Medical Knowledge Graph: Data Sources, Construction, Reasoning, and Applications
Medical knowledge graphs (MKGs) are the basis for intelligent health care, and they have been in use in a variety of intelligent medical applications. Thus, understanding the research and application development of MKGs will be crucial for future relevant research in the biomedical field. To this en...
Saved in:
Published in | Big Data Mining and Analytics Vol. 6; no. 2; pp. 201 - 217 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Tsinghua University Press
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Medical knowledge graphs (MKGs) are the basis for intelligent health care, and they have been in use in a variety of intelligent medical applications. Thus, understanding the research and application development of MKGs will be crucial for future relevant research in the biomedical field. To this end, we offer an in-depth review of MKG in this work. Our research begins with the examination of four types of medical information sources, knowledge graph creation methodologies, and six major themes for MKG development. Furthermore, three popular models of reasoning from the viewpoint of knowledge reasoning are discussed. A reasoning implementation path (RIP) is proposed as a means of expressing the reasoning procedures for MKG. In addition, we explore intelligent medical applications based on RIP and MKG and classify them into nine major types. Finally, we summarize the current state of MKG research based on more than 130 publications and future challenges and opportunities. |
---|---|
AbstractList | Medical knowledge graphs (MKGs) are the basis for intelligent health care, and they have been in use in a variety of intelligent medical applications. Thus, understanding the research and application development of MKGs will be crucial for future relevant research in the biomedical field. To this end, we offer an in-depth review of MKG in this work. Our research begins with the examination of four types of medical information sources, knowledge graph creation methodologies, and six major themes for MKG development. Furthermore, three popular models of reasoning from the viewpoint of knowledge reasoning are discussed. A reasoning implementation path (RIP) is proposed as a means of expressing the reasoning procedures for MKG. In addition, we explore intelligent medical applications based on RIP and MKG and classify them into nine major types. Finally, we summarize the current state of MKG research based on more than 130 publications and future challenges and opportunities. |
Author | Duan, Junwen Pan, Yi Li, Min Wu, Xuehong |
Author_xml | – sequence: 1 givenname: Xuehong surname: Wu fullname: Wu, Xuehong organization: School of Computer Science and Engineering, Central South University,Changsha,China,410083 – sequence: 2 givenname: Junwen surname: Duan fullname: Duan, Junwen organization: School of Computer Science and Engineering, Central South University,Changsha,China,410083 – sequence: 3 givenname: Yi surname: Pan fullname: Pan, Yi organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences,Faculty of Computer Science and Control Engineering,Shenzhen,China,518000 – sequence: 4 givenname: Min surname: Li fullname: Li, Min organization: School of Computer Science and Engineering, Central South University,Changsha,China,410083 |
BookMark | eNp9Uctu2zAQJIoEqPP4gZ4E9Go5S0riIzfHblKjCRLkAeRGrEnKlaGQKimjyN9HfvTSQ0672J0ZzO6ckCMfvCPkG4UJ45VSF1fzu-mEAWMTBQyA0S9kxECJvAT-erTreQ68Kr-S85TWMEBkJYoSRuThztnGYJv98uFv6-zKZTcRu9-X2Rx7zJ7CJhqXxtks-NTHjemb4MfZo8MUfONX4wy9zaZd1w4i2106I8c1tsmdH-opebn-8Tz7md_e3yxm09vcFLLqcyeFtGZpa0s5l9QyiUwKSmnFFSqrlGDGgERhwaByztSmZq4suGMUoZTFKVnsdW3Ate5i84bxXQds9G4Q4kpj7BvTOu0KvjRoVVUxKOvSSFjWKJdVLUBwpHzQ-r7X6mL4s3Gp1-vhbj_Y18XwVllwwbYouUeZGFKKrtam6XdH9xGbVlPQuzj0Ng69jUMf4hio7D_qP8OfkD4AzA-N0w |
CitedBy_id | crossref_primary_10_3390_bdcc7010021 crossref_primary_10_3390_fi16080260 crossref_primary_10_1007_s13755_024_00309_3 crossref_primary_10_1007_s40747_024_01741_4 crossref_primary_10_1016_j_cogsys_2023_101188 crossref_primary_10_3390_electronics13010214 crossref_primary_10_3390_bioengineering11070671 crossref_primary_10_3389_fpubh_2025_1540946 crossref_primary_10_3390_sym16010081 crossref_primary_10_1021_acs_jcim_4c00737 crossref_primary_10_1007_s40747_024_01551_8 crossref_primary_10_1016_j_neucom_2024_127571 crossref_primary_10_3390_modelling5030061 crossref_primary_10_1016_j_ipm_2025_104148 crossref_primary_10_2298_CSIS230530027G crossref_primary_10_23919_cje_2022_00_384 crossref_primary_10_26599_BDMA_2024_9020028 crossref_primary_10_1016_j_eswa_2023_123034 crossref_primary_10_3390_agronomy15030566 crossref_primary_10_3389_feduc_2024_1364860 crossref_primary_10_1016_j_csbj_2024_01_014 crossref_primary_10_1007_s10479_023_05650_6 crossref_primary_10_1016_j_eswa_2024_126215 crossref_primary_10_1016_j_jbi_2023_104403 crossref_primary_10_1016_j_cmpb_2024_108051 crossref_primary_10_1007_s10489_024_06162_x crossref_primary_10_3389_fncom_2024_1389475 crossref_primary_10_3389_fpls_2024_1482275 crossref_primary_10_1021_acs_jmedchem_4c02543 crossref_primary_10_1093_bioinformatics_btae194 crossref_primary_10_1016_j_procs_2024_09_187 crossref_primary_10_3390_app14209447 crossref_primary_10_1093_jamia_ocae095 crossref_primary_10_3390_ijms24086954 crossref_primary_10_1080_09544828_2024_2419317 crossref_primary_10_1109_ACCESS_2024_3420877 crossref_primary_10_1016_j_compbiolchem_2024_108302 crossref_primary_10_1016_j_neucom_2024_127881 crossref_primary_10_3390_drones7060360 crossref_primary_10_3390_healthcare11121762 |
Cites_doi | 10.1049/gtd2.12040 10.3389/fgene.2020.625659 10.1016/j.artmed.2018.03.005 10.1007/s10115-019-01351-4 10.1093/bioinformatics/btaa718 10.1016/j.artmed.2020.101927 10.1007/978-3-030-30952-7_51 10.1007/978-3-030-34482-5_3 10.3233/shti210192 10.1016/j.cmpb.2018.08.010 10.1093/bib/bbaa256 10.3389/fbioe.2020.00867 10.1007/978-3-319-69182-4_16 10.1016/j.patter.2020.100155 10.1093/nar/gkj067 10.2196/14830 10.1093/database/baz068 10.1093/bioinformatics/btz600 10.1109/ICCWAMTIP47768.2019.9067598 10.1186/s13326-018-0189-6 10.1145/2983323.2983819 10.1080/24699322.2020.1850866 10.1109/ACCESS.2020.3019577 10.2196/28218 10.1142/9789811215636_0041 10.1016/j.inffus.2020.03.014 10.1093/nar/gkw1099 10.1038/sdata.2017.29 10.1093/bioinformatics/bts591 10.26599/BDMA.2019.9020007 10.1007/978-3-319-60045-1_44 10.1007/s10916-019-1182-z 10.1007/978-3-319-68204-4_23 10.1142/9789811215636_0003 10.1007/978-3-030-38189-9_58 10.1016/j.jbi.2018.06.006 10.1093/bioinformatics/btab169 10.1021/acs.jcim.9b00683 10.1007/978-3-319-92037-5_3 10.1016/j.ins.2020.02.016 10.1093/bioinformatics/btab694 10.1186/s12859-015-0549-5 10.1109/CBD.2017.62 10.1186/s12859-021-04292-4 10.1007/978-3-319-69182-4_18 10.1016/j.future.2019.08.030 10.1186/s12911-020-1112-5 10.1186/s12911-020-01341-5 10.1016/j.knosys.2020.106421 10.1016/j.artmed.2017.04.001 10.1016/j.websem.2017.06.002 10.1016/j.bdr.2020.100174 10.1109/ACCESS.2020.3016676 10.1016/j.jbi.2018.05.003 10.1016/j.jbi.2021.103696 10.1007/978-3-030-18576-3_42 10.1186/s12911-019-0764-5 10.1007/s13755-020-0102-4 10.1186/s12911-019-0857-1 10.1007/978-3-030-15127-0_19 10.1007/978-3-319-26832-3_55 10.1007/s13755-020-00128-2 10.1093/jamiaopen/ooab028 10.1145/3373017.3373049 10.1016/j.jbi.2020.103522 10.1093/nar/gkw1092 10.1007/978-981-15-1925-3_33 10.2196/jmir.7.1.e3 10.1109/CyberC.2018.00041 10.1038/s41598-017-16674-x 10.1002/adtp.202100055 10.1186/s12911-021-01402-3 10.1007/978-3-030-61244-3_17 10.1145/2757001.2757003 10.1007/s13755-020-00130-8 10.1007/978-3-030-65390-3_19 10.1186/s12859-019-3296-1 10.1504/IJSTM.2020.106742 10.1161/CIRCRESAHA.116.310024 10.1007/978-3-030-01078-2_13 10.1007/978-3-030-04780-1_21 10.1093/nar/gky1100 10.1186/s13326-020-00232-y 10.1093/bib/bbaa344 10.1016/j.artmed.2019.101772 10.1007/s11280-020-00810-1 10.1016/j.artmed.2020.101817 10.1093/nar/gkv1075 10.1371/journal.pone.0218264 10.1016/j.eswa.2019.112948 10.1007/978-3-030-37078-7_16 10.1186/s12911-019-0798-8 10.1007/978-3-319-59858-1_8 10.1155/2017/2858423 10.1016/j.jbi.2021.103710 10.1038/s41598-019-42806-6 10.1093/bib/bbaa110 10.1016/j.jvcir.2020.102901 10.2196/18323 10.1016/j.jbi.2017.05.018 10.1186/s12911-019-0938-1 10.2196/17645 10.1109/EMBC.2013.6609740 10.1007/978-3-030-02934-0_30 10.1038/s41598-017-05778-z 10.1016/j.jbi.2021.103834 10.1016/j.eswa.2019.113120 10.1016/j.jbi.2021.103838 10.1007/s13755-020-0100-6 10.1109/ACCESS.2021.3055371 10.1007/978-3-030-30952-7_52 10.1109/TCBB.2019.2927310 10.1038/s41392-021-00568-6 10.1145/1376616.1376746 10.1002/med.21847 10.2196/18287 10.1016/j.cmpb.2013.07.008 10.1007/978-3-030-32962-4_1 10.3390/fi13010014 10.1109/ICNIDC.2018.8525665 10.1016/j.ipm.2020.102324 10.1007/978-3-030-60029-7_20 10.1007/978-3-319-99365-2_43 10.1093/nar/gkh061 10.2196/25670 10.2196/17653 10.1007/978-3-319-13186-3_32 10.1007/978-3-030-62466-8_19 10.1007/978-981-15-3412-6_21 10.1109/ICACI.2018.8377528 10.1109/JBHI.2020.2990797 10.1186/s12859-018-2167-5 10.1109/TMI.2021.3049498 10.1016/j.csbj.2021.06.046 10.1021/acs.jcim.1c00642 10.1109/MITP.2020.2984598 10.1007/978-3-030-66665-1_9 10.1016/j.jbi.2019.103132 10.1007/978-3-319-70772-3_29 |
ContentType | Journal Article |
Copyright | 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.26599/BDMA.2022.9020021 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2097-406X |
EndPage | 217 |
ExternalDocumentID | oai_doaj_org_article_e36bcad955204f4c80bfa8b5f7076a16 10_26599_BDMA_2022_9020021 |
GroupedDBID | -SI -S~ 9D9 9DI AAXDM AAYXX ABAZT ABVLG AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CAJEI CCPQU CITATION ESBDL GROUPED_DOAJ HCIFZ JAVBF K7- PHGZM PHGZT PIMPY Q-- U1G U5S 8FE 8FG ABUWG AZQEC COVID DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c385t-e878dcbdfd16681d28a287111569a9d9972cc08a7d0ca9eecfcf2e436e21a0483 |
IEDL.DBID | BENPR |
ISSN | 2096-0654 |
IngestDate | Wed Aug 27 01:27:14 EDT 2025 Fri Jul 25 10:01:25 EDT 2025 Thu Apr 24 22:48:37 EDT 2025 Tue Jul 01 02:39:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-e878dcbdfd16681d28a287111569a9d9972cc08a7d0ca9eecfcf2e436e21a0483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3202836726?pq-origsite=%requestingapplication% |
PQID | 3202836726 |
PQPubID | 7264805 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e36bcad955204f4c80bfa8b5f7076a16 proquest_journals_3202836726 crossref_citationtrail_10_26599_BDMA_2022_9020021 crossref_primary_10_26599_BDMA_2022_9020021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-6-00 20230601 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-6-00 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Big Data Mining and Analytics |
PublicationYear | 2023 |
Publisher | Tsinghua University Press |
Publisher_xml | – name: Tsinghua University Press |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 Donnelly (ref17) 2006; 121 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Santisteban (ref126) ref13 ref12 ref15 ref128 ref14 Kamdar (ref31) 2020; 2020 ref129 ref97 ref96 ref127 ref11 ref99 ref124 ref10 ref98 ref125 ref19 ref18 ref93 ref133 ref92 ref134 ref95 ref94 ref132 ref130 ref91 ref90 ref89 ref139 ref86 ref137 ref85 ref138 ref88 ref135 ref87 ref136 ref82 ref144 ref81 ref145 ref84 ref142 ref83 ref143 ref140 ref141 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 Some (ref131) 2019; 259 Lipscomb (ref16) 2000; 88 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 Singhal (ref1) 2012 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
References_xml | – ident: ref2 doi: 10.1049/gtd2.12040 – ident: ref37 doi: 10.3389/fgene.2020.625659 – ident: ref30 doi: 10.1016/j.artmed.2018.03.005 – ident: ref81 doi: 10.1007/s10115-019-01351-4 – ident: ref27 doi: 10.1093/bioinformatics/btaa718 – ident: ref21 doi: 10.1016/j.artmed.2020.101927 – ident: ref127 doi: 10.1007/978-3-030-30952-7_51 – ident: ref61 doi: 10.1007/978-3-030-34482-5_3 – ident: ref70 doi: 10.3233/shti210192 – ident: ref25 doi: 10.1016/j.cmpb.2018.08.010 – ident: ref8 doi: 10.1093/bib/bbaa256 – ident: ref55 doi: 10.3389/fbioe.2020.00867 – ident: ref79 doi: 10.1007/978-3-319-69182-4_16 – ident: ref129 doi: 10.1016/j.patter.2020.100155 – ident: ref19 doi: 10.1093/nar/gkj067 – ident: ref112 doi: 10.2196/14830 – ident: ref89 doi: 10.1093/database/baz068 – ident: ref102 doi: 10.1093/bioinformatics/btz600 – ident: ref68 doi: 10.1109/ICCWAMTIP47768.2019.9067598 – ident: ref138 doi: 10.1186/s13326-018-0189-6 – ident: ref58 doi: 10.1145/2983323.2983819 – ident: ref63 doi: 10.1080/24699322.2020.1850866 – ident: ref67 doi: 10.1109/ACCESS.2020.3019577 – ident: ref71 doi: 10.2196/28218 – ident: ref84 doi: 10.1142/9789811215636_0041 – ident: ref115 doi: 10.1016/j.inffus.2020.03.014 – ident: ref108 doi: 10.1093/nar/gkw1099 – ident: ref53 doi: 10.1038/sdata.2017.29 – ident: ref54 doi: 10.1093/bioinformatics/bts591 – ident: ref145 doi: 10.26599/BDMA.2019.9020007 – ident: ref111 doi: 10.1007/978-3-319-60045-1_44 – ident: ref140 doi: 10.1007/s10916-019-1182-z – ident: ref48 doi: 10.1007/978-3-319-68204-4_23 – ident: ref73 doi: 10.1142/9789811215636_0003 – ident: ref122 doi: 10.1007/978-3-030-38189-9_58 – ident: ref113 doi: 10.1016/j.jbi.2018.06.006 – ident: ref117 doi: 10.1093/bioinformatics/btab169 – ident: ref57 doi: 10.1021/acs.jcim.9b00683 – ident: ref43 doi: 10.1007/978-3-319-92037-5_3 – ident: ref119 doi: 10.1016/j.ins.2020.02.016 – ident: ref10 doi: 10.1093/bioinformatics/btab694 – ident: ref50 doi: 10.1186/s12859-015-0549-5 – ident: ref124 doi: 10.1109/CBD.2017.62 – ident: ref91 doi: 10.1186/s12859-021-04292-4 – ident: ref77 doi: 10.1007/978-3-319-69182-4_18 – ident: ref116 doi: 10.1016/j.future.2019.08.030 – ident: ref98 doi: 10.1186/s12911-020-1112-5 – ident: ref83 doi: 10.1186/s12911-020-01341-5 – ident: ref118 doi: 10.1016/j.knosys.2020.106421 – ident: ref4 doi: 10.1016/j.artmed.2017.04.001 – ident: ref38 doi: 10.1016/j.websem.2017.06.002 – ident: ref66 doi: 10.1016/j.bdr.2020.100174 – ident: ref92 doi: 10.1109/ACCESS.2020.3016676 – ident: ref7 doi: 10.1016/j.jbi.2018.05.003 – ident: ref99 doi: 10.1016/j.jbi.2021.103696 – ident: ref137 doi: 10.1007/978-3-030-18576-3_42 – ident: ref88 doi: 10.1186/s12911-019-0764-5 – ident: ref65 doi: 10.1007/s13755-020-0102-4 – ident: ref44 doi: 10.1186/s12911-019-0857-1 – ident: ref134 doi: 10.1007/978-3-030-15127-0_19 – ident: ref86 doi: 10.1007/978-3-319-26832-3_55 – ident: ref95 doi: 10.1007/s13755-020-00128-2 – ident: ref75 doi: 10.1093/jamiaopen/ooab028 – ident: ref41 doi: 10.1145/3373017.3373049 – ident: ref123 doi: 10.1016/j.jbi.2020.103522 – ident: ref20 doi: 10.1093/nar/gkw1092 – ident: ref26 doi: 10.1007/978-981-15-1925-3_33 – ident: ref12 doi: 10.2196/jmir.7.1.e3 – ident: ref29 doi: 10.1109/CyberC.2018.00041 – ident: ref6 doi: 10.1038/s41598-017-16674-x – ident: ref104 doi: 10.1002/adtp.202100055 – ident: ref28 doi: 10.1186/s12911-021-01402-3 – ident: ref35 doi: 10.1007/978-3-030-61244-3_17 – ident: ref24 doi: 10.1145/2757001.2757003 – start-page: 23 volume-title: SIGIR Workshop on Graph Search and Beyond15 ident: ref126 article-title: Unilateral Jaccard similarity coefficient – ident: ref13 doi: 10.1007/s13755-020-00130-8 – ident: ref40 doi: 10.1007/978-3-030-65390-3_19 – ident: ref109 doi: 10.1186/s12859-019-3296-1 – ident: ref9 doi: 10.1504/IJSTM.2020.106742 – ident: ref5 doi: 10.1161/CIRCRESAHA.116.310024 – ident: ref39 doi: 10.1007/978-3-030-01078-2_13 – ident: ref101 doi: 10.1007/978-3-030-04780-1_21 – ident: ref107 doi: 10.1093/nar/gky1100 – ident: ref94 doi: 10.1186/s13326-020-00232-y – ident: ref132 doi: 10.1093/bib/bbaa344 – ident: ref136 doi: 10.1016/j.artmed.2019.101772 – ident: ref14 doi: 10.1007/s11280-020-00810-1 – ident: ref47 doi: 10.1016/j.artmed.2020.101817 – ident: ref106 doi: 10.1093/nar/gkv1075 – ident: ref141 doi: 10.1371/journal.pone.0218264 – ident: ref120 doi: 10.1016/j.eswa.2019.112948 – volume: 88 start-page: 265 issue: 3 year: 2000 ident: ref16 article-title: Medical Subject Headings (MeSH) publication-title: Bull. Med. Libr. Assoc. – ident: ref90 doi: 10.1007/978-3-030-37078-7_16 – volume: 121 start-page: 279 year: 2006 ident: ref17 article-title: SNOMED-CT: The advanced terminology and coding system for eHealth publication-title: Stud. Health Technol. Inform. – ident: ref69 doi: 10.1186/s12911-019-0798-8 – ident: ref33 doi: 10.1007/978-3-319-59858-1_8 – ident: ref74 doi: 10.1155/2017/2858423 – ident: ref121 doi: 10.1016/j.jbi.2021.103710 – ident: ref56 doi: 10.1038/s41598-019-42806-6 – ident: ref87 doi: 10.1093/bib/bbaa110 – ident: ref135 doi: 10.1016/j.jvcir.2020.102901 – ident: ref78 doi: 10.2196/18323 – ident: ref82 doi: 10.1016/j.jbi.2017.05.018 – ident: ref34 doi: 10.1186/s12911-019-0938-1 – ident: ref62 doi: 10.2196/17645 – ident: ref51 doi: 10.1109/EMBC.2013.6609740 – ident: ref97 doi: 10.1007/978-3-030-02934-0_30 – volume-title: Introducing the knowledge graph: Things, not strings year: 2012 ident: ref1 – ident: ref59 doi: 10.1038/s41598-017-05778-z – ident: ref142 doi: 10.1016/j.jbi.2021.103834 – ident: ref23 doi: 10.1016/j.eswa.2019.113120 – ident: ref139 doi: 10.1016/j.jbi.2021.103838 – ident: ref46 doi: 10.1007/s13755-020-0100-6 – ident: ref42 doi: 10.1109/ACCESS.2021.3055371 – ident: ref36 doi: 10.1007/978-3-030-30952-7_52 – ident: ref125 doi: 10.1109/TCBB.2019.2927310 – ident: ref143 doi: 10.1038/s41392-021-00568-6 – ident: ref52 doi: 10.1145/1376616.1376746 – ident: ref105 doi: 10.1002/med.21847 – ident: ref130 doi: 10.2196/18287 – ident: ref3 doi: 10.1016/j.cmpb.2013.07.008 – ident: ref128 doi: 10.1007/978-3-030-32962-4_1 – ident: ref49 doi: 10.3390/fi13010014 – ident: ref60 doi: 10.1109/ICNIDC.2018.8525665 – volume: 2020 start-page: 288 volume-title: AMIA Jt. Summits Transl. Sci. Proc. year: 2020 ident: ref31 article-title: Text snippets to corroborate medical relations: An unsupervised approach using a knowledge graph and embeddings – ident: ref22 doi: 10.1016/j.ipm.2020.102324 – volume: 259 start-page: 59 year: 2019 ident: ref131 article-title: Design considerations for a knowledge graph: The WATRIMed use case publication-title: Stud. Health Technol. Inform. – ident: ref64 doi: 10.1007/978-3-030-60029-7_20 – ident: ref103 doi: 10.1007/978-3-319-99365-2_43 – ident: ref18 doi: 10.1093/nar/gkh061 – ident: ref76 doi: 10.2196/25670 – ident: ref45 doi: 10.2196/17653 – ident: ref93 doi: 10.1007/978-3-319-13186-3_32 – ident: ref32 doi: 10.1007/978-3-030-62466-8_19 – ident: ref85 doi: 10.1007/978-981-15-3412-6_21 – ident: ref100 doi: 10.1109/ICACI.2018.8377528 – ident: ref15 doi: 10.1109/JBHI.2020.2990797 – ident: ref80 doi: 10.1186/s12859-018-2167-5 – ident: ref133 doi: 10.1109/TMI.2021.3049498 – ident: ref96 doi: 10.1016/j.csbj.2021.06.046 – ident: ref144 doi: 10.1021/acs.jcim.1c00642 – ident: ref11 doi: 10.1109/MITP.2020.2984598 – ident: ref72 doi: 10.1007/978-3-030-66665-1_9 – ident: ref114 doi: 10.1016/j.jbi.2019.103132 – ident: ref110 doi: 10.1007/978-3-319-70772-3_29 |
SSID | ssj0002857340 |
Score | 2.4635916 |
Snippet | Medical knowledge graphs (MKGs) are the basis for intelligent health care, and they have been in use in a variety of intelligent medical applications. Thus,... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 201 |
SubjectTerms | Artificial intelligence Big Data Clinical trials Computer science Data mining Disease Electronic health records Information sources intelligent healthcare intelligent medical applications Knowledge knowledge graph construction knowledge reasoning Knowledge representation Medical diagnosis medical knowledge graph Medical Subject Headings-MeSH Ontology Reasoning Semantics Textbooks |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7SkxdRVKwvcvBm12bz2sRba61FqYha6C3keRCpQvv_McnuloqgF6-7Cbt8md2Zb5L5BoALagIiVvjC8ZIXlBFWaMnLQnOXKJFBPle9Tx_5ZEbv52y-0eornQmr5YFr4PqecGO1k4xhRAO1ApmghWGhigxcl1lsO_q8DTL1llNGrCK5GjLejJSZM1pXzGDOpOwPR9NB5IYYX0mUTyl880pZvP_Hvzk7nPEu2GkiRTio33APbPnFPnhqNlbgQ5sLg3dJcvoajvRKw5ecil_2YOrD2SrD9uCz18ucdu1BvXBwsLFpfQBm49vXm0nRNEUoLBFsVXhRCWeNC67kPAabWOhEemJgx6WWLtXBWouErhyyWnpvgw3YU8I9LnXSjz8EncXHwh8BSByllUQ2MrTIEyLxIpGdSeFlEJXxhHZB2YKibKMYnhpXvKvIHDKQKgGpEpCqAbILLtdzPmu9jF9HDxPW65FJ6zpfiBagGgtQf1lAF5y2K6WaD3CpUlt4QXiF-fF_POMEbKc-8_UZsVPQiSvoz2I0sjLn2fC-AIBX1pE priority: 102 providerName: Directory of Open Access Journals |
Title | Medical Knowledge Graph: Data Sources, Construction, Reasoning, and Applications |
URI | https://www.proquest.com/docview/3202836726 https://doaj.org/article/e36bcad955204f4c80bfa8b5f7076a16 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxEB2VcOml9FMN0MiH3poFr7_W5lIlhYBagRAtEjfLa3u5oARI_r_wON6UqhLXXfsytsfzxjPvAXwVbUe517EKqlaVkFxWzqi6ciogJGppzF3v5xfq7Fr8vJE3JeG2LGWVvU_MjjosPObID1HnW3PVMPX9_qFC1Sh8XS0SGluwnVyw1gPYnp5cXF5tsixMy4bnrkhGsdpWSbHunGFKGnM4PT6fJIzI2IGhuVrhn9spk_j_56PzxTN7C29KxEgm6yV-B6_i_D3s9GoMpBzOD3BZ3lzIrz5NRk6RjfqIHLuVI79zln45JijR2ZPGjslVdMuckR0TNw9k8uw9-yNcz07-_Diril5C5bmWqyrqRgffhi7USqU4lGmHeCjFfMo4E7BF1nuqXROodyZG3_mORcFVZLVDavlPMJgv5vEzEB6EaAz1CbwlCJEwGU_AzehoOt20kYsh1L2drC9k4qhpcWcTqMi2tWhbi7a1xbZD-LaZc7-m0nhx9BTNvxmJNNj5w-Lx1pZTZSNXrXfBSMmo6ITXtO2cbmXX0Ea5Wg1hv188W87m0v7dSbsv_96D1yguvy4M24dBWpv4JYUgq3YEW3p2Oiq7bZSB_BMYKNck |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcoALb0RKAR_gRJZ6_VobCaGUkKakqRC0Um_Ga3u5VEkhkRB_it-Ix7sbQEi99bqvw3h2Zr55fQDPRd1Q7nUsgipVISSXhTOqLJwKCIlqGvPU-_xYTU_FhzN5tgW_-lkYbKvsbWI21GHpMUe-hzzfmquKqbcX3wpkjcLqak-h0arFLP78kSDb6s3hOJ3vC8Ym70_eTYuOVaDwXMt1EXWlg69DE0qlUrTGtEPUkCIjZZwJOEjqPdWuCtQ7E6NvfMOi4Cqy0uEC9vTda3Bd8OTJcTJ9crDJ6TAtK55nMBnF3l4lRTunw5Q0Zm9_PB8lRMrYK0Nzb8Q_vjBTBvznEbKbm9yBW118SkatQt2Frbi4B7d77gfSmYL78LGr8JBZn5QjB7j7-jUZu7Ujn3NNYDUkSAjar6gdkk_RrXL-d0jcIpDRX9XzB3B6JXJ8CNuL5SI-AsKDEJWhPkHFBFgSAuQJJhodTaOrOnIxgLKXk_Xd6nJk0Di3CcJk2VqUrUXZ2k62A3i5eeeiXdxx6dP7KP7Nk7h0O19Yfv9qu3_YRq5q74KRklHRCK9p3Thdy6ailXKlGsBuf3i2swQr-0dvdy6__QxuTE_mR_bo8Hj2GG4irX3bkrYL2-mc4pMU_Kzrp1njCHy5ahX_DfBfEYY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Medical+Knowledge+Graph%3A+Data+Sources%2C+Construction%2C+Reasoning%2C+and+Applications&rft.jtitle=Big+Data+Mining+and+Analytics&rft.au=Wu%2C+Xuehong&rft.au=Duan%2C+Junwen&rft.au=Pan%2C+Yi&rft.au=Li%2C+Min&rft.date=2023-06-01&rft.issn=2096-0654&rft.eissn=2097-406X&rft.volume=6&rft.issue=2&rft.spage=201&rft.epage=217&rft_id=info:doi/10.26599%2FBDMA.2022.9020021&rft.externalDBID=n%2Fa&rft.externalDocID=10_26599_BDMA_2022_9020021 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2096-0654&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2096-0654&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2096-0654&client=summon |