A review of object detection based on deep learning
With the rapid development of deep learning techniques, deep convolutional neural networks (DCNNs) have become more important for object detection. Compared with traditional handcrafted feature-based methods, the deep learning-based object detection methods can learn both low-level and high-level im...
Saved in:
Published in | Multimedia tools and applications Vol. 79; no. 33-34; pp. 23729 - 23791 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the rapid development of deep learning techniques, deep convolutional neural networks (DCNNs) have become more important for object detection. Compared with traditional handcrafted feature-based methods, the deep learning-based object detection methods can learn both low-level and high-level image features. The image features learned through deep learning techniques are more representative than the handcrafted features. Therefore, this review paper focuses on the object detection algorithms based on deep convolutional neural networks, while the traditional object detection algorithms will be simply introduced as well. Through the review and analysis of deep learning-based object detection techniques in recent years, this work includes the following parts: backbone networks, loss functions and training strategies, classical object detection architectures, complex problems, datasets and evaluation metrics, applications and future development directions. We hope this review paper will be helpful for researchers in the field of object detection. |
---|---|
AbstractList | With the rapid development of deep learning techniques, deep convolutional neural networks (DCNNs) have become more important for object detection. Compared with traditional handcrafted feature-based methods, the deep learning-based object detection methods can learn both low-level and high-level image features. The image features learned through deep learning techniques are more representative than the handcrafted features. Therefore, this review paper focuses on the object detection algorithms based on deep convolutional neural networks, while the traditional object detection algorithms will be simply introduced as well. Through the review and analysis of deep learning-based object detection techniques in recent years, this work includes the following parts: backbone networks, loss functions and training strategies, classical object detection architectures, complex problems, datasets and evaluation metrics, applications and future development directions. We hope this review paper will be helpful for researchers in the field of object detection. |
Author | Tian, Zhiqiang Zhang, Yinshu Liu, Shuai Du, Shaoyi Yu, Jiachen Lan, Xuguang Xiao, Youzi |
Author_xml | – sequence: 1 givenname: Youzi surname: Xiao fullname: Xiao, Youzi organization: School of Software Engineering, Xi’an Jiaotong University – sequence: 2 givenname: Zhiqiang orcidid: 0000-0002-3669-3748 surname: Tian fullname: Tian, Zhiqiang email: zhiqiangtian@xjtu.edu.cn organization: School of Software Engineering, Xi’an Jiaotong University – sequence: 3 givenname: Jiachen surname: Yu fullname: Yu, Jiachen organization: School of Software Engineering, Xi’an Jiaotong University – sequence: 4 givenname: Yinshu surname: Zhang fullname: Zhang, Yinshu organization: School of Software Engineering, Xi’an Jiaotong University – sequence: 5 givenname: Shuai surname: Liu fullname: Liu, Shuai organization: School of Software Engineering, Xi’an Jiaotong University – sequence: 6 givenname: Shaoyi surname: Du fullname: Du, Shaoyi organization: Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University – sequence: 7 givenname: Xuguang surname: Lan fullname: Lan, Xuguang organization: Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University |
BookMark | eNp9kEFLAzEQhYNUsK3-AU8LnqOTZDfJHktRKxS86DlkN5OypW5qslX896auIHjo6c3hfTNv3oxM-tAjIdcMbhmAukuMQckpcKCgayWpPCNTVilBleJskmehgaoK2AWZpbQFYLLi5ZSIRRHxo8PPIvgiNFtsh8LhkKULfdHYhK7Ig0PcFzu0se_6zSU593aX8OpX5-T14f5luaLr58en5WJNW6GrgaJqeOOUq4Ti1ttaWu-tlDVTmjNwrmQNx9aXutXgcmYBom1qazWWmFWJObkZ9-5jeD9gGsw2HGKfTxpeiqoWSpY8u_joamNIKaI3-9i92fhlGJhjOWYsx-RyzE85RmZI_4PabrDHn4dou91pVIxoynf6Dca_VCeobweMefI |
CitedBy_id | crossref_primary_10_3390_rs15174128 crossref_primary_10_3390_electronics12244924 crossref_primary_10_1007_s12040_024_02327_x crossref_primary_10_3390_agronomy13112667 crossref_primary_10_3390_rs15061684 crossref_primary_10_1109_ACCESS_2024_3448258 crossref_primary_10_3390_fire4040075 crossref_primary_10_1016_j_marpetgeo_2024_106965 crossref_primary_10_1016_j_compag_2024_109135 crossref_primary_10_1109_OJITS_2025_3538037 crossref_primary_10_1109_TIM_2025_3545165 crossref_primary_10_1109_ICJECE_2023_3305323 crossref_primary_10_54097_tbtp6e91 crossref_primary_10_2478_amns_2024_0322 crossref_primary_10_1080_22797254_2023_2174706 crossref_primary_10_1111_coin_12572 crossref_primary_10_3389_fpls_2024_1423338 crossref_primary_10_3390_rs16122225 crossref_primary_10_1109_JSTSP_2024_3438128 crossref_primary_10_1007_s11042_024_18397_4 crossref_primary_10_1142_S0218126623500731 crossref_primary_10_3390_rs14122837 crossref_primary_10_3390_s22176546 crossref_primary_10_5604_01_3001_0054_1660 crossref_primary_10_1109_ACCESS_2022_3180796 crossref_primary_10_2478_amns_2024_1542 crossref_primary_10_1109_JSTARS_2024_3402540 crossref_primary_10_3390_ani14010159 crossref_primary_10_1016_j_sse_2024_108860 crossref_primary_10_1016_j_dsp_2024_104507 crossref_primary_10_1016_j_simpat_2022_102705 crossref_primary_10_1016_j_engfailanal_2022_106653 crossref_primary_10_1049_ipr2_13282 crossref_primary_10_3389_fbioe_2023_1133090 crossref_primary_10_3390_app14145982 crossref_primary_10_3390_drones6110362 crossref_primary_10_3390_agriculture13030713 crossref_primary_10_1016_j_ymssp_2023_110426 crossref_primary_10_1007_s00521_022_06924_z crossref_primary_10_1016_j_jksuci_2021_08_001 crossref_primary_10_3233_JIFS_221925 crossref_primary_10_1021_acsnano_4c12884 crossref_primary_10_3390_sym15091627 crossref_primary_10_1016_j_neucom_2023_02_006 crossref_primary_10_1007_s40725_023_00184_3 crossref_primary_10_1016_j_cosrev_2024_100690 crossref_primary_10_1007_s00371_024_03325_2 crossref_primary_10_1117_1_JEI_33_4_043044 crossref_primary_10_3390_f14030588 crossref_primary_10_1007_s11042_020_09201_0 crossref_primary_10_1007_s11042_023_17112_z crossref_primary_10_1016_j_renene_2024_120152 crossref_primary_10_1016_j_neucom_2024_127640 crossref_primary_10_1016_j_rmed_2024_107809 crossref_primary_10_3233_JIFS_232480 crossref_primary_10_3390_app14062232 crossref_primary_10_1016_j_heliyon_2024_e38287 crossref_primary_10_32604_cmc_2024_055049 crossref_primary_10_3390_s25010214 crossref_primary_10_1016_j_jwpe_2024_104876 crossref_primary_10_1007_s41064_023_00232_4 crossref_primary_10_1109_ACCESS_2022_3147495 crossref_primary_10_3390_s23218851 crossref_primary_10_3390_electronics12183760 crossref_primary_10_1109_ACCESS_2025_3533304 crossref_primary_10_3390_drones8070319 crossref_primary_10_1063_5_0225833 crossref_primary_10_3390_s24144550 crossref_primary_10_1016_j_measurement_2023_113467 crossref_primary_10_1016_j_cosrev_2025_100736 crossref_primary_10_3390_s22103703 crossref_primary_10_1016_j_autcon_2021_104088 crossref_primary_10_1007_s12145_023_01158_6 crossref_primary_10_1007_s11042_023_15855_3 crossref_primary_10_1007_s11042_022_13153_y crossref_primary_10_1016_j_wasman_2024_10_005 crossref_primary_10_1186_s12859_023_05168_5 crossref_primary_10_3390_electronics13224535 crossref_primary_10_7717_peerj_cs_2710 crossref_primary_10_3390_rs14122763 crossref_primary_10_56714_bjrs_50_1_5 crossref_primary_10_3390_rs15082106 crossref_primary_10_1177_00405175231198266 crossref_primary_10_3390_info15120755 crossref_primary_10_1007_s11227_024_06237_z crossref_primary_10_1021_acs_jpcb_1c02449 crossref_primary_10_1007_s11042_024_19823_3 crossref_primary_10_1007_s00107_024_02086_y crossref_primary_10_1007_s11042_023_15981_y crossref_primary_10_3390_app11209622 crossref_primary_10_3390_electronics12204292 crossref_primary_10_17163_ings_n31_2024_04 crossref_primary_10_2478_rgg_2022_0006 crossref_primary_10_1016_j_dsp_2022_103812 crossref_primary_10_1016_j_dibe_2023_100245 crossref_primary_10_1007_s11042_023_15845_5 crossref_primary_10_3389_fpls_2024_1395796 crossref_primary_10_1007_s10462_024_10877_1 crossref_primary_10_1088_1361_6560_ad3c0c crossref_primary_10_1007_s11042_024_20530_2 crossref_primary_10_1016_j_ssci_2022_105958 crossref_primary_10_3390_s23052569 crossref_primary_10_1117_1_JEI_32_5_053021 crossref_primary_10_1109_ACCESS_2020_3033466 crossref_primary_10_1002_adts_202300971 crossref_primary_10_3390_rs14225657 crossref_primary_10_1016_j_inffus_2024_102385 crossref_primary_10_1109_JSTARS_2023_3241405 crossref_primary_10_1080_15472450_2024_2416164 crossref_primary_10_1007_s40031_024_01152_6 crossref_primary_10_1016_j_compag_2023_108196 crossref_primary_10_1109_ACCESS_2024_3401610 crossref_primary_10_3389_fpls_2023_1237695 crossref_primary_10_1016_j_patrec_2022_12_019 crossref_primary_10_1007_s00521_024_10300_4 crossref_primary_10_3390_fire5050172 crossref_primary_10_1007_s44196_023_00264_z crossref_primary_10_1088_1755_1315_815_1_012010 crossref_primary_10_4081_jae_2024_1641 crossref_primary_10_1007_s40747_024_01726_3 crossref_primary_10_3390_ai6030052 crossref_primary_10_1016_j_measurement_2023_113930 crossref_primary_10_1007_s42235_024_00605_4 crossref_primary_10_32604_cmc_2024_048312 crossref_primary_10_3390_computation11030052 crossref_primary_10_1109_ACCESS_2025_3544515 crossref_primary_10_1007_s11042_023_16107_0 crossref_primary_10_1109_ACCESS_2024_3495523 crossref_primary_10_3389_fpls_2022_1079148 crossref_primary_10_1007_s12596_023_01496_0 crossref_primary_10_1109_ACCESS_2024_3506853 crossref_primary_10_1038_s41598_023_35518_5 crossref_primary_10_3390_en15165966 crossref_primary_10_1109_ACCESS_2021_3051253 crossref_primary_10_1016_j_compag_2023_107875 crossref_primary_10_3390_app132011464 crossref_primary_10_3390_s25051410 crossref_primary_10_1186_s40537_021_00444_8 crossref_primary_10_3390_jmse10030310 crossref_primary_10_1109_TIM_2024_3385824 crossref_primary_10_54525_tbbmd_1184322 crossref_primary_10_1016_j_compag_2025_110132 crossref_primary_10_1007_s41981_024_00323_2 crossref_primary_10_1007_s11042_022_14202_2 crossref_primary_10_56294_dm2024_364 crossref_primary_10_1515_nanoph_2024_0423 crossref_primary_10_1109_ACCESS_2023_3323214 crossref_primary_10_3390_app12157825 crossref_primary_10_3390_electronics13153058 crossref_primary_10_1016_j_neucom_2025_129584 crossref_primary_10_1016_j_procs_2023_10_532 crossref_primary_10_48175_IJARSCT_22295 crossref_primary_10_3390_biomimetics7010031 crossref_primary_10_1088_2632_2153_abea6a crossref_primary_10_1016_j_compag_2022_107335 crossref_primary_10_1016_j_engappai_2023_106622 crossref_primary_10_1007_s00170_023_11398_x crossref_primary_10_1007_s11042_024_19180_1 crossref_primary_10_3390_agriculture14020290 crossref_primary_10_1186_s13007_023_01020_2 crossref_primary_10_3390_app13148161 crossref_primary_10_1007_s10499_024_01713_y crossref_primary_10_1109_ACCESS_2023_3262668 crossref_primary_10_3390_photonics8090400 crossref_primary_10_12677_mos_2024_133214 crossref_primary_10_1145_3596909 crossref_primary_10_1007_s11042_021_11886_w crossref_primary_10_1155_2022_7234888 crossref_primary_10_17714_gumusfenbil_1012519 crossref_primary_10_3390_s24186016 crossref_primary_10_1002_aisy_202300314 crossref_primary_10_1007_s11042_022_12567_y crossref_primary_10_1016_j_neucom_2024_128575 crossref_primary_10_1016_j_fishres_2024_106983 crossref_primary_10_1016_j_compag_2023_107744 crossref_primary_10_1016_j_iswa_2025_200499 crossref_primary_10_3390_electronics12244996 crossref_primary_10_1007_s11042_022_12447_5 crossref_primary_10_1109_MAES_2024_3467028 crossref_primary_10_1080_10106049_2023_2280549 crossref_primary_10_1038_s41598_024_74875_7 crossref_primary_10_1177_20552076221109502 crossref_primary_10_1063_5_0210851 crossref_primary_10_1016_j_procir_2022_02_001 crossref_primary_10_1016_j_engappai_2023_107024 crossref_primary_10_1109_TGRS_2025_3532830 crossref_primary_10_1155_2021_9033021 crossref_primary_10_3390_app12168068 crossref_primary_10_1016_j_autcon_2025_105970 crossref_primary_10_1016_j_compag_2022_107423 crossref_primary_10_3390_rs13214370 crossref_primary_10_1007_s44196_023_00381_9 crossref_primary_10_1109_TITS_2024_3459799 crossref_primary_10_3390_agriculture12010073 crossref_primary_10_1039_D1NR01109J crossref_primary_10_3390_app13063761 crossref_primary_10_1007_s11227_022_04415_5 crossref_primary_10_3390_agriculture15050483 crossref_primary_10_1016_j_cosrev_2023_100612 crossref_primary_10_1111_exsy_70006 crossref_primary_10_3390_fire6120446 crossref_primary_10_1186_s44147_024_00411_z crossref_primary_10_1007_s11042_023_15753_8 crossref_primary_10_1007_s11042_024_19782_9 crossref_primary_10_1016_j_ecoinf_2021_101485 crossref_primary_10_1016_j_aquaculture_2024_741252 crossref_primary_10_1515_jisys_2023_0208 crossref_primary_10_2478_geosc_2022_0009 crossref_primary_10_3390_electronics13112080 crossref_primary_10_1061_JPCFEV_CFENG_4275 crossref_primary_10_3389_frai_2022_923932 crossref_primary_10_61187_ita_v1i2_36 crossref_primary_10_1109_ACCESS_2024_3443296 crossref_primary_10_7717_peerj_cs_1331 crossref_primary_10_1088_1742_6596_2976_1_012009 crossref_primary_10_3390_electronics10161932 crossref_primary_10_3390_su162310502 crossref_primary_10_1016_j_compag_2022_107522 crossref_primary_10_1080_21642583_2025_2467083 crossref_primary_10_1088_1361_6501_aca497 crossref_primary_10_1155_2022_1019564 crossref_primary_10_1016_j_dibe_2024_100376 crossref_primary_10_3390_app14093946 crossref_primary_10_2174_0118722121294044240422063140 crossref_primary_10_1016_j_culher_2021_10_004 crossref_primary_10_3390_s24092923 crossref_primary_10_1088_1742_6596_2618_1_012012 crossref_primary_10_1109_TGRS_2022_3229041 crossref_primary_10_2139_ssrn_4158164 crossref_primary_10_1007_s11042_023_15584_7 crossref_primary_10_1109_ACCESS_2023_3302512 crossref_primary_10_1007_s00521_022_07412_0 crossref_primary_10_1016_j_nhres_2024_07_001 crossref_primary_10_1007_s11042_023_14859_3 crossref_primary_10_3390_axioms12020160 |
Cites_doi | 10.1038/nature14539 10.1109/CVPR.2018.00062 10.1109/ICASSP.2013.6638947 10.1109/CVPR.2017.324 10.1109/34.730558 10.1109/ICCV.2017.440 10.1109/CVPR.2017.474 10.1109/ICCV.2009.5459207 10.21437/Interspeech.2013-552 10.1109/TMM.2016.2642789 10.1109/CVPR.2019.00094 10.1007/978-3-319-10593-2_33 10.1007/978-3-319-10602-1_47 10.1109/BTAS.2017.8272675 10.1109/ICME.2008.4607625 10.1109/CVPR.2016.521 10.1109/CVPR.2018.00745 10.1016/j.media.2017.07.005 10.1145/3065386 10.1023/B:VISI.0000029664.99615.94 10.1109/ICRA.2011.5980382 10.1007/978-3-030-01267-0_28 10.1109/TPAMI.2012.28 10.1109/ICCV.2009.5459257 10.1109/ICCV.2017.593 10.1109/ICCV.2015.221 10.1109/ICCV.2017.212 10.1109/CVPR.2015.7298965 10.1109/CVPR.2016.95 10.1109/CVPR.2016.451 10.1109/CVPR.2014.223 10.1109/TETC.2016.2593643 10.3354/cr030079 10.1109/ICCV.2019.00970 10.1007/978-3-319-10602-1_26 10.1109/CVPR.2018.00377 10.5194/gmd-7-1247-2014 10.1109/TMM.2007.893351 10.1109/ICCV.2015.296 10.1109/CVPR.2017.643 10.21629/JSEE.2018.05.07 10.1109/CVPR.2015.7298731 10.1007/978-3-030-01264-9_9 10.1109/ICME.2019.00009 10.1007/978-3-319-10590-1_53 10.1109/CVPR.2010.5539957 10.1109/CVPR.2018.00442 10.1109/ICCV.2019.00667 10.1109/CVPR.2018.00724 10.1109/TPAMI.2016.2601099 10.1007/978-3-030-20887-5_34 10.1109/ICCV.2009.5459183 10.1007/s10479-005-5724-z 10.1007/978-3-319-46493-0_32 10.1007/978-3-319-16811-1_34 10.1109/CVPR.2019.00293 10.1016/j.cirp.2016.04.072 10.1117/12.2304811 10.1109/LSP.2016.2603342 10.1109/CVPR.2017.441 10.1007/978-3-030-01264-9_8 10.1007/978-3-642-15555-0_42 10.1109/CVPR.2017.351 10.1162/neco.1997.9.8.1735 10.1007/978-3-319-10602-1_48 10.5244/C.30.15 10.1109/CVPR.2016.343 10.1109/TGRS.2017.2778300 10.1093/ijl/3.4.235 10.1109/CVPR.2017.557 10.1109/CVPR.2019.00720 10.1109/CVPR.2018.00647 10.1109/ICCV.2007.4408986 10.1038/323533a0 10.1109/CVPR.2006.119 10.1109/CVPR.2017.690 10.1109/CVPR.2017.65 10.1109/ICCV.2019.00972 10.1109/CVPR.2014.49 10.1109/TPAMI.2009.167 10.1109/CVPR.2018.00474 10.1007/s11263-009-0275-4 10.1109/ICCV.2017.368 10.1109/IROS.2012.6385773 10.1007/978-3-319-46478-7_22 10.1109/CVPR.2016.350 10.1609/aaai.v33i01.33018094 10.1007/978-3-030-01252-6_24 10.1109/CVPR.2016.98 10.1007/978-3-319-49409-8_69 10.1007/978-3-319-15554-8_73 10.1109/CVPR.2018.00753 10.1007/978-3-319-47157-0_20 10.1109/CVPR.2016.314 10.1109/CVPR.2017.75 10.1007/978-3-319-10584-0_23 10.1109/CVPR.2019.00091 10.1109/CVPR.2018.00914 10.1007/978-0-387-84858-7_14 10.1109/CVPR.2017.639 10.1109/CVPR.2018.00907 10.1109/CVPR.2018.00633 10.3390/app8050813 10.1109/5.726791 10.5244/C.28.82 10.1007/978-3-030-01219-9_39 10.1016/j.cviu.2005.09.012 10.1007/978-3-030-01258-8_15 10.1007/978-3-319-23528-8_9 10.1007/978-3-319-46493-0_22 10.1007/978-3-319-48881-3_56 10.1109/CVPR.2015.7299170 10.1109/ICIP.2002.1038171 10.1016/j.patcog.2016.04.002 10.1145/2847263.2847265 10.1109/CVPR.2015.7298938 10.1609/aaai.v31i1.11231 10.1109/TPAMI.2013.50 10.1007/s11263-014-0733-5 10.1109/ICCV.2019.00615 10.1109/CVPRW.2009.5206532 10.1109/ICMEW.2015.7169816 10.1007/s11263-013-0620-5 10.1109/ICPR.2006.479 10.1109/CVPR.2018.00811 10.1109/CVPR.2016.618 10.1109/CVPR.2019.00958 10.1109/ICCV.2015.312 10.1109/CVPRW.2018.00215 10.1109/TPAMI.2016.2578328 10.1109/ICCV.2019.00502 10.1109/CVPR.2014.222 10.1109/TPAMI.2017.2738644 10.1109/CVPR.2015.7298958 10.1109/CVPR.2015.7298854 10.1109/ICCV.2017.52 10.1007/978-3-319-46726-9_31 10.1109/TPAMI.2017.2723009 10.1007/978-3-319-46448-0_2 10.1109/CVPR.2016.89 10.1109/CVPR.2009.5206848 10.1109/ICCV.2017.322 10.1109/ICCV.2019.00671 10.1109/CVPR.2013.417 10.1109/IVS.2016.7535375 10.1109/CVPR.2017.106 10.1109/CVPR.2008.4587597 10.1109/TPAMI.2011.155 10.1109/ICCV.2015.285 10.1109/TPAMI.2010.70 10.1109/CVPR.2017.195 10.1109/ICCV.2011.6126474 10.1109/CVPR.2017.691 10.1109/CVPR.2016.91 10.1007/978-3-030-01264-9_45 10.1109/FG.2017.82 10.1023/A:1007379606734 10.1109/IVS.2018.8500504 10.1109/TPAMI.2011.231 10.1109/TPAMI.2006.79 10.1109/CVPR.2018.00609 10.1109/CVPR.2001.990517 10.1109/ICCV.2015.169 10.1109/CVPR.2016.90 10.1007/978-3-030-01240-3_21 10.1109/ICCV.2017.522 10.1109/ICCV.2003.1238663 10.1109/CVPR.2018.00941 10.1109/ICCV.2011.6126456 10.1109/CVPR.2014.81 10.1109/CVPR.2014.220 10.1109/TPAMI.2008.128 10.1109/ICCV.2017.54 10.1109/TCSVT.2017.2736553 10.1109/CVPR.2018.00644 10.1007/978-3-319-10578-9_23 10.1109/CVPR.2018.00730 10.1609/aaai.v33i01.33019259 10.1109/CVPR.2019.01082 10.1007/978-3-319-46493-0_50 10.1109/CVPR.2017.207 10.1109/TPAMI.2014.2343217 10.1109/ICCV.2017.30 10.1109/CVPR.2017.211 10.1142/9789812797926_0003 10.1109/ICCV.2013.257 10.1007/s11263-015-0816-y 10.1109/LGRS.2018.2872355 10.1109/ICCV.2017.444 10.1109/CVPR.2006.68 10.1109/CVPR.2014.276 10.1109/CVPR.2015.7298594 10.1109/TGRS.2016.2601622 10.1109/CVPR.2017.553 10.4467/20838476SI.16.004.6185 10.1109/ICCV.2019.00975 10.1007/978-3-030-01264-9_48 10.1007/s11263-014-0748-y 10.1109/ICCV.2017.324 10.1007/978-3-319-46475-6_28 10.1007/978-3-319-46723-8_28 10.1109/TGRS.2016.2645610 10.1609/aaai.v32i1.11716 10.1109/CVPR.2016.308 10.1109/CVPR.2017.243 10.1007/978-3-030-11009-3_11 10.1109/CVPR.2019.00300 10.1109/CVPR.2005.177 10.1109/CVPR.2017.634 10.1109/ACPR.2013.33 10.1109/TGRS.2019.2899955 10.1109/CVPR.2017.166 10.1109/CVPR.2015.7299188 10.1007/s11263-019-01247-4 10.1007/978-3-030-01261-8_33 10.1109/CVPRW.2009.5206631 10.1007/s11263-015-0822-0 10.1007/978-3-030-01246-5_2 10.1109/CVPR.2019.00237 10.3390/rs11060620 10.1007/978-3-030-01228-1_15 10.1023/B:VISI.0000013087.49260.fb 10.1109/CVPR.2018.00136 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-020-08976-6 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 23791 |
ExternalDocumentID | 10_1007_s11042_020_08976_6 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c385t-e7b2bd7d5372afa96affa669178210dd41b2ecf48c80d976303cb9aa8e4eb9a73 |
IEDL.DBID | U2A |
ISSN | 1380-7501 |
IngestDate | Sat Jul 26 00:03:28 EDT 2025 Tue Jul 01 04:13:04 EDT 2025 Thu Apr 24 22:59:38 EDT 2025 Fri Feb 21 02:37:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33-34 |
Keywords | Deep learning Deep convolutional neural networks Computer vision Object detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-e7b2bd7d5372afa96affa669178210dd41b2ecf48c80d976303cb9aa8e4eb9a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3669-3748 |
PQID | 2435937642 |
PQPubID | 54626 |
PageCount | 63 |
ParticipantIDs | proquest_journals_2435937642 crossref_primary_10_1007_s11042_020_08976_6 crossref_citationtrail_10_1007_s11042_020_08976_6 springer_journals_10_1007_s11042_020_08976_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | CR162 CR283 CR163 CR284 CR160 CR281 CR282 CR280 Kang, Li, Yan, Zeng, Yang, Xiao, Zhang, Wang, Wang, Wang (CR102) 2018; 28 CR159 CR157 CR278 CR279 CR276 CR156 CR277 CR274 CR154 CR275 Bengio, Courville, Vincent (CR8) 2013; 35 Fei-Fei, Fergus, Perona (CR56) 2007; 106 CR173 CR294 CR174 CR295 CR171 CR292 CR172 CR293 CR290 CR170 CR291 CR168 CR289 CR169 Yang, Luo, Loy, Tang (CR257) 2017; 40 CR166 CR287 CR167 CR288 CR164 CR285 CR165 Li, Wei, Liang, Dong, Xu, Feng, Yan (CR129) 2017; 19 CR140 CR261 CR141 CR262 CR260 CR137 CR258 CR138 CR259 CR135 CR256 CR136 CR133 CR254 CR134 CR255 CR131 CR252 CR132 CR253 CR151 CR272 CR152 CR270 CR150 CR271 Zhang, Zhang, Li, Qiao (CR273) 2016; 23 CR148 CR269 CR146 CR267 CR147 CR268 CR144 CR265 CR266 CR142 CR263 CR143 Mao, Yao, Tang, Li, Yao, Wang (CR158) 2018; 6 Xiao, Ehinger, Hays, Torralba, Oliva (CR251) 2016; 119 Hochreiter, Schmidhuber (CR86) 1997; 9 CR240 CR115 CR236 CR237 CR113 CR114 CR235 CR111 Hoi, Wu, Liu, Wu, Wang, Xue, Wu (CR87) 2015; 46 CR112 CR233 CR110 CR231 CR119 Miller, Beckwith, Fellbaum, Gross, Miller (CR161) 1990; 3 CR117 CR238 CR118 CR239 CR250 Rumelhart, Hinton, Williams (CR194) 1986; 323 Li, Cheng, Bu, You (CR130) 2017; 56 CR126 CR248 CR124 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (CR195) 2015; 115 CR125 CR246 CR243 CR123 CR120 CR241 CR121 CR242 CR128 CR249 Bartlett, Wegkamp (CR6) 2008; 9 Ren, He, Girshick, Zhang, Sun (CR190) 2016; 39 Fei-Fei, Fergus, Perona (CR55) 2006; 28 CR19 CR18 CR17 CR16 CR15 CR14 CR13 CR12 CR11 CR214 CR10 CR215 CR212 CR213 CR210 CR211 Caruana (CR20) 1997; 28 CR218 Liangkui, Shaoyou, Zhongxing (CR139) 2018; 29 CR219 CR216 CR217 CR29 CR27 CR26 CR25 CR24 CR23 CR104 CR225 CR21 CR105 CR226 CR223 CR103 CR100 CR221 CR101 Yu, Wong (CR264) 2007; 9 CR220 Felzenszwalb, Girshick, McAllester, Ramanan (CR58) 2010; 32 CR108 CR229 CR109 CR106 CR227 CR107 CR228 Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, Van Der Laak, Van Ginneken, Sanchez (CR145) 2017; 42 CR39 CR38 CR37 CR35 He, Lau, Liu, Huang, Yang (CR83) 2015; 115 CR34 CR32 Everingham, Van Gool, Williams, Winn, Zisserman (CR52) 2010; 88 CR31 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR209) 2014; 15 CR30 De Boer, Kroese, Mannor, Rubinstein (CR41) 2005; 134 Torralba, Fergus, Freeman (CR222) 2008; 30 Lowe (CR155) 2004; 60 Willmott, Matsuura (CR247) 2005; 30 CR49 CR48 CR47 CR45 CR44 CR203 CR43 CR204 CR42 CR201 CR202 CR40 CR200 Wei, You, Li (CR244) 2016; 58 CR207 CR208 CR205 CR206 Wang, Zheng, Lei, Bai (CR234) 2019; 11 Viola, Jones (CR230) 2004; 57 Weimer, Scholz-Reiter, Shpitalni (CR245) 2016; 65 CR59 CR57 CR54 CR53 CR50 Uijlings, van de Sande, Gevers, Smeulders (CR224) 2013; 104 CR69 CR68 CR67 CR66 CR65 CR64 CR63 CR62 CR61 CR60 Chai, Draxler (CR22) 2014; 7 CR79 CR78 CR77 Alexe, Deselaers, Ferrari (CR1) 2012; 34 CR76 CR75 CR74 CR73 CR199 CR72 CR71 CR197 CR70 CR198 Zhou, Lapedriza, Khosla, Oliva, Torralba (CR286) 2018; 40 Cheng, Zhou, Han (CR33) 2016; 54 Li, Liang, Shen, Xu, Feng, Yan (CR127) 2017; 20 CR2 CR4 CR3 CR5 CR7 CR9 CR89 CR88 CR85 CR84 CR82 CR81 CR80 Everingham, Eslami, Van Gool, Williams, Winn, Zisserman (CR51) 2015; 111 CR184 CR185 CR182 CR183 CR180 CR181 CR99 CR98 CR97 CR179 CR96 CR95 CR177 CR94 CR178 CR93 CR175 CR296 CR92 CR176 CR297 CR91 CR90 Krizhevsky, Sutskever, Hinton (CR116) 2017; 60 Ren, Zhu, Xiao (CR193) 2018; 8 Long, Gong, Xiao, Liu (CR153) 2017; 55 Dollar, Wojek, Schiele, Perona (CR46) 2012; 34 CR196 Chen, Song, Dong, Huang, Hua, Yan (CR28) 2015; 37 LeCun, Bengio, Hinton (CR122) 2015; 521 CR191 CR192 Liu, Yuan, Sun, Wang, Zheng, Tang, Shum (CR149) 2010; 33 CR188 CR189 Wang, Bai, Wang, Zhou, Ren (CR232) 2018; 16 CR186 CR187 Cortes, Vapnik (CR36) 1995; 20 8976_CR91 8976_CR92 8976_CR90 8976_CR95 8976_CR96 8976_CR93 8976_CR94 8976_CR99 8976_CR97 8976_CR98 T Chai (8976_CR22) 2014; 7 Y LeCun (8976_CR122) 2015; 521 P Dollar (8976_CR46) 2012; 34 GA Miller (8976_CR161) 1990; 3 P-T De Boer (8976_CR41) 2005; 134 G Cheng (8976_CR33) 2016; 54 8976_CR210 8976_CR212 8976_CR211 8976_CR214 8976_CR213 8976_CR216 8976_CR215 8976_CR218 J Wang (8976_CR234) 2019; 11 8976_CR217 8976_CR219 Y Long (8976_CR153) 2017; 55 8976_CR201 8976_CR200 8976_CR203 8976_CR202 8976_CR205 8976_CR204 8976_CR207 8976_CR206 K Kang (8976_CR102) 2018; 28 8976_CR208 O Russakovsky (8976_CR195) 2015; 115 D Weimer (8976_CR245) 2016; 65 Y Ren (8976_CR193) 2018; 8 8976_CR111 8976_CR110 8976_CR231 8976_CR113 8976_CR112 8976_CR233 8976_CR115 8976_CR236 8976_CR114 8976_CR235 8976_CR117 8976_CR238 T Liu (8976_CR149) 2010; 33 8976_CR237 8976_CR119 8976_CR118 8976_CR239 PL Bartlett (8976_CR6) 2008; 9 J Li (8976_CR129) 2017; 19 S Yang (8976_CR257) 2017; 40 8976_CR100 8976_CR221 C Wang (8976_CR232) 2018; 16 8976_CR220 8976_CR223 8976_CR101 8976_CR104 8976_CR225 8976_CR103 8976_CR106 8976_CR227 8976_CR105 8976_CR226 8976_CR108 8976_CR229 8976_CR107 8976_CR228 8976_CR109 8976_CR2 8976_CR15 C Cortes (8976_CR36) 1995; 20 8976_CR3 8976_CR16 8976_CR4 8976_CR13 L Liangkui (8976_CR139) 2018; 29 8976_CR5 8976_CR14 8976_CR19 8976_CR17 8976_CR18 8976_CR7 8976_CR140 8976_CR261 8976_CR9 8976_CR260 8976_CR131 8976_CR252 8976_CR133 8976_CR254 8976_CR132 H Mao (8976_CR158) 2018; 6 8976_CR253 8976_CR135 8976_CR256 L Fei-Fei (8976_CR55) 2006; 28 8976_CR134 8976_CR255 K Li (8976_CR130) 2017; 56 8976_CR137 8976_CR258 8976_CR136 8976_CR138 8976_CR259 8976_CR11 8976_CR12 8976_CR10 8976_CR26 8976_CR27 8976_CR24 8976_CR25 PF Felzenszwalb (8976_CR58) 2010; 32 8976_CR29 8976_CR250 8976_CR120 8976_CR241 8976_CR240 8976_CR243 8976_CR121 8976_CR242 8976_CR124 8976_CR123 8976_CR126 8976_CR125 8976_CR246 8976_CR128 8976_CR249 8976_CR248 8976_CR23 8976_CR21 8976_CR37 8976_CR38 8976_CR35 8976_CR39 B Zhou (8976_CR286) 2018; 40 8976_CR160 8976_CR281 8976_CR280 8976_CR162 8976_CR283 8976_CR282 8976_CR274 8976_CR152 8976_CR276 8976_CR154 8976_CR275 8976_CR157 8976_CR278 M Everingham (8976_CR52) 2010; 88 8976_CR156 8976_CR277 8976_CR159 8976_CR279 8976_CR30 M Everingham (8976_CR51) 2015; 111 8976_CR34 8976_CR31 8976_CR32 8976_CR48 A Torralba (8976_CR222) 2008; 30 8976_CR49 8976_CR47 8976_CR270 G Litjens (8976_CR145) 2017; 42 R Caruana (8976_CR20) 1997; 28 8976_CR151 8976_CR272 8976_CR150 8976_CR271 Y Bengio (8976_CR8) 2013; 35 8976_CR142 8976_CR263 8976_CR141 8976_CR262 8976_CR144 8976_CR265 8976_CR143 8976_CR146 8976_CR267 JRR Uijlings (8976_CR224) 2013; 104 8976_CR266 8976_CR148 8976_CR269 8976_CR147 8976_CR268 8976_CR40 8976_CR44 8976_CR45 8976_CR42 8976_CR43 8976_CR59 8976_CR57 8976_CR180 8976_CR182 8976_CR181 8976_CR184 DE Rumelhart (8976_CR194) 1986; 323 8976_CR183 8976_CR175 8976_CR296 8976_CR174 8976_CR295 8976_CR177 8976_CR176 8976_CR297 8976_CR179 8976_CR178 CJ Willmott (8976_CR247) 2005; 30 Y Wei (8976_CR244) 2016; 58 8976_CR50 J Xiao (8976_CR251) 2016; 119 S He (8976_CR83) 2015; 115 Q Chen (8976_CR28) 2015; 37 8976_CR53 8976_CR54 8976_CR68 8976_CR69 8976_CR290 DG Lowe (8976_CR155) 2004; 60 8976_CR171 8976_CR292 8976_CR170 8976_CR291 8976_CR173 8976_CR294 8976_CR172 8976_CR293 8976_CR164 8976_CR285 B Alexe (8976_CR1) 2012; 34 8976_CR163 8976_CR284 8976_CR166 8976_CR287 8976_CR165 8976_CR168 8976_CR289 8976_CR167 8976_CR288 8976_CR169 8976_CR62 8976_CR63 8976_CR60 8976_CR61 8976_CR66 8976_CR67 8976_CR64 8976_CR65 8976_CR79 J Li (8976_CR127) 2017; 20 P Viola (8976_CR230) 2004; 57 S Hochreiter (8976_CR86) 1997; 9 S Ren (8976_CR190) 2016; 39 A Krizhevsky (8976_CR116) 2017; 60 8976_CR197 8976_CR196 8976_CR199 8976_CR198 8976_CR70 Z Yu (8976_CR264) 2007; 9 8976_CR73 8976_CR74 8976_CR71 8976_CR72 8976_CR77 8976_CR78 8976_CR75 8976_CR76 SC Hoi (8976_CR87) 2015; 46 N Srivastava (8976_CR209) 2014; 15 L Fei-Fei (8976_CR56) 2007; 106 8976_CR191 K Zhang (8976_CR273) 2016; 23 8976_CR192 8976_CR186 8976_CR185 8976_CR188 8976_CR187 8976_CR80 8976_CR81 8976_CR189 8976_CR84 8976_CR85 8976_CR82 8976_CR88 8976_CR89 |
References_xml | – ident: CR45 – ident: CR150 – ident: CR282 – ident: CR173 – ident: CR97 – ident: CR196 – ident: CR68 – ident: CR74 – ident: CR39 – ident: CR16 – ident: CR115 – ident: CR138 – ident: CR80 – ident: CR201 – ident: CR121 – ident: CR253 – ident: CR167 – ident: CR144 – ident: CR276 – ident: CR235 – ident: CR92 – ident: CR132 – ident: CR287 – ident: CR178 – ident: CR191 – ident: CR241 – ident: CR229 – ident: CR11 – ident: CR57 – ident: CR294 – ident: CR185 – ident: CR218 – ident: CR85 – ident: CR242 – ident: CR5 – ident: CR109 – volume: 323 start-page: 533 issue: 6088 year: 1986 end-page: 536 ident: CR194 article-title: Learning representations by back-propagating errors publication-title: Nature – ident: CR126 – volume: 16 start-page: 310 issue: 2 year: 2018 end-page: 314 ident: CR232 article-title: Multiscale visual attention networks for object detection in VHR remote sensing images publication-title: IEEE Geosci Remote Sens Lett – volume: 9 start-page: 1823 issue: 8 year: 2008 end-page: 1840 ident: CR6 article-title: Classification with a reject option using a hinge loss publication-title: J Mach Learn Res – volume: 8 start-page: 813 issue: 5 year: 2018 ident: CR193 article-title: Small object detection in optical remote sensing images via modified faster R-CNN publication-title: Appl Sci – ident: CR207 – ident: CR91 – ident: CR213 – ident: CR156 – ident: CR179 – volume: 60 start-page: 91 issue: 2 year: 2004 end-page: 110 ident: CR155 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int J Comput Vis – ident: CR10 – ident: CR137 – ident: CR269 – ident: CR270 – ident: CR184 – volume: 55 start-page: 2486 issue: 5 year: 2017 end-page: 2498 ident: CR153 article-title: Accurate object localization in remote sensing images based on convolutional neural networks publication-title: IEEE Trans Geosci Remote Sens – ident: CR63 – volume: 65 start-page: 417 issue: 1 year: 2016 end-page: 420 ident: CR245 article-title: Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection publication-title: CIRP Annals-Manufacturing Technology – ident: CR27 – ident: CR236 – ident: CR108 – ident: CR69 – ident: CR281 – ident: CR44 – volume: 106 start-page: 59 issue: 1 year: 2007 end-page: 70 ident: CR56 article-title: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories publication-title: Computer Vision Image Understanding – ident: CR103 – volume: 30 start-page: 79 issue: 1 year: 2005 end-page: 82 ident: CR247 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Climate Research – ident: CR38 – ident: CR151 – ident: CR162 – ident: CR114 – ident: CR202 – volume: 20 start-page: 985 issue: 4 year: 2017 end-page: 996 ident: CR127 article-title: Scale-aware fast R-CNN for pedestrian detection publication-title: IEEE Transactions on Multimedia – ident: CR120 – ident: CR258 – ident: CR275 – ident: CR70 – ident: CR148 – ident: CR177 – volume: 54 start-page: 7405 issue: 12 year: 2016 end-page: 7415 ident: CR33 article-title: Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images publication-title: IEEE Trans Geosci Remote Sens – ident: CR49 – ident: CR93 – volume: 115 start-page: 211 issue: 3 year: 2015 end-page: 252 ident: CR195 article-title: Imagenet large scale visual recognition challenge publication-title: Int J Comput Vis – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 ident: CR36 article-title: Support vector machine publication-title: Mach Learn – ident: CR154 – ident: CR111 – ident: CR219 – ident: CR243 – volume: 3 start-page: 235 issue: 4 year: 1990 end-page: 244 ident: CR161 article-title: Introduction to WordNet: an on-line lexical database publication-title: Int J Lexicogr – ident: CR220 – ident: CR272 – ident: CR21 – ident: CR208 – volume: 6 start-page: 417 issue: 3 year: 2018 end-page: 431 ident: CR158 article-title: Towards real-time object detection on embedded systems publication-title: IEEE Transactions on Emerging Topics in Computing – volume: 37 start-page: 13 issue: 1 year: 2015 end-page: 27 ident: CR28 article-title: Contextualizing object detection and classification publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – ident: CR231 – ident: CR75 – ident: CR15 – ident: CR225 – ident: CR266 – ident: CR283 – ident: CR32 – ident: CR189 – ident: CR81 – volume: 28 start-page: 41 issue: 1 year: 1997 end-page: 75 ident: CR20 article-title: Multitask learning publication-title: Mach Learn – ident: CR64 – ident: CR214 – ident: CR105 – ident: CR26 – ident: CR99 – ident: CR277 – ident: CR143 – ident: CR160 – ident: CR43 – ident: CR203 – ident: CR14 – ident: CR288 – ident: CR2 – ident: CR37 – ident: CR53 – volume: 32 start-page: 1627 issue: 9 year: 2010 end-page: 1645 ident: CR58 article-title: Object detection with discriminatively trained part-based models publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – ident: CR226 – volume: 58 start-page: 216 year: 2016 end-page: 226 ident: CR244 article-title: Multiscale patch-based contrast measure for small infrared target detection publication-title: Pattern Recogn – volume: 111 start-page: 98 issue: 1 year: 2015 end-page: 136 ident: CR51 article-title: The pascal visual object classes challenge: a retrospective publication-title: Int J Comput Vis – ident: CR133 – ident: CR265 – ident: CR82 – volume: 23 start-page: 1499 issue: 10 year: 2016 end-page: 1503 ident: CR273 article-title: Joint face detection and alignment using multitask cascaded convolutional networks publication-title: IEEE Signal Processing Letters – ident: CR188 – volume: 40 start-page: 1845 issue: 8 year: 2017 end-page: 1859 ident: CR257 article-title: Faceness-net: face detection through deep facial part responses publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – ident: CR98 – volume: 42 start-page: 60 year: 2017 end-page: 88 ident: CR145 article-title: A survey on deep learning in medical image analysis publication-title: Med Image Anal – ident: CR104 – volume: 9 start-page: 766 issue: 4 year: 2007 end-page: 784 ident: CR264 article-title: A rule based technique for extraction of visual attention regions based on real-time clustering publication-title: IEEE Transactions on Multimedia – ident: CR259 – ident: CR293 – volume: 28 start-page: 2896 issue: 10 year: 2018 end-page: 2907 ident: CR102 article-title: T-cnn: tubelets with convolutional neural networks for object detection from videos publication-title: IEEE Transactions on Circuits Systems for Video Technology – ident: CR260 – ident: CR48 – ident: CR65 – ident: CR248 – ident: CR31 – ident: CR172 – volume: 28 start-page: 594 issue: 4 year: 2006 end-page: 611 ident: CR55 article-title: One-shot learning of object categories publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – ident: CR271 – ident: CR110 – ident: CR7 – ident: CR59 – ident: CR76 – ident: CR166 – ident: CR237 – ident: CR183 – ident: CR254 – volume: 46 start-page: 2403 issue: 5 year: 2015 end-page: 2412 ident: CR87 article-title: Logo-net: large-scale deep logo detection and brand recognition with deep region-based convolutional networks publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 ident: CR122 article-title: Deep learning publication-title: Nature – volume: 15 start-page: 1929 issue: 1 year: 2014 end-page: 1958 ident: CR209 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: The Journal of Machine Learning Research – volume: 104 start-page: 154 issue: 2 year: 2013 end-page: 171 ident: CR224 article-title: Selective search for object recognition publication-title: International Journal of Computer Vision (IJCV) – ident: CR135 – ident: CR267 – volume: 29 start-page: 947 issue: 5 year: 2018 end-page: 952 ident: CR139 article-title: Using deep learning to detect small targets in infrared oversampling images publication-title: J Syst Eng Electron – ident: CR54 – volume: 57 start-page: 137 issue: 2 year: 2004 end-page: 154 ident: CR230 article-title: Robust real-time face detection publication-title: International journal of computer vision – ident: CR77 – ident: CR106 – ident: CR215 – ident: CR238 – ident: CR25 – ident: CR182 – ident: CR42 – ident: CR291 – volume: 33 start-page: 353 issue: 2 year: 2010 end-page: 367 ident: CR149 article-title: Learning to detect a salient object publication-title: IEEE Transactions on Pattern analysis and Machine Intelligence – ident: CR101 – ident: CR71 – ident: CR256 – ident: CR19 – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 ident: CR86 article-title: Long short-term memory publication-title: Neural Comput – ident: CR199 – ident: CR204 – ident: CR210 – ident: CR88 – ident: CR262 – ident: CR170 – ident: CR221 – ident: CR60 – ident: CR112 – ident: CR147 – ident: CR164 – volume: 11 start-page: 620 issue: 6 year: 2019 ident: CR234 article-title: A hierarchical convolution neural network (CNN)-based ship target detection method in spaceborne SAR imagery publication-title: Remote Sens – ident: CR198 – ident: CR100 – ident: CR18 – ident: CR66 – ident: CR47 – ident: CR72 – volume: 56 start-page: 2337 issue: 4 year: 2017 end-page: 2348 ident: CR130 article-title: Rotation-insensitive and context-augmented object detection in remote sensing images publication-title: IEEE Trans Geosci Remote Sens – ident: CR89 – volume: 134 start-page: 19 issue: 1 year: 2005 end-page: 67 ident: CR41 article-title: A tutorial on the cross-entropy method publication-title: Ann Oper Res – ident: CR30 – ident: CR171 – ident: CR261 – volume: 30 start-page: 1958 issue: 11 year: 2008 end-page: 1970 ident: CR222 article-title: 80 million tiny images: a large data set for nonparametric object and scene recognition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 115 start-page: 330 issue: 3 year: 2015 end-page: 344 ident: CR83 article-title: Supercnn: a superpixelwise convolutional neural network for salient object detection publication-title: Int J Comput Vis – ident: CR117 – ident: CR249 – ident: CR284 – volume: 35 start-page: 1798 issue: 8 year: 2013 end-page: 1828 ident: CR8 article-title: Representation learning: a review and new perspectives publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – ident: CR165 – ident: CR278 – ident: CR297 – ident: CR123 – ident: CR255 – ident: CR142 – ident: CR94 – ident: CR233 – ident: CR176 – ident: CR3 – ident: CR289 – ident: CR227 – volume: 88 start-page: 303 issue: 2 year: 2010 end-page: 338 ident: CR52 article-title: The pascal visual object classes (voc) challenge publication-title: Int J Comput Vis – ident: CR134 – ident: CR13 – ident: CR187 – ident: CR159 – ident: CR216 – ident: CR250 – ident: CR24 – ident: CR128 – ident: CR292 – ident: CR125 – ident: CR205 – ident: CR211 – ident: CR4 – ident: CR131 – ident: CR240 – ident: CR263 – ident: CR228 – ident: CR192 – ident: CR12 – ident: CR119 – ident: CR186 – volume: 34 start-page: 2189 issue: 11 year: 2012 end-page: 2202 ident: CR1 article-title: Measuring the objectness of image windows publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – ident: CR35 – ident: CR29 – ident: CR61 – ident: CR84 – ident: CR140 – ident: CR163 – ident: CR295 – volume: 34 start-page: 743 issue: 4 year: 2012 end-page: 761 ident: CR46 article-title: Pedestrian detection: an evaluation of the state of the art publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – ident: CR174 – ident: CR96 – ident: CR67 – ident: CR50 – ident: CR157 – ident: CR136 – ident: CR9 – volume: 19 start-page: 944 issue: 5 year: 2017 end-page: 954 ident: CR129 article-title: Attentive contexts for object detection publication-title: IEEE Transactions on Multimedia – ident: CR246 – ident: CR78 – ident: CR200 – ident: CR181 – ident: CR239 – ident: CR168 – ident: CR252 – ident: CR290 – ident: CR95 – ident: CR175 – volume: 119 start-page: 3 issue: 1 year: 2016 end-page: 22 ident: CR251 article-title: Sun database: exploring a large collection of scene categories publication-title: Int J Comput Vis – ident: CR280 – ident: CR152 – ident: CR113 – ident: CR217 – ident: CR79 – ident: CR40 – ident: CR180 – ident: CR169 – ident: CR146 – ident: CR23 – ident: CR274 – volume: 7 start-page: 1247 issue: 3 year: 2014 end-page: 1250 ident: CR22 article-title: Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature publication-title: Geosci Model Dev – volume: 60 start-page: 84 issue: 6 year: 2017 end-page: 90 ident: CR116 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun ACM – ident: CR124 – ident: CR197 – ident: CR73 – ident: CR212 – ident: CR206 – ident: CR90 – ident: CR17 – ident: CR285 – ident: CR118 – ident: CR268 – volume: 40 start-page: 1452 issue: 6 year: 2018 end-page: 1464 ident: CR286 article-title: Places: a 10 million image database for scene recognition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – ident: CR34 – ident: CR223 – volume: 39 start-page: 1476 issue: 7 year: 2016 end-page: 1481 ident: CR190 article-title: Object detection networks on convolutional feature maps publication-title: IEEE transactions on pattern analysis and machine intelligence – ident: CR107 – ident: CR62 – ident: CR141 – ident: CR279 – ident: CR296 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 8976_CR122 publication-title: Nature doi: 10.1038/nature14539 – ident: 8976_CR287 doi: 10.1109/CVPR.2018.00062 – ident: 8976_CR69 doi: 10.1109/ICASSP.2013.6638947 – ident: 8976_CR105 – ident: 8976_CR237 – ident: 8976_CR243 doi: 10.1109/CVPR.2017.324 – ident: 8976_CR98 doi: 10.1109/34.730558 – ident: 8976_CR73 – ident: 8976_CR29 doi: 10.1109/ICCV.2017.440 – ident: 8976_CR275 doi: 10.1109/CVPR.2017.474 – ident: 8976_CR241 doi: 10.1109/ICCV.2009.5459207 – volume: 46 start-page: 2403 issue: 5 year: 2015 ident: 8976_CR87 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – ident: 8976_CR254 doi: 10.21437/Interspeech.2013-552 – volume: 20 start-page: 985 issue: 4 year: 2017 ident: 8976_CR127 publication-title: IEEE Transactions on Multimedia – volume: 19 start-page: 944 issue: 5 year: 2017 ident: 8976_CR129 publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2016.2642789 – ident: 8976_CR289 doi: 10.1109/CVPR.2019.00094 – ident: 8976_CR94 doi: 10.1007/978-3-319-10593-2_33 – ident: 8976_CR114 doi: 10.1007/978-3-319-10602-1_47 – ident: 8976_CR278 doi: 10.1109/BTAS.2017.8272675 – ident: 8976_CR163 – ident: 8976_CR108 doi: 10.1109/ICME.2008.4607625 – ident: 8976_CR186 – ident: 8976_CR248 doi: 10.1109/CVPR.2016.521 – ident: 8976_CR89 doi: 10.1109/CVPR.2018.00745 – volume: 42 start-page: 60 year: 2017 ident: 8976_CR145 publication-title: Med Image Anal doi: 10.1016/j.media.2017.07.005 – ident: 8976_CR219 – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 8976_CR116 publication-title: Commun ACM doi: 10.1145/3065386 – volume: 60 start-page: 91 issue: 2 year: 2004 ident: 8976_CR155 publication-title: Int J Comput Vis doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 8976_CR209 publication-title: The Journal of Machine Learning Research – ident: 8976_CR118 doi: 10.1109/ICRA.2011.5980382 – ident: 8976_CR32 doi: 10.1007/978-3-030-01267-0_28 – volume: 34 start-page: 2189 issue: 11 year: 2012 ident: 8976_CR1 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2012.28 – ident: 8976_CR77 doi: 10.1109/ICCV.2009.5459257 – ident: 8976_CR10 doi: 10.1109/ICCV.2017.593 – ident: 8976_CR67 – ident: 8976_CR231 – ident: 8976_CR220 doi: 10.1109/ICCV.2015.221 – ident: 8976_CR199 doi: 10.1109/ICCV.2017.212 – ident: 8976_CR152 doi: 10.1109/CVPR.2015.7298965 – ident: 8976_CR103 doi: 10.1109/CVPR.2016.95 – ident: 8976_CR282 doi: 10.1109/CVPR.2016.451 – ident: 8976_CR104 doi: 10.1109/CVPR.2014.223 – volume: 6 start-page: 417 issue: 3 year: 2018 ident: 8976_CR158 publication-title: IEEE Transactions on Emerging Topics in Computing doi: 10.1109/TETC.2016.2593643 – volume: 30 start-page: 79 issue: 1 year: 2005 ident: 8976_CR247 publication-title: Climate Research doi: 10.3354/cr030079 – ident: 8976_CR175 doi: 10.1109/ICCV.2019.00970 – ident: 8976_CR296 doi: 10.1007/978-3-319-10602-1_26 – ident: 8976_CR204 doi: 10.1109/CVPR.2018.00377 – volume: 7 start-page: 1247 issue: 3 year: 2014 ident: 8976_CR22 publication-title: Geosci Model Dev doi: 10.5194/gmd-7-1247-2014 – volume: 9 start-page: 766 issue: 4 year: 2007 ident: 8976_CR264 publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2007.893351 – ident: 8976_CR197 – ident: 8976_CR203 – ident: 8976_CR226 – ident: 8976_CR63 doi: 10.1109/ICCV.2015.296 – ident: 8976_CR258 doi: 10.1109/CVPR.2017.643 – volume: 29 start-page: 947 issue: 5 year: 2018 ident: 8976_CR139 publication-title: J Syst Eng Electron doi: 10.21629/JSEE.2018.05.07 – ident: 8976_CR284 doi: 10.1109/CVPR.2015.7298731 – ident: 8976_CR18 doi: 10.1007/978-3-030-01264-9_9 – ident: 8976_CR169 – ident: 8976_CR74 doi: 10.1109/ICME.2019.00009 – ident: 8976_CR266 doi: 10.1007/978-3-319-10590-1_53 – ident: 8976_CR38 – ident: 8976_CR267 doi: 10.1109/CVPR.2010.5539957 – ident: 8976_CR277 doi: 10.1109/CVPR.2018.00442 – ident: 8976_CR47 doi: 10.1109/ICCV.2019.00667 – ident: 8976_CR60 doi: 10.1109/CVPR.2018.00724 – volume: 39 start-page: 1476 issue: 7 year: 2016 ident: 8976_CR190 publication-title: IEEE transactions on pattern analysis and machine intelligence doi: 10.1109/TPAMI.2016.2601099 – ident: 8976_CR184 doi: 10.1007/978-3-030-20887-5_34 – ident: 8976_CR228 doi: 10.1109/ICCV.2009.5459183 – ident: 8976_CR141 – volume: 134 start-page: 19 issue: 1 year: 2005 ident: 8976_CR41 publication-title: Ann Oper Res doi: 10.1007/s10479-005-5724-z – ident: 8976_CR185 doi: 10.1007/978-3-319-46493-0_32 – ident: 8976_CR260 doi: 10.1007/978-3-319-16811-1_34 – ident: 8976_CR216 doi: 10.1109/CVPR.2019.00293 – volume: 65 start-page: 417 issue: 1 year: 2016 ident: 8976_CR245 publication-title: CIRP Annals-Manufacturing Technology doi: 10.1016/j.cirp.2016.04.072 – ident: 8976_CR17 doi: 10.1117/12.2304811 – volume: 23 start-page: 1499 issue: 10 year: 2016 ident: 8976_CR273 publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2016.2603342 – ident: 8976_CR27 – ident: 8976_CR61 – ident: 8976_CR293 doi: 10.1109/CVPR.2017.441 – ident: 8976_CR157 doi: 10.1007/978-3-030-01264-9_8 – ident: 8976_CR49 doi: 10.1007/978-3-642-15555-0_42 – ident: 8976_CR93 doi: 10.1109/CVPR.2017.351 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 8976_CR86 publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – ident: 8976_CR39 – ident: 8976_CR143 doi: 10.1007/978-3-319-10602-1_48 – ident: 8976_CR265 doi: 10.5244/C.30.15 – ident: 8976_CR37 doi: 10.1109/CVPR.2016.343 – volume: 56 start-page: 2337 issue: 4 year: 2017 ident: 8976_CR130 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2017.2778300 – ident: 8976_CR68 – volume: 3 start-page: 235 issue: 4 year: 1990 ident: 8976_CR161 publication-title: Int J Lexicogr doi: 10.1093/ijl/3.4.235 – ident: 8976_CR167 – ident: 8976_CR111 doi: 10.1109/CVPR.2017.557 – ident: 8976_CR62 doi: 10.1109/CVPR.2019.00720 – ident: 8976_CR97 – ident: 8976_CR174 doi: 10.1109/CVPR.2018.00647 – ident: 8976_CR182 doi: 10.1109/ICCV.2007.4408986 – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 8976_CR194 publication-title: Nature doi: 10.1038/323533a0 – ident: 8976_CR180 doi: 10.1109/CVPR.2006.119 – ident: 8976_CR188 doi: 10.1109/CVPR.2017.690 – ident: 8976_CR91 doi: 10.1109/CVPR.2017.65 – ident: 8976_CR221 doi: 10.1109/ICCV.2019.00972 – ident: 8976_CR4 doi: 10.1109/CVPR.2014.49 – ident: 8976_CR11 – ident: 8976_CR191 – volume: 32 start-page: 1627 issue: 9 year: 2010 ident: 8976_CR58 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2009.167 – ident: 8976_CR196 doi: 10.1109/CVPR.2018.00474 – ident: 8976_CR179 – volume: 88 start-page: 303 issue: 2 year: 2010 ident: 8976_CR52 publication-title: Int J Comput Vis doi: 10.1007/s11263-009-0275-4 – ident: 8976_CR201 doi: 10.1109/ICCV.2017.368 – ident: 8976_CR210 doi: 10.1109/IROS.2012.6385773 – ident: 8976_CR269 doi: 10.1007/978-3-319-46478-7_22 – ident: 8976_CR256 – ident: 8976_CR35 doi: 10.1109/CVPR.2016.350 – ident: 8976_CR5 doi: 10.1609/aaai.v33i01.33018094 – ident: 8976_CR294 – ident: 8976_CR148 doi: 10.1007/978-3-030-01252-6_24 – volume: 9 start-page: 1823 issue: 8 year: 2008 ident: 8976_CR6 publication-title: J Mach Learn Res – ident: 8976_CR112 doi: 10.1109/CVPR.2016.98 – ident: 8976_CR198 doi: 10.1007/978-3-319-49409-8_69 – ident: 8976_CR240 doi: 10.1007/978-3-319-15554-8_73 – ident: 8976_CR291 doi: 10.1109/CVPR.2018.00753 – ident: 8976_CR106 doi: 10.1007/978-3-319-47157-0_20 – ident: 8976_CR7 doi: 10.1109/CVPR.2016.314 – ident: 8976_CR262 doi: 10.1109/CVPR.2017.75 – ident: 8976_CR178 – ident: 8976_CR72 doi: 10.1007/978-3-319-10584-0_23 – ident: 8976_CR172 doi: 10.1109/CVPR.2019.00091 – ident: 8976_CR249 – ident: 8976_CR227 doi: 10.1109/CVPR.2018.00914 – ident: 8976_CR78 doi: 10.1007/978-0-387-84858-7_14 – ident: 8976_CR85 – ident: 8976_CR159 doi: 10.1109/CVPR.2017.639 – ident: 8976_CR297 doi: 10.1109/CVPR.2018.00907 – ident: 8976_CR71 doi: 10.1109/CVPR.2018.00633 – volume: 8 start-page: 813 issue: 5 year: 2018 ident: 8976_CR193 publication-title: Appl Sci doi: 10.3390/app8050813 – ident: 8976_CR123 doi: 10.1109/5.726791 – ident: 8976_CR156 – ident: 8976_CR211 doi: 10.5244/C.28.82 – ident: 8976_CR276 doi: 10.1007/978-3-030-01219-9_39 – volume: 106 start-page: 59 issue: 1 year: 2007 ident: 8976_CR56 publication-title: Computer Vision Image Understanding doi: 10.1016/j.cviu.2005.09.012 – ident: 8976_CR261 – ident: 8976_CR21 doi: 10.1007/978-3-030-01258-8_15 – ident: 8976_CR200 doi: 10.1007/978-3-319-23528-8_9 – ident: 8976_CR14 doi: 10.1007/978-3-319-46493-0_22 – ident: 8976_CR9 doi: 10.1007/978-3-319-48881-3_56 – ident: 8976_CR126 doi: 10.1109/CVPR.2015.7299170 – ident: 8976_CR140 doi: 10.1109/ICIP.2002.1038171 – ident: 8976_CR96 – volume: 58 start-page: 216 year: 2016 ident: 8976_CR244 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2016.04.002 – ident: 8976_CR250 – ident: 8976_CR162 – ident: 8976_CR288 doi: 10.1109/CVPR.2018.00062 – ident: 8976_CR181 doi: 10.1145/2847263.2847265 – ident: 8976_CR235 doi: 10.1109/CVPR.2015.7298938 – ident: 8976_CR212 doi: 10.1609/aaai.v31i1.11231 – volume: 35 start-page: 1798 issue: 8 year: 2013 ident: 8976_CR8 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2013.50 – ident: 8976_CR119 – ident: 8976_CR70 – volume: 111 start-page: 98 issue: 1 year: 2015 ident: 8976_CR51 publication-title: Int J Comput Vis doi: 10.1007/s11263-014-0733-5 – ident: 8976_CR133 doi: 10.1109/ICCV.2019.00615 – ident: 8976_CR44 doi: 10.1109/CVPRW.2009.5206532 – ident: 8976_CR255 doi: 10.1109/ICMEW.2015.7169816 – volume: 104 start-page: 154 issue: 2 year: 2013 ident: 8976_CR224 publication-title: International Journal of Computer Vision (IJCV) doi: 10.1007/s11263-013-0620-5 – ident: 8976_CR166 doi: 10.1109/ICPR.2006.479 – ident: 8976_CR242 doi: 10.1109/CVPR.2018.00811 – ident: 8976_CR125 – ident: 8976_CR271 doi: 10.1109/CVPR.2016.618 – ident: 8976_CR15 doi: 10.1109/CVPR.2019.00958 – ident: 8976_CR24 doi: 10.1109/ICCV.2015.312 – ident: 8976_CR64 doi: 10.1109/CVPRW.2018.00215 – ident: 8976_CR154 – ident: 8976_CR160 – ident: 8976_CR76 doi: 10.1109/TPAMI.2016.2578328 – ident: 8976_CR263 – ident: 8976_CR79 doi: 10.1109/ICCV.2019.00502 – ident: 8976_CR168 doi: 10.1109/CVPR.2014.222 – ident: 8976_CR137 – ident: 8976_CR53 – volume: 40 start-page: 1845 issue: 8 year: 2017 ident: 8976_CR257 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2017.2738644 – ident: 8976_CR138 doi: 10.1109/CVPR.2015.7298958 – ident: 8976_CR171 doi: 10.1109/CVPR.2015.7298854 – ident: 8976_CR292 doi: 10.1109/ICCV.2017.52 – ident: 8976_CR3 – ident: 8976_CR246 – ident: 8976_CR110 doi: 10.1007/978-3-319-46726-9_31 – volume: 40 start-page: 1452 issue: 6 year: 2018 ident: 8976_CR286 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2017.2723009 – ident: 8976_CR189 – ident: 8976_CR150 doi: 10.1007/978-3-319-46448-0_2 – ident: 8976_CR239 – ident: 8976_CR202 doi: 10.1109/CVPR.2016.89 – ident: 8976_CR42 doi: 10.1109/CVPR.2009.5206848 – ident: 8976_CR80 doi: 10.1109/ICCV.2017.322 – ident: 8976_CR132 doi: 10.1109/ICCV.2019.00671 – ident: 8976_CR113 – ident: 8976_CR192 doi: 10.1109/CVPR.2013.417 – ident: 8976_CR54 doi: 10.1109/IVS.2016.7535375 – ident: 8976_CR144 doi: 10.1109/CVPR.2017.106 – ident: 8976_CR57 doi: 10.1109/CVPR.2008.4587597 – volume: 34 start-page: 743 issue: 4 year: 2012 ident: 8976_CR46 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2011.155 – ident: 8976_CR117 doi: 10.1109/ICCV.2015.285 – volume: 33 start-page: 353 issue: 2 year: 2010 ident: 8976_CR149 publication-title: IEEE Transactions on Pattern analysis and Machine Intelligence doi: 10.1109/TPAMI.2010.70 – ident: 8976_CR34 doi: 10.1109/CVPR.2017.195 – ident: 8976_CR268 doi: 10.1109/ICCV.2011.6126474 – ident: 8976_CR31 doi: 10.1109/CVPR.2017.691 – ident: 8976_CR187 doi: 10.1109/CVPR.2016.91 – ident: 8976_CR120 doi: 10.1007/978-3-030-01264-9_45 – ident: 8976_CR101 doi: 10.1109/FG.2017.82 – volume: 28 start-page: 41 issue: 1 year: 1997 ident: 8976_CR20 publication-title: Mach Learn doi: 10.1023/A:1007379606734 – ident: 8976_CR217 – ident: 8976_CR218 doi: 10.1109/IVS.2018.8500504 – ident: 8976_CR19 doi: 10.1109/TPAMI.2011.231 – volume: 28 start-page: 594 issue: 4 year: 2006 ident: 8976_CR55 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2006.79 – ident: 8976_CR13 – ident: 8976_CR281 doi: 10.1109/CVPR.2018.00609 – ident: 8976_CR229 doi: 10.1109/CVPR.2001.990517 – ident: 8976_CR30 – ident: 8976_CR65 doi: 10.1109/ICCV.2015.169 – ident: 8976_CR82 doi: 10.1109/CVPR.2016.90 – ident: 8976_CR135 doi: 10.1007/978-3-030-01240-3_21 – ident: 8976_CR165 doi: 10.1109/ICCV.2017.522 – ident: 8976_CR206 – ident: 8976_CR124 – ident: 8976_CR208 doi: 10.1109/ICCV.2003.1238663 – ident: 8976_CR272 doi: 10.1109/CVPR.2018.00941 – ident: 8976_CR225 doi: 10.1109/ICCV.2011.6126456 – ident: 8976_CR66 doi: 10.1109/CVPR.2014.81 – ident: 8976_CR183 – ident: 8976_CR215 doi: 10.1109/CVPR.2014.220 – ident: 8976_CR285 – ident: 8976_CR109 – volume: 30 start-page: 1958 issue: 11 year: 2008 ident: 8976_CR222 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2008.128 – ident: 8976_CR223 doi: 10.1109/ICCV.2017.54 – volume: 28 start-page: 2896 issue: 10 year: 2018 ident: 8976_CR102 publication-title: IEEE Transactions on Circuits Systems for Video Technology doi: 10.1109/TCSVT.2017.2736553 – ident: 8976_CR176 – ident: 8976_CR16 doi: 10.1109/CVPR.2018.00644 – ident: 8976_CR81 doi: 10.1007/978-3-319-10578-9_23 – ident: 8976_CR151 doi: 10.1109/CVPR.2018.00730 – ident: 8976_CR283 doi: 10.1609/aaai.v33i01.33019259 – ident: 8976_CR131 doi: 10.1109/CVPR.2019.01082 – ident: 8976_CR236 doi: 10.1007/978-3-319-46493-0_50 – ident: 8976_CR115 – ident: 8976_CR253 – ident: 8976_CR2 – ident: 8976_CR75 doi: 10.1109/CVPR.2017.207 – volume: 37 start-page: 13 issue: 1 year: 2015 ident: 8976_CR28 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2014.2343217 – ident: 8976_CR279 doi: 10.1109/ICCV.2017.30 – ident: 8976_CR128 doi: 10.1109/CVPR.2017.211 – ident: 8976_CR12 doi: 10.1142/9789812797926_0003 – ident: 8976_CR170 doi: 10.1109/ICCV.2013.257 – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 8976_CR195 publication-title: Int J Comput Vis doi: 10.1007/s11263-015-0816-y – volume: 16 start-page: 310 issue: 2 year: 2018 ident: 8976_CR232 publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2018.2872355 – ident: 8976_CR295 doi: 10.1109/ICCV.2017.444 – ident: 8976_CR121 doi: 10.1109/CVPR.2006.68 – ident: 8976_CR50 doi: 10.1109/CVPR.2014.276 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 8976_CR36 publication-title: Mach Learn – ident: 8976_CR213 doi: 10.1109/CVPR.2015.7298594 – volume: 54 start-page: 7405 issue: 12 year: 2016 ident: 8976_CR33 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2016.2601622 – ident: 8976_CR134 doi: 10.1109/CVPR.2017.553 – ident: 8976_CR280 – ident: 8976_CR88 – ident: 8976_CR99 doi: 10.4467/20838476SI.16.004.6185 – ident: 8976_CR259 doi: 10.1109/ICCV.2019.00975 – ident: 8976_CR100 doi: 10.1007/978-3-030-01264-9_48 – volume: 119 start-page: 3 issue: 1 year: 2016 ident: 8976_CR251 publication-title: Int J Comput Vis doi: 10.1007/s11263-014-0748-y – ident: 8976_CR164 – ident: 8976_CR142 doi: 10.1109/ICCV.2017.324 – ident: 8976_CR274 doi: 10.1007/978-3-319-46475-6_28 – ident: 8976_CR95 doi: 10.1007/978-3-319-46723-8_28 – ident: 8976_CR25 – volume: 55 start-page: 2486 issue: 5 year: 2017 ident: 8976_CR153 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2016.2645610 – ident: 8976_CR270 – ident: 8976_CR136 – ident: 8976_CR26 doi: 10.1609/aaai.v32i1.11716 – ident: 8976_CR214 doi: 10.1109/CVPR.2016.308 – ident: 8976_CR92 doi: 10.1109/CVPR.2017.243 – ident: 8976_CR205 doi: 10.1007/978-3-030-11009-3_11 – ident: 8976_CR84 doi: 10.1109/CVPR.2019.00300 – ident: 8976_CR207 – ident: 8976_CR40 doi: 10.1109/CVPR.2005.177 – ident: 8976_CR252 doi: 10.1109/CVPR.2017.634 – ident: 8976_CR43 – ident: 8976_CR59 – ident: 8976_CR23 doi: 10.1109/ACPR.2013.33 – ident: 8976_CR173 doi: 10.1109/TGRS.2019.2899955 – ident: 8976_CR90 doi: 10.1109/CVPR.2017.166 – ident: 8976_CR177 doi: 10.1109/CVPR.2015.7299188 – ident: 8976_CR147 doi: 10.1007/s11263-019-01247-4 – ident: 8976_CR238 doi: 10.1007/978-3-030-01261-8_33 – ident: 8976_CR45 doi: 10.1109/CVPRW.2009.5206631 – volume: 115 start-page: 330 issue: 3 year: 2015 ident: 8976_CR83 publication-title: Int J Comput Vis doi: 10.1007/s11263-015-0822-0 – ident: 8976_CR146 doi: 10.1007/978-3-030-01246-5_2 – ident: 8976_CR290 doi: 10.1109/CVPR.2019.00237 – volume: 11 start-page: 620 issue: 6 year: 2019 ident: 8976_CR234 publication-title: Remote Sens doi: 10.3390/rs11060620 – ident: 8976_CR107 doi: 10.1007/978-3-030-01228-1_15 – ident: 8976_CR48 – volume: 57 start-page: 137 issue: 2 year: 2004 ident: 8976_CR230 publication-title: International journal of computer vision doi: 10.1023/B:VISI.0000013087.49260.fb – ident: 8976_CR233 doi: 10.1109/CVPR.2018.00136 |
SSID | ssj0016524 |
Score | 2.6645167 |
Snippet | With the rapid development of deep learning techniques, deep convolutional neural networks (DCNNs) have become more important for object detection. Compared... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 23729 |
SubjectTerms | Algorithms Artificial neural networks Computer Communication Networks Computer networks Computer Science Data Structures and Information Theory Deep learning Machine learning Meteorological satellites Multimedia Information Systems Neural networks Object recognition Special Purpose and Application-Based Systems |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu8CBxwAxGCgHbhDRR5o2JzTQpgmJCSEm7VblyQWtg5X_j9OmKyCxUys1jVS79mcnsT-EriCIkEZqyE54QAlNeEQkiykxXINpMctp7Oqdn6ZsMqOP82TuF9xW_lhl4xMrR60L5dbIbyPAdYBSCJfvlh_EsUa53VVPobGNuuCCM0i-uvej6fPLeh-BJZ7WNgsIYGPoy2bq4rnQlaa49CnIAJQJ-w1Nbbz5Z4u0Qp7xAdrzISMe1jo-RFtm0UP7DR0D9tbZQ7s_egseoXiI67IUXFhcSLfcgrUpq5NXC-zAS2O40cYssaeOeDtGs_Ho9WFCPEMCUXGWlMSkMpI61UmcRsIKzoS1gjFIwTJI5bSmoYyMsjRTWaDhGwGvlORCZIYauKbxCeosioU5RVgEkiobcmXS0PVYk1xRISQHgVuuE91HYSOcXPn24Y7F4j1vGx87geYg0LwSaM766Hr9zrJunrFx9KCRee4NaZW3au-jm0YP7eP_ZzvbPNs52okq1bvTYgPUKT-_zAWEF6W89P_QNzQZySs priority: 102 providerName: ProQuest |
Title | A review of object detection based on deep learning |
URI | https://link.springer.com/article/10.1007/s11042-020-08976-6 https://www.proquest.com/docview/2435937642 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYdoEDjwFiMKYcuEGlPtK0OXZoYwIxIcSkcaqSJuWCuomV_4_TpSsgQOKUSk2j1rFrO_ZnA1ygESG1VOidcJc6NOS-I1lAHc0VihbLOQ0M3vl-yiYzejsP5xYUtqqz3euQZPWnbsBunoGSGHfHjVGJOqwFndD47sjFMz_ZxA5YaFvZxq6D-tCzUJmf1_iqjhob81tYtNI2433YtWYiSdb7egBbuujCXt2CgViJ7MLOp3qChxAkZA1FIYucLKQ5YiFKl1W2VUGMwlIEL5TWS2LbRbwcwWw8erqeOLYrgpMFcVg6OpK-VJEKg8gXueBM5LlgDN2uGN03pagnfZ3lNM5iV-E3oo7KJBci1lTjGAXH0C4WhT4BIlxJs9zjmY48U1dN8owKITn6JDlXoeqBVxMnzWzJcNO54jVtih0bgqZI0LQiaMp6cLl5ZrkumPHn7H5N89QKzyr10YRDqwnfogdX9T40t39f7fR_089g269YwWSM9aFdvr3rczQxSjmAVjy-GUAnGQ-HUzPePN-NcByOpg-Pg4rfPgAkRso8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4VGICBRwFRnh5gAos8HCceEKqAUh7tVCS24FdYUFtoEeJP8Rs550EBCTamRIpzw_l8353tuw9gD4MIZZXB7ER4jLJIBFTxkFErDC4tngkWunrnTpe3b9nVXXRXg_eqFsZdq6x8Yu6ozUC7PfKjAHEdoRTD5ZPhE3WsUe50taLQKMzi2r69Yso2Or48w_ndD4LWee-0TUtWAarDJBpTG6tAmdhEYRzITAous0xyjmlLgumPMcxXgdUZS3TiGQRr9PFaCSkTyyw-4xDlTsEMC0PhVlTSuvg8teBRSaKbeBSR2C-LdIpSPd8VwrhkzUtQKuXfgXAS3f44kM1xrrUEC2WASpqFRS1DzfbrsFiRP5DSF9Rh_ksnwxUIm6QogiGDjAyU29whxo7ze1594qDSEHwx1g5JSVTxsAq3_6K5NZjuD_p2HYj0FNOZL7SNfdfRTQnNpFQCpzcTJjIN8CvlpLpsVu44Mx7TSZtlp9AUFZrmCk15Aw4-_xkWrTr-HL1V6Twtl-0onRhZAw6reZh8_l3axt_SdmG23evcpDeX3etNmAtyM3D31LZgevz8YrcxsBmrndyaCNz_t_l-AHmZBho |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6lqYTaA4UU1ECBPcCJruLHeu09oCqQRAmBKEJUys3sk0uVpG0qxF_j1zFrrxNAoreebMn2HGa_nYd3Zj6A1xhEKKsMZiciYpRlIqGKp4xaYXBrcSdY6vudP8_4-IJ9XGSLFvxqemF8WWVjEytDbVba_yPvJejX0ZViuNxzoSxiPhidr6-oZ5DyJ60NnUYNkan9-QPTt5t3kwGu9ZskGQ2_fhjTwDBAdVpkG2pzlSiTmyzNE-mk4NI5yTmmMAWmQsawWCVWO1boIjLouNHeayWkLCyzeM1TlLsH-zlmRVEb9t8PZ_Mv2zMMngVK3SKi6Jfj0LJTN-7Fvi3Gp25RgXIp_9st7mLdf45nK683egQPQ7hK-jW-HkPLLjtw1FBBkGAZOnD4x1zDY0j7pG6JIStHVsr_6iHGbqqqryXxjtMQvDHWrkmgrfj-BC7uRXdPob1cLe0JEBkppl0stM1jP99NCc2kVAIX2wmTmS7EjXJKHUaXewaNy3I3dNkrtESFlpVCS96Ft9tv1vXgjjvfPm10XoZNfFPuINeFs2Yddo__L-3Z3dJewQOEbvlpMps-h4OkQoEvWjuF9ub61r7AKGejXgY4Efh23wj-DSlnC6w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+object+detection+based+on+deep+learning&rft.jtitle=Multimedia+tools+and+applications&rft.au=Xiao%2C+Youzi&rft.au=Tian%2C+Zhiqiang&rft.au=Yu%2C+Jiachen&rft.au=Zhang%2C+Yinshu&rft.date=2020-09-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=79&rft.issue=33-34&rft.spage=23729&rft.epage=23791&rft_id=info:doi/10.1007%2Fs11042-020-08976-6&rft.externalDocID=10_1007_s11042_020_08976_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |