Medical Knowledge Graph: Data Sources, Construction, Reasoning, and Applications

Medical knowledge graphs (MKGs) are the basis for intelligent health care, and they have been in use in a variety of intelligent medical applications. Thus, understanding the research and application development of MKGs will be crucial for future relevant research in the biomedical field. To this en...

Full description

Saved in:
Bibliographic Details
Published inBig Data Mining and Analytics Vol. 6; no. 2; pp. 201 - 217
Main Authors Wu, Xuehong, Duan, Junwen, Pan, Yi, Li, Min
Format Journal Article
LanguageEnglish
Published Beijing Tsinghua University Press 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Medical knowledge graphs (MKGs) are the basis for intelligent health care, and they have been in use in a variety of intelligent medical applications. Thus, understanding the research and application development of MKGs will be crucial for future relevant research in the biomedical field. To this end, we offer an in-depth review of MKG in this work. Our research begins with the examination of four types of medical information sources, knowledge graph creation methodologies, and six major themes for MKG development. Furthermore, three popular models of reasoning from the viewpoint of knowledge reasoning are discussed. A reasoning implementation path (RIP) is proposed as a means of expressing the reasoning procedures for MKG. In addition, we explore intelligent medical applications based on RIP and MKG and classify them into nine major types. Finally, we summarize the current state of MKG research based on more than 130 publications and future challenges and opportunities.
AbstractList Medical knowledge graphs (MKGs) are the basis for intelligent health care, and they have been in use in a variety of intelligent medical applications. Thus, understanding the research and application development of MKGs will be crucial for future relevant research in the biomedical field. To this end, we offer an in-depth review of MKG in this work. Our research begins with the examination of four types of medical information sources, knowledge graph creation methodologies, and six major themes for MKG development. Furthermore, three popular models of reasoning from the viewpoint of knowledge reasoning are discussed. A reasoning implementation path (RIP) is proposed as a means of expressing the reasoning procedures for MKG. In addition, we explore intelligent medical applications based on RIP and MKG and classify them into nine major types. Finally, we summarize the current state of MKG research based on more than 130 publications and future challenges and opportunities.
Author Duan, Junwen
Pan, Yi
Li, Min
Wu, Xuehong
Author_xml – sequence: 1
  givenname: Xuehong
  surname: Wu
  fullname: Wu, Xuehong
  organization: School of Computer Science and Engineering, Central South University,Changsha,China,410083
– sequence: 2
  givenname: Junwen
  surname: Duan
  fullname: Duan, Junwen
  organization: School of Computer Science and Engineering, Central South University,Changsha,China,410083
– sequence: 3
  givenname: Yi
  surname: Pan
  fullname: Pan, Yi
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences,Faculty of Computer Science and Control Engineering,Shenzhen,China,518000
– sequence: 4
  givenname: Min
  surname: Li
  fullname: Li, Min
  organization: School of Computer Science and Engineering, Central South University,Changsha,China,410083
BookMark eNp9Uctu2zAQJIoEqPP4gZ4E9Go5S0riIzfHblKjCRLkAeRGrEnKlaGQKimjyN9HfvTSQ0672J0ZzO6ckCMfvCPkG4UJ45VSF1fzu-mEAWMTBQyA0S9kxECJvAT-erTreQ68Kr-S85TWMEBkJYoSRuThztnGYJv98uFv6-zKZTcRu9-X2Rx7zJ7CJhqXxtks-NTHjemb4MfZo8MUfONX4wy9zaZd1w4i2106I8c1tsmdH-opebn-8Tz7md_e3yxm09vcFLLqcyeFtGZpa0s5l9QyiUwKSmnFFSqrlGDGgERhwaByztSmZq4suGMUoZTFKVnsdW3Ate5i84bxXQds9G4Q4kpj7BvTOu0KvjRoVVUxKOvSSFjWKJdVLUBwpHzQ-r7X6mL4s3Gp1-vhbj_Y18XwVllwwbYouUeZGFKKrtam6XdH9xGbVlPQuzj0Ng69jUMf4hio7D_qP8OfkD4AzA-N0w
CitedBy_id crossref_primary_10_3390_bdcc7010021
crossref_primary_10_3390_fi16080260
crossref_primary_10_1007_s13755_024_00309_3
crossref_primary_10_1007_s40747_024_01741_4
crossref_primary_10_1016_j_cogsys_2023_101188
crossref_primary_10_3390_electronics13010214
crossref_primary_10_3390_bioengineering11070671
crossref_primary_10_3389_fpubh_2025_1540946
crossref_primary_10_3390_sym16010081
crossref_primary_10_1021_acs_jcim_4c00737
crossref_primary_10_1007_s40747_024_01551_8
crossref_primary_10_1016_j_neucom_2024_127571
crossref_primary_10_3390_modelling5030061
crossref_primary_10_1016_j_ipm_2025_104148
crossref_primary_10_2298_CSIS230530027G
crossref_primary_10_23919_cje_2022_00_384
crossref_primary_10_26599_BDMA_2024_9020028
crossref_primary_10_1016_j_eswa_2023_123034
crossref_primary_10_3390_agronomy15030566
crossref_primary_10_3389_feduc_2024_1364860
crossref_primary_10_1016_j_csbj_2024_01_014
crossref_primary_10_1007_s10479_023_05650_6
crossref_primary_10_1016_j_eswa_2024_126215
crossref_primary_10_1016_j_jbi_2023_104403
crossref_primary_10_1016_j_cmpb_2024_108051
crossref_primary_10_1007_s10489_024_06162_x
crossref_primary_10_3389_fncom_2024_1389475
crossref_primary_10_3389_fpls_2024_1482275
crossref_primary_10_1021_acs_jmedchem_4c02543
crossref_primary_10_1093_bioinformatics_btae194
crossref_primary_10_1016_j_procs_2024_09_187
crossref_primary_10_3390_app14209447
crossref_primary_10_1093_jamia_ocae095
crossref_primary_10_3390_ijms24086954
crossref_primary_10_1080_09544828_2024_2419317
crossref_primary_10_1109_ACCESS_2024_3420877
crossref_primary_10_1016_j_compbiolchem_2024_108302
crossref_primary_10_1016_j_neucom_2024_127881
crossref_primary_10_3390_drones7060360
crossref_primary_10_3390_healthcare11121762
Cites_doi 10.1049/gtd2.12040
10.3389/fgene.2020.625659
10.1016/j.artmed.2018.03.005
10.1007/s10115-019-01351-4
10.1093/bioinformatics/btaa718
10.1016/j.artmed.2020.101927
10.1007/978-3-030-30952-7_51
10.1007/978-3-030-34482-5_3
10.3233/shti210192
10.1016/j.cmpb.2018.08.010
10.1093/bib/bbaa256
10.3389/fbioe.2020.00867
10.1007/978-3-319-69182-4_16
10.1016/j.patter.2020.100155
10.1093/nar/gkj067
10.2196/14830
10.1093/database/baz068
10.1093/bioinformatics/btz600
10.1109/ICCWAMTIP47768.2019.9067598
10.1186/s13326-018-0189-6
10.1145/2983323.2983819
10.1080/24699322.2020.1850866
10.1109/ACCESS.2020.3019577
10.2196/28218
10.1142/9789811215636_0041
10.1016/j.inffus.2020.03.014
10.1093/nar/gkw1099
10.1038/sdata.2017.29
10.1093/bioinformatics/bts591
10.26599/BDMA.2019.9020007
10.1007/978-3-319-60045-1_44
10.1007/s10916-019-1182-z
10.1007/978-3-319-68204-4_23
10.1142/9789811215636_0003
10.1007/978-3-030-38189-9_58
10.1016/j.jbi.2018.06.006
10.1093/bioinformatics/btab169
10.1021/acs.jcim.9b00683
10.1007/978-3-319-92037-5_3
10.1016/j.ins.2020.02.016
10.1093/bioinformatics/btab694
10.1186/s12859-015-0549-5
10.1109/CBD.2017.62
10.1186/s12859-021-04292-4
10.1007/978-3-319-69182-4_18
10.1016/j.future.2019.08.030
10.1186/s12911-020-1112-5
10.1186/s12911-020-01341-5
10.1016/j.knosys.2020.106421
10.1016/j.artmed.2017.04.001
10.1016/j.websem.2017.06.002
10.1016/j.bdr.2020.100174
10.1109/ACCESS.2020.3016676
10.1016/j.jbi.2018.05.003
10.1016/j.jbi.2021.103696
10.1007/978-3-030-18576-3_42
10.1186/s12911-019-0764-5
10.1007/s13755-020-0102-4
10.1186/s12911-019-0857-1
10.1007/978-3-030-15127-0_19
10.1007/978-3-319-26832-3_55
10.1007/s13755-020-00128-2
10.1093/jamiaopen/ooab028
10.1145/3373017.3373049
10.1016/j.jbi.2020.103522
10.1093/nar/gkw1092
10.1007/978-981-15-1925-3_33
10.2196/jmir.7.1.e3
10.1109/CyberC.2018.00041
10.1038/s41598-017-16674-x
10.1002/adtp.202100055
10.1186/s12911-021-01402-3
10.1007/978-3-030-61244-3_17
10.1145/2757001.2757003
10.1007/s13755-020-00130-8
10.1007/978-3-030-65390-3_19
10.1186/s12859-019-3296-1
10.1504/IJSTM.2020.106742
10.1161/CIRCRESAHA.116.310024
10.1007/978-3-030-01078-2_13
10.1007/978-3-030-04780-1_21
10.1093/nar/gky1100
10.1186/s13326-020-00232-y
10.1093/bib/bbaa344
10.1016/j.artmed.2019.101772
10.1007/s11280-020-00810-1
10.1016/j.artmed.2020.101817
10.1093/nar/gkv1075
10.1371/journal.pone.0218264
10.1016/j.eswa.2019.112948
10.1007/978-3-030-37078-7_16
10.1186/s12911-019-0798-8
10.1007/978-3-319-59858-1_8
10.1155/2017/2858423
10.1016/j.jbi.2021.103710
10.1038/s41598-019-42806-6
10.1093/bib/bbaa110
10.1016/j.jvcir.2020.102901
10.2196/18323
10.1016/j.jbi.2017.05.018
10.1186/s12911-019-0938-1
10.2196/17645
10.1109/EMBC.2013.6609740
10.1007/978-3-030-02934-0_30
10.1038/s41598-017-05778-z
10.1016/j.jbi.2021.103834
10.1016/j.eswa.2019.113120
10.1016/j.jbi.2021.103838
10.1007/s13755-020-0100-6
10.1109/ACCESS.2021.3055371
10.1007/978-3-030-30952-7_52
10.1109/TCBB.2019.2927310
10.1038/s41392-021-00568-6
10.1145/1376616.1376746
10.1002/med.21847
10.2196/18287
10.1016/j.cmpb.2013.07.008
10.1007/978-3-030-32962-4_1
10.3390/fi13010014
10.1109/ICNIDC.2018.8525665
10.1016/j.ipm.2020.102324
10.1007/978-3-030-60029-7_20
10.1007/978-3-319-99365-2_43
10.1093/nar/gkh061
10.2196/25670
10.2196/17653
10.1007/978-3-319-13186-3_32
10.1007/978-3-030-62466-8_19
10.1007/978-981-15-3412-6_21
10.1109/ICACI.2018.8377528
10.1109/JBHI.2020.2990797
10.1186/s12859-018-2167-5
10.1109/TMI.2021.3049498
10.1016/j.csbj.2021.06.046
10.1021/acs.jcim.1c00642
10.1109/MITP.2020.2984598
10.1007/978-3-030-66665-1_9
10.1016/j.jbi.2019.103132
10.1007/978-3-319-70772-3_29
ContentType Journal Article
Copyright 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.26599/BDMA.2022.9020021
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2097-406X
EndPage 217
ExternalDocumentID oai_doaj_org_article_e36bcad955204f4c80bfa8b5f7076a16
10_26599_BDMA_2022_9020021
GroupedDBID -SI
-S~
9D9
9DI
AAXDM
AAYXX
ABAZT
ABVLG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CAJEI
CCPQU
CITATION
ESBDL
GROUPED_DOAJ
HCIFZ
JAVBF
K7-
PHGZM
PHGZT
PIMPY
Q--
U1G
U5S
8FE
8FG
ABUWG
AZQEC
COVID
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c385t-e878dcbdfd16681d28a287111569a9d9972cc08a7d0ca9eecfcf2e436e21a0483
IEDL.DBID BENPR
ISSN 2096-0654
IngestDate Wed Aug 27 01:27:14 EDT 2025
Fri Jul 25 10:01:25 EDT 2025
Thu Apr 24 22:48:37 EDT 2025
Tue Jul 01 02:39:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-e878dcbdfd16681d28a287111569a9d9972cc08a7d0ca9eecfcf2e436e21a0483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3202836726?pq-origsite=%requestingapplication%
PQID 3202836726
PQPubID 7264805
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_e36bcad955204f4c80bfa8b5f7076a16
proquest_journals_3202836726
crossref_citationtrail_10_26599_BDMA_2022_9020021
crossref_primary_10_26599_BDMA_2022_9020021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-6-00
20230601
2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-6-00
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Big Data Mining and Analytics
PublicationYear 2023
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
Donnelly (ref17) 2006; 121
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Santisteban (ref126)
ref13
ref12
ref15
ref128
ref14
Kamdar (ref31) 2020; 2020
ref129
ref97
ref96
ref127
ref11
ref99
ref124
ref10
ref98
ref125
ref19
ref18
ref93
ref133
ref92
ref134
ref95
ref94
ref132
ref130
ref91
ref90
ref89
ref139
ref86
ref137
ref85
ref138
ref88
ref135
ref87
ref136
ref82
ref144
ref81
ref145
ref84
ref142
ref83
ref143
ref140
ref141
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
Some (ref131) 2019; 259
Lipscomb (ref16) 2000; 88
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
Singhal (ref1) 2012
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – ident: ref2
  doi: 10.1049/gtd2.12040
– ident: ref37
  doi: 10.3389/fgene.2020.625659
– ident: ref30
  doi: 10.1016/j.artmed.2018.03.005
– ident: ref81
  doi: 10.1007/s10115-019-01351-4
– ident: ref27
  doi: 10.1093/bioinformatics/btaa718
– ident: ref21
  doi: 10.1016/j.artmed.2020.101927
– ident: ref127
  doi: 10.1007/978-3-030-30952-7_51
– ident: ref61
  doi: 10.1007/978-3-030-34482-5_3
– ident: ref70
  doi: 10.3233/shti210192
– ident: ref25
  doi: 10.1016/j.cmpb.2018.08.010
– ident: ref8
  doi: 10.1093/bib/bbaa256
– ident: ref55
  doi: 10.3389/fbioe.2020.00867
– ident: ref79
  doi: 10.1007/978-3-319-69182-4_16
– ident: ref129
  doi: 10.1016/j.patter.2020.100155
– ident: ref19
  doi: 10.1093/nar/gkj067
– ident: ref112
  doi: 10.2196/14830
– ident: ref89
  doi: 10.1093/database/baz068
– ident: ref102
  doi: 10.1093/bioinformatics/btz600
– ident: ref68
  doi: 10.1109/ICCWAMTIP47768.2019.9067598
– ident: ref138
  doi: 10.1186/s13326-018-0189-6
– ident: ref58
  doi: 10.1145/2983323.2983819
– ident: ref63
  doi: 10.1080/24699322.2020.1850866
– ident: ref67
  doi: 10.1109/ACCESS.2020.3019577
– ident: ref71
  doi: 10.2196/28218
– ident: ref84
  doi: 10.1142/9789811215636_0041
– ident: ref115
  doi: 10.1016/j.inffus.2020.03.014
– ident: ref108
  doi: 10.1093/nar/gkw1099
– ident: ref53
  doi: 10.1038/sdata.2017.29
– ident: ref54
  doi: 10.1093/bioinformatics/bts591
– ident: ref145
  doi: 10.26599/BDMA.2019.9020007
– ident: ref111
  doi: 10.1007/978-3-319-60045-1_44
– ident: ref140
  doi: 10.1007/s10916-019-1182-z
– ident: ref48
  doi: 10.1007/978-3-319-68204-4_23
– ident: ref73
  doi: 10.1142/9789811215636_0003
– ident: ref122
  doi: 10.1007/978-3-030-38189-9_58
– ident: ref113
  doi: 10.1016/j.jbi.2018.06.006
– ident: ref117
  doi: 10.1093/bioinformatics/btab169
– ident: ref57
  doi: 10.1021/acs.jcim.9b00683
– ident: ref43
  doi: 10.1007/978-3-319-92037-5_3
– ident: ref119
  doi: 10.1016/j.ins.2020.02.016
– ident: ref10
  doi: 10.1093/bioinformatics/btab694
– ident: ref50
  doi: 10.1186/s12859-015-0549-5
– ident: ref124
  doi: 10.1109/CBD.2017.62
– ident: ref91
  doi: 10.1186/s12859-021-04292-4
– ident: ref77
  doi: 10.1007/978-3-319-69182-4_18
– ident: ref116
  doi: 10.1016/j.future.2019.08.030
– ident: ref98
  doi: 10.1186/s12911-020-1112-5
– ident: ref83
  doi: 10.1186/s12911-020-01341-5
– ident: ref118
  doi: 10.1016/j.knosys.2020.106421
– ident: ref4
  doi: 10.1016/j.artmed.2017.04.001
– ident: ref38
  doi: 10.1016/j.websem.2017.06.002
– ident: ref66
  doi: 10.1016/j.bdr.2020.100174
– ident: ref92
  doi: 10.1109/ACCESS.2020.3016676
– ident: ref7
  doi: 10.1016/j.jbi.2018.05.003
– ident: ref99
  doi: 10.1016/j.jbi.2021.103696
– ident: ref137
  doi: 10.1007/978-3-030-18576-3_42
– ident: ref88
  doi: 10.1186/s12911-019-0764-5
– ident: ref65
  doi: 10.1007/s13755-020-0102-4
– ident: ref44
  doi: 10.1186/s12911-019-0857-1
– ident: ref134
  doi: 10.1007/978-3-030-15127-0_19
– ident: ref86
  doi: 10.1007/978-3-319-26832-3_55
– ident: ref95
  doi: 10.1007/s13755-020-00128-2
– ident: ref75
  doi: 10.1093/jamiaopen/ooab028
– ident: ref41
  doi: 10.1145/3373017.3373049
– ident: ref123
  doi: 10.1016/j.jbi.2020.103522
– ident: ref20
  doi: 10.1093/nar/gkw1092
– ident: ref26
  doi: 10.1007/978-981-15-1925-3_33
– ident: ref12
  doi: 10.2196/jmir.7.1.e3
– ident: ref29
  doi: 10.1109/CyberC.2018.00041
– ident: ref6
  doi: 10.1038/s41598-017-16674-x
– ident: ref104
  doi: 10.1002/adtp.202100055
– ident: ref28
  doi: 10.1186/s12911-021-01402-3
– ident: ref35
  doi: 10.1007/978-3-030-61244-3_17
– ident: ref24
  doi: 10.1145/2757001.2757003
– start-page: 23
  volume-title: SIGIR Workshop on Graph Search and Beyond15
  ident: ref126
  article-title: Unilateral Jaccard similarity coefficient
– ident: ref13
  doi: 10.1007/s13755-020-00130-8
– ident: ref40
  doi: 10.1007/978-3-030-65390-3_19
– ident: ref109
  doi: 10.1186/s12859-019-3296-1
– ident: ref9
  doi: 10.1504/IJSTM.2020.106742
– ident: ref5
  doi: 10.1161/CIRCRESAHA.116.310024
– ident: ref39
  doi: 10.1007/978-3-030-01078-2_13
– ident: ref101
  doi: 10.1007/978-3-030-04780-1_21
– ident: ref107
  doi: 10.1093/nar/gky1100
– ident: ref94
  doi: 10.1186/s13326-020-00232-y
– ident: ref132
  doi: 10.1093/bib/bbaa344
– ident: ref136
  doi: 10.1016/j.artmed.2019.101772
– ident: ref14
  doi: 10.1007/s11280-020-00810-1
– ident: ref47
  doi: 10.1016/j.artmed.2020.101817
– ident: ref106
  doi: 10.1093/nar/gkv1075
– ident: ref141
  doi: 10.1371/journal.pone.0218264
– ident: ref120
  doi: 10.1016/j.eswa.2019.112948
– volume: 88
  start-page: 265
  issue: 3
  year: 2000
  ident: ref16
  article-title: Medical Subject Headings (MeSH)
  publication-title: Bull. Med. Libr. Assoc.
– ident: ref90
  doi: 10.1007/978-3-030-37078-7_16
– volume: 121
  start-page: 279
  year: 2006
  ident: ref17
  article-title: SNOMED-CT: The advanced terminology and coding system for eHealth
  publication-title: Stud. Health Technol. Inform.
– ident: ref69
  doi: 10.1186/s12911-019-0798-8
– ident: ref33
  doi: 10.1007/978-3-319-59858-1_8
– ident: ref74
  doi: 10.1155/2017/2858423
– ident: ref121
  doi: 10.1016/j.jbi.2021.103710
– ident: ref56
  doi: 10.1038/s41598-019-42806-6
– ident: ref87
  doi: 10.1093/bib/bbaa110
– ident: ref135
  doi: 10.1016/j.jvcir.2020.102901
– ident: ref78
  doi: 10.2196/18323
– ident: ref82
  doi: 10.1016/j.jbi.2017.05.018
– ident: ref34
  doi: 10.1186/s12911-019-0938-1
– ident: ref62
  doi: 10.2196/17645
– ident: ref51
  doi: 10.1109/EMBC.2013.6609740
– ident: ref97
  doi: 10.1007/978-3-030-02934-0_30
– volume-title: Introducing the knowledge graph: Things, not strings
  year: 2012
  ident: ref1
– ident: ref59
  doi: 10.1038/s41598-017-05778-z
– ident: ref142
  doi: 10.1016/j.jbi.2021.103834
– ident: ref23
  doi: 10.1016/j.eswa.2019.113120
– ident: ref139
  doi: 10.1016/j.jbi.2021.103838
– ident: ref46
  doi: 10.1007/s13755-020-0100-6
– ident: ref42
  doi: 10.1109/ACCESS.2021.3055371
– ident: ref36
  doi: 10.1007/978-3-030-30952-7_52
– ident: ref125
  doi: 10.1109/TCBB.2019.2927310
– ident: ref143
  doi: 10.1038/s41392-021-00568-6
– ident: ref52
  doi: 10.1145/1376616.1376746
– ident: ref105
  doi: 10.1002/med.21847
– ident: ref130
  doi: 10.2196/18287
– ident: ref3
  doi: 10.1016/j.cmpb.2013.07.008
– ident: ref128
  doi: 10.1007/978-3-030-32962-4_1
– ident: ref49
  doi: 10.3390/fi13010014
– ident: ref60
  doi: 10.1109/ICNIDC.2018.8525665
– volume: 2020
  start-page: 288
  volume-title: AMIA Jt. Summits Transl. Sci. Proc.
  year: 2020
  ident: ref31
  article-title: Text snippets to corroborate medical relations: An unsupervised approach using a knowledge graph and embeddings
– ident: ref22
  doi: 10.1016/j.ipm.2020.102324
– volume: 259
  start-page: 59
  year: 2019
  ident: ref131
  article-title: Design considerations for a knowledge graph: The WATRIMed use case
  publication-title: Stud. Health Technol. Inform.
– ident: ref64
  doi: 10.1007/978-3-030-60029-7_20
– ident: ref103
  doi: 10.1007/978-3-319-99365-2_43
– ident: ref18
  doi: 10.1093/nar/gkh061
– ident: ref76
  doi: 10.2196/25670
– ident: ref45
  doi: 10.2196/17653
– ident: ref93
  doi: 10.1007/978-3-319-13186-3_32
– ident: ref32
  doi: 10.1007/978-3-030-62466-8_19
– ident: ref85
  doi: 10.1007/978-981-15-3412-6_21
– ident: ref100
  doi: 10.1109/ICACI.2018.8377528
– ident: ref15
  doi: 10.1109/JBHI.2020.2990797
– ident: ref80
  doi: 10.1186/s12859-018-2167-5
– ident: ref133
  doi: 10.1109/TMI.2021.3049498
– ident: ref96
  doi: 10.1016/j.csbj.2021.06.046
– ident: ref144
  doi: 10.1021/acs.jcim.1c00642
– ident: ref11
  doi: 10.1109/MITP.2020.2984598
– ident: ref72
  doi: 10.1007/978-3-030-66665-1_9
– ident: ref114
  doi: 10.1016/j.jbi.2019.103132
– ident: ref110
  doi: 10.1007/978-3-319-70772-3_29
SSID ssj0002857340
Score 2.4635916
Snippet Medical knowledge graphs (MKGs) are the basis for intelligent health care, and they have been in use in a variety of intelligent medical applications. Thus,...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 201
SubjectTerms Artificial intelligence
Big Data
Clinical trials
Computer science
Data mining
Disease
Electronic health records
Information sources
intelligent healthcare
intelligent medical applications
Knowledge
knowledge graph construction
knowledge reasoning
Knowledge representation
Medical diagnosis
medical knowledge graph
Medical Subject Headings-MeSH
Ontology
Reasoning
Semantics
Textbooks
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7SkxdRVKwvcvBm12bz2sRba61FqYha6C3keRCpQvv_McnuloqgF6-7Cbt8md2Zb5L5BoALagIiVvjC8ZIXlBFWaMnLQnOXKJFBPle9Tx_5ZEbv52y-0eornQmr5YFr4PqecGO1k4xhRAO1ApmghWGhigxcl1lsO_q8DTL1llNGrCK5GjLejJSZM1pXzGDOpOwPR9NB5IYYX0mUTyl880pZvP_Hvzk7nPEu2GkiRTio33APbPnFPnhqNlbgQ5sLg3dJcvoajvRKw5ecil_2YOrD2SrD9uCz18ucdu1BvXBwsLFpfQBm49vXm0nRNEUoLBFsVXhRCWeNC67kPAabWOhEemJgx6WWLtXBWouErhyyWnpvgw3YU8I9LnXSjz8EncXHwh8BSByllUQ2MrTIEyLxIpGdSeFlEJXxhHZB2YKibKMYnhpXvKvIHDKQKgGpEpCqAbILLtdzPmu9jF9HDxPW65FJ6zpfiBagGgtQf1lAF5y2K6WaD3CpUlt4QXiF-fF_POMEbKc-8_UZsVPQiSvoz2I0sjLn2fC-AIBX1pE
  priority: 102
  providerName: Directory of Open Access Journals
Title Medical Knowledge Graph: Data Sources, Construction, Reasoning, and Applications
URI https://www.proquest.com/docview/3202836726
https://doaj.org/article/e36bcad955204f4c80bfa8b5f7076a16
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxEB2VcOml9FMN0MiH3poFr7_W5lIlhYBagRAtEjfLa3u5oARI_r_wON6UqhLXXfsytsfzxjPvAXwVbUe517EKqlaVkFxWzqi6ciogJGppzF3v5xfq7Fr8vJE3JeG2LGWVvU_MjjosPObID1HnW3PVMPX9_qFC1Sh8XS0SGluwnVyw1gPYnp5cXF5tsixMy4bnrkhGsdpWSbHunGFKGnM4PT6fJIzI2IGhuVrhn9spk_j_56PzxTN7C29KxEgm6yV-B6_i_D3s9GoMpBzOD3BZ3lzIrz5NRk6RjfqIHLuVI79zln45JijR2ZPGjslVdMuckR0TNw9k8uw9-yNcz07-_Diril5C5bmWqyrqRgffhi7USqU4lGmHeCjFfMo4E7BF1nuqXROodyZG3_mORcFVZLVDavlPMJgv5vEzEB6EaAz1CbwlCJEwGU_AzehoOt20kYsh1L2drC9k4qhpcWcTqMi2tWhbi7a1xbZD-LaZc7-m0nhx9BTNvxmJNNj5w-Lx1pZTZSNXrXfBSMmo6ITXtO2cbmXX0Ea5Wg1hv188W87m0v7dSbsv_96D1yguvy4M24dBWpv4JYUgq3YEW3p2Oiq7bZSB_BMYKNck
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcoALb0RKAR_gRJZ6_VobCaGUkKakqRC0Um_Ga3u5VEkhkRB_it-Ix7sbQEi99bqvw3h2Zr55fQDPRd1Q7nUsgipVISSXhTOqLJwKCIlqGvPU-_xYTU_FhzN5tgW_-lkYbKvsbWI21GHpMUe-hzzfmquKqbcX3wpkjcLqak-h0arFLP78kSDb6s3hOJ3vC8Ym70_eTYuOVaDwXMt1EXWlg69DE0qlUrTGtEPUkCIjZZwJOEjqPdWuCtQ7E6NvfMOi4Cqy0uEC9vTda3Bd8OTJcTJ9crDJ6TAtK55nMBnF3l4lRTunw5Q0Zm9_PB8lRMrYK0Nzb8Q_vjBTBvznEbKbm9yBW118SkatQt2Frbi4B7d77gfSmYL78LGr8JBZn5QjB7j7-jUZu7Ujn3NNYDUkSAjar6gdkk_RrXL-d0jcIpDRX9XzB3B6JXJ8CNuL5SI-AsKDEJWhPkHFBFgSAuQJJhodTaOrOnIxgLKXk_Xd6nJk0Di3CcJk2VqUrUXZ2k62A3i5eeeiXdxx6dP7KP7Nk7h0O19Yfv9qu3_YRq5q74KRklHRCK9p3Thdy6ailXKlGsBuf3i2swQr-0dvdy6__QxuTE_mR_bo8Hj2GG4irX3bkrYL2-mc4pMU_Kzrp1njCHy5ahX_DfBfEYY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Medical+Knowledge+Graph%3A+Data+Sources%2C+Construction%2C+Reasoning%2C+and+Applications&rft.jtitle=Big+Data+Mining+and+Analytics&rft.au=Wu%2C+Xuehong&rft.au=Duan%2C+Junwen&rft.au=Pan%2C+Yi&rft.au=Li%2C+Min&rft.date=2023-06-01&rft.issn=2096-0654&rft.eissn=2097-406X&rft.volume=6&rft.issue=2&rft.spage=201&rft.epage=217&rft_id=info:doi/10.26599%2FBDMA.2022.9020021&rft.externalDBID=n%2Fa&rft.externalDocID=10_26599_BDMA_2022_9020021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2096-0654&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2096-0654&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2096-0654&client=summon