Automated computer vision system to predict body weight and average daily gain in beef cattle during growing and finishing phases

•Computer vision system can be used to predict body weight with good accuracy and precision in Nellore cattle.•The main difference in this study are the absence of manual feature extraction.•Artificial Neural Networks increase accuracy and precision of body weight prediction. Frequent measurements o...

Full description

Saved in:
Bibliographic Details
Published inLivestock science Vol. 232; p. 103904
Main Authors Cominotte, A., Fernandes, A.F.A., Dorea, J.R.R., Rosa, G.J.M., Ladeira, M.M., van Cleef, E.H.C.B., Pereira, G.L., Baldassini, W.A., Machado Neto, O.R.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Computer vision system can be used to predict body weight with good accuracy and precision in Nellore cattle.•The main difference in this study are the absence of manual feature extraction.•Artificial Neural Networks increase accuracy and precision of body weight prediction. Frequent measurements of body weight (BW) in livestock systems are very important because they allow assessing growth. However, real-time monitoring of animal growth through traditional weighing scales is stressful for animals, costly and labor-intensive. Thus, the objectives of this study were to: 1) assess the predictive quality of an automated computer vision system used to predict BW and average daily gain (ADG) in beef cattle; and 2) compare different predictive approaches, including Multiple Linear Regression (MLR), Least Absolute Shrinkage and Selection Operator (LASSO), Partial Least Squares (PLS), and Artificial Neutral Networks (ANN). A total of 234 images of Nellore beef cattle were collected during the weaning, stocker and feedlot phases. First, biometric body measurements of each animal, such as body volume, area, length, and others, were performed using three-dimensional images captured with the Kinect® sensor, and their respective BW were acquired using an electronic scale. Next, the biometric measurements were used as explanatory variables in the four predictive approaches (MLR, LASSO, PLS, and ANN). To evaluate prediction quality, a leave-one-out cross-validation was adopted. The ANN was the best prediction approach in terms of Root Mean Square Error of Prediction (RMSEP) and squared predictive correlation (r2). The results for Weaning were RMSEP = 8.6 kg and r2 = 0.91; for Stocker phase, RMSEP = 11.4 kg and r2 = 0.79; and for Beginning of feedlot, RMSEP = 7.7 kg and r2 = 0.92. The ANN was also the best method for prediction of ADG, with RMSEP = 0.02 kg/d and r2 = 0.67 for the period between Weaning and Stocker, RMSEP = 0.02 kg/d and r2 = 0.85 for the Weaning and Beginning of Feedlot phase, RMSEP = 0.03 kg/d and r2 = 0.80 for Weaning and Final of Feedlot phase, RMSEP = 0.10 kg/d and r2 = 0.51 for Stocker and Beginning of feedlot phase, and RMSEP = 0.09 kg/d and r2 = 0.82 for the Beginning and Final of feedlot phase. Overall, the results indicate that the proposed automated computer vision system can be successfully used to predict BW and ADG in real-time in beef cattle.
AbstractList Frequent measurements of body weight (BW) in livestock systems are very important because they allow assessing growth. However, real-time monitoring of animal growth through traditional weighing scales is stressful for animals, costly and labor-intensive. Thus, the objectives of this study were to: 1) assess the predictive quality of an automated computer vision system used to predict BW and average daily gain (ADG) in beef cattle; and 2) compare different predictive approaches, including Multiple Linear Regression (MLR), Least Absolute Shrinkage and Selection Operator (LASSO), Partial Least Squares (PLS), and Artificial Neutral Networks (ANN). A total of 234 images of Nellore beef cattle were collected during the weaning, stocker and feedlot phases. First, biometric body measurements of each animal, such as body volume, area, length, and others, were performed using three-dimensional images captured with the Kinect® sensor, and their respective BW were acquired using an electronic scale. Next, the biometric measurements were used as explanatory variables in the four predictive approaches (MLR, LASSO, PLS, and ANN). To evaluate prediction quality, a leave-one-out cross-validation was adopted. The ANN was the best prediction approach in terms of Root Mean Square Error of Prediction (RMSEP) and squared predictive correlation (r²). The results for Weaning were RMSEP = 8.6 kg and r² = 0.91; for Stocker phase, RMSEP = 11.4 kg and r² = 0.79; and for Beginning of feedlot, RMSEP = 7.7 kg and r² = 0.92. The ANN was also the best method for prediction of ADG, with RMSEP = 0.02 kg/d and r² = 0.67 for the period between Weaning and Stocker, RMSEP = 0.02 kg/d and r² = 0.85 for the Weaning and Beginning of Feedlot phase, RMSEP = 0.03 kg/d and r² = 0.80 for Weaning and Final of Feedlot phase, RMSEP = 0.10 kg/d and r² = 0.51 for Stocker and Beginning of feedlot phase, and RMSEP = 0.09 kg/d and r² = 0.82 for the Beginning and Final of feedlot phase. Overall, the results indicate that the proposed automated computer vision system can be successfully used to predict BW and ADG in real-time in beef cattle.
•Computer vision system can be used to predict body weight with good accuracy and precision in Nellore cattle.•The main difference in this study are the absence of manual feature extraction.•Artificial Neural Networks increase accuracy and precision of body weight prediction. Frequent measurements of body weight (BW) in livestock systems are very important because they allow assessing growth. However, real-time monitoring of animal growth through traditional weighing scales is stressful for animals, costly and labor-intensive. Thus, the objectives of this study were to: 1) assess the predictive quality of an automated computer vision system used to predict BW and average daily gain (ADG) in beef cattle; and 2) compare different predictive approaches, including Multiple Linear Regression (MLR), Least Absolute Shrinkage and Selection Operator (LASSO), Partial Least Squares (PLS), and Artificial Neutral Networks (ANN). A total of 234 images of Nellore beef cattle were collected during the weaning, stocker and feedlot phases. First, biometric body measurements of each animal, such as body volume, area, length, and others, were performed using three-dimensional images captured with the Kinect® sensor, and their respective BW were acquired using an electronic scale. Next, the biometric measurements were used as explanatory variables in the four predictive approaches (MLR, LASSO, PLS, and ANN). To evaluate prediction quality, a leave-one-out cross-validation was adopted. The ANN was the best prediction approach in terms of Root Mean Square Error of Prediction (RMSEP) and squared predictive correlation (r2). The results for Weaning were RMSEP = 8.6 kg and r2 = 0.91; for Stocker phase, RMSEP = 11.4 kg and r2 = 0.79; and for Beginning of feedlot, RMSEP = 7.7 kg and r2 = 0.92. The ANN was also the best method for prediction of ADG, with RMSEP = 0.02 kg/d and r2 = 0.67 for the period between Weaning and Stocker, RMSEP = 0.02 kg/d and r2 = 0.85 for the Weaning and Beginning of Feedlot phase, RMSEP = 0.03 kg/d and r2 = 0.80 for Weaning and Final of Feedlot phase, RMSEP = 0.10 kg/d and r2 = 0.51 for Stocker and Beginning of feedlot phase, and RMSEP = 0.09 kg/d and r2 = 0.82 for the Beginning and Final of feedlot phase. Overall, the results indicate that the proposed automated computer vision system can be successfully used to predict BW and ADG in real-time in beef cattle.
ArticleNumber 103904
Author Dorea, J.R.R.
Rosa, G.J.M.
van Cleef, E.H.C.B.
Machado Neto, O.R.
Fernandes, A.F.A.
Pereira, G.L.
Baldassini, W.A.
Ladeira, M.M.
Cominotte, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Cominotte
  fullname: Cominotte, A.
  organization: Department of Animal Sciences, University of Wisconsin - Madison, WI 53706, United States
– sequence: 2
  givenname: A.F.A.
  surname: Fernandes
  fullname: Fernandes, A.F.A.
  organization: Department of Animal Sciences, University of Wisconsin - Madison, WI 53706, United States
– sequence: 3
  givenname: J.R.R.
  surname: Dorea
  fullname: Dorea, J.R.R.
  organization: Department of Animal Sciences, University of Wisconsin - Madison, WI 53706, United States
– sequence: 4
  givenname: G.J.M.
  surname: Rosa
  fullname: Rosa, G.J.M.
  organization: Department of Animal Sciences, University of Wisconsin - Madison, WI 53706, United States
– sequence: 5
  givenname: M.M.
  surname: Ladeira
  fullname: Ladeira, M.M.
  organization: Animal Sciences Department, Federal University of Lavras, MG 37200-00, Brazil
– sequence: 6
  givenname: E.H.C.B.
  surname: van Cleef
  fullname: van Cleef, E.H.C.B.
  organization: Federal University of Triângulo Mineiro, Iturama, MG 38280-000, Brazil
– sequence: 7
  givenname: G.L.
  surname: Pereira
  fullname: Pereira, G.L.
  organization: School of Veterinary Medicine and Animal Science, Sao Paulo State University, Botucatu, SP 18618-681, Brazil
– sequence: 8
  givenname: W.A.
  surname: Baldassini
  fullname: Baldassini, W.A.
  organization: School of Veterinary Medicine and Animal Science, Sao Paulo State University, Botucatu, SP 18618-681, Brazil
– sequence: 9
  givenname: O.R.
  surname: Machado Neto
  fullname: Machado Neto, O.R.
  email: otavio.machado@unesp.br
  organization: School of Veterinary Medicine and Animal Science, Sao Paulo State University, Botucatu, SP 18618-681, Brazil
BookMark eNqFkE1v1DAQhiNUJNrCP-DgI5cs_spuzAGpqvioVIkLnK2JM856ldjBdrbaY_85DuHEASRL47Gfd6R5bqorHzxW1VtGd4yy_fvTbnTnZNyOU6bKk1BUvqiuWXtoayoVvfp9ZzWTTLyqblI6UdpI2crr6vluyWGCjD0xYZqXjJGcXXLBk3RJGSeSA5kj9s5k0oX-Qp7QDcdMwPcEzhhhQNKDGy9kAOdJOR2iJQZyHsvPEp0fyBDD01rXkHXepePazUdImF5XLy2MCd_8qbfVj8-fvt9_rR-_fXm4v3usjWibXOOBMqM61fKDtd2BW0AAbFhrJSrBWyX2imEBCiiM6AzvrICuBQ5sz4GL2-rdNneO4eeCKevJJYPjCB7DkjRv9qzhjVSyoB821MSQUkSrjcuQi5Qcy6qaUb161ye9ederd715L2H5V3iOboJ4-V_s4xbD4uDsMOpCoDfFfESTdR_cvwf8Aj3NpBk
CitedBy_id crossref_primary_10_1007_s11250_020_02402_7
crossref_primary_10_1016_j_compag_2021_106143
crossref_primary_10_3389_fanim_2023_1103826
crossref_primary_10_3389_fvets_2023_1204580
crossref_primary_10_1016_j_compag_2022_107272
crossref_primary_10_1016_j_compag_2022_107190
crossref_primary_10_32634_0869_8155_2024_381_4_114_122
crossref_primary_10_3389_fpls_2023_1181322
crossref_primary_10_1016_j_compag_2022_106706
crossref_primary_10_3168_jds_2024_25049
crossref_primary_10_1016_j_compag_2022_106987
crossref_primary_10_1093_af_vfae028
crossref_primary_10_3390_ani12020174
crossref_primary_10_1093_jas_skab022
crossref_primary_10_1093_tas_txac163
crossref_primary_10_1016_j_animal_2024_101174
crossref_primary_10_3390_app13126944
crossref_primary_10_1016_j_biosystemseng_2022_03_014
crossref_primary_10_48077_scihor6_2024_177
crossref_primary_10_3168_jds_2023_24065
crossref_primary_10_1016_j_compag_2025_110013
crossref_primary_10_1080_09712119_2022_2123812
crossref_primary_10_1016_j_compag_2020_105804
crossref_primary_10_1016_j_compag_2025_109943
crossref_primary_10_3390_ani14081210
crossref_primary_10_1093_tas_txad064
crossref_primary_10_1016_j_compag_2023_108456
crossref_primary_10_3390_ani13101679
crossref_primary_10_3390_agriculture13122266
crossref_primary_10_3390_ani13203250
crossref_primary_10_3390_agriculture12071012
crossref_primary_10_1093_jas_skac242
crossref_primary_10_1016_j_compag_2021_106085
crossref_primary_10_1016_j_atech_2023_100359
crossref_primary_10_3390_drones9020084
crossref_primary_10_4025_actascianimsci_v43i1_52881
crossref_primary_10_1016_j_inpa_2023_10_003
crossref_primary_10_1111_asj_13626
crossref_primary_10_1080_00288233_2021_1876107
crossref_primary_10_1109_JIOT_2024_3357862
crossref_primary_10_1016_j_livsci_2021_104442
crossref_primary_10_3390_ani13121956
crossref_primary_10_3389_fvets_2020_551269
crossref_primary_10_1016_j_atech_2025_100828
crossref_primary_10_1093_tas_txac066
crossref_primary_10_3389_fgene_2025_1491816
crossref_primary_10_3390_ani15060868
crossref_primary_10_3168_jds_2022_22501
crossref_primary_10_1016_j_compag_2025_110033
crossref_primary_10_3389_frai_2024_1299169
crossref_primary_10_1016_j_compag_2025_110232
crossref_primary_10_1016_j_meatsci_2023_109120
crossref_primary_10_51252_rcsi_v4i1_614
crossref_primary_10_3390_mi13081325
crossref_primary_10_1093_tas_txad085
crossref_primary_10_1016_j_biosystemseng_2023_04_014
crossref_primary_10_1016_j_compag_2023_107667
Cites_doi 10.1016/j.biosystemseng.2007.08.008
10.1186/1471-2156-12-87
10.1007/s11222-009-9160-9
10.1016/j.compag.2014.06.003
10.2527/jas.2016-0797
10.1071/AN14943
10.3168/jds.2017-13997
10.1007/s10898-018-0713-3
10.1093/jas/sky418
10.1111/j.1467-9868.2005.00503.x
10.1111/j.1600-0706.2008.16881.x
10.2307/3615245
10.1590/S1519-99402013000100018
10.1016/j.biosystemseng.2017.11.014
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.compag.2014.08.008
10.1016/j.agsy.2005.11.004
10.18637/jss.v033.i01
10.3382/ps.2010-00639
10.1214/009053604000000067
10.1006/jaer.1998.0365
10.2307/2532051
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.livsci.2019.103904
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1878-0490
ExternalDocumentID 10_1016_j_livsci_2019_103904
S1871141319310856
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABBQC
ABFNM
ABGRD
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
QYZTP
RIG
ROL
RPZ
SDF
SDG
SEL
SES
SEW
SNL
SPCBC
SSA
SSH
SSZ
T5K
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACIEU
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
7S9
L.6
ID FETCH-LOGICAL-c385t-e701c9b9827ffb72faeaae518f4e932893691e9b9e703c3bc2bf3ab8a2a162a23
IEDL.DBID .~1
ISSN 1871-1413
IngestDate Fri Jul 11 05:43:56 EDT 2025
Tue Jul 01 03:16:18 EDT 2025
Thu Apr 24 23:09:31 EDT 2025
Fri Feb 23 02:47:13 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Kinect
Beef cattle
Computer vision
Image analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-e701c9b9827ffb72faeaae518f4e932893691e9b9e703c3bc2bf3ab8a2a162a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/11449/195235
PQID 2561525494
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2561525494
crossref_citationtrail_10_1016_j_livsci_2019_103904
crossref_primary_10_1016_j_livsci_2019_103904
elsevier_sciencedirect_doi_10_1016_j_livsci_2019_103904
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationTitle Livestock science
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hough (bib0012) 1962; 3
Zeiler, Fergus (bib9001) 2014, September
Gomes, Monteiro, Assis, Busato, Ladeira, Chizzotti (bib0010) 2016; 94
Tamura, Kobayashi, Takano, Miyashiro, Nakata, Matsui (bib0025) 2019; 73
Conway (bib0004) 1979; 63
Ozkaya, Neja, Krezel-Czopek, Oler (bib0021) 2016; 56
Szelisk (bib0024) 2011
Wold (bib0032) 1966
Gianola, Okut, Weigel, Rosa (bib0009) 2011; 12
Menezes, Pedrosa, Pedroso, Fernandes (bib0019) 2013; 14
Perai, Moghaddam, Asadpour, Bahrampour, Mansoori (bib0022) 2010; 89
Hans (bib9002) 2010; 20
Dórea, Rosa, Weld, Armentano (bib0005) 2018; 101
Lin (bib0018) 1989; 45
Nir, Parmet, Werner, Adin, Halachmi (bib0020) 2018; 173
Kashiha, Bahr, Ott, Moons, Niewold, Ödberg, Berckmans (bib0014) 2014; 107
Tibshirani (bib0028) 1996; 58
Tedeschi (bib0027) 2006; 89
Core Team (bib0026) 2016
Schofield, Marchant, White, Brandl, Wilson (bib0023) 1999; 72
Zou, Hastie (bib0033) 2005; 67
Theil (bib9004) 1961
Carrascal, Galván, Gordo (bib0003) 2009; 5
Carneiro, Silva, Mendes, Ferreira, dos Santos (bib0002) 2012; 40
Cochran, W. G., and Gertrude M. Cox. Notes on the statistical analysis of the results. (1992).
Fernandes, Dórea, Fitzgerald, Herring, Rosa (bib0007) 2019; 97
Efron, Hastie, Johnstone, Tibshirani, Ishwaran, Knight, Loubes, Massart, Madigan, Ridgeway, Rosset, Zhu, Stine, Turlach, Weisberg, Johnstone, Tibshirani (bib0006) 2004; 32
Li, Luo, Teng, Liu (bib0017) 2014
Venot, E., Piles, M., Renand, G., & Jaffrézic, F.2004. Genetic Analysis of Growth Curve Parameters for Beef Cattle Using Markov Chain Monte Carlo Estimation Methods. In: van der Honing, Y., Hofer, A., Cenkvári, E., Fourichon, C., Chilliard, Y., Lazzaroni, C., Bodin, L., Wenk, C., Martin-Rosset, W., and Hermansen, J.E. (Eds.), 55th Annual Meeting of the European Association for Animal Production, Bled, Slovenia. Wageningen Academic Publishers, Wageningen, pp. 297.
Friedman, Hastie, Tibshirani (bib0008) 2010; 33
Hastie, Tibshirani, Friedman (bib0011) 2009
Kongsro (bib0015) 2014; 109
Kuhn, Johnson (bib0016) 2013
Wang, Yang, Winter, Walker (bib0031) 2008; 100
Schofield (10.1016/j.livsci.2019.103904_bib0023) 1999; 72
10.1016/j.livsci.2019.103904_bib9003
Friedman (10.1016/j.livsci.2019.103904_bib0008) 2010; 33
Gomes (10.1016/j.livsci.2019.103904_bib0010) 2016; 94
Lin (10.1016/j.livsci.2019.103904_bib0018) 1989; 45
Hough (10.1016/j.livsci.2019.103904_bib0012) 1962; 3
10.1016/j.livsci.2019.103904_bib0030
Wang (10.1016/j.livsci.2019.103904_bib0031) 2008; 100
Kuhn (10.1016/j.livsci.2019.103904_bib0016) 2013
Ozkaya (10.1016/j.livsci.2019.103904_bib0021) 2016; 56
Tedeschi (10.1016/j.livsci.2019.103904_bib0027) 2006; 89
Core Team (10.1016/j.livsci.2019.103904_bib0026) 2016
Nir (10.1016/j.livsci.2019.103904_bib0020) 2018; 173
Wold (10.1016/j.livsci.2019.103904_bib0032) 1966
Hastie (10.1016/j.livsci.2019.103904_bib0011) 2009
Menezes (10.1016/j.livsci.2019.103904_bib0019) 2013; 14
Kashiha (10.1016/j.livsci.2019.103904_bib0014) 2014; 107
Carrascal (10.1016/j.livsci.2019.103904_bib0003) 2009; 5
Zou (10.1016/j.livsci.2019.103904_bib0033) 2005; 67
Dórea (10.1016/j.livsci.2019.103904_bib0005) 2018; 101
Theil (10.1016/j.livsci.2019.103904_bib9004) 1961
Zeiler (10.1016/j.livsci.2019.103904_bib9001) 2014
Kongsro (10.1016/j.livsci.2019.103904_bib0015) 2014; 109
Szelisk (10.1016/j.livsci.2019.103904_bib0024) 2011
Perai (10.1016/j.livsci.2019.103904_bib0022) 2010; 89
Conway (10.1016/j.livsci.2019.103904_bib0004) 1979; 63
Fernandes (10.1016/j.livsci.2019.103904_bib0007) 2019; 97
Tibshirani (10.1016/j.livsci.2019.103904_bib0028) 1996; 58
Tamura (10.1016/j.livsci.2019.103904_bib0025) 2019; 73
Li (10.1016/j.livsci.2019.103904_bib0017) 2014
Hans (10.1016/j.livsci.2019.103904_bib9002) 2010; 20
Gianola (10.1016/j.livsci.2019.103904_bib0009) 2011; 12
Efron (10.1016/j.livsci.2019.103904_bib0006) 2004; 32
Carneiro (10.1016/j.livsci.2019.103904_bib0002) 2012; 40
References_xml – volume: 63
  start-page: 74
  year: 1979
  end-page: 75
  ident: bib0004
  article-title: Prediction and Improved Estimation in Linear Models
  publication-title: Math. Gaz.
– volume: 101
  start-page: 5878
  year: 2018
  end-page: 5889
  ident: bib0005
  article-title: Mining data from milk infrared spectroscopy to improve feed intake predictions in lactating dairy cows
  publication-title: J. Dairy Sci.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib0028
  article-title: Regression selection and Shrinkage via the Lasso
  publication-title: J. R. Stat. Soc. B
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: bib0033
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B Stat.
– volume: 3
  start-page: 069
  year: 1962
  ident: bib0012
  article-title: Method and means for recognizing complex patterns
  publication-title: US Pat.
– volume: 12
  start-page: 87
  year: 2011
  ident: bib0009
  article-title: Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat
  publication-title: BMC Genet.
– start-page: 42
  year: 2014
  end-page: 49
  ident: bib0017
  article-title: Estimation of Pig Weight by Machine Vision: A Review
  publication-title: Computer and Computing Technologies in Agriculture VII. CCTA 2013. IFIP Advances in Information and Communication Technology
– year: 1961
  ident: bib9004
  publication-title: Economic forecasts and policy, North Holland, Amsterdam (1961)
– volume: 72
  start-page: 205
  year: 1999
  end-page: 210
  ident: bib0023
  article-title: Monitoring pig growth using a prototype imaging system
  publication-title: J. Agric. Eng. Res.
– year: 2011
  ident: bib0024
  article-title: Computer Vision: Algorithms and Applications
– year: 2016
  ident: bib0026
  article-title: R: a Language and Environment for Statistical Computing
– volume: 56
  start-page: 2060
  year: 2016
  end-page: 2063
  ident: bib0021
  article-title: Estimation of body weight from body measurements and determination of body measurements on Limousin cattle using digital image analysis
  publication-title: Anim. Prod. Sci.
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  ident: bib0008
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
– year: 2013
  ident: bib0016
  article-title: Applied Predictive Modeling
– reference: Venot, E., Piles, M., Renand, G., & Jaffrézic, F.2004. Genetic Analysis of Growth Curve Parameters for Beef Cattle Using Markov Chain Monte Carlo Estimation Methods. In: van der Honing, Y., Hofer, A., Cenkvári, E., Fourichon, C., Chilliard, Y., Lazzaroni, C., Bodin, L., Wenk, C., Martin-Rosset, W., and Hermansen, J.E. (Eds.), 55th Annual Meeting of the European Association for Animal Production, Bled, Slovenia. Wageningen Academic Publishers, Wageningen, pp. 297.
– volume: 94
  start-page: 5414
  year: 2016
  end-page: 5422
  ident: bib0010
  article-title: Technical note: estimating body weight and body composition of beef cattle trough digital image analysis
  publication-title: J. Anim. Sci.
– volume: 109
  start-page: 32
  year: 2014
  end-page: 35
  ident: bib0015
  article-title: Estimation of pig weight using a Microsoft Kinect prototype imaging system
  publication-title: Comput. Electron. Agric.
– volume: 107
  start-page: 38
  year: 2014
  end-page: 44
  ident: bib0014
  article-title: Automatic weight estimation of individual pigs using image analysis
  publication-title: Comput. Electron. Agric.
– volume: 5
  start-page: 681
  year: 2009
  end-page: 690
  ident: bib0003
  article-title: Partial least squares regression as an alternative to current regression methods used in ecology
  publication-title: Oikos
– volume: 73
  start-page: 431
  year: 2019
  end-page: 446
  ident: bib0025
  article-title: Mixed integer quadratic optimization formulations for eliminating multicollinearity based on variance inflation factor
  publication-title: J. Glob. Optim.
– volume: 173
  start-page: 4
  year: 2018
  end-page: 10
  ident: bib0020
  article-title: 3D computer-vision system for automatically estimating heifer height and body mass
  publication-title: Biosyst. Eng.
– volume: 45
  start-page: 255
  year: 1989
  end-page: 268
  ident: bib0018
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– start-page: 391
  year: 1966
  ident: bib0032
  article-title: Estimation of principal components and related models by iterative least squares
  publication-title: Multivariate Analysis
– reference: Cochran, W. G., and Gertrude M. Cox. Notes on the statistical analysis of the results. (1992).
– volume: 20
  start-page: 221
  year: 2010
  end-page: 229
  ident: bib9002
  article-title: Model uncertainty and variable selection in Bayesian lasso regression
  publication-title: Statistics and Computing
– volume: 89
  start-page: 1562
  year: 2010
  end-page: 1568
  ident: bib0022
  article-title: A comparison of artificial neural networks with other statistical approaches for the prediction of true metabolizable energy of meat and bone meal
  publication-title: Poult. Sci.
– start-page: 818
  year: 2014, September
  end-page: 833
  ident: bib9001
  article-title: Visualizing and understanding convolutional networks
  publication-title: European conference on computer vision
– year: 2009
  ident: bib0011
  article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
– volume: 89
  start-page: 225
  year: 2006
  end-page: 247
  ident: bib0027
  article-title: Assessment of the adequacy of mathematical models
  publication-title: Agric. Syst.
– volume: 40
  start-page: 1
  year: 2012
  end-page: 5
  ident: bib0002
  article-title: Efeito do mês de parição na taxa de gestação subsequente e no peso ao desmame dos bezerros de vacas Nelore
  publication-title: Acta Sci. Vet.
– volume: 97
  start-page: 496
  year: 2019
  end-page: 508
  ident: bib0007
  article-title: A novel automated system to acquire biometric and morphological measurements and predict body weight of pigs via 3D computer vision
  publication-title: J. Anim. Sci.
– volume: 32
  start-page: 407
  year: 2004
  end-page: 499
  ident: bib0006
  article-title: Least angle regression
  publication-title: Ann. Stat.
– volume: 14
  start-page: 177
  year: 2013
  end-page: 184
  ident: bib0019
  article-title: Desempenho de bovinos nelore e cruzados blonde d'aquitaine x nelore do nascimento ao desmame
  publication-title: Rev. Bras. Saúde e Prod. Anim.
– volume: 100
  start-page: 117
  year: 2008
  end-page: 125
  ident: bib0031
  article-title: Walk-through weighing of pigs using machine vision and an artificial neural network
  publication-title: Biosyst. Eng.
– volume: 100
  start-page: 117
  year: 2008
  ident: 10.1016/j.livsci.2019.103904_bib0031
  article-title: Walk-through weighing of pigs using machine vision and an artificial neural network
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2007.08.008
– volume: 12
  start-page: 87
  year: 2011
  ident: 10.1016/j.livsci.2019.103904_bib0009
  article-title: Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat
  publication-title: BMC Genet.
  doi: 10.1186/1471-2156-12-87
– volume: 20
  start-page: 221
  issue: 2
  year: 2010
  ident: 10.1016/j.livsci.2019.103904_bib9002
  article-title: Model uncertainty and variable selection in Bayesian lasso regression
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-009-9160-9
– volume: 107
  start-page: 38
  year: 2014
  ident: 10.1016/j.livsci.2019.103904_bib0014
  article-title: Automatic weight estimation of individual pigs using image analysis
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2014.06.003
– volume: 94
  start-page: 5414
  year: 2016
  ident: 10.1016/j.livsci.2019.103904_bib0010
  article-title: Technical note: estimating body weight and body composition of beef cattle trough digital image analysis
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.2016-0797
– volume: 56
  start-page: 2060
  year: 2016
  ident: 10.1016/j.livsci.2019.103904_bib0021
  article-title: Estimation of body weight from body measurements and determination of body measurements on Limousin cattle using digital image analysis
  publication-title: Anim. Prod. Sci.
  doi: 10.1071/AN14943
– start-page: 818
  year: 2014
  ident: 10.1016/j.livsci.2019.103904_bib9001
  article-title: Visualizing and understanding convolutional networks
– volume: 101
  start-page: 5878
  year: 2018
  ident: 10.1016/j.livsci.2019.103904_bib0005
  article-title: Mining data from milk infrared spectroscopy to improve feed intake predictions in lactating dairy cows
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2017-13997
– volume: 73
  start-page: 431
  year: 2019
  ident: 10.1016/j.livsci.2019.103904_bib0025
  article-title: Mixed integer quadratic optimization formulations for eliminating multicollinearity based on variance inflation factor
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-018-0713-3
– year: 1961
  ident: 10.1016/j.livsci.2019.103904_bib9004
– volume: 97
  start-page: 496
  year: 2019
  ident: 10.1016/j.livsci.2019.103904_bib0007
  article-title: A novel automated system to acquire biometric and morphological measurements and predict body weight of pigs via 3D computer vision
  publication-title: J. Anim. Sci.
  doi: 10.1093/jas/sky418
– volume: 40
  start-page: 1
  year: 2012
  ident: 10.1016/j.livsci.2019.103904_bib0002
  article-title: Efeito do mês de parição na taxa de gestação subsequente e no peso ao desmame dos bezerros de vacas Nelore
  publication-title: Acta Sci. Vet.
– year: 2011
  ident: 10.1016/j.livsci.2019.103904_bib0024
– start-page: 42
  year: 2014
  ident: 10.1016/j.livsci.2019.103904_bib0017
  article-title: Estimation of Pig Weight by Machine Vision: A Review
– year: 2016
  ident: 10.1016/j.livsci.2019.103904_bib0026
– volume: 67
  start-page: 301
  year: 2005
  ident: 10.1016/j.livsci.2019.103904_bib0033
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B Stat.
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: 10.1016/j.livsci.2019.103904_bib9003
– volume: 3
  start-page: 069
  year: 1962
  ident: 10.1016/j.livsci.2019.103904_bib0012
  article-title: Method and means for recognizing complex patterns
  publication-title: US Pat.
– volume: 5
  start-page: 681
  year: 2009
  ident: 10.1016/j.livsci.2019.103904_bib0003
  article-title: Partial least squares regression as an alternative to current regression methods used in ecology
  publication-title: Oikos
  doi: 10.1111/j.1600-0706.2008.16881.x
– volume: 63
  start-page: 74
  year: 1979
  ident: 10.1016/j.livsci.2019.103904_bib0004
  article-title: Prediction and Improved Estimation in Linear Models
  publication-title: Math. Gaz.
  doi: 10.2307/3615245
– year: 2009
  ident: 10.1016/j.livsci.2019.103904_bib0011
– ident: 10.1016/j.livsci.2019.103904_bib0030
– volume: 14
  start-page: 177
  year: 2013
  ident: 10.1016/j.livsci.2019.103904_bib0019
  article-title: Desempenho de bovinos nelore e cruzados blonde d'aquitaine x nelore do nascimento ao desmame
  publication-title: Rev. Bras. Saúde e Prod. Anim.
  doi: 10.1590/S1519-99402013000100018
– volume: 173
  start-page: 4
  year: 2018
  ident: 10.1016/j.livsci.2019.103904_bib0020
  article-title: 3D computer-vision system for automatically estimating heifer height and body mass
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2017.11.014
– volume: 58
  start-page: 267
  year: 1996
  ident: 10.1016/j.livsci.2019.103904_bib0028
  article-title: Regression selection and Shrinkage via the Lasso
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 109
  start-page: 32
  year: 2014
  ident: 10.1016/j.livsci.2019.103904_bib0015
  article-title: Estimation of pig weight using a Microsoft Kinect prototype imaging system
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2014.08.008
– volume: 89
  start-page: 225
  year: 2006
  ident: 10.1016/j.livsci.2019.103904_bib0027
  article-title: Assessment of the adequacy of mathematical models
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2005.11.004
– volume: 33
  start-page: 1
  year: 2010
  ident: 10.1016/j.livsci.2019.103904_bib0008
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v033.i01
– year: 2013
  ident: 10.1016/j.livsci.2019.103904_bib0016
– start-page: 391
  year: 1966
  ident: 10.1016/j.livsci.2019.103904_bib0032
  article-title: Estimation of principal components and related models by iterative least squares
– volume: 89
  start-page: 1562
  year: 2010
  ident: 10.1016/j.livsci.2019.103904_bib0022
  article-title: A comparison of artificial neural networks with other statistical approaches for the prediction of true metabolizable energy of meat and bone meal
  publication-title: Poult. Sci.
  doi: 10.3382/ps.2010-00639
– volume: 32
  start-page: 407
  year: 2004
  ident: 10.1016/j.livsci.2019.103904_bib0006
  article-title: Least angle regression
  publication-title: Ann. Stat.
  doi: 10.1214/009053604000000067
– volume: 72
  start-page: 205
  year: 1999
  ident: 10.1016/j.livsci.2019.103904_bib0023
  article-title: Monitoring pig growth using a prototype imaging system
  publication-title: J. Agric. Eng. Res.
  doi: 10.1006/jaer.1998.0365
– volume: 45
  start-page: 255
  year: 1989
  ident: 10.1016/j.livsci.2019.103904_bib0018
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
  doi: 10.2307/2532051
SSID ssj0054484
Score 2.5485592
Snippet •Computer vision system can be used to predict body weight with good accuracy and precision in Nellore cattle.•The main difference in this study are the...
Frequent measurements of body weight (BW) in livestock systems are very important because they allow assessing growth. However, real-time monitoring of animal...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103904
SubjectTerms animal growth
automation
average daily gain
Beef cattle
biometry
body weight
Computer vision
feedlots
Image analysis
Kinect
Nellore
prediction
Title Automated computer vision system to predict body weight and average daily gain in beef cattle during growing and finishing phases
URI https://dx.doi.org/10.1016/j.livsci.2019.103904
https://www.proquest.com/docview/2561525494
Volume 232
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvTSH0idN2oYJ9OpuLPkhH5fQsGkglzaQm5Ds0dZlsZeNNyGXQv95Z2Q50BIIBAwGMzJGM54ZSd98I8Tn6tgjBeIyaTTmSebyPHFc7K60LbzEhnQe0BYXxeIy-3aVX-2Ik6kWhmGV0fePPj146_hkFmdztm7b2feUcv2UfDClIAyhZ9rtLCvZyr_8vod55LT8CCfLJJyw9FQ-FzBeq_aGXs0Ar4qrz6vYru2B8PSfow7R5_SleBHTRpiPX_ZK7GD3WuzNl5tInYFvxJ_5dugp_8QG6tiqAcbKcRjpmmHoYb3hg5kBXN_cwW3YFgXbNWDJosmzQGPb1R0sbdsBXQ7RQx1ojmGsZ4QlLdv5zoM805LwDhasf1IwvH4rLk-__jhZJLHBQlIrnQ8JlsdpXblKy9J7V0pv0VrMU-0zpLxOc7O_FEmABFWtXC2dV9ZpK21aSCvVO7Hb9R2-F8BEckVNuUFTpRTvrK5ckXtUUtnSKt3sCzXNq6kj-zg3wViZCWb2y4zaMKwNM2pjXyT3o9Yj-8Yj8uWkMvOPFRkKEI-MPJo0bOgH41MT22G_vTaUE3KPqKzKDp789g_iueR1ekB7fxS7w2aLnyiZGdxhsNZD8Wx-dr64-AtTtfYa
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpemh7KH3SpK8p9OpuLPkhH5fQsG3TXJpAbkKyR1uHxV423pZcAv3nnZHlQEshUDAYzEgYjTTzSfpmRoj31YFHcsRl0mjMk8zleeI42F1pW3iJDek8sC1OisVZ9vk8P98Rh1MsDNMqo-0fbXqw1vHLLI7mbN22s28pYf2UbDBBEKbQF3fE3YyWL5cx-HB9w_PIaf8RrpZJOmHxKX4ukLxW7Q_qmxleFYefV7Fe2z_801-WOrifo0fiYcSNMB9_7bHYwe6JeDBfbmLuDHwqfs23Q08AFBuoY60GGEPHYczXDEMP6w3fzAzg-uYKfoZzUbBdA5amNJkWaGy7uoKlbTugxyF6qEOeYxgDGmFJ-3Z-cyPPeUn4CAvW38kbXj4TZ0cfTw8XSaywkNRK50OC5UFaV67SsvTeldJbtBbzVPsMCdhprvaXIgmQoKqVq6XzyjptpU0LaaV6Lna7vsMXAjiTXFETOGiqlBye1ZUrco9KKltapZs9oaZxNXVMP85VMFZm4pldmFEbhrVhRm3sieSm1XpMv3GLfDmpzPwxjQx5iFtavps0bGiF8bWJ7bDfXhoChVwkKquy_f_u_a24tzj9emyOP518eSnuS960B-r3K7E7bLb4mpDN4N6Emfsb74_3qA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+computer+vision+system+to+predict+body+weight+and+average+daily+gain+in+beef+cattle+during+growing+and+finishing+phases&rft.jtitle=Livestock+science&rft.au=Cominotte%2C+A.&rft.au=Fernandes%2C+A.F.A.&rft.au=Dorea%2C+J.R.R.&rft.au=Rosa%2C+G.J.M.&rft.date=2020-02-01&rft.pub=Elsevier+B.V&rft.issn=1871-1413&rft.eissn=1878-0490&rft.volume=232&rft_id=info:doi/10.1016%2Fj.livsci.2019.103904&rft.externalDocID=S1871141319310856
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1871-1413&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1871-1413&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1871-1413&client=summon