is proposed for this specific problem of stroke early diagnosing, comprising an adaptation of the well-known Genetic Fuzzy Finite State Machine (GFFSM) method. To the best of the author׳s knowledge, this is the very first analysis of the feature space concerning all the previously published feature transformations on raw acceleration data. The main contributions of this study are the optimization of the sample rate, selection of the best feature subset, and learning of a suitable HAR method based on GFFSM to be applied to the HAR problem.
Author González, Silvia
Baruque, Bruno
Villar, José R.
Sedano, Javier
Herrero, Álvaro
Corchado, Emilio
Author_xml – sequence: 1
  givenname: Silvia
  surname: González
  fullname: González, Silvia
  organization: Instituto Tecnológico de Castilla y León, Burgos, Spain
– sequence: 2
  givenname: Javier
  surname: Sedano
  fullname: Sedano, Javier
  organization: Instituto Tecnológico de Castilla y León, Burgos, Spain
– sequence: 3
  givenname: José R.
  surname: Villar
  fullname: Villar, José R.
  organization: University of Oviedo, Campus de Viesques s/n 33204 Gijón, Spain
– sequence: 4
  givenname: Emilio
  surname: Corchado
  fullname: Corchado, Emilio
  organization: Departamento de Informática y Automática, University of Salamanca, Spain
– sequence: 5
  givenname: Álvaro
  surname: Herrero
  fullname: Herrero, Álvaro
  organization: Department of Civil Engineering, University of Burgos, Spain
– sequence: 6
  givenname: Bruno
  surname: Baruque
  fullname: Baruque, Bruno
  organization: Department of Civil Engineering, University of Burgos, Spain
BookMark eNqFkM1KAzEYRYNUsK2-gYt5gRmTTP7GhSDFVqHgRtchTb7RlE4iSVro2zulrlzo6q7O5Z47Q5MQAyB0S3BDMBF32ybA3sahoZjwBpMGK3qBpkRJWiuqxARNcUd5TVtCr9As5y3GRBLaTRFdgin7BLkywVVDdLDLVR9T9bkfTKiMLf7gy7FKYONH8MXHcI0ue7PLcPOTc_S-fHpbPNfr19XL4nFd21bxUoOVrcBCGal4B5SDUBtgqnO9xEBAWYqZotB3jCjYcCaYFZJ3nGyU7B1z7Rzdn3ttijkn6LX1xZwWlGT8ThOsT_Z6q8_2-mSvMdGj_QizX_BX8oNJx_-whzM23gAHD0ln6yFYcH58oGgX_d8F37AjeD8
CitedBy_id crossref_primary_10_3233_JIFS_181085
crossref_primary_10_1007_s00521_023_08368_5
crossref_primary_10_1016_j_asoc_2021_107728
crossref_primary_10_1109_JBHI_2017_2734803
crossref_primary_10_1080_24751839_2017_1295668
crossref_primary_10_3390_s18124189
crossref_primary_10_1016_j_compbiomed_2020_103687
crossref_primary_10_1109_JSEN_2020_2989865
crossref_primary_10_3390_rs11131512
crossref_primary_10_3233_AIS_180494
crossref_primary_10_1016_j_gaitpost_2019_03_008
crossref_primary_10_1177_1550147718772785
crossref_primary_10_3390_s22145222
crossref_primary_10_1063_1_5096572
crossref_primary_10_3390_s18072034
crossref_primary_10_1007_s12652_017_0606_1
crossref_primary_10_1016_j_engappai_2018_01_004
crossref_primary_10_1038_s41598_021_98453_3
crossref_primary_10_3390_s21237791
crossref_primary_10_1093_jigpal_jzz071
crossref_primary_10_3390_s23187729
crossref_primary_10_3389_fphys_2024_1344887
crossref_primary_10_1007_s11042_024_19095_x
crossref_primary_10_1016_j_cmpb_2021_106541
crossref_primary_10_1016_j_maturitas_2017_03_317
crossref_primary_10_1016_j_bbe_2020_05_010
crossref_primary_10_1111_exsy_13680
crossref_primary_10_1109_ACCESS_2019_2920969
crossref_primary_10_3390_electronics5030048
crossref_primary_10_3390_s18113612
crossref_primary_10_1016_j_eswa_2022_117925
crossref_primary_10_1088_1361_6579_aacfd9
crossref_primary_10_1155_2022_9173504
crossref_primary_10_1038_s42255_023_00778_y
Cites_doi 10.1109/ICNNB.2005.1614831
10.3390/computers2020088
10.1007/978-3-540-24646-6_1
10.1109/CNE.2005.1419604
10.1161/STROKEAHA.108.523621
10.1016/S0020-0255(01)00147-5
10.1007/978-3-642-40846-5_66
10.1016/j.neucom.2013.04.003
10.1145/1964897.1964918
10.1109/GEFS.2011.5949493
10.2106/00004623-199610000-00008
10.1007/BF02347551
10.1109/ISMVL.2013.60
10.2106/00004623-196446020-00009
10.1016/j.amc.2008.05.099
10.1088/0967-3334/27/10/001
10.1109/TITB.2005.856864
10.1109/JBHI.2013.2253613
10.1310/tsr1806-746
10.1016/j.patrec.2008.08.002
10.1007/s11036-008-0112-y
10.1109/TNSRE.2009.2036615
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2015.01.082
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 60
ExternalDocumentID 10_1016_j_neucom_2015_01_082
S0925231215005470
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
SSH
WUQ
XPP
ID FETCH-LOGICAL-c385t-ec736068a7859e25e68be489df70e1e8c20482ef9418eb5464c675951b87fd4d3
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Sun Jul 06 05:06:29 EDT 2025
Thu Apr 24 23:00:59 EDT 2025
Fri Feb 23 02:28:31 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Genetic fuzzy finite state machine
Feature selection
Feature domain reduction
Information correlation coefficient
Human activity recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-ec736068a7859e25e68be489df70e1e8c20482ef9418eb5464c675951b87fd4d3
OpenAccessLink http://hdl.handle.net/10366/134283
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2015_01_082
crossref_primary_10_1016_j_neucom_2015_01_082
elsevier_sciencedirect_doi_10_1016_j_neucom_2015_01_082
PublicationCentury 2000
PublicationDate 2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References S. Wang, J. Yang, N. Chen, X. Chen, Q. Zhang, Human activity recognition with user-free accelerometers in the sensor networks, in: Proceedings of the International Conference on Neural Networks and Brain ICNN & B׳05, vol. 2, IEEE Conference Publications, Beijing, 2005, pp. 1212–1217.
Casillas, Cordón, del Jesus, Herrera (bib28) 2001; 136
L. Bao, S.S. Intille, Activity recognition from user-annotated acceleration data, in: A. Ferscha, F. Mattern (Eds.), Proceedings of the Second International Conference Pervasive Computing, PERVASIVE 2004, Lecture Notes in Computer Science, vol. 3001, Springer, Berlin Heidelberg, 2004, pp. 1–17.
Karantonis, Narayanan, Mathie, Lovell, Celler (bib26) 2006; 10
de Quervain, Simon, Leurgans, Pease, McAllister (bib16) 1996; 78
Zhang, Sawchuk (bib4) 2013; 17
Chen, Yang, Liou, Lee, Wang (bib10) 2008; 205
B. Knorr, R. Hughes, D. Sherrill, J. Stein, M. Akay, P. Bonato, Quantitative measures of functional upper limb movement in persons after stroke, in: Conference Proceedings of the Second International IEEE EMBS Conference on Neural Engineering, 2005, 2005, pp. 252–255.
Ke, Thuc, Lee, Hwang, Yoo, Choi (bib19) 2013; 2
Yang, Wang, Chen (bib7) 2008; 29
Mathie, Celler, Lovell, Coster (bib25) 2004; 42
González, Villar, Sedano, Chira (bib11) 2013; vol. 217
Casillas, Cordon, Del Jesus, Herrera (bib30) 2001; 136
K. Hollands, Whole body coordination during turning while walking in stroke survivors (Ph.D. thesis), School of Health and Population Sciences, University of Birmingham, 2010.
Roy, Cheng, Chang, Moore, Luca, Nawab, Luca (bib22) 2009; 17
Fulk, Sazonov (bib23) 2011; 18
T.J. Mantyla, J. Himberg, Recognizing human motion with multiple acceleration sensors, in: IEEE International Conference on Systems, Man and Cybernetics, vol. 3494, 2001, pp. 747–752.
von Schroeder, Coutts, Lyden, Billings Jr., Nickel (bib17) 1995; 32
Rand, Eng, Chang, Tang, Jeng, Hung (bib21) 2009; 40
Kwapisz, Weiss, Moore (bib8) 2010; 12
Györbiro, Fábián, Hományi (bib14) 2009; 14
Murray, Drought, Kory (bib1) 1964; 46
Allen, Ambikairajah, Lovell, Celler (bib12) 2006; 27
Chamroukhi, Mohammed, Trabelsi, Oukhellou, Amirat (bib2) 2013; 120
T. Fujimoto, H. Nakajima, N. Tsuchiya, H. Marukawa, K. Kuramoto, S. Kobashi, Y. Hata, Wearable human activity recognition by electrocardiograph and accelerometer, in: IEEE 43rd International Symposium on Multiple-Valued Logic, 2013.
A. Ávarez-Álvarez, G. Triviño, O. Cordón, Body posture recognition by means of a genetic fuzzy finite state machine, in: IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS), 2011, pp. 60–65.
L.G.M. de la Vega, S. Raghuraman, A. Balasubramanian, B. Prabhakaran, Exploring unconstrained mobile sensor based human activity recognition, in: the Third International Workshop on Mobile Sensing, 2013.
J.R. Villar, S. González, J. Sedano, C. Chira, J.M. Trejo, Human activity recognition and feature selection for stroke early diagnosis, in: the Eighth International Conference on Hybrid Artificial Intelligence Systems HAIS, Lecture Notes in Artificial Intelligence, Springer, Berlin Heidelberg, 2013.
Sedano, González, Baruque, Herrero, Corchado (bib5) 2013; 188
Ahmed, Ahmed (bib15) 2008; 14
Zhang (10.1016/j.neucom.2015.01.082_bib4) 2013; 17
10.1016/j.neucom.2015.01.082_bib18
Yang (10.1016/j.neucom.2015.01.082_bib7) 2008; 29
Chen (10.1016/j.neucom.2015.01.082_bib10) 2008; 205
10.1016/j.neucom.2015.01.082_bib24
Ke (10.1016/j.neucom.2015.01.082_bib19) 2013; 2
10.1016/j.neucom.2015.01.082_bib27
de Quervain (10.1016/j.neucom.2015.01.082_bib16) 1996; 78
10.1016/j.neucom.2015.01.082_bib20
Murray (10.1016/j.neucom.2015.01.082_bib1) 1964; 46
Györbiro (10.1016/j.neucom.2015.01.082_bib14) 2009; 14
10.1016/j.neucom.2015.01.082_bib9
10.1016/j.neucom.2015.01.082_bib6
Kwapisz (10.1016/j.neucom.2015.01.082_bib8) 2010; 12
von Schroeder (10.1016/j.neucom.2015.01.082_bib17) 1995; 32
10.1016/j.neucom.2015.01.082_bib29
González (10.1016/j.neucom.2015.01.082_bib11) 2013; vol. 217
10.1016/j.neucom.2015.01.082_bib3
Casillas (10.1016/j.neucom.2015.01.082_bib30) 2001; 136
Fulk (10.1016/j.neucom.2015.01.082_bib23) 2011; 18
Roy (10.1016/j.neucom.2015.01.082_bib22) 2009; 17
Chamroukhi (10.1016/j.neucom.2015.01.082_bib2) 2013; 120
Karantonis (10.1016/j.neucom.2015.01.082_bib26) 2006; 10
Sedano (10.1016/j.neucom.2015.01.082_bib5) 2013; 188
Allen (10.1016/j.neucom.2015.01.082_bib12) 2006; 27
Casillas (10.1016/j.neucom.2015.01.082_bib28) 2001; 136
10.1016/j.neucom.2015.01.082_bib13
Rand (10.1016/j.neucom.2015.01.082_bib21) 2009; 40
Ahmed (10.1016/j.neucom.2015.01.082_bib15) 2008; 14
Mathie (10.1016/j.neucom.2015.01.082_bib25) 2004; 42
References_xml – reference: T.J. Mantyla, J. Himberg, Recognizing human motion with multiple acceleration sensors, in: IEEE International Conference on Systems, Man and Cybernetics, vol. 3494, 2001, pp. 747–752.
– reference: J.R. Villar, S. González, J. Sedano, C. Chira, J.M. Trejo, Human activity recognition and feature selection for stroke early diagnosis, in: the Eighth International Conference on Hybrid Artificial Intelligence Systems HAIS, Lecture Notes in Artificial Intelligence, Springer, Berlin Heidelberg, 2013.
– volume: 14
  start-page: 143
  year: 2008
  end-page: 147
  ident: bib15
  article-title: Kinetics and kinematics of loading response in stroke patients (a review article)
  publication-title: Ann. King Edward Med. Univ.
– volume: 205
  start-page: 849
  year: 2008
  end-page: 860
  ident: bib10
  article-title: Online classifier construction algorithm for human activity detection using a triaxial accelerometer
  publication-title: Appl. Math. Comput.
– volume: 32
  start-page: 25
  year: 1995
  end-page: 31
  ident: bib17
  article-title: Gait parameters following stroke
  publication-title: J. Rehabil. Res. Dev.
– reference: K. Hollands, Whole body coordination during turning while walking in stroke survivors (Ph.D. thesis), School of Health and Population Sciences, University of Birmingham, 2010.
– volume: 27
  start-page: 935
  year: 2006
  end-page: 951
  ident: bib12
  article-title: Classification of a known sequence of motions and postures from accelerometry data using adapted Gaussian mixture models
  publication-title: Physiol. Meas.
– volume: 188
  start-page: 241
  year: 2013
  end-page: 248
  ident: bib5
  article-title: Soft computing models in industrial and environmental applications
  publication-title: Soft Computing for the Analysis of People Movement Classification of Advances in Intelligent Systems and Computing
– reference: L. Bao, S.S. Intille, Activity recognition from user-annotated acceleration data, in: A. Ferscha, F. Mattern (Eds.), Proceedings of the Second International Conference Pervasive Computing, PERVASIVE 2004, Lecture Notes in Computer Science, vol. 3001, Springer, Berlin Heidelberg, 2004, pp. 1–17.
– volume: 42
  start-page: 679
  year: 2004
  end-page: 687
  ident: bib25
  article-title: Classification of basic daily movements using a triaxial accelerometer
  publication-title: Med. Biol. Eng. Comput.
– volume: 29
  start-page: 2213
  year: 2008
  end-page: 2220
  ident: bib7
  article-title: Using acceleration measurements for activity recognition
  publication-title: Pattern Recognit. Lett.
– volume: 17
  start-page: 553
  year: 2013
  end-page: 560
  ident: bib4
  article-title: Human daily activity recognition with sparse representation using wearable sensors
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 18
  start-page: 746
  year: 2011
  end-page: 757
  ident: bib23
  article-title: Using sensors to measure activity in people with stroke
  publication-title: Top Stroke Rehabil.
– volume: 12
  start-page: 74
  year: 2010
  end-page: 82
  ident: bib8
  article-title: Activity recognition using cell phone accelerometers
  publication-title: ACM SIGKDD Explor. Newsl.
– reference: L.G.M. de la Vega, S. Raghuraman, A. Balasubramanian, B. Prabhakaran, Exploring unconstrained mobile sensor based human activity recognition, in: the Third International Workshop on Mobile Sensing, 2013.
– volume: 10
  start-page: 156
  year: 2006
  end-page: 167
  ident: bib26
  article-title: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 46
  start-page: 335
  year: 1964
  end-page: 360
  ident: bib1
  article-title: Walking patterns of normal men
  publication-title: J. Bone Jt. Surg.
– volume: vol. 217
  start-page: 521
  year: 2013
  end-page: 527
  ident: bib11
  article-title: A preliminary study on early diagnosis of illnesses based on activity disturbances
  publication-title: Distributed Computing and Artificial Intelligence Advances in Intelligent Systems and Computing
– volume: 40
  start-page: 163
  year: 2009
  end-page: 168
  ident: bib21
  article-title: How active are people with stroke?
  publication-title: Stroke
– volume: 14
  start-page: 82
  year: 2009
  end-page: 91
  ident: bib14
  article-title: An activity recognition system for mobile phones
  publication-title: Mob. Netw. Appl.
– volume: 78
  start-page: 1506
  year: 1996
  end-page: 1514
  ident: bib16
  article-title: Gait pattern in the early recovery period after stroke
  publication-title: J. Bone Jt. Surg. Am.
– reference: B. Knorr, R. Hughes, D. Sherrill, J. Stein, M. Akay, P. Bonato, Quantitative measures of functional upper limb movement in persons after stroke, in: Conference Proceedings of the Second International IEEE EMBS Conference on Neural Engineering, 2005, 2005, pp. 252–255.
– reference: A. Ávarez-Álvarez, G. Triviño, O. Cordón, Body posture recognition by means of a genetic fuzzy finite state machine, in: IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS), 2011, pp. 60–65.
– volume: 2
  start-page: 88
  year: 2013
  end-page: 131
  ident: bib19
  article-title: A review on video-based human activity recognition
  publication-title: Computers
– reference: T. Fujimoto, H. Nakajima, N. Tsuchiya, H. Marukawa, K. Kuramoto, S. Kobashi, Y. Hata, Wearable human activity recognition by electrocardiograph and accelerometer, in: IEEE 43rd International Symposium on Multiple-Valued Logic, 2013.
– volume: 136
  start-page: 135
  year: 2001
  end-page: 157
  ident: bib28
  article-title: Genetic feature selection in a fuzzy rule-based classification system learning process
  publication-title: Inf. Sci.
– volume: 136
  start-page: 135
  year: 2001
  end-page: 157
  ident: bib30
  article-title: Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems
  publication-title: Inf. Sci.
– reference: S. Wang, J. Yang, N. Chen, X. Chen, Q. Zhang, Human activity recognition with user-free accelerometers in the sensor networks, in: Proceedings of the International Conference on Neural Networks and Brain ICNN & B׳05, vol. 2, IEEE Conference Publications, Beijing, 2005, pp. 1212–1217.
– volume: 120
  start-page: 633
  year: 2013
  end-page: 644
  ident: bib2
  article-title: Joint segmentation of multivariate time series with hidden process regression for human activity recognition
  publication-title: Neurocomputing
– volume: 17
  start-page: 585
  year: 2009
  end-page: 594
  ident: bib22
  article-title: A combined semg and accelerometer system for monitoring functional activity in stroke
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– ident: 10.1016/j.neucom.2015.01.082_bib9
  doi: 10.1109/ICNNB.2005.1614831
– volume: vol. 217
  start-page: 521
  year: 2013
  ident: 10.1016/j.neucom.2015.01.082_bib11
  article-title: A preliminary study on early diagnosis of illnesses based on activity disturbances
– volume: 2
  start-page: 88
  year: 2013
  ident: 10.1016/j.neucom.2015.01.082_bib19
  article-title: A review on video-based human activity recognition
  publication-title: Computers
  doi: 10.3390/computers2020088
– ident: 10.1016/j.neucom.2015.01.082_bib13
  doi: 10.1007/978-3-540-24646-6_1
– ident: 10.1016/j.neucom.2015.01.082_bib27
– ident: 10.1016/j.neucom.2015.01.082_bib20
  doi: 10.1109/CNE.2005.1419604
– volume: 40
  start-page: 163
  year: 2009
  ident: 10.1016/j.neucom.2015.01.082_bib21
  article-title: How active are people with stroke?
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.108.523621
– volume: 136
  start-page: 135
  issue: 1–4
  year: 2001
  ident: 10.1016/j.neucom.2015.01.082_bib28
  article-title: Genetic feature selection in a fuzzy rule-based classification system learning process
  publication-title: Inf. Sci.
  doi: 10.1016/S0020-0255(01)00147-5
– ident: 10.1016/j.neucom.2015.01.082_bib29
  doi: 10.1007/978-3-642-40846-5_66
– volume: 120
  start-page: 633
  issue: 23
  year: 2013
  ident: 10.1016/j.neucom.2015.01.082_bib2
  article-title: Joint segmentation of multivariate time series with hidden process regression for human activity recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.04.003
– ident: 10.1016/j.neucom.2015.01.082_bib18
– volume: 12
  start-page: 74
  issue: 2
  year: 2010
  ident: 10.1016/j.neucom.2015.01.082_bib8
  article-title: Activity recognition using cell phone accelerometers
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/1964897.1964918
– ident: 10.1016/j.neucom.2015.01.082_bib6
  doi: 10.1109/GEFS.2011.5949493
– volume: 32
  start-page: 25
  issue: 1
  year: 1995
  ident: 10.1016/j.neucom.2015.01.082_bib17
  article-title: Gait parameters following stroke
  publication-title: J. Rehabil. Res. Dev.
– volume: 78
  start-page: 1506
  issue: 10
  year: 1996
  ident: 10.1016/j.neucom.2015.01.082_bib16
  article-title: Gait pattern in the early recovery period after stroke
  publication-title: J. Bone Jt. Surg. Am.
  doi: 10.2106/00004623-199610000-00008
– volume: 42
  start-page: 679
  issue: 5
  year: 2004
  ident: 10.1016/j.neucom.2015.01.082_bib25
  article-title: Classification of basic daily movements using a triaxial accelerometer
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02347551
– ident: 10.1016/j.neucom.2015.01.082_bib3
  doi: 10.1109/ISMVL.2013.60
– volume: 46
  start-page: 335
  issue: 2
  year: 1964
  ident: 10.1016/j.neucom.2015.01.082_bib1
  article-title: Walking patterns of normal men
  publication-title: J. Bone Jt. Surg.
  doi: 10.2106/00004623-196446020-00009
– volume: 205
  start-page: 849
  issue: 2
  year: 2008
  ident: 10.1016/j.neucom.2015.01.082_bib10
  article-title: Online classifier construction algorithm for human activity detection using a triaxial accelerometer
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2008.05.099
– volume: 27
  start-page: 935
  year: 2006
  ident: 10.1016/j.neucom.2015.01.082_bib12
  article-title: Classification of a known sequence of motions and postures from accelerometry data using adapted Gaussian mixture models
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/27/10/001
– volume: 10
  start-page: 156
  issue: 1
  year: 2006
  ident: 10.1016/j.neucom.2015.01.082_bib26
  article-title: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2005.856864
– volume: 17
  start-page: 553
  issue: 3
  year: 2013
  ident: 10.1016/j.neucom.2015.01.082_bib4
  article-title: Human daily activity recognition with sparse representation using wearable sensors
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2013.2253613
– volume: 18
  start-page: 746
  issue: 6
  year: 2011
  ident: 10.1016/j.neucom.2015.01.082_bib23
  article-title: Using sensors to measure activity in people with stroke
  publication-title: Top Stroke Rehabil.
  doi: 10.1310/tsr1806-746
– volume: 188
  start-page: 241
  year: 2013
  ident: 10.1016/j.neucom.2015.01.082_bib5
  article-title: Soft computing models in industrial and environmental applications
– volume: 29
  start-page: 2213
  year: 2008
  ident: 10.1016/j.neucom.2015.01.082_bib7
  article-title: Using acceleration measurements for activity recognition
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2008.08.002
– volume: 14
  start-page: 82
  year: 2009
  ident: 10.1016/j.neucom.2015.01.082_bib14
  article-title: An activity recognition system for mobile phones
  publication-title: Mob. Netw. Appl.
  doi: 10.1007/s11036-008-0112-y
– ident: 10.1016/j.neucom.2015.01.082_bib24
– volume: 14
  start-page: 143
  issue: 4
  year: 2008
  ident: 10.1016/j.neucom.2015.01.082_bib15
  article-title: Kinetics and kinematics of loading response in stroke patients (a review article)
  publication-title: Ann. King Edward Med. Univ.
– volume: 17
  start-page: 585
  issue: 6
  year: 2009
  ident: 10.1016/j.neucom.2015.01.082_bib22
  article-title: A combined semg and accelerometer system for monitoring functional activity in stroke
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2009.2036615
– volume: 136
  start-page: 135
  issue: 1–4
  year: 2001
  ident: 10.1016/j.neucom.2015.01.082_bib30
  article-title: Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems
  publication-title: Inf. Sci.
  doi: 10.1016/S0020-0255(01)00147-5
SSID ssj0017129
Score 2.4082315
Snippet Human Activity Recognition (HAR) is aimed at identifying current subject task performed by a person as a result of analyzing data from wearable sensors. HAR is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 52
SubjectTerms Feature domain reduction
Feature selection
Genetic fuzzy finite state machine
Human activity recognition
Information correlation coefficient
Title Features and models for human activity recognition
URI https://dx.doi.org/10.1016/j.neucom.2015.01.082
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fuuj5OA1dneTTbLHUixVsRct9BY2ySxUZFu0vfrbzeyjKIiCx10yECbJzDfwzTeEXEcuJEVtNXMyskxI7lnOw3uMnMyVFIVWOfYOP07lZCbu5-m8Q0ZtLwzSKpvYX8f0Klo3fwaNNwerxWLwFGVJqKJQHQFxh8K6XQiFt_zmY0vziFWc1Hp7Scpwdds-V3G8StggZyQkwVq8Uyc_p6cvKWd8QPYarEiH9XYOSQfKI7LfzmGgzbM8JgniuE2om2leelrNtnmnAYzSagAfxdYFnBBBt2ShZXlCZuPb59GENbMQmOM6XTNwiodaQ-dKpxkkKUhtQejMFyqCGLRDAd4EikzEGmwqpHChFAjwyWpVeOH5KemWyxLOCA0IyHEPEGojCIcDuUp9JLyVlmfaet8jvHWBcY1QOM6reDUtI-zF1I4z6DgTxSY4rkfY1mpVC2X8sV613jXfDtyEWP6r5fm_LS_ILn7VrYSXpLt-28BVwBRr268uTZ_sDO8eJtNPKRbLNA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lHvTiW6zPHLzG7iObZI9SLFXbXmyht7BJZqEi26Lt1d_uZB9FQRS87mZgmezMfAPfzEfITWCxKCqjmBWBYVzEjmUxxmNgRSYFz5XM_OzwaCwGU_44S2Yt0mtmYTytss79VU4vs3X9pFt7s7ucz7vPQRphF-W3I3jcIbFv3-IYvl7G4PZjw_MIZRhVC_eihPnjzfxcSfIqYO1JI1gFq-2dKvq5Pn2pOf19sluDRXpXfc8BaUFxSPYaIQZax-URiTyQW2PjTLPC0VLc5p0iGqWlAh_1swteIoJu2EKL4phM-_eT3oDVYgjMxipZMbAyxmZDZVIlKUQJCGWAq9TlMoAQlPUbeCPIUx4qMAkX3GIvgPjJKJk77uIT0i4WBZwSihDIxg4AmyPA24FMJi7gzggTp8o41yFx4wJt603hXrDiVTeUsBddOU57x-kg1Oi4DmEbq2W1KeOP87Lxrv524xqT-a-WZ_-2vCbbg8loqIcP46dzsuPfVHOFF6S9elvDJQKMlbkqf6BPAY_Mwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Features+and+models+for+human+activity+recognition&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Gonz%C3%A1lez%2C+Silvia&rft.au=Sedano%2C+Javier&rft.au=Villar%2C+Jos%C3%A9+R.&rft.au=Corchado%2C+Emilio&rft.date=2015-11-01&rft.issn=0925-2312&rft.volume=167&rft.spage=52&rft.epage=60&rft_id=info:doi/10.1016%2Fj.neucom.2015.01.082&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2015_01_082
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon