A review of object detection based on deep learning

With the rapid development of deep learning techniques, deep convolutional neural networks (DCNNs) have become more important for object detection. Compared with traditional handcrafted feature-based methods, the deep learning-based object detection methods can learn both low-level and high-level im...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 79; no. 33-34; pp. 23729 - 23791
Main Authors Xiao, Youzi, Tian, Zhiqiang, Yu, Jiachen, Zhang, Yinshu, Liu, Shuai, Du, Shaoyi, Lan, Xuguang
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the rapid development of deep learning techniques, deep convolutional neural networks (DCNNs) have become more important for object detection. Compared with traditional handcrafted feature-based methods, the deep learning-based object detection methods can learn both low-level and high-level image features. The image features learned through deep learning techniques are more representative than the handcrafted features. Therefore, this review paper focuses on the object detection algorithms based on deep convolutional neural networks, while the traditional object detection algorithms will be simply introduced as well. Through the review and analysis of deep learning-based object detection techniques in recent years, this work includes the following parts: backbone networks, loss functions and training strategies, classical object detection architectures, complex problems, datasets and evaluation metrics, applications and future development directions. We hope this review paper will be helpful for researchers in the field of object detection.
AbstractList With the rapid development of deep learning techniques, deep convolutional neural networks (DCNNs) have become more important for object detection. Compared with traditional handcrafted feature-based methods, the deep learning-based object detection methods can learn both low-level and high-level image features. The image features learned through deep learning techniques are more representative than the handcrafted features. Therefore, this review paper focuses on the object detection algorithms based on deep convolutional neural networks, while the traditional object detection algorithms will be simply introduced as well. Through the review and analysis of deep learning-based object detection techniques in recent years, this work includes the following parts: backbone networks, loss functions and training strategies, classical object detection architectures, complex problems, datasets and evaluation metrics, applications and future development directions. We hope this review paper will be helpful for researchers in the field of object detection.
Author Tian, Zhiqiang
Zhang, Yinshu
Liu, Shuai
Du, Shaoyi
Yu, Jiachen
Lan, Xuguang
Xiao, Youzi
Author_xml – sequence: 1
  givenname: Youzi
  surname: Xiao
  fullname: Xiao, Youzi
  organization: School of Software Engineering, Xi’an Jiaotong University
– sequence: 2
  givenname: Zhiqiang
  orcidid: 0000-0002-3669-3748
  surname: Tian
  fullname: Tian, Zhiqiang
  email: zhiqiangtian@xjtu.edu.cn
  organization: School of Software Engineering, Xi’an Jiaotong University
– sequence: 3
  givenname: Jiachen
  surname: Yu
  fullname: Yu, Jiachen
  organization: School of Software Engineering, Xi’an Jiaotong University
– sequence: 4
  givenname: Yinshu
  surname: Zhang
  fullname: Zhang, Yinshu
  organization: School of Software Engineering, Xi’an Jiaotong University
– sequence: 5
  givenname: Shuai
  surname: Liu
  fullname: Liu, Shuai
  organization: School of Software Engineering, Xi’an Jiaotong University
– sequence: 6
  givenname: Shaoyi
  surname: Du
  fullname: Du, Shaoyi
  organization: Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University
– sequence: 7
  givenname: Xuguang
  surname: Lan
  fullname: Lan, Xuguang
  organization: Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University
BookMark eNp9kEFLAzEQhYNUsK3-AU8LnqOTZDfJHktRKxS86DlkN5OypW5qslX896auIHjo6c3hfTNv3oxM-tAjIdcMbhmAukuMQckpcKCgayWpPCNTVilBleJskmehgaoK2AWZpbQFYLLi5ZSIRRHxo8PPIvgiNFtsh8LhkKULfdHYhK7Ig0PcFzu0se_6zSU593aX8OpX5-T14f5luaLr58en5WJNW6GrgaJqeOOUq4Ti1ttaWu-tlDVTmjNwrmQNx9aXutXgcmYBom1qazWWmFWJObkZ9-5jeD9gGsw2HGKfTxpeiqoWSpY8u_joamNIKaI3-9i92fhlGJhjOWYsx-RyzE85RmZI_4PabrDHn4dou91pVIxoynf6Dca_VCeobweMefI
CitedBy_id crossref_primary_10_3390_rs15174128
crossref_primary_10_3390_electronics12244924
crossref_primary_10_1007_s12040_024_02327_x
crossref_primary_10_3390_agronomy13112667
crossref_primary_10_3390_rs15061684
crossref_primary_10_1109_ACCESS_2024_3448258
crossref_primary_10_3390_fire4040075
crossref_primary_10_1016_j_marpetgeo_2024_106965
crossref_primary_10_1016_j_compag_2024_109135
crossref_primary_10_1109_OJITS_2025_3538037
crossref_primary_10_1109_TIM_2025_3545165
crossref_primary_10_1109_ICJECE_2023_3305323
crossref_primary_10_54097_tbtp6e91
crossref_primary_10_2478_amns_2024_0322
crossref_primary_10_1080_22797254_2023_2174706
crossref_primary_10_1111_coin_12572
crossref_primary_10_3389_fpls_2024_1423338
crossref_primary_10_3390_rs16122225
crossref_primary_10_1109_JSTSP_2024_3438128
crossref_primary_10_1007_s11042_024_18397_4
crossref_primary_10_1142_S0218126623500731
crossref_primary_10_3390_rs14122837
crossref_primary_10_3390_s22176546
crossref_primary_10_5604_01_3001_0054_1660
crossref_primary_10_1109_ACCESS_2022_3180796
crossref_primary_10_2478_amns_2024_1542
crossref_primary_10_1109_JSTARS_2024_3402540
crossref_primary_10_3390_ani14010159
crossref_primary_10_1016_j_sse_2024_108860
crossref_primary_10_1016_j_dsp_2024_104507
crossref_primary_10_1016_j_simpat_2022_102705
crossref_primary_10_1016_j_engfailanal_2022_106653
crossref_primary_10_1049_ipr2_13282
crossref_primary_10_3389_fbioe_2023_1133090
crossref_primary_10_3390_app14145982
crossref_primary_10_3390_drones6110362
crossref_primary_10_3390_agriculture13030713
crossref_primary_10_1016_j_ymssp_2023_110426
crossref_primary_10_1007_s00521_022_06924_z
crossref_primary_10_1016_j_jksuci_2021_08_001
crossref_primary_10_3233_JIFS_221925
crossref_primary_10_1021_acsnano_4c12884
crossref_primary_10_3390_sym15091627
crossref_primary_10_1016_j_neucom_2023_02_006
crossref_primary_10_1007_s40725_023_00184_3
crossref_primary_10_1016_j_cosrev_2024_100690
crossref_primary_10_1007_s00371_024_03325_2
crossref_primary_10_1117_1_JEI_33_4_043044
crossref_primary_10_3390_f14030588
crossref_primary_10_1007_s11042_020_09201_0
crossref_primary_10_1007_s11042_023_17112_z
crossref_primary_10_1016_j_renene_2024_120152
crossref_primary_10_1016_j_neucom_2024_127640
crossref_primary_10_1016_j_rmed_2024_107809
crossref_primary_10_3233_JIFS_232480
crossref_primary_10_3390_app14062232
crossref_primary_10_1016_j_heliyon_2024_e38287
crossref_primary_10_32604_cmc_2024_055049
crossref_primary_10_3390_s25010214
crossref_primary_10_1016_j_jwpe_2024_104876
crossref_primary_10_1007_s41064_023_00232_4
crossref_primary_10_1109_ACCESS_2022_3147495
crossref_primary_10_3390_s23218851
crossref_primary_10_3390_electronics12183760
crossref_primary_10_1109_ACCESS_2025_3533304
crossref_primary_10_3390_drones8070319
crossref_primary_10_1063_5_0225833
crossref_primary_10_3390_s24144550
crossref_primary_10_1016_j_measurement_2023_113467
crossref_primary_10_1016_j_cosrev_2025_100736
crossref_primary_10_3390_s22103703
crossref_primary_10_1016_j_autcon_2021_104088
crossref_primary_10_1007_s12145_023_01158_6
crossref_primary_10_1007_s11042_023_15855_3
crossref_primary_10_1007_s11042_022_13153_y
crossref_primary_10_1016_j_wasman_2024_10_005
crossref_primary_10_1186_s12859_023_05168_5
crossref_primary_10_3390_electronics13224535
crossref_primary_10_7717_peerj_cs_2710
crossref_primary_10_3390_rs14122763
crossref_primary_10_56714_bjrs_50_1_5
crossref_primary_10_3390_rs15082106
crossref_primary_10_1177_00405175231198266
crossref_primary_10_3390_info15120755
crossref_primary_10_1007_s11227_024_06237_z
crossref_primary_10_1021_acs_jpcb_1c02449
crossref_primary_10_1007_s11042_024_19823_3
crossref_primary_10_1007_s00107_024_02086_y
crossref_primary_10_1007_s11042_023_15981_y
crossref_primary_10_3390_app11209622
crossref_primary_10_3390_electronics12204292
crossref_primary_10_17163_ings_n31_2024_04
crossref_primary_10_2478_rgg_2022_0006
crossref_primary_10_1016_j_dsp_2022_103812
crossref_primary_10_1016_j_dibe_2023_100245
crossref_primary_10_1007_s11042_023_15845_5
crossref_primary_10_3389_fpls_2024_1395796
crossref_primary_10_1007_s10462_024_10877_1
crossref_primary_10_1088_1361_6560_ad3c0c
crossref_primary_10_1007_s11042_024_20530_2
crossref_primary_10_1016_j_ssci_2022_105958
crossref_primary_10_3390_s23052569
crossref_primary_10_1117_1_JEI_32_5_053021
crossref_primary_10_1109_ACCESS_2020_3033466
crossref_primary_10_1002_adts_202300971
crossref_primary_10_3390_rs14225657
crossref_primary_10_1016_j_inffus_2024_102385
crossref_primary_10_1109_JSTARS_2023_3241405
crossref_primary_10_1080_15472450_2024_2416164
crossref_primary_10_1007_s40031_024_01152_6
crossref_primary_10_1016_j_compag_2023_108196
crossref_primary_10_1109_ACCESS_2024_3401610
crossref_primary_10_3389_fpls_2023_1237695
crossref_primary_10_1016_j_patrec_2022_12_019
crossref_primary_10_1007_s00521_024_10300_4
crossref_primary_10_3390_fire5050172
crossref_primary_10_1007_s44196_023_00264_z
crossref_primary_10_1088_1755_1315_815_1_012010
crossref_primary_10_4081_jae_2024_1641
crossref_primary_10_1007_s40747_024_01726_3
crossref_primary_10_3390_ai6030052
crossref_primary_10_1016_j_measurement_2023_113930
crossref_primary_10_1007_s42235_024_00605_4
crossref_primary_10_32604_cmc_2024_048312
crossref_primary_10_3390_computation11030052
crossref_primary_10_1109_ACCESS_2025_3544515
crossref_primary_10_1007_s11042_023_16107_0
crossref_primary_10_1109_ACCESS_2024_3495523
crossref_primary_10_3389_fpls_2022_1079148
crossref_primary_10_1007_s12596_023_01496_0
crossref_primary_10_1109_ACCESS_2024_3506853
crossref_primary_10_1038_s41598_023_35518_5
crossref_primary_10_3390_en15165966
crossref_primary_10_1109_ACCESS_2021_3051253
crossref_primary_10_1016_j_compag_2023_107875
crossref_primary_10_3390_app132011464
crossref_primary_10_3390_s25051410
crossref_primary_10_1186_s40537_021_00444_8
crossref_primary_10_3390_jmse10030310
crossref_primary_10_1109_TIM_2024_3385824
crossref_primary_10_54525_tbbmd_1184322
crossref_primary_10_1016_j_compag_2025_110132
crossref_primary_10_1007_s41981_024_00323_2
crossref_primary_10_1007_s11042_022_14202_2
crossref_primary_10_56294_dm2024_364
crossref_primary_10_1515_nanoph_2024_0423
crossref_primary_10_1109_ACCESS_2023_3323214
crossref_primary_10_3390_app12157825
crossref_primary_10_3390_electronics13153058
crossref_primary_10_1016_j_neucom_2025_129584
crossref_primary_10_1016_j_procs_2023_10_532
crossref_primary_10_48175_IJARSCT_22295
crossref_primary_10_3390_biomimetics7010031
crossref_primary_10_1088_2632_2153_abea6a
crossref_primary_10_1016_j_compag_2022_107335
crossref_primary_10_1016_j_engappai_2023_106622
crossref_primary_10_1007_s00170_023_11398_x
crossref_primary_10_1007_s11042_024_19180_1
crossref_primary_10_3390_agriculture14020290
crossref_primary_10_1186_s13007_023_01020_2
crossref_primary_10_3390_app13148161
crossref_primary_10_1007_s10499_024_01713_y
crossref_primary_10_1109_ACCESS_2023_3262668
crossref_primary_10_3390_photonics8090400
crossref_primary_10_12677_mos_2024_133214
crossref_primary_10_1145_3596909
crossref_primary_10_1007_s11042_021_11886_w
crossref_primary_10_1155_2022_7234888
crossref_primary_10_17714_gumusfenbil_1012519
crossref_primary_10_3390_s24186016
crossref_primary_10_1002_aisy_202300314
crossref_primary_10_1007_s11042_022_12567_y
crossref_primary_10_1016_j_neucom_2024_128575
crossref_primary_10_1016_j_fishres_2024_106983
crossref_primary_10_1016_j_compag_2023_107744
crossref_primary_10_1016_j_iswa_2025_200499
crossref_primary_10_3390_electronics12244996
crossref_primary_10_1007_s11042_022_12447_5
crossref_primary_10_1109_MAES_2024_3467028
crossref_primary_10_1080_10106049_2023_2280549
crossref_primary_10_1038_s41598_024_74875_7
crossref_primary_10_1177_20552076221109502
crossref_primary_10_1063_5_0210851
crossref_primary_10_1016_j_procir_2022_02_001
crossref_primary_10_1016_j_engappai_2023_107024
crossref_primary_10_1109_TGRS_2025_3532830
crossref_primary_10_1155_2021_9033021
crossref_primary_10_3390_app12168068
crossref_primary_10_1016_j_autcon_2025_105970
crossref_primary_10_1016_j_compag_2022_107423
crossref_primary_10_3390_rs13214370
crossref_primary_10_1007_s44196_023_00381_9
crossref_primary_10_1109_TITS_2024_3459799
crossref_primary_10_3390_agriculture12010073
crossref_primary_10_1039_D1NR01109J
crossref_primary_10_3390_app13063761
crossref_primary_10_1007_s11227_022_04415_5
crossref_primary_10_3390_agriculture15050483
crossref_primary_10_1016_j_cosrev_2023_100612
crossref_primary_10_1111_exsy_70006
crossref_primary_10_3390_fire6120446
crossref_primary_10_1186_s44147_024_00411_z
crossref_primary_10_1007_s11042_023_15753_8
crossref_primary_10_1007_s11042_024_19782_9
crossref_primary_10_1016_j_ecoinf_2021_101485
crossref_primary_10_1016_j_aquaculture_2024_741252
crossref_primary_10_1515_jisys_2023_0208
crossref_primary_10_2478_geosc_2022_0009
crossref_primary_10_3390_electronics13112080
crossref_primary_10_1061_JPCFEV_CFENG_4275
crossref_primary_10_3389_frai_2022_923932
crossref_primary_10_61187_ita_v1i2_36
crossref_primary_10_1109_ACCESS_2024_3443296
crossref_primary_10_7717_peerj_cs_1331
crossref_primary_10_1088_1742_6596_2976_1_012009
crossref_primary_10_3390_electronics10161932
crossref_primary_10_3390_su162310502
crossref_primary_10_1016_j_compag_2022_107522
crossref_primary_10_1080_21642583_2025_2467083
crossref_primary_10_1088_1361_6501_aca497
crossref_primary_10_1155_2022_1019564
crossref_primary_10_1016_j_dibe_2024_100376
crossref_primary_10_3390_app14093946
crossref_primary_10_2174_0118722121294044240422063140
crossref_primary_10_1016_j_culher_2021_10_004
crossref_primary_10_3390_s24092923
crossref_primary_10_1088_1742_6596_2618_1_012012
crossref_primary_10_1109_TGRS_2022_3229041
crossref_primary_10_2139_ssrn_4158164
crossref_primary_10_1007_s11042_023_15584_7
crossref_primary_10_1109_ACCESS_2023_3302512
crossref_primary_10_1007_s00521_022_07412_0
crossref_primary_10_1016_j_nhres_2024_07_001
crossref_primary_10_1007_s11042_023_14859_3
crossref_primary_10_3390_axioms12020160
Cites_doi 10.1038/nature14539
10.1109/CVPR.2018.00062
10.1109/ICASSP.2013.6638947
10.1109/CVPR.2017.324
10.1109/34.730558
10.1109/ICCV.2017.440
10.1109/CVPR.2017.474
10.1109/ICCV.2009.5459207
10.21437/Interspeech.2013-552
10.1109/TMM.2016.2642789
10.1109/CVPR.2019.00094
10.1007/978-3-319-10593-2_33
10.1007/978-3-319-10602-1_47
10.1109/BTAS.2017.8272675
10.1109/ICME.2008.4607625
10.1109/CVPR.2016.521
10.1109/CVPR.2018.00745
10.1016/j.media.2017.07.005
10.1145/3065386
10.1023/B:VISI.0000029664.99615.94
10.1109/ICRA.2011.5980382
10.1007/978-3-030-01267-0_28
10.1109/TPAMI.2012.28
10.1109/ICCV.2009.5459257
10.1109/ICCV.2017.593
10.1109/ICCV.2015.221
10.1109/ICCV.2017.212
10.1109/CVPR.2015.7298965
10.1109/CVPR.2016.95
10.1109/CVPR.2016.451
10.1109/CVPR.2014.223
10.1109/TETC.2016.2593643
10.3354/cr030079
10.1109/ICCV.2019.00970
10.1007/978-3-319-10602-1_26
10.1109/CVPR.2018.00377
10.5194/gmd-7-1247-2014
10.1109/TMM.2007.893351
10.1109/ICCV.2015.296
10.1109/CVPR.2017.643
10.21629/JSEE.2018.05.07
10.1109/CVPR.2015.7298731
10.1007/978-3-030-01264-9_9
10.1109/ICME.2019.00009
10.1007/978-3-319-10590-1_53
10.1109/CVPR.2010.5539957
10.1109/CVPR.2018.00442
10.1109/ICCV.2019.00667
10.1109/CVPR.2018.00724
10.1109/TPAMI.2016.2601099
10.1007/978-3-030-20887-5_34
10.1109/ICCV.2009.5459183
10.1007/s10479-005-5724-z
10.1007/978-3-319-46493-0_32
10.1007/978-3-319-16811-1_34
10.1109/CVPR.2019.00293
10.1016/j.cirp.2016.04.072
10.1117/12.2304811
10.1109/LSP.2016.2603342
10.1109/CVPR.2017.441
10.1007/978-3-030-01264-9_8
10.1007/978-3-642-15555-0_42
10.1109/CVPR.2017.351
10.1162/neco.1997.9.8.1735
10.1007/978-3-319-10602-1_48
10.5244/C.30.15
10.1109/CVPR.2016.343
10.1109/TGRS.2017.2778300
10.1093/ijl/3.4.235
10.1109/CVPR.2017.557
10.1109/CVPR.2019.00720
10.1109/CVPR.2018.00647
10.1109/ICCV.2007.4408986
10.1038/323533a0
10.1109/CVPR.2006.119
10.1109/CVPR.2017.690
10.1109/CVPR.2017.65
10.1109/ICCV.2019.00972
10.1109/CVPR.2014.49
10.1109/TPAMI.2009.167
10.1109/CVPR.2018.00474
10.1007/s11263-009-0275-4
10.1109/ICCV.2017.368
10.1109/IROS.2012.6385773
10.1007/978-3-319-46478-7_22
10.1109/CVPR.2016.350
10.1609/aaai.v33i01.33018094
10.1007/978-3-030-01252-6_24
10.1109/CVPR.2016.98
10.1007/978-3-319-49409-8_69
10.1007/978-3-319-15554-8_73
10.1109/CVPR.2018.00753
10.1007/978-3-319-47157-0_20
10.1109/CVPR.2016.314
10.1109/CVPR.2017.75
10.1007/978-3-319-10584-0_23
10.1109/CVPR.2019.00091
10.1109/CVPR.2018.00914
10.1007/978-0-387-84858-7_14
10.1109/CVPR.2017.639
10.1109/CVPR.2018.00907
10.1109/CVPR.2018.00633
10.3390/app8050813
10.1109/5.726791
10.5244/C.28.82
10.1007/978-3-030-01219-9_39
10.1016/j.cviu.2005.09.012
10.1007/978-3-030-01258-8_15
10.1007/978-3-319-23528-8_9
10.1007/978-3-319-46493-0_22
10.1007/978-3-319-48881-3_56
10.1109/CVPR.2015.7299170
10.1109/ICIP.2002.1038171
10.1016/j.patcog.2016.04.002
10.1145/2847263.2847265
10.1109/CVPR.2015.7298938
10.1609/aaai.v31i1.11231
10.1109/TPAMI.2013.50
10.1007/s11263-014-0733-5
10.1109/ICCV.2019.00615
10.1109/CVPRW.2009.5206532
10.1109/ICMEW.2015.7169816
10.1007/s11263-013-0620-5
10.1109/ICPR.2006.479
10.1109/CVPR.2018.00811
10.1109/CVPR.2016.618
10.1109/CVPR.2019.00958
10.1109/ICCV.2015.312
10.1109/CVPRW.2018.00215
10.1109/TPAMI.2016.2578328
10.1109/ICCV.2019.00502
10.1109/CVPR.2014.222
10.1109/TPAMI.2017.2738644
10.1109/CVPR.2015.7298958
10.1109/CVPR.2015.7298854
10.1109/ICCV.2017.52
10.1007/978-3-319-46726-9_31
10.1109/TPAMI.2017.2723009
10.1007/978-3-319-46448-0_2
10.1109/CVPR.2016.89
10.1109/CVPR.2009.5206848
10.1109/ICCV.2017.322
10.1109/ICCV.2019.00671
10.1109/CVPR.2013.417
10.1109/IVS.2016.7535375
10.1109/CVPR.2017.106
10.1109/CVPR.2008.4587597
10.1109/TPAMI.2011.155
10.1109/ICCV.2015.285
10.1109/TPAMI.2010.70
10.1109/CVPR.2017.195
10.1109/ICCV.2011.6126474
10.1109/CVPR.2017.691
10.1109/CVPR.2016.91
10.1007/978-3-030-01264-9_45
10.1109/FG.2017.82
10.1023/A:1007379606734
10.1109/IVS.2018.8500504
10.1109/TPAMI.2011.231
10.1109/TPAMI.2006.79
10.1109/CVPR.2018.00609
10.1109/CVPR.2001.990517
10.1109/ICCV.2015.169
10.1109/CVPR.2016.90
10.1007/978-3-030-01240-3_21
10.1109/ICCV.2017.522
10.1109/ICCV.2003.1238663
10.1109/CVPR.2018.00941
10.1109/ICCV.2011.6126456
10.1109/CVPR.2014.81
10.1109/CVPR.2014.220
10.1109/TPAMI.2008.128
10.1109/ICCV.2017.54
10.1109/TCSVT.2017.2736553
10.1109/CVPR.2018.00644
10.1007/978-3-319-10578-9_23
10.1109/CVPR.2018.00730
10.1609/aaai.v33i01.33019259
10.1109/CVPR.2019.01082
10.1007/978-3-319-46493-0_50
10.1109/CVPR.2017.207
10.1109/TPAMI.2014.2343217
10.1109/ICCV.2017.30
10.1109/CVPR.2017.211
10.1142/9789812797926_0003
10.1109/ICCV.2013.257
10.1007/s11263-015-0816-y
10.1109/LGRS.2018.2872355
10.1109/ICCV.2017.444
10.1109/CVPR.2006.68
10.1109/CVPR.2014.276
10.1109/CVPR.2015.7298594
10.1109/TGRS.2016.2601622
10.1109/CVPR.2017.553
10.4467/20838476SI.16.004.6185
10.1109/ICCV.2019.00975
10.1007/978-3-030-01264-9_48
10.1007/s11263-014-0748-y
10.1109/ICCV.2017.324
10.1007/978-3-319-46475-6_28
10.1007/978-3-319-46723-8_28
10.1109/TGRS.2016.2645610
10.1609/aaai.v32i1.11716
10.1109/CVPR.2016.308
10.1109/CVPR.2017.243
10.1007/978-3-030-11009-3_11
10.1109/CVPR.2019.00300
10.1109/CVPR.2005.177
10.1109/CVPR.2017.634
10.1109/ACPR.2013.33
10.1109/TGRS.2019.2899955
10.1109/CVPR.2017.166
10.1109/CVPR.2015.7299188
10.1007/s11263-019-01247-4
10.1007/978-3-030-01261-8_33
10.1109/CVPRW.2009.5206631
10.1007/s11263-015-0822-0
10.1007/978-3-030-01246-5_2
10.1109/CVPR.2019.00237
10.3390/rs11060620
10.1007/978-3-030-01228-1_15
10.1023/B:VISI.0000013087.49260.fb
10.1109/CVPR.2018.00136
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-020-08976-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 23791
ExternalDocumentID 10_1007_s11042_020_08976_6
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c385t-e7b2bd7d5372afa96affa669178210dd41b2ecf48c80d976303cb9aa8e4eb9a73
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Sat Jul 26 00:03:28 EDT 2025
Tue Jul 01 04:13:04 EDT 2025
Thu Apr 24 22:59:38 EDT 2025
Fri Feb 21 02:37:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 33-34
Keywords Deep learning
Deep convolutional neural networks
Computer vision
Object detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-e7b2bd7d5372afa96affa669178210dd41b2ecf48c80d976303cb9aa8e4eb9a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3669-3748
PQID 2435937642
PQPubID 54626
PageCount 63
ParticipantIDs proquest_journals_2435937642
crossref_primary_10_1007_s11042_020_08976_6
crossref_citationtrail_10_1007_s11042_020_08976_6
springer_journals_10_1007_s11042_020_08976_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CR162
CR283
CR163
CR284
CR160
CR281
CR282
CR280
Kang, Li, Yan, Zeng, Yang, Xiao, Zhang, Wang, Wang, Wang (CR102) 2018; 28
CR159
CR157
CR278
CR279
CR276
CR156
CR277
CR274
CR154
CR275
Bengio, Courville, Vincent (CR8) 2013; 35
Fei-Fei, Fergus, Perona (CR56) 2007; 106
CR173
CR294
CR174
CR295
CR171
CR292
CR172
CR293
CR290
CR170
CR291
CR168
CR289
CR169
Yang, Luo, Loy, Tang (CR257) 2017; 40
CR166
CR287
CR167
CR288
CR164
CR285
CR165
Li, Wei, Liang, Dong, Xu, Feng, Yan (CR129) 2017; 19
CR140
CR261
CR141
CR262
CR260
CR137
CR258
CR138
CR259
CR135
CR256
CR136
CR133
CR254
CR134
CR255
CR131
CR252
CR132
CR253
CR151
CR272
CR152
CR270
CR150
CR271
Zhang, Zhang, Li, Qiao (CR273) 2016; 23
CR148
CR269
CR146
CR267
CR147
CR268
CR144
CR265
CR266
CR142
CR263
CR143
Mao, Yao, Tang, Li, Yao, Wang (CR158) 2018; 6
Xiao, Ehinger, Hays, Torralba, Oliva (CR251) 2016; 119
Hochreiter, Schmidhuber (CR86) 1997; 9
CR240
CR115
CR236
CR237
CR113
CR114
CR235
CR111
Hoi, Wu, Liu, Wu, Wang, Xue, Wu (CR87) 2015; 46
CR112
CR233
CR110
CR231
CR119
Miller, Beckwith, Fellbaum, Gross, Miller (CR161) 1990; 3
CR117
CR238
CR118
CR239
CR250
Rumelhart, Hinton, Williams (CR194) 1986; 323
Li, Cheng, Bu, You (CR130) 2017; 56
CR126
CR248
CR124
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (CR195) 2015; 115
CR125
CR246
CR243
CR123
CR120
CR241
CR121
CR242
CR128
CR249
Bartlett, Wegkamp (CR6) 2008; 9
Ren, He, Girshick, Zhang, Sun (CR190) 2016; 39
Fei-Fei, Fergus, Perona (CR55) 2006; 28
CR19
CR18
CR17
CR16
CR15
CR14
CR13
CR12
CR11
CR214
CR10
CR215
CR212
CR213
CR210
CR211
Caruana (CR20) 1997; 28
CR218
Liangkui, Shaoyou, Zhongxing (CR139) 2018; 29
CR219
CR216
CR217
CR29
CR27
CR26
CR25
CR24
CR23
CR104
CR225
CR21
CR105
CR226
CR223
CR103
CR100
CR221
CR101
Yu, Wong (CR264) 2007; 9
CR220
Felzenszwalb, Girshick, McAllester, Ramanan (CR58) 2010; 32
CR108
CR229
CR109
CR106
CR227
CR107
CR228
Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, Van Der Laak, Van Ginneken, Sanchez (CR145) 2017; 42
CR39
CR38
CR37
CR35
He, Lau, Liu, Huang, Yang (CR83) 2015; 115
CR34
CR32
Everingham, Van Gool, Williams, Winn, Zisserman (CR52) 2010; 88
CR31
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR209) 2014; 15
CR30
De Boer, Kroese, Mannor, Rubinstein (CR41) 2005; 134
Torralba, Fergus, Freeman (CR222) 2008; 30
Lowe (CR155) 2004; 60
Willmott, Matsuura (CR247) 2005; 30
CR49
CR48
CR47
CR45
CR44
CR203
CR43
CR204
CR42
CR201
CR202
CR40
CR200
Wei, You, Li (CR244) 2016; 58
CR207
CR208
CR205
CR206
Wang, Zheng, Lei, Bai (CR234) 2019; 11
Viola, Jones (CR230) 2004; 57
Weimer, Scholz-Reiter, Shpitalni (CR245) 2016; 65
CR59
CR57
CR54
CR53
CR50
Uijlings, van de Sande, Gevers, Smeulders (CR224) 2013; 104
CR69
CR68
CR67
CR66
CR65
CR64
CR63
CR62
CR61
CR60
Chai, Draxler (CR22) 2014; 7
CR79
CR78
CR77
Alexe, Deselaers, Ferrari (CR1) 2012; 34
CR76
CR75
CR74
CR73
CR199
CR72
CR71
CR197
CR70
CR198
Zhou, Lapedriza, Khosla, Oliva, Torralba (CR286) 2018; 40
Cheng, Zhou, Han (CR33) 2016; 54
Li, Liang, Shen, Xu, Feng, Yan (CR127) 2017; 20
CR2
CR4
CR3
CR5
CR7
CR9
CR89
CR88
CR85
CR84
CR82
CR81
CR80
Everingham, Eslami, Van Gool, Williams, Winn, Zisserman (CR51) 2015; 111
CR184
CR185
CR182
CR183
CR180
CR181
CR99
CR98
CR97
CR179
CR96
CR95
CR177
CR94
CR178
CR93
CR175
CR296
CR92
CR176
CR297
CR91
CR90
Krizhevsky, Sutskever, Hinton (CR116) 2017; 60
Ren, Zhu, Xiao (CR193) 2018; 8
Long, Gong, Xiao, Liu (CR153) 2017; 55
Dollar, Wojek, Schiele, Perona (CR46) 2012; 34
CR196
Chen, Song, Dong, Huang, Hua, Yan (CR28) 2015; 37
LeCun, Bengio, Hinton (CR122) 2015; 521
CR191
CR192
Liu, Yuan, Sun, Wang, Zheng, Tang, Shum (CR149) 2010; 33
CR188
CR189
Wang, Bai, Wang, Zhou, Ren (CR232) 2018; 16
CR186
CR187
Cortes, Vapnik (CR36) 1995; 20
8976_CR91
8976_CR92
8976_CR90
8976_CR95
8976_CR96
8976_CR93
8976_CR94
8976_CR99
8976_CR97
8976_CR98
T Chai (8976_CR22) 2014; 7
Y LeCun (8976_CR122) 2015; 521
P Dollar (8976_CR46) 2012; 34
GA Miller (8976_CR161) 1990; 3
P-T De Boer (8976_CR41) 2005; 134
G Cheng (8976_CR33) 2016; 54
8976_CR210
8976_CR212
8976_CR211
8976_CR214
8976_CR213
8976_CR216
8976_CR215
8976_CR218
J Wang (8976_CR234) 2019; 11
8976_CR217
8976_CR219
Y Long (8976_CR153) 2017; 55
8976_CR201
8976_CR200
8976_CR203
8976_CR202
8976_CR205
8976_CR204
8976_CR207
8976_CR206
K Kang (8976_CR102) 2018; 28
8976_CR208
O Russakovsky (8976_CR195) 2015; 115
D Weimer (8976_CR245) 2016; 65
Y Ren (8976_CR193) 2018; 8
8976_CR111
8976_CR110
8976_CR231
8976_CR113
8976_CR112
8976_CR233
8976_CR115
8976_CR236
8976_CR114
8976_CR235
8976_CR117
8976_CR238
T Liu (8976_CR149) 2010; 33
8976_CR237
8976_CR119
8976_CR118
8976_CR239
PL Bartlett (8976_CR6) 2008; 9
J Li (8976_CR129) 2017; 19
S Yang (8976_CR257) 2017; 40
8976_CR100
8976_CR221
C Wang (8976_CR232) 2018; 16
8976_CR220
8976_CR223
8976_CR101
8976_CR104
8976_CR225
8976_CR103
8976_CR106
8976_CR227
8976_CR105
8976_CR226
8976_CR108
8976_CR229
8976_CR107
8976_CR228
8976_CR109
8976_CR2
8976_CR15
C Cortes (8976_CR36) 1995; 20
8976_CR3
8976_CR16
8976_CR4
8976_CR13
L Liangkui (8976_CR139) 2018; 29
8976_CR5
8976_CR14
8976_CR19
8976_CR17
8976_CR18
8976_CR7
8976_CR140
8976_CR261
8976_CR9
8976_CR260
8976_CR131
8976_CR252
8976_CR133
8976_CR254
8976_CR132
H Mao (8976_CR158) 2018; 6
8976_CR253
8976_CR135
8976_CR256
L Fei-Fei (8976_CR55) 2006; 28
8976_CR134
8976_CR255
K Li (8976_CR130) 2017; 56
8976_CR137
8976_CR258
8976_CR136
8976_CR138
8976_CR259
8976_CR11
8976_CR12
8976_CR10
8976_CR26
8976_CR27
8976_CR24
8976_CR25
PF Felzenszwalb (8976_CR58) 2010; 32
8976_CR29
8976_CR250
8976_CR120
8976_CR241
8976_CR240
8976_CR243
8976_CR121
8976_CR242
8976_CR124
8976_CR123
8976_CR126
8976_CR125
8976_CR246
8976_CR128
8976_CR249
8976_CR248
8976_CR23
8976_CR21
8976_CR37
8976_CR38
8976_CR35
8976_CR39
B Zhou (8976_CR286) 2018; 40
8976_CR160
8976_CR281
8976_CR280
8976_CR162
8976_CR283
8976_CR282
8976_CR274
8976_CR152
8976_CR276
8976_CR154
8976_CR275
8976_CR157
8976_CR278
M Everingham (8976_CR52) 2010; 88
8976_CR156
8976_CR277
8976_CR159
8976_CR279
8976_CR30
M Everingham (8976_CR51) 2015; 111
8976_CR34
8976_CR31
8976_CR32
8976_CR48
A Torralba (8976_CR222) 2008; 30
8976_CR49
8976_CR47
8976_CR270
G Litjens (8976_CR145) 2017; 42
R Caruana (8976_CR20) 1997; 28
8976_CR151
8976_CR272
8976_CR150
8976_CR271
Y Bengio (8976_CR8) 2013; 35
8976_CR142
8976_CR263
8976_CR141
8976_CR262
8976_CR144
8976_CR265
8976_CR143
8976_CR146
8976_CR267
JRR Uijlings (8976_CR224) 2013; 104
8976_CR266
8976_CR148
8976_CR269
8976_CR147
8976_CR268
8976_CR40
8976_CR44
8976_CR45
8976_CR42
8976_CR43
8976_CR59
8976_CR57
8976_CR180
8976_CR182
8976_CR181
8976_CR184
DE Rumelhart (8976_CR194) 1986; 323
8976_CR183
8976_CR175
8976_CR296
8976_CR174
8976_CR295
8976_CR177
8976_CR176
8976_CR297
8976_CR179
8976_CR178
CJ Willmott (8976_CR247) 2005; 30
Y Wei (8976_CR244) 2016; 58
8976_CR50
J Xiao (8976_CR251) 2016; 119
S He (8976_CR83) 2015; 115
Q Chen (8976_CR28) 2015; 37
8976_CR53
8976_CR54
8976_CR68
8976_CR69
8976_CR290
DG Lowe (8976_CR155) 2004; 60
8976_CR171
8976_CR292
8976_CR170
8976_CR291
8976_CR173
8976_CR294
8976_CR172
8976_CR293
8976_CR164
8976_CR285
B Alexe (8976_CR1) 2012; 34
8976_CR163
8976_CR284
8976_CR166
8976_CR287
8976_CR165
8976_CR168
8976_CR289
8976_CR167
8976_CR288
8976_CR169
8976_CR62
8976_CR63
8976_CR60
8976_CR61
8976_CR66
8976_CR67
8976_CR64
8976_CR65
8976_CR79
J Li (8976_CR127) 2017; 20
P Viola (8976_CR230) 2004; 57
S Hochreiter (8976_CR86) 1997; 9
S Ren (8976_CR190) 2016; 39
A Krizhevsky (8976_CR116) 2017; 60
8976_CR197
8976_CR196
8976_CR199
8976_CR198
8976_CR70
Z Yu (8976_CR264) 2007; 9
8976_CR73
8976_CR74
8976_CR71
8976_CR72
8976_CR77
8976_CR78
8976_CR75
8976_CR76
SC Hoi (8976_CR87) 2015; 46
N Srivastava (8976_CR209) 2014; 15
L Fei-Fei (8976_CR56) 2007; 106
8976_CR191
K Zhang (8976_CR273) 2016; 23
8976_CR192
8976_CR186
8976_CR185
8976_CR188
8976_CR187
8976_CR80
8976_CR81
8976_CR189
8976_CR84
8976_CR85
8976_CR82
8976_CR88
8976_CR89
References_xml – ident: CR45
– ident: CR150
– ident: CR282
– ident: CR173
– ident: CR97
– ident: CR196
– ident: CR68
– ident: CR74
– ident: CR39
– ident: CR16
– ident: CR115
– ident: CR138
– ident: CR80
– ident: CR201
– ident: CR121
– ident: CR253
– ident: CR167
– ident: CR144
– ident: CR276
– ident: CR235
– ident: CR92
– ident: CR132
– ident: CR287
– ident: CR178
– ident: CR191
– ident: CR241
– ident: CR229
– ident: CR11
– ident: CR57
– ident: CR294
– ident: CR185
– ident: CR218
– ident: CR85
– ident: CR242
– ident: CR5
– ident: CR109
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  end-page: 536
  ident: CR194
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– ident: CR126
– volume: 16
  start-page: 310
  issue: 2
  year: 2018
  end-page: 314
  ident: CR232
  article-title: Multiscale visual attention networks for object detection in VHR remote sensing images
  publication-title: IEEE Geosci Remote Sens Lett
– volume: 9
  start-page: 1823
  issue: 8
  year: 2008
  end-page: 1840
  ident: CR6
  article-title: Classification with a reject option using a hinge loss
  publication-title: J Mach Learn Res
– volume: 8
  start-page: 813
  issue: 5
  year: 2018
  ident: CR193
  article-title: Small object detection in optical remote sensing images via modified faster R-CNN
  publication-title: Appl Sci
– ident: CR207
– ident: CR91
– ident: CR213
– ident: CR156
– ident: CR179
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  end-page: 110
  ident: CR155
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int J Comput Vis
– ident: CR10
– ident: CR137
– ident: CR269
– ident: CR270
– ident: CR184
– volume: 55
  start-page: 2486
  issue: 5
  year: 2017
  end-page: 2498
  ident: CR153
  article-title: Accurate object localization in remote sensing images based on convolutional neural networks
  publication-title: IEEE Trans Geosci Remote Sens
– ident: CR63
– volume: 65
  start-page: 417
  issue: 1
  year: 2016
  end-page: 420
  ident: CR245
  article-title: Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection
  publication-title: CIRP Annals-Manufacturing Technology
– ident: CR27
– ident: CR236
– ident: CR108
– ident: CR69
– ident: CR281
– ident: CR44
– volume: 106
  start-page: 59
  issue: 1
  year: 2007
  end-page: 70
  ident: CR56
  article-title: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories
  publication-title: Computer Vision Image Understanding
– ident: CR103
– volume: 30
  start-page: 79
  issue: 1
  year: 2005
  end-page: 82
  ident: CR247
  article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
  publication-title: Climate Research
– ident: CR38
– ident: CR151
– ident: CR162
– ident: CR114
– ident: CR202
– volume: 20
  start-page: 985
  issue: 4
  year: 2017
  end-page: 996
  ident: CR127
  article-title: Scale-aware fast R-CNN for pedestrian detection
  publication-title: IEEE Transactions on Multimedia
– ident: CR120
– ident: CR258
– ident: CR275
– ident: CR70
– ident: CR148
– ident: CR177
– volume: 54
  start-page: 7405
  issue: 12
  year: 2016
  end-page: 7415
  ident: CR33
  article-title: Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images
  publication-title: IEEE Trans Geosci Remote Sens
– ident: CR49
– ident: CR93
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  end-page: 252
  ident: CR195
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int J Comput Vis
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  ident: CR36
  article-title: Support vector machine
  publication-title: Mach Learn
– ident: CR154
– ident: CR111
– ident: CR219
– ident: CR243
– volume: 3
  start-page: 235
  issue: 4
  year: 1990
  end-page: 244
  ident: CR161
  article-title: Introduction to WordNet: an on-line lexical database
  publication-title: Int J Lexicogr
– ident: CR220
– ident: CR272
– ident: CR21
– ident: CR208
– volume: 6
  start-page: 417
  issue: 3
  year: 2018
  end-page: 431
  ident: CR158
  article-title: Towards real-time object detection on embedded systems
  publication-title: IEEE Transactions on Emerging Topics in Computing
– volume: 37
  start-page: 13
  issue: 1
  year: 2015
  end-page: 27
  ident: CR28
  article-title: Contextualizing object detection and classification
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– ident: CR231
– ident: CR75
– ident: CR15
– ident: CR225
– ident: CR266
– ident: CR283
– ident: CR32
– ident: CR189
– ident: CR81
– volume: 28
  start-page: 41
  issue: 1
  year: 1997
  end-page: 75
  ident: CR20
  article-title: Multitask learning
  publication-title: Mach Learn
– ident: CR64
– ident: CR214
– ident: CR105
– ident: CR26
– ident: CR99
– ident: CR277
– ident: CR143
– ident: CR160
– ident: CR43
– ident: CR203
– ident: CR14
– ident: CR288
– ident: CR2
– ident: CR37
– ident: CR53
– volume: 32
  start-page: 1627
  issue: 9
  year: 2010
  end-page: 1645
  ident: CR58
  article-title: Object detection with discriminatively trained part-based models
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– ident: CR226
– volume: 58
  start-page: 216
  year: 2016
  end-page: 226
  ident: CR244
  article-title: Multiscale patch-based contrast measure for small infrared target detection
  publication-title: Pattern Recogn
– volume: 111
  start-page: 98
  issue: 1
  year: 2015
  end-page: 136
  ident: CR51
  article-title: The pascal visual object classes challenge: a retrospective
  publication-title: Int J Comput Vis
– ident: CR133
– ident: CR265
– ident: CR82
– volume: 23
  start-page: 1499
  issue: 10
  year: 2016
  end-page: 1503
  ident: CR273
  article-title: Joint face detection and alignment using multitask cascaded convolutional networks
  publication-title: IEEE Signal Processing Letters
– ident: CR188
– volume: 40
  start-page: 1845
  issue: 8
  year: 2017
  end-page: 1859
  ident: CR257
  article-title: Faceness-net: face detection through deep facial part responses
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– ident: CR98
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: CR145
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med Image Anal
– ident: CR104
– volume: 9
  start-page: 766
  issue: 4
  year: 2007
  end-page: 784
  ident: CR264
  article-title: A rule based technique for extraction of visual attention regions based on real-time clustering
  publication-title: IEEE Transactions on Multimedia
– ident: CR259
– ident: CR293
– volume: 28
  start-page: 2896
  issue: 10
  year: 2018
  end-page: 2907
  ident: CR102
  article-title: T-cnn: tubelets with convolutional neural networks for object detection from videos
  publication-title: IEEE Transactions on Circuits Systems for Video Technology
– ident: CR260
– ident: CR48
– ident: CR65
– ident: CR248
– ident: CR31
– ident: CR172
– volume: 28
  start-page: 594
  issue: 4
  year: 2006
  end-page: 611
  ident: CR55
  article-title: One-shot learning of object categories
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– ident: CR271
– ident: CR110
– ident: CR7
– ident: CR59
– ident: CR76
– ident: CR166
– ident: CR237
– ident: CR183
– ident: CR254
– volume: 46
  start-page: 2403
  issue: 5
  year: 2015
  end-page: 2412
  ident: CR87
  article-title: Logo-net: large-scale deep logo detection and brand recognition with deep region-based convolutional networks
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  ident: CR122
  article-title: Deep learning
  publication-title: Nature
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  end-page: 1958
  ident: CR209
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: The Journal of Machine Learning Research
– volume: 104
  start-page: 154
  issue: 2
  year: 2013
  end-page: 171
  ident: CR224
  article-title: Selective search for object recognition
  publication-title: International Journal of Computer Vision (IJCV)
– ident: CR135
– ident: CR267
– volume: 29
  start-page: 947
  issue: 5
  year: 2018
  end-page: 952
  ident: CR139
  article-title: Using deep learning to detect small targets in infrared oversampling images
  publication-title: J Syst Eng Electron
– ident: CR54
– volume: 57
  start-page: 137
  issue: 2
  year: 2004
  end-page: 154
  ident: CR230
  article-title: Robust real-time face detection
  publication-title: International journal of computer vision
– ident: CR77
– ident: CR106
– ident: CR215
– ident: CR238
– ident: CR25
– ident: CR182
– ident: CR42
– ident: CR291
– volume: 33
  start-page: 353
  issue: 2
  year: 2010
  end-page: 367
  ident: CR149
  article-title: Learning to detect a salient object
  publication-title: IEEE Transactions on Pattern analysis and Machine Intelligence
– ident: CR101
– ident: CR71
– ident: CR256
– ident: CR19
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  ident: CR86
  article-title: Long short-term memory
  publication-title: Neural Comput
– ident: CR199
– ident: CR204
– ident: CR210
– ident: CR88
– ident: CR262
– ident: CR170
– ident: CR221
– ident: CR60
– ident: CR112
– ident: CR147
– ident: CR164
– volume: 11
  start-page: 620
  issue: 6
  year: 2019
  ident: CR234
  article-title: A hierarchical convolution neural network (CNN)-based ship target detection method in spaceborne SAR imagery
  publication-title: Remote Sens
– ident: CR198
– ident: CR100
– ident: CR18
– ident: CR66
– ident: CR47
– ident: CR72
– volume: 56
  start-page: 2337
  issue: 4
  year: 2017
  end-page: 2348
  ident: CR130
  article-title: Rotation-insensitive and context-augmented object detection in remote sensing images
  publication-title: IEEE Trans Geosci Remote Sens
– ident: CR89
– volume: 134
  start-page: 19
  issue: 1
  year: 2005
  end-page: 67
  ident: CR41
  article-title: A tutorial on the cross-entropy method
  publication-title: Ann Oper Res
– ident: CR30
– ident: CR171
– ident: CR261
– volume: 30
  start-page: 1958
  issue: 11
  year: 2008
  end-page: 1970
  ident: CR222
  article-title: 80 million tiny images: a large data set for nonparametric object and scene recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 115
  start-page: 330
  issue: 3
  year: 2015
  end-page: 344
  ident: CR83
  article-title: Supercnn: a superpixelwise convolutional neural network for salient object detection
  publication-title: Int J Comput Vis
– ident: CR117
– ident: CR249
– ident: CR284
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  end-page: 1828
  ident: CR8
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– ident: CR165
– ident: CR278
– ident: CR297
– ident: CR123
– ident: CR255
– ident: CR142
– ident: CR94
– ident: CR233
– ident: CR176
– ident: CR3
– ident: CR289
– ident: CR227
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  end-page: 338
  ident: CR52
  article-title: The pascal visual object classes (voc) challenge
  publication-title: Int J Comput Vis
– ident: CR134
– ident: CR13
– ident: CR187
– ident: CR159
– ident: CR216
– ident: CR250
– ident: CR24
– ident: CR128
– ident: CR292
– ident: CR125
– ident: CR205
– ident: CR211
– ident: CR4
– ident: CR131
– ident: CR240
– ident: CR263
– ident: CR228
– ident: CR192
– ident: CR12
– ident: CR119
– ident: CR186
– volume: 34
  start-page: 2189
  issue: 11
  year: 2012
  end-page: 2202
  ident: CR1
  article-title: Measuring the objectness of image windows
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– ident: CR35
– ident: CR29
– ident: CR61
– ident: CR84
– ident: CR140
– ident: CR163
– ident: CR295
– volume: 34
  start-page: 743
  issue: 4
  year: 2012
  end-page: 761
  ident: CR46
  article-title: Pedestrian detection: an evaluation of the state of the art
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– ident: CR174
– ident: CR96
– ident: CR67
– ident: CR50
– ident: CR157
– ident: CR136
– ident: CR9
– volume: 19
  start-page: 944
  issue: 5
  year: 2017
  end-page: 954
  ident: CR129
  article-title: Attentive contexts for object detection
  publication-title: IEEE Transactions on Multimedia
– ident: CR246
– ident: CR78
– ident: CR200
– ident: CR181
– ident: CR239
– ident: CR168
– ident: CR252
– ident: CR290
– ident: CR95
– ident: CR175
– volume: 119
  start-page: 3
  issue: 1
  year: 2016
  end-page: 22
  ident: CR251
  article-title: Sun database: exploring a large collection of scene categories
  publication-title: Int J Comput Vis
– ident: CR280
– ident: CR152
– ident: CR113
– ident: CR217
– ident: CR79
– ident: CR40
– ident: CR180
– ident: CR169
– ident: CR146
– ident: CR23
– ident: CR274
– volume: 7
  start-page: 1247
  issue: 3
  year: 2014
  end-page: 1250
  ident: CR22
  article-title: Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature
  publication-title: Geosci Model Dev
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  end-page: 90
  ident: CR116
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun ACM
– ident: CR124
– ident: CR197
– ident: CR73
– ident: CR212
– ident: CR206
– ident: CR90
– ident: CR17
– ident: CR285
– ident: CR118
– ident: CR268
– volume: 40
  start-page: 1452
  issue: 6
  year: 2018
  end-page: 1464
  ident: CR286
  article-title: Places: a 10 million image database for scene recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– ident: CR34
– ident: CR223
– volume: 39
  start-page: 1476
  issue: 7
  year: 2016
  end-page: 1481
  ident: CR190
  article-title: Object detection networks on convolutional feature maps
  publication-title: IEEE transactions on pattern analysis and machine intelligence
– ident: CR107
– ident: CR62
– ident: CR141
– ident: CR279
– ident: CR296
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 8976_CR122
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 8976_CR287
  doi: 10.1109/CVPR.2018.00062
– ident: 8976_CR69
  doi: 10.1109/ICASSP.2013.6638947
– ident: 8976_CR105
– ident: 8976_CR237
– ident: 8976_CR243
  doi: 10.1109/CVPR.2017.324
– ident: 8976_CR98
  doi: 10.1109/34.730558
– ident: 8976_CR73
– ident: 8976_CR29
  doi: 10.1109/ICCV.2017.440
– ident: 8976_CR275
  doi: 10.1109/CVPR.2017.474
– ident: 8976_CR241
  doi: 10.1109/ICCV.2009.5459207
– volume: 46
  start-page: 2403
  issue: 5
  year: 2015
  ident: 8976_CR87
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– ident: 8976_CR254
  doi: 10.21437/Interspeech.2013-552
– volume: 20
  start-page: 985
  issue: 4
  year: 2017
  ident: 8976_CR127
  publication-title: IEEE Transactions on Multimedia
– volume: 19
  start-page: 944
  issue: 5
  year: 2017
  ident: 8976_CR129
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2016.2642789
– ident: 8976_CR289
  doi: 10.1109/CVPR.2019.00094
– ident: 8976_CR94
  doi: 10.1007/978-3-319-10593-2_33
– ident: 8976_CR114
  doi: 10.1007/978-3-319-10602-1_47
– ident: 8976_CR278
  doi: 10.1109/BTAS.2017.8272675
– ident: 8976_CR163
– ident: 8976_CR108
  doi: 10.1109/ICME.2008.4607625
– ident: 8976_CR186
– ident: 8976_CR248
  doi: 10.1109/CVPR.2016.521
– ident: 8976_CR89
  doi: 10.1109/CVPR.2018.00745
– volume: 42
  start-page: 60
  year: 2017
  ident: 8976_CR145
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.07.005
– ident: 8976_CR219
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 8976_CR116
  publication-title: Commun ACM
  doi: 10.1145/3065386
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 8976_CR155
  publication-title: Int J Comput Vis
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 8976_CR209
  publication-title: The Journal of Machine Learning Research
– ident: 8976_CR118
  doi: 10.1109/ICRA.2011.5980382
– ident: 8976_CR32
  doi: 10.1007/978-3-030-01267-0_28
– volume: 34
  start-page: 2189
  issue: 11
  year: 2012
  ident: 8976_CR1
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2012.28
– ident: 8976_CR77
  doi: 10.1109/ICCV.2009.5459257
– ident: 8976_CR10
  doi: 10.1109/ICCV.2017.593
– ident: 8976_CR67
– ident: 8976_CR231
– ident: 8976_CR220
  doi: 10.1109/ICCV.2015.221
– ident: 8976_CR199
  doi: 10.1109/ICCV.2017.212
– ident: 8976_CR152
  doi: 10.1109/CVPR.2015.7298965
– ident: 8976_CR103
  doi: 10.1109/CVPR.2016.95
– ident: 8976_CR282
  doi: 10.1109/CVPR.2016.451
– ident: 8976_CR104
  doi: 10.1109/CVPR.2014.223
– volume: 6
  start-page: 417
  issue: 3
  year: 2018
  ident: 8976_CR158
  publication-title: IEEE Transactions on Emerging Topics in Computing
  doi: 10.1109/TETC.2016.2593643
– volume: 30
  start-page: 79
  issue: 1
  year: 2005
  ident: 8976_CR247
  publication-title: Climate Research
  doi: 10.3354/cr030079
– ident: 8976_CR175
  doi: 10.1109/ICCV.2019.00970
– ident: 8976_CR296
  doi: 10.1007/978-3-319-10602-1_26
– ident: 8976_CR204
  doi: 10.1109/CVPR.2018.00377
– volume: 7
  start-page: 1247
  issue: 3
  year: 2014
  ident: 8976_CR22
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-7-1247-2014
– volume: 9
  start-page: 766
  issue: 4
  year: 2007
  ident: 8976_CR264
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2007.893351
– ident: 8976_CR197
– ident: 8976_CR203
– ident: 8976_CR226
– ident: 8976_CR63
  doi: 10.1109/ICCV.2015.296
– ident: 8976_CR258
  doi: 10.1109/CVPR.2017.643
– volume: 29
  start-page: 947
  issue: 5
  year: 2018
  ident: 8976_CR139
  publication-title: J Syst Eng Electron
  doi: 10.21629/JSEE.2018.05.07
– ident: 8976_CR284
  doi: 10.1109/CVPR.2015.7298731
– ident: 8976_CR18
  doi: 10.1007/978-3-030-01264-9_9
– ident: 8976_CR169
– ident: 8976_CR74
  doi: 10.1109/ICME.2019.00009
– ident: 8976_CR266
  doi: 10.1007/978-3-319-10590-1_53
– ident: 8976_CR38
– ident: 8976_CR267
  doi: 10.1109/CVPR.2010.5539957
– ident: 8976_CR277
  doi: 10.1109/CVPR.2018.00442
– ident: 8976_CR47
  doi: 10.1109/ICCV.2019.00667
– ident: 8976_CR60
  doi: 10.1109/CVPR.2018.00724
– volume: 39
  start-page: 1476
  issue: 7
  year: 2016
  ident: 8976_CR190
  publication-title: IEEE transactions on pattern analysis and machine intelligence
  doi: 10.1109/TPAMI.2016.2601099
– ident: 8976_CR184
  doi: 10.1007/978-3-030-20887-5_34
– ident: 8976_CR228
  doi: 10.1109/ICCV.2009.5459183
– ident: 8976_CR141
– volume: 134
  start-page: 19
  issue: 1
  year: 2005
  ident: 8976_CR41
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-005-5724-z
– ident: 8976_CR185
  doi: 10.1007/978-3-319-46493-0_32
– ident: 8976_CR260
  doi: 10.1007/978-3-319-16811-1_34
– ident: 8976_CR216
  doi: 10.1109/CVPR.2019.00293
– volume: 65
  start-page: 417
  issue: 1
  year: 2016
  ident: 8976_CR245
  publication-title: CIRP Annals-Manufacturing Technology
  doi: 10.1016/j.cirp.2016.04.072
– ident: 8976_CR17
  doi: 10.1117/12.2304811
– volume: 23
  start-page: 1499
  issue: 10
  year: 2016
  ident: 8976_CR273
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2016.2603342
– ident: 8976_CR27
– ident: 8976_CR61
– ident: 8976_CR293
  doi: 10.1109/CVPR.2017.441
– ident: 8976_CR157
  doi: 10.1007/978-3-030-01264-9_8
– ident: 8976_CR49
  doi: 10.1007/978-3-642-15555-0_42
– ident: 8976_CR93
  doi: 10.1109/CVPR.2017.351
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 8976_CR86
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– ident: 8976_CR39
– ident: 8976_CR143
  doi: 10.1007/978-3-319-10602-1_48
– ident: 8976_CR265
  doi: 10.5244/C.30.15
– ident: 8976_CR37
  doi: 10.1109/CVPR.2016.343
– volume: 56
  start-page: 2337
  issue: 4
  year: 2017
  ident: 8976_CR130
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2017.2778300
– ident: 8976_CR68
– volume: 3
  start-page: 235
  issue: 4
  year: 1990
  ident: 8976_CR161
  publication-title: Int J Lexicogr
  doi: 10.1093/ijl/3.4.235
– ident: 8976_CR167
– ident: 8976_CR111
  doi: 10.1109/CVPR.2017.557
– ident: 8976_CR62
  doi: 10.1109/CVPR.2019.00720
– ident: 8976_CR97
– ident: 8976_CR174
  doi: 10.1109/CVPR.2018.00647
– ident: 8976_CR182
  doi: 10.1109/ICCV.2007.4408986
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 8976_CR194
  publication-title: Nature
  doi: 10.1038/323533a0
– ident: 8976_CR180
  doi: 10.1109/CVPR.2006.119
– ident: 8976_CR188
  doi: 10.1109/CVPR.2017.690
– ident: 8976_CR91
  doi: 10.1109/CVPR.2017.65
– ident: 8976_CR221
  doi: 10.1109/ICCV.2019.00972
– ident: 8976_CR4
  doi: 10.1109/CVPR.2014.49
– ident: 8976_CR11
– ident: 8976_CR191
– volume: 32
  start-page: 1627
  issue: 9
  year: 2010
  ident: 8976_CR58
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2009.167
– ident: 8976_CR196
  doi: 10.1109/CVPR.2018.00474
– ident: 8976_CR179
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  ident: 8976_CR52
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-009-0275-4
– ident: 8976_CR201
  doi: 10.1109/ICCV.2017.368
– ident: 8976_CR210
  doi: 10.1109/IROS.2012.6385773
– ident: 8976_CR269
  doi: 10.1007/978-3-319-46478-7_22
– ident: 8976_CR256
– ident: 8976_CR35
  doi: 10.1109/CVPR.2016.350
– ident: 8976_CR5
  doi: 10.1609/aaai.v33i01.33018094
– ident: 8976_CR294
– ident: 8976_CR148
  doi: 10.1007/978-3-030-01252-6_24
– volume: 9
  start-page: 1823
  issue: 8
  year: 2008
  ident: 8976_CR6
  publication-title: J Mach Learn Res
– ident: 8976_CR112
  doi: 10.1109/CVPR.2016.98
– ident: 8976_CR198
  doi: 10.1007/978-3-319-49409-8_69
– ident: 8976_CR240
  doi: 10.1007/978-3-319-15554-8_73
– ident: 8976_CR291
  doi: 10.1109/CVPR.2018.00753
– ident: 8976_CR106
  doi: 10.1007/978-3-319-47157-0_20
– ident: 8976_CR7
  doi: 10.1109/CVPR.2016.314
– ident: 8976_CR262
  doi: 10.1109/CVPR.2017.75
– ident: 8976_CR178
– ident: 8976_CR72
  doi: 10.1007/978-3-319-10584-0_23
– ident: 8976_CR172
  doi: 10.1109/CVPR.2019.00091
– ident: 8976_CR249
– ident: 8976_CR227
  doi: 10.1109/CVPR.2018.00914
– ident: 8976_CR78
  doi: 10.1007/978-0-387-84858-7_14
– ident: 8976_CR85
– ident: 8976_CR159
  doi: 10.1109/CVPR.2017.639
– ident: 8976_CR297
  doi: 10.1109/CVPR.2018.00907
– ident: 8976_CR71
  doi: 10.1109/CVPR.2018.00633
– volume: 8
  start-page: 813
  issue: 5
  year: 2018
  ident: 8976_CR193
  publication-title: Appl Sci
  doi: 10.3390/app8050813
– ident: 8976_CR123
  doi: 10.1109/5.726791
– ident: 8976_CR156
– ident: 8976_CR211
  doi: 10.5244/C.28.82
– ident: 8976_CR276
  doi: 10.1007/978-3-030-01219-9_39
– volume: 106
  start-page: 59
  issue: 1
  year: 2007
  ident: 8976_CR56
  publication-title: Computer Vision Image Understanding
  doi: 10.1016/j.cviu.2005.09.012
– ident: 8976_CR261
– ident: 8976_CR21
  doi: 10.1007/978-3-030-01258-8_15
– ident: 8976_CR200
  doi: 10.1007/978-3-319-23528-8_9
– ident: 8976_CR14
  doi: 10.1007/978-3-319-46493-0_22
– ident: 8976_CR9
  doi: 10.1007/978-3-319-48881-3_56
– ident: 8976_CR126
  doi: 10.1109/CVPR.2015.7299170
– ident: 8976_CR140
  doi: 10.1109/ICIP.2002.1038171
– ident: 8976_CR96
– volume: 58
  start-page: 216
  year: 2016
  ident: 8976_CR244
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2016.04.002
– ident: 8976_CR250
– ident: 8976_CR162
– ident: 8976_CR288
  doi: 10.1109/CVPR.2018.00062
– ident: 8976_CR181
  doi: 10.1145/2847263.2847265
– ident: 8976_CR235
  doi: 10.1109/CVPR.2015.7298938
– ident: 8976_CR212
  doi: 10.1609/aaai.v31i1.11231
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  ident: 8976_CR8
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2013.50
– ident: 8976_CR119
– ident: 8976_CR70
– volume: 111
  start-page: 98
  issue: 1
  year: 2015
  ident: 8976_CR51
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-014-0733-5
– ident: 8976_CR133
  doi: 10.1109/ICCV.2019.00615
– ident: 8976_CR44
  doi: 10.1109/CVPRW.2009.5206532
– ident: 8976_CR255
  doi: 10.1109/ICMEW.2015.7169816
– volume: 104
  start-page: 154
  issue: 2
  year: 2013
  ident: 8976_CR224
  publication-title: International Journal of Computer Vision (IJCV)
  doi: 10.1007/s11263-013-0620-5
– ident: 8976_CR166
  doi: 10.1109/ICPR.2006.479
– ident: 8976_CR242
  doi: 10.1109/CVPR.2018.00811
– ident: 8976_CR125
– ident: 8976_CR271
  doi: 10.1109/CVPR.2016.618
– ident: 8976_CR15
  doi: 10.1109/CVPR.2019.00958
– ident: 8976_CR24
  doi: 10.1109/ICCV.2015.312
– ident: 8976_CR64
  doi: 10.1109/CVPRW.2018.00215
– ident: 8976_CR154
– ident: 8976_CR160
– ident: 8976_CR76
  doi: 10.1109/TPAMI.2016.2578328
– ident: 8976_CR263
– ident: 8976_CR79
  doi: 10.1109/ICCV.2019.00502
– ident: 8976_CR168
  doi: 10.1109/CVPR.2014.222
– ident: 8976_CR137
– ident: 8976_CR53
– volume: 40
  start-page: 1845
  issue: 8
  year: 2017
  ident: 8976_CR257
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2017.2738644
– ident: 8976_CR138
  doi: 10.1109/CVPR.2015.7298958
– ident: 8976_CR171
  doi: 10.1109/CVPR.2015.7298854
– ident: 8976_CR292
  doi: 10.1109/ICCV.2017.52
– ident: 8976_CR3
– ident: 8976_CR246
– ident: 8976_CR110
  doi: 10.1007/978-3-319-46726-9_31
– volume: 40
  start-page: 1452
  issue: 6
  year: 2018
  ident: 8976_CR286
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2017.2723009
– ident: 8976_CR189
– ident: 8976_CR150
  doi: 10.1007/978-3-319-46448-0_2
– ident: 8976_CR239
– ident: 8976_CR202
  doi: 10.1109/CVPR.2016.89
– ident: 8976_CR42
  doi: 10.1109/CVPR.2009.5206848
– ident: 8976_CR80
  doi: 10.1109/ICCV.2017.322
– ident: 8976_CR132
  doi: 10.1109/ICCV.2019.00671
– ident: 8976_CR113
– ident: 8976_CR192
  doi: 10.1109/CVPR.2013.417
– ident: 8976_CR54
  doi: 10.1109/IVS.2016.7535375
– ident: 8976_CR144
  doi: 10.1109/CVPR.2017.106
– ident: 8976_CR57
  doi: 10.1109/CVPR.2008.4587597
– volume: 34
  start-page: 743
  issue: 4
  year: 2012
  ident: 8976_CR46
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2011.155
– ident: 8976_CR117
  doi: 10.1109/ICCV.2015.285
– volume: 33
  start-page: 353
  issue: 2
  year: 2010
  ident: 8976_CR149
  publication-title: IEEE Transactions on Pattern analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2010.70
– ident: 8976_CR34
  doi: 10.1109/CVPR.2017.195
– ident: 8976_CR268
  doi: 10.1109/ICCV.2011.6126474
– ident: 8976_CR31
  doi: 10.1109/CVPR.2017.691
– ident: 8976_CR187
  doi: 10.1109/CVPR.2016.91
– ident: 8976_CR120
  doi: 10.1007/978-3-030-01264-9_45
– ident: 8976_CR101
  doi: 10.1109/FG.2017.82
– volume: 28
  start-page: 41
  issue: 1
  year: 1997
  ident: 8976_CR20
  publication-title: Mach Learn
  doi: 10.1023/A:1007379606734
– ident: 8976_CR217
– ident: 8976_CR218
  doi: 10.1109/IVS.2018.8500504
– ident: 8976_CR19
  doi: 10.1109/TPAMI.2011.231
– volume: 28
  start-page: 594
  issue: 4
  year: 2006
  ident: 8976_CR55
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2006.79
– ident: 8976_CR13
– ident: 8976_CR281
  doi: 10.1109/CVPR.2018.00609
– ident: 8976_CR229
  doi: 10.1109/CVPR.2001.990517
– ident: 8976_CR30
– ident: 8976_CR65
  doi: 10.1109/ICCV.2015.169
– ident: 8976_CR82
  doi: 10.1109/CVPR.2016.90
– ident: 8976_CR135
  doi: 10.1007/978-3-030-01240-3_21
– ident: 8976_CR165
  doi: 10.1109/ICCV.2017.522
– ident: 8976_CR206
– ident: 8976_CR124
– ident: 8976_CR208
  doi: 10.1109/ICCV.2003.1238663
– ident: 8976_CR272
  doi: 10.1109/CVPR.2018.00941
– ident: 8976_CR225
  doi: 10.1109/ICCV.2011.6126456
– ident: 8976_CR66
  doi: 10.1109/CVPR.2014.81
– ident: 8976_CR183
– ident: 8976_CR215
  doi: 10.1109/CVPR.2014.220
– ident: 8976_CR285
– ident: 8976_CR109
– volume: 30
  start-page: 1958
  issue: 11
  year: 2008
  ident: 8976_CR222
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2008.128
– ident: 8976_CR223
  doi: 10.1109/ICCV.2017.54
– volume: 28
  start-page: 2896
  issue: 10
  year: 2018
  ident: 8976_CR102
  publication-title: IEEE Transactions on Circuits Systems for Video Technology
  doi: 10.1109/TCSVT.2017.2736553
– ident: 8976_CR176
– ident: 8976_CR16
  doi: 10.1109/CVPR.2018.00644
– ident: 8976_CR81
  doi: 10.1007/978-3-319-10578-9_23
– ident: 8976_CR151
  doi: 10.1109/CVPR.2018.00730
– ident: 8976_CR283
  doi: 10.1609/aaai.v33i01.33019259
– ident: 8976_CR131
  doi: 10.1109/CVPR.2019.01082
– ident: 8976_CR236
  doi: 10.1007/978-3-319-46493-0_50
– ident: 8976_CR115
– ident: 8976_CR253
– ident: 8976_CR2
– ident: 8976_CR75
  doi: 10.1109/CVPR.2017.207
– volume: 37
  start-page: 13
  issue: 1
  year: 2015
  ident: 8976_CR28
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2014.2343217
– ident: 8976_CR279
  doi: 10.1109/ICCV.2017.30
– ident: 8976_CR128
  doi: 10.1109/CVPR.2017.211
– ident: 8976_CR12
  doi: 10.1142/9789812797926_0003
– ident: 8976_CR170
  doi: 10.1109/ICCV.2013.257
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 8976_CR195
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-015-0816-y
– volume: 16
  start-page: 310
  issue: 2
  year: 2018
  ident: 8976_CR232
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2018.2872355
– ident: 8976_CR295
  doi: 10.1109/ICCV.2017.444
– ident: 8976_CR121
  doi: 10.1109/CVPR.2006.68
– ident: 8976_CR50
  doi: 10.1109/CVPR.2014.276
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 8976_CR36
  publication-title: Mach Learn
– ident: 8976_CR213
  doi: 10.1109/CVPR.2015.7298594
– volume: 54
  start-page: 7405
  issue: 12
  year: 2016
  ident: 8976_CR33
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2016.2601622
– ident: 8976_CR134
  doi: 10.1109/CVPR.2017.553
– ident: 8976_CR280
– ident: 8976_CR88
– ident: 8976_CR99
  doi: 10.4467/20838476SI.16.004.6185
– ident: 8976_CR259
  doi: 10.1109/ICCV.2019.00975
– ident: 8976_CR100
  doi: 10.1007/978-3-030-01264-9_48
– volume: 119
  start-page: 3
  issue: 1
  year: 2016
  ident: 8976_CR251
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-014-0748-y
– ident: 8976_CR164
– ident: 8976_CR142
  doi: 10.1109/ICCV.2017.324
– ident: 8976_CR274
  doi: 10.1007/978-3-319-46475-6_28
– ident: 8976_CR95
  doi: 10.1007/978-3-319-46723-8_28
– ident: 8976_CR25
– volume: 55
  start-page: 2486
  issue: 5
  year: 2017
  ident: 8976_CR153
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2016.2645610
– ident: 8976_CR270
– ident: 8976_CR136
– ident: 8976_CR26
  doi: 10.1609/aaai.v32i1.11716
– ident: 8976_CR214
  doi: 10.1109/CVPR.2016.308
– ident: 8976_CR92
  doi: 10.1109/CVPR.2017.243
– ident: 8976_CR205
  doi: 10.1007/978-3-030-11009-3_11
– ident: 8976_CR84
  doi: 10.1109/CVPR.2019.00300
– ident: 8976_CR207
– ident: 8976_CR40
  doi: 10.1109/CVPR.2005.177
– ident: 8976_CR252
  doi: 10.1109/CVPR.2017.634
– ident: 8976_CR43
– ident: 8976_CR59
– ident: 8976_CR23
  doi: 10.1109/ACPR.2013.33
– ident: 8976_CR173
  doi: 10.1109/TGRS.2019.2899955
– ident: 8976_CR90
  doi: 10.1109/CVPR.2017.166
– ident: 8976_CR177
  doi: 10.1109/CVPR.2015.7299188
– ident: 8976_CR147
  doi: 10.1007/s11263-019-01247-4
– ident: 8976_CR238
  doi: 10.1007/978-3-030-01261-8_33
– ident: 8976_CR45
  doi: 10.1109/CVPRW.2009.5206631
– volume: 115
  start-page: 330
  issue: 3
  year: 2015
  ident: 8976_CR83
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-015-0822-0
– ident: 8976_CR146
  doi: 10.1007/978-3-030-01246-5_2
– ident: 8976_CR290
  doi: 10.1109/CVPR.2019.00237
– volume: 11
  start-page: 620
  issue: 6
  year: 2019
  ident: 8976_CR234
  publication-title: Remote Sens
  doi: 10.3390/rs11060620
– ident: 8976_CR107
  doi: 10.1007/978-3-030-01228-1_15
– ident: 8976_CR48
– volume: 57
  start-page: 137
  issue: 2
  year: 2004
  ident: 8976_CR230
  publication-title: International journal of computer vision
  doi: 10.1023/B:VISI.0000013087.49260.fb
– ident: 8976_CR233
  doi: 10.1109/CVPR.2018.00136
SSID ssj0016524
Score 2.6645167
Snippet With the rapid development of deep learning techniques, deep convolutional neural networks (DCNNs) have become more important for object detection. Compared...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 23729
SubjectTerms Algorithms
Artificial neural networks
Computer Communication Networks
Computer networks
Computer Science
Data Structures and Information Theory
Deep learning
Machine learning
Meteorological satellites
Multimedia Information Systems
Neural networks
Object recognition
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu8CBxwAxGCgHbhDRR5o2JzTQpgmJCSEm7VblyQWtg5X_j9OmKyCxUys1jVS79mcnsT-EriCIkEZqyE54QAlNeEQkiykxXINpMctp7Oqdn6ZsMqOP82TuF9xW_lhl4xMrR60L5dbIbyPAdYBSCJfvlh_EsUa53VVPobGNuuCCM0i-uvej6fPLeh-BJZ7WNgsIYGPoy2bq4rnQlaa49CnIAJQJ-w1Nbbz5Z4u0Qp7xAdrzISMe1jo-RFtm0UP7DR0D9tbZQ7s_egseoXiI67IUXFhcSLfcgrUpq5NXC-zAS2O40cYssaeOeDtGs_Ho9WFCPEMCUXGWlMSkMpI61UmcRsIKzoS1gjFIwTJI5bSmoYyMsjRTWaDhGwGvlORCZIYauKbxCeosioU5RVgEkiobcmXS0PVYk1xRISQHgVuuE91HYSOcXPn24Y7F4j1vGx87geYg0LwSaM766Hr9zrJunrFx9KCRee4NaZW3au-jm0YP7eP_ZzvbPNs52okq1bvTYgPUKT-_zAWEF6W89P_QNzQZySs
  priority: 102
  providerName: ProQuest
Title A review of object detection based on deep learning
URI https://link.springer.com/article/10.1007/s11042-020-08976-6
https://www.proquest.com/docview/2435937642
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYdoEDjwFiMKYcuEGlPtK0OXZoYwIxIcSkcaqSJuWCuomV_4_TpSsgQOKUSk2j1rFrO_ZnA1ygESG1VOidcJc6NOS-I1lAHc0VihbLOQ0M3vl-yiYzejsP5xYUtqqz3euQZPWnbsBunoGSGHfHjVGJOqwFndD47sjFMz_ZxA5YaFvZxq6D-tCzUJmf1_iqjhob81tYtNI2433YtWYiSdb7egBbuujCXt2CgViJ7MLOp3qChxAkZA1FIYucLKQ5YiFKl1W2VUGMwlIEL5TWS2LbRbwcwWw8erqeOLYrgpMFcVg6OpK-VJEKg8gXueBM5LlgDN2uGN03pagnfZ3lNM5iV-E3oo7KJBci1lTjGAXH0C4WhT4BIlxJs9zjmY48U1dN8owKITn6JDlXoeqBVxMnzWzJcNO54jVtih0bgqZI0LQiaMp6cLl5ZrkumPHn7H5N89QKzyr10YRDqwnfogdX9T40t39f7fR_089g269YwWSM9aFdvr3rczQxSjmAVjy-GUAnGQ-HUzPePN-NcByOpg-Pg4rfPgAkRso8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4VGICBRwFRnh5gAos8HCceEKqAUh7tVCS24FdYUFtoEeJP8Rs550EBCTamRIpzw_l8353tuw9gD4MIZZXB7ER4jLJIBFTxkFErDC4tngkWunrnTpe3b9nVXXRXg_eqFsZdq6x8Yu6ozUC7PfKjAHEdoRTD5ZPhE3WsUe50taLQKMzi2r69Yso2Or48w_ndD4LWee-0TUtWAarDJBpTG6tAmdhEYRzITAous0xyjmlLgumPMcxXgdUZS3TiGQRr9PFaCSkTyyw-4xDlTsEMC0PhVlTSuvg8teBRSaKbeBSR2C-LdIpSPd8VwrhkzUtQKuXfgXAS3f44kM1xrrUEC2WASpqFRS1DzfbrsFiRP5DSF9Rh_ksnwxUIm6QogiGDjAyU29whxo7ze1594qDSEHwx1g5JSVTxsAq3_6K5NZjuD_p2HYj0FNOZL7SNfdfRTQnNpFQCpzcTJjIN8CvlpLpsVu44Mx7TSZtlp9AUFZrmCk15Aw4-_xkWrTr-HL1V6Twtl-0onRhZAw6reZh8_l3axt_SdmG23evcpDeX3etNmAtyM3D31LZgevz8YrcxsBmrndyaCNz_t_l-AHmZBho
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6lqYTaA4UU1ECBPcCJruLHeu09oCqQRAmBKEJUys3sk0uVpG0qxF_j1zFrrxNAoreebMn2HGa_nYd3Zj6A1xhEKKsMZiciYpRlIqGKp4xaYXBrcSdY6vudP8_4-IJ9XGSLFvxqemF8WWVjEytDbVba_yPvJejX0ZViuNxzoSxiPhidr6-oZ5DyJ60NnUYNkan9-QPTt5t3kwGu9ZskGQ2_fhjTwDBAdVpkG2pzlSiTmyzNE-mk4NI5yTmmMAWmQsawWCVWO1boIjLouNHeayWkLCyzeM1TlLsH-zlmRVEb9t8PZ_Mv2zMMngVK3SKi6Jfj0LJTN-7Fvi3Gp25RgXIp_9st7mLdf45nK683egQPQ7hK-jW-HkPLLjtw1FBBkGAZOnD4x1zDY0j7pG6JIStHVsr_6iHGbqqqryXxjtMQvDHWrkmgrfj-BC7uRXdPob1cLe0JEBkppl0stM1jP99NCc2kVAIX2wmTmS7EjXJKHUaXewaNy3I3dNkrtESFlpVCS96Ft9tv1vXgjjvfPm10XoZNfFPuINeFs2Yddo__L-3Z3dJewQOEbvlpMps-h4OkQoEvWjuF9ub61r7AKGejXgY4Efh23wj-DSlnC6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+object+detection+based+on+deep+learning&rft.jtitle=Multimedia+tools+and+applications&rft.au=Xiao%2C+Youzi&rft.au=Tian%2C+Zhiqiang&rft.au=Yu%2C+Jiachen&rft.au=Zhang%2C+Yinshu&rft.date=2020-09-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=79&rft.issue=33-34&rft.spage=23729&rft.epage=23791&rft_id=info:doi/10.1007%2Fs11042-020-08976-6&rft.externalDocID=10_1007_s11042_020_08976_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon