Features and models for human activity recognition
Human Activity Recognition (HAR) is aimed at identifying current subject task performed by a person as a result of analyzing data from wearable sensors. HAR is a very challenging task that has been applied in different areas such as rehabilitation and localization. During the past ten years, plenty...
Saved in:
Published in | Neurocomputing (Amsterdam) Vol. 167; pp. 52 - 60 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human Activity Recognition (HAR) is aimed at identifying current subject task performed by a person as a result of analyzing data from wearable sensors. HAR is a very challenging task that has been applied in different areas such as rehabilitation and localization. During the past ten years, plenty of models, number of sensors and sensor placements, and feature transformations have been reported for this task. From this bunch of previous ideas, what seems to be clear is that the very specific applications drive to the selection of the best choices for each case.
Present research is focused on early diagnosis of stroke, what involves reducing the feature space of gathered data and subsequent HAR, among other tasks. In this study, an Information Correlation Coefficient (ICC) analysis was carried out followed by a wrapper Feature Selection (FS) method on the reduced input space. Additionally, a novel HAR method is proposed for this specific problem of stroke early diagnosing, comprising an adaptation of the well-known Genetic Fuzzy Finite State Machine (GFFSM) method.
To the best of the author׳s knowledge, this is the very first analysis of the feature space concerning all the previously published feature transformations on raw acceleration data. The main contributions of this study are the optimization of the sample rate, selection of the best feature subset, and learning of a suitable HAR method based on GFFSM to be applied to the HAR problem. |
---|---|
AbstractList | Human Activity Recognition (HAR) is aimed at identifying current subject task performed by a person as a result of analyzing data from wearable sensors. HAR is a very challenging task that has been applied in different areas such as rehabilitation and localization. During the past ten years, plenty of models, number of sensors and sensor placements, and feature transformations have been reported for this task. From this bunch of previous ideas, what seems to be clear is that the very specific applications drive to the selection of the best choices for each case.
Present research is focused on early diagnosis of stroke, what involves reducing the feature space of gathered data and subsequent HAR, among other tasks. In this study, an Information Correlation Coefficient (ICC) analysis was carried out followed by a wrapper Feature Selection (FS) method on the reduced input space. Additionally, a novel HAR method is proposed for this specific problem of stroke early diagnosing, comprising an adaptation of the well-known Genetic Fuzzy Finite State Machine (GFFSM) method.
To the best of the author׳s knowledge, this is the very first analysis of the feature space concerning all the previously published feature transformations on raw acceleration data. The main contributions of this study are the optimization of the sample rate, selection of the best feature subset, and learning of a suitable HAR method based on GFFSM to be applied to the HAR problem. |
Author | González, Silvia Baruque, Bruno Villar, José R. Sedano, Javier Herrero, Álvaro Corchado, Emilio |
Author_xml | – sequence: 1 givenname: Silvia surname: González fullname: González, Silvia organization: Instituto Tecnológico de Castilla y León, Burgos, Spain – sequence: 2 givenname: Javier surname: Sedano fullname: Sedano, Javier organization: Instituto Tecnológico de Castilla y León, Burgos, Spain – sequence: 3 givenname: José R. surname: Villar fullname: Villar, José R. organization: University of Oviedo, Campus de Viesques s/n 33204 Gijón, Spain – sequence: 4 givenname: Emilio surname: Corchado fullname: Corchado, Emilio organization: Departamento de Informática y Automática, University of Salamanca, Spain – sequence: 5 givenname: Álvaro surname: Herrero fullname: Herrero, Álvaro organization: Department of Civil Engineering, University of Burgos, Spain – sequence: 6 givenname: Bruno surname: Baruque fullname: Baruque, Bruno organization: Department of Civil Engineering, University of Burgos, Spain |
BookMark | eNqFkM1KAzEYRYNUsK2-gYt5gRmTTP7GhSDFVqHgRtchTb7RlE4iSVro2zulrlzo6q7O5Z47Q5MQAyB0S3BDMBF32ybA3sahoZjwBpMGK3qBpkRJWiuqxARNcUd5TVtCr9As5y3GRBLaTRFdgin7BLkywVVDdLDLVR9T9bkfTKiMLf7gy7FKYONH8MXHcI0ue7PLcPOTc_S-fHpbPNfr19XL4nFd21bxUoOVrcBCGal4B5SDUBtgqnO9xEBAWYqZotB3jCjYcCaYFZJ3nGyU7B1z7Rzdn3ttijkn6LX1xZwWlGT8ThOsT_Z6q8_2-mSvMdGj_QizX_BX8oNJx_-whzM23gAHD0ln6yFYcH58oGgX_d8F37AjeD8 |
CitedBy_id | crossref_primary_10_3233_JIFS_181085 crossref_primary_10_1007_s00521_023_08368_5 crossref_primary_10_1016_j_asoc_2021_107728 crossref_primary_10_1109_JBHI_2017_2734803 crossref_primary_10_1080_24751839_2017_1295668 crossref_primary_10_3390_s18124189 crossref_primary_10_1016_j_compbiomed_2020_103687 crossref_primary_10_1109_JSEN_2020_2989865 crossref_primary_10_3390_rs11131512 crossref_primary_10_3233_AIS_180494 crossref_primary_10_1016_j_gaitpost_2019_03_008 crossref_primary_10_1177_1550147718772785 crossref_primary_10_3390_s22145222 crossref_primary_10_1063_1_5096572 crossref_primary_10_3390_s18072034 crossref_primary_10_1007_s12652_017_0606_1 crossref_primary_10_1016_j_engappai_2018_01_004 crossref_primary_10_1038_s41598_021_98453_3 crossref_primary_10_3390_s21237791 crossref_primary_10_1093_jigpal_jzz071 crossref_primary_10_3390_s23187729 crossref_primary_10_3389_fphys_2024_1344887 crossref_primary_10_1007_s11042_024_19095_x crossref_primary_10_1016_j_cmpb_2021_106541 crossref_primary_10_1016_j_maturitas_2017_03_317 crossref_primary_10_1016_j_bbe_2020_05_010 crossref_primary_10_1111_exsy_13680 crossref_primary_10_1109_ACCESS_2019_2920969 crossref_primary_10_3390_electronics5030048 crossref_primary_10_3390_s18113612 crossref_primary_10_1016_j_eswa_2022_117925 crossref_primary_10_1088_1361_6579_aacfd9 crossref_primary_10_1155_2022_9173504 crossref_primary_10_1038_s42255_023_00778_y |
Cites_doi | 10.1109/ICNNB.2005.1614831 10.3390/computers2020088 10.1007/978-3-540-24646-6_1 10.1109/CNE.2005.1419604 10.1161/STROKEAHA.108.523621 10.1016/S0020-0255(01)00147-5 10.1007/978-3-642-40846-5_66 10.1016/j.neucom.2013.04.003 10.1145/1964897.1964918 10.1109/GEFS.2011.5949493 10.2106/00004623-199610000-00008 10.1007/BF02347551 10.1109/ISMVL.2013.60 10.2106/00004623-196446020-00009 10.1016/j.amc.2008.05.099 10.1088/0967-3334/27/10/001 10.1109/TITB.2005.856864 10.1109/JBHI.2013.2253613 10.1310/tsr1806-746 10.1016/j.patrec.2008.08.002 10.1007/s11036-008-0112-y 10.1109/TNSRE.2009.2036615 |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. |
Copyright_xml | – notice: 2015 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.neucom.2015.01.082 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-8286 |
EndPage | 60 |
ExternalDocumentID | 10_1016_j_neucom_2015_01_082 S0925231215005470 |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW SSH WUQ XPP |
ID | FETCH-LOGICAL-c385t-ec736068a7859e25e68be489df70e1e8c20482ef9418eb5464c675951b87fd4d3 |
IEDL.DBID | .~1 |
ISSN | 0925-2312 |
IngestDate | Sun Jul 06 05:06:29 EDT 2025 Thu Apr 24 23:00:59 EDT 2025 Fri Feb 23 02:28:31 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Genetic fuzzy finite state machine Feature selection Feature domain reduction Information correlation coefficient Human activity recognition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-ec736068a7859e25e68be489df70e1e8c20482ef9418eb5464c675951b87fd4d3 |
OpenAccessLink | http://hdl.handle.net/10366/134283 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2015_01_082 crossref_primary_10_1016_j_neucom_2015_01_082 elsevier_sciencedirect_doi_10_1016_j_neucom_2015_01_082 |
PublicationCentury | 2000 |
PublicationDate | 2015-11-01 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Neurocomputing (Amsterdam) |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | S. Wang, J. Yang, N. Chen, X. Chen, Q. Zhang, Human activity recognition with user-free accelerometers in the sensor networks, in: Proceedings of the International Conference on Neural Networks and Brain ICNN & B׳05, vol. 2, IEEE Conference Publications, Beijing, 2005, pp. 1212–1217. Casillas, Cordón, del Jesus, Herrera (bib28) 2001; 136 L. Bao, S.S. Intille, Activity recognition from user-annotated acceleration data, in: A. Ferscha, F. Mattern (Eds.), Proceedings of the Second International Conference Pervasive Computing, PERVASIVE 2004, Lecture Notes in Computer Science, vol. 3001, Springer, Berlin Heidelberg, 2004, pp. 1–17. Karantonis, Narayanan, Mathie, Lovell, Celler (bib26) 2006; 10 de Quervain, Simon, Leurgans, Pease, McAllister (bib16) 1996; 78 Zhang, Sawchuk (bib4) 2013; 17 Chen, Yang, Liou, Lee, Wang (bib10) 2008; 205 B. Knorr, R. Hughes, D. Sherrill, J. Stein, M. Akay, P. Bonato, Quantitative measures of functional upper limb movement in persons after stroke, in: Conference Proceedings of the Second International IEEE EMBS Conference on Neural Engineering, 2005, 2005, pp. 252–255. Ke, Thuc, Lee, Hwang, Yoo, Choi (bib19) 2013; 2 Yang, Wang, Chen (bib7) 2008; 29 Mathie, Celler, Lovell, Coster (bib25) 2004; 42 González, Villar, Sedano, Chira (bib11) 2013; vol. 217 Casillas, Cordon, Del Jesus, Herrera (bib30) 2001; 136 K. Hollands, Whole body coordination during turning while walking in stroke survivors (Ph.D. thesis), School of Health and Population Sciences, University of Birmingham, 2010. Roy, Cheng, Chang, Moore, Luca, Nawab, Luca (bib22) 2009; 17 Fulk, Sazonov (bib23) 2011; 18 T.J. Mantyla, J. Himberg, Recognizing human motion with multiple acceleration sensors, in: IEEE International Conference on Systems, Man and Cybernetics, vol. 3494, 2001, pp. 747–752. von Schroeder, Coutts, Lyden, Billings Jr., Nickel (bib17) 1995; 32 Rand, Eng, Chang, Tang, Jeng, Hung (bib21) 2009; 40 Kwapisz, Weiss, Moore (bib8) 2010; 12 Györbiro, Fábián, Hományi (bib14) 2009; 14 Murray, Drought, Kory (bib1) 1964; 46 Allen, Ambikairajah, Lovell, Celler (bib12) 2006; 27 Chamroukhi, Mohammed, Trabelsi, Oukhellou, Amirat (bib2) 2013; 120 T. Fujimoto, H. Nakajima, N. Tsuchiya, H. Marukawa, K. Kuramoto, S. Kobashi, Y. Hata, Wearable human activity recognition by electrocardiograph and accelerometer, in: IEEE 43rd International Symposium on Multiple-Valued Logic, 2013. A. Ávarez-Álvarez, G. Triviño, O. Cordón, Body posture recognition by means of a genetic fuzzy finite state machine, in: IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS), 2011, pp. 60–65. L.G.M. de la Vega, S. Raghuraman, A. Balasubramanian, B. Prabhakaran, Exploring unconstrained mobile sensor based human activity recognition, in: the Third International Workshop on Mobile Sensing, 2013. J.R. Villar, S. González, J. Sedano, C. Chira, J.M. Trejo, Human activity recognition and feature selection for stroke early diagnosis, in: the Eighth International Conference on Hybrid Artificial Intelligence Systems HAIS, Lecture Notes in Artificial Intelligence, Springer, Berlin Heidelberg, 2013. Sedano, González, Baruque, Herrero, Corchado (bib5) 2013; 188 Ahmed, Ahmed (bib15) 2008; 14 Zhang (10.1016/j.neucom.2015.01.082_bib4) 2013; 17 10.1016/j.neucom.2015.01.082_bib18 Yang (10.1016/j.neucom.2015.01.082_bib7) 2008; 29 Chen (10.1016/j.neucom.2015.01.082_bib10) 2008; 205 10.1016/j.neucom.2015.01.082_bib24 Ke (10.1016/j.neucom.2015.01.082_bib19) 2013; 2 10.1016/j.neucom.2015.01.082_bib27 de Quervain (10.1016/j.neucom.2015.01.082_bib16) 1996; 78 10.1016/j.neucom.2015.01.082_bib20 Murray (10.1016/j.neucom.2015.01.082_bib1) 1964; 46 Györbiro (10.1016/j.neucom.2015.01.082_bib14) 2009; 14 10.1016/j.neucom.2015.01.082_bib9 10.1016/j.neucom.2015.01.082_bib6 Kwapisz (10.1016/j.neucom.2015.01.082_bib8) 2010; 12 von Schroeder (10.1016/j.neucom.2015.01.082_bib17) 1995; 32 10.1016/j.neucom.2015.01.082_bib29 González (10.1016/j.neucom.2015.01.082_bib11) 2013; vol. 217 10.1016/j.neucom.2015.01.082_bib3 Casillas (10.1016/j.neucom.2015.01.082_bib30) 2001; 136 Fulk (10.1016/j.neucom.2015.01.082_bib23) 2011; 18 Roy (10.1016/j.neucom.2015.01.082_bib22) 2009; 17 Chamroukhi (10.1016/j.neucom.2015.01.082_bib2) 2013; 120 Karantonis (10.1016/j.neucom.2015.01.082_bib26) 2006; 10 Sedano (10.1016/j.neucom.2015.01.082_bib5) 2013; 188 Allen (10.1016/j.neucom.2015.01.082_bib12) 2006; 27 Casillas (10.1016/j.neucom.2015.01.082_bib28) 2001; 136 10.1016/j.neucom.2015.01.082_bib13 Rand (10.1016/j.neucom.2015.01.082_bib21) 2009; 40 Ahmed (10.1016/j.neucom.2015.01.082_bib15) 2008; 14 Mathie (10.1016/j.neucom.2015.01.082_bib25) 2004; 42 |
References_xml | – reference: T.J. Mantyla, J. Himberg, Recognizing human motion with multiple acceleration sensors, in: IEEE International Conference on Systems, Man and Cybernetics, vol. 3494, 2001, pp. 747–752. – reference: J.R. Villar, S. González, J. Sedano, C. Chira, J.M. Trejo, Human activity recognition and feature selection for stroke early diagnosis, in: the Eighth International Conference on Hybrid Artificial Intelligence Systems HAIS, Lecture Notes in Artificial Intelligence, Springer, Berlin Heidelberg, 2013. – volume: 14 start-page: 143 year: 2008 end-page: 147 ident: bib15 article-title: Kinetics and kinematics of loading response in stroke patients (a review article) publication-title: Ann. King Edward Med. Univ. – volume: 205 start-page: 849 year: 2008 end-page: 860 ident: bib10 article-title: Online classifier construction algorithm for human activity detection using a triaxial accelerometer publication-title: Appl. Math. Comput. – volume: 32 start-page: 25 year: 1995 end-page: 31 ident: bib17 article-title: Gait parameters following stroke publication-title: J. Rehabil. Res. Dev. – reference: K. Hollands, Whole body coordination during turning while walking in stroke survivors (Ph.D. thesis), School of Health and Population Sciences, University of Birmingham, 2010. – volume: 27 start-page: 935 year: 2006 end-page: 951 ident: bib12 article-title: Classification of a known sequence of motions and postures from accelerometry data using adapted Gaussian mixture models publication-title: Physiol. Meas. – volume: 188 start-page: 241 year: 2013 end-page: 248 ident: bib5 article-title: Soft computing models in industrial and environmental applications publication-title: Soft Computing for the Analysis of People Movement Classification of Advances in Intelligent Systems and Computing – reference: L. Bao, S.S. Intille, Activity recognition from user-annotated acceleration data, in: A. Ferscha, F. Mattern (Eds.), Proceedings of the Second International Conference Pervasive Computing, PERVASIVE 2004, Lecture Notes in Computer Science, vol. 3001, Springer, Berlin Heidelberg, 2004, pp. 1–17. – volume: 42 start-page: 679 year: 2004 end-page: 687 ident: bib25 article-title: Classification of basic daily movements using a triaxial accelerometer publication-title: Med. Biol. Eng. Comput. – volume: 29 start-page: 2213 year: 2008 end-page: 2220 ident: bib7 article-title: Using acceleration measurements for activity recognition publication-title: Pattern Recognit. Lett. – volume: 17 start-page: 553 year: 2013 end-page: 560 ident: bib4 article-title: Human daily activity recognition with sparse representation using wearable sensors publication-title: IEEE J. Biomed. Health Inform. – volume: 18 start-page: 746 year: 2011 end-page: 757 ident: bib23 article-title: Using sensors to measure activity in people with stroke publication-title: Top Stroke Rehabil. – volume: 12 start-page: 74 year: 2010 end-page: 82 ident: bib8 article-title: Activity recognition using cell phone accelerometers publication-title: ACM SIGKDD Explor. Newsl. – reference: L.G.M. de la Vega, S. Raghuraman, A. Balasubramanian, B. Prabhakaran, Exploring unconstrained mobile sensor based human activity recognition, in: the Third International Workshop on Mobile Sensing, 2013. – volume: 10 start-page: 156 year: 2006 end-page: 167 ident: bib26 article-title: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 46 start-page: 335 year: 1964 end-page: 360 ident: bib1 article-title: Walking patterns of normal men publication-title: J. Bone Jt. Surg. – volume: vol. 217 start-page: 521 year: 2013 end-page: 527 ident: bib11 article-title: A preliminary study on early diagnosis of illnesses based on activity disturbances publication-title: Distributed Computing and Artificial Intelligence Advances in Intelligent Systems and Computing – volume: 40 start-page: 163 year: 2009 end-page: 168 ident: bib21 article-title: How active are people with stroke? publication-title: Stroke – volume: 14 start-page: 82 year: 2009 end-page: 91 ident: bib14 article-title: An activity recognition system for mobile phones publication-title: Mob. Netw. Appl. – volume: 78 start-page: 1506 year: 1996 end-page: 1514 ident: bib16 article-title: Gait pattern in the early recovery period after stroke publication-title: J. Bone Jt. Surg. Am. – reference: B. Knorr, R. Hughes, D. Sherrill, J. Stein, M. Akay, P. Bonato, Quantitative measures of functional upper limb movement in persons after stroke, in: Conference Proceedings of the Second International IEEE EMBS Conference on Neural Engineering, 2005, 2005, pp. 252–255. – reference: A. Ávarez-Álvarez, G. Triviño, O. Cordón, Body posture recognition by means of a genetic fuzzy finite state machine, in: IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS), 2011, pp. 60–65. – volume: 2 start-page: 88 year: 2013 end-page: 131 ident: bib19 article-title: A review on video-based human activity recognition publication-title: Computers – reference: T. Fujimoto, H. Nakajima, N. Tsuchiya, H. Marukawa, K. Kuramoto, S. Kobashi, Y. Hata, Wearable human activity recognition by electrocardiograph and accelerometer, in: IEEE 43rd International Symposium on Multiple-Valued Logic, 2013. – volume: 136 start-page: 135 year: 2001 end-page: 157 ident: bib28 article-title: Genetic feature selection in a fuzzy rule-based classification system learning process publication-title: Inf. Sci. – volume: 136 start-page: 135 year: 2001 end-page: 157 ident: bib30 article-title: Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems publication-title: Inf. Sci. – reference: S. Wang, J. Yang, N. Chen, X. Chen, Q. Zhang, Human activity recognition with user-free accelerometers in the sensor networks, in: Proceedings of the International Conference on Neural Networks and Brain ICNN & B׳05, vol. 2, IEEE Conference Publications, Beijing, 2005, pp. 1212–1217. – volume: 120 start-page: 633 year: 2013 end-page: 644 ident: bib2 article-title: Joint segmentation of multivariate time series with hidden process regression for human activity recognition publication-title: Neurocomputing – volume: 17 start-page: 585 year: 2009 end-page: 594 ident: bib22 article-title: A combined semg and accelerometer system for monitoring functional activity in stroke publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – ident: 10.1016/j.neucom.2015.01.082_bib9 doi: 10.1109/ICNNB.2005.1614831 – volume: vol. 217 start-page: 521 year: 2013 ident: 10.1016/j.neucom.2015.01.082_bib11 article-title: A preliminary study on early diagnosis of illnesses based on activity disturbances – volume: 2 start-page: 88 year: 2013 ident: 10.1016/j.neucom.2015.01.082_bib19 article-title: A review on video-based human activity recognition publication-title: Computers doi: 10.3390/computers2020088 – ident: 10.1016/j.neucom.2015.01.082_bib13 doi: 10.1007/978-3-540-24646-6_1 – ident: 10.1016/j.neucom.2015.01.082_bib27 – ident: 10.1016/j.neucom.2015.01.082_bib20 doi: 10.1109/CNE.2005.1419604 – volume: 40 start-page: 163 year: 2009 ident: 10.1016/j.neucom.2015.01.082_bib21 article-title: How active are people with stroke? publication-title: Stroke doi: 10.1161/STROKEAHA.108.523621 – volume: 136 start-page: 135 issue: 1–4 year: 2001 ident: 10.1016/j.neucom.2015.01.082_bib28 article-title: Genetic feature selection in a fuzzy rule-based classification system learning process publication-title: Inf. Sci. doi: 10.1016/S0020-0255(01)00147-5 – ident: 10.1016/j.neucom.2015.01.082_bib29 doi: 10.1007/978-3-642-40846-5_66 – volume: 120 start-page: 633 issue: 23 year: 2013 ident: 10.1016/j.neucom.2015.01.082_bib2 article-title: Joint segmentation of multivariate time series with hidden process regression for human activity recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.04.003 – ident: 10.1016/j.neucom.2015.01.082_bib18 – volume: 12 start-page: 74 issue: 2 year: 2010 ident: 10.1016/j.neucom.2015.01.082_bib8 article-title: Activity recognition using cell phone accelerometers publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/1964897.1964918 – ident: 10.1016/j.neucom.2015.01.082_bib6 doi: 10.1109/GEFS.2011.5949493 – volume: 32 start-page: 25 issue: 1 year: 1995 ident: 10.1016/j.neucom.2015.01.082_bib17 article-title: Gait parameters following stroke publication-title: J. Rehabil. Res. Dev. – volume: 78 start-page: 1506 issue: 10 year: 1996 ident: 10.1016/j.neucom.2015.01.082_bib16 article-title: Gait pattern in the early recovery period after stroke publication-title: J. Bone Jt. Surg. Am. doi: 10.2106/00004623-199610000-00008 – volume: 42 start-page: 679 issue: 5 year: 2004 ident: 10.1016/j.neucom.2015.01.082_bib25 article-title: Classification of basic daily movements using a triaxial accelerometer publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02347551 – ident: 10.1016/j.neucom.2015.01.082_bib3 doi: 10.1109/ISMVL.2013.60 – volume: 46 start-page: 335 issue: 2 year: 1964 ident: 10.1016/j.neucom.2015.01.082_bib1 article-title: Walking patterns of normal men publication-title: J. Bone Jt. Surg. doi: 10.2106/00004623-196446020-00009 – volume: 205 start-page: 849 issue: 2 year: 2008 ident: 10.1016/j.neucom.2015.01.082_bib10 article-title: Online classifier construction algorithm for human activity detection using a triaxial accelerometer publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2008.05.099 – volume: 27 start-page: 935 year: 2006 ident: 10.1016/j.neucom.2015.01.082_bib12 article-title: Classification of a known sequence of motions and postures from accelerometry data using adapted Gaussian mixture models publication-title: Physiol. Meas. doi: 10.1088/0967-3334/27/10/001 – volume: 10 start-page: 156 issue: 1 year: 2006 ident: 10.1016/j.neucom.2015.01.082_bib26 article-title: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2005.856864 – volume: 17 start-page: 553 issue: 3 year: 2013 ident: 10.1016/j.neucom.2015.01.082_bib4 article-title: Human daily activity recognition with sparse representation using wearable sensors publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2013.2253613 – volume: 18 start-page: 746 issue: 6 year: 2011 ident: 10.1016/j.neucom.2015.01.082_bib23 article-title: Using sensors to measure activity in people with stroke publication-title: Top Stroke Rehabil. doi: 10.1310/tsr1806-746 – volume: 188 start-page: 241 year: 2013 ident: 10.1016/j.neucom.2015.01.082_bib5 article-title: Soft computing models in industrial and environmental applications – volume: 29 start-page: 2213 year: 2008 ident: 10.1016/j.neucom.2015.01.082_bib7 article-title: Using acceleration measurements for activity recognition publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2008.08.002 – volume: 14 start-page: 82 year: 2009 ident: 10.1016/j.neucom.2015.01.082_bib14 article-title: An activity recognition system for mobile phones publication-title: Mob. Netw. Appl. doi: 10.1007/s11036-008-0112-y – ident: 10.1016/j.neucom.2015.01.082_bib24 – volume: 14 start-page: 143 issue: 4 year: 2008 ident: 10.1016/j.neucom.2015.01.082_bib15 article-title: Kinetics and kinematics of loading response in stroke patients (a review article) publication-title: Ann. King Edward Med. Univ. – volume: 17 start-page: 585 issue: 6 year: 2009 ident: 10.1016/j.neucom.2015.01.082_bib22 article-title: A combined semg and accelerometer system for monitoring functional activity in stroke publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2009.2036615 – volume: 136 start-page: 135 issue: 1–4 year: 2001 ident: 10.1016/j.neucom.2015.01.082_bib30 article-title: Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems publication-title: Inf. Sci. doi: 10.1016/S0020-0255(01)00147-5 |
SSID | ssj0017129 |
Score | 2.4082315 |
Snippet | Human Activity Recognition (HAR) is aimed at identifying current subject task performed by a person as a result of analyzing data from wearable sensors. HAR is... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 52 |
SubjectTerms | Feature domain reduction Feature selection Genetic fuzzy finite state machine Human activity recognition Information correlation coefficient |
Title | Features and models for human activity recognition |
URI | https://dx.doi.org/10.1016/j.neucom.2015.01.082 |
Volume | 167 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fuuj5OA1dneTTbLHUixVsRct9BY2ySxUZFu0vfrbzeyjKIiCx10yECbJzDfwzTeEXEcuJEVtNXMyskxI7lnOw3uMnMyVFIVWOfYOP07lZCbu5-m8Q0ZtLwzSKpvYX8f0Klo3fwaNNwerxWLwFGVJqKJQHQFxh8K6XQiFt_zmY0vziFWc1Hp7Scpwdds-V3G8StggZyQkwVq8Uyc_p6cvKWd8QPYarEiH9XYOSQfKI7LfzmGgzbM8JgniuE2om2leelrNtnmnAYzSagAfxdYFnBBBt2ShZXlCZuPb59GENbMQmOM6XTNwiodaQ-dKpxkkKUhtQejMFyqCGLRDAd4EikzEGmwqpHChFAjwyWpVeOH5KemWyxLOCA0IyHEPEGojCIcDuUp9JLyVlmfaet8jvHWBcY1QOM6reDUtI-zF1I4z6DgTxSY4rkfY1mpVC2X8sV613jXfDtyEWP6r5fm_LS_ILn7VrYSXpLt-28BVwBRr268uTZ_sDO8eJtNPKRbLNA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lHvTiW6zPHLzG7iObZI9SLFXbXmyht7BJZqEi26Lt1d_uZB9FQRS87mZgmezMfAPfzEfITWCxKCqjmBWBYVzEjmUxxmNgRSYFz5XM_OzwaCwGU_44S2Yt0mtmYTytss79VU4vs3X9pFt7s7ucz7vPQRphF-W3I3jcIbFv3-IYvl7G4PZjw_MIZRhVC_eihPnjzfxcSfIqYO1JI1gFq-2dKvq5Pn2pOf19sluDRXpXfc8BaUFxSPYaIQZax-URiTyQW2PjTLPC0VLc5p0iGqWlAh_1swteIoJu2EKL4phM-_eT3oDVYgjMxipZMbAyxmZDZVIlKUQJCGWAq9TlMoAQlPUbeCPIUx4qMAkX3GIvgPjJKJk77uIT0i4WBZwSihDIxg4AmyPA24FMJi7gzggTp8o41yFx4wJt603hXrDiVTeUsBddOU57x-kg1Oi4DmEbq2W1KeOP87Lxrv524xqT-a-WZ_-2vCbbg8loqIcP46dzsuPfVHOFF6S9elvDJQKMlbkqf6BPAY_Mwg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Features+and+models+for+human+activity+recognition&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Gonz%C3%A1lez%2C+Silvia&rft.au=Sedano%2C+Javier&rft.au=Villar%2C+Jos%C3%A9+R.&rft.au=Corchado%2C+Emilio&rft.date=2015-11-01&rft.issn=0925-2312&rft.volume=167&rft.spage=52&rft.epage=60&rft_id=info:doi/10.1016%2Fj.neucom.2015.01.082&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2015_01_082 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |