Automated computer vision system to predict body weight and average daily gain in beef cattle during growing and finishing phases
•Computer vision system can be used to predict body weight with good accuracy and precision in Nellore cattle.•The main difference in this study are the absence of manual feature extraction.•Artificial Neural Networks increase accuracy and precision of body weight prediction. Frequent measurements o...
Saved in:
Published in | Livestock science Vol. 232; p. 103904 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Computer vision system can be used to predict body weight with good accuracy and precision in Nellore cattle.•The main difference in this study are the absence of manual feature extraction.•Artificial Neural Networks increase accuracy and precision of body weight prediction.
Frequent measurements of body weight (BW) in livestock systems are very important because they allow assessing growth. However, real-time monitoring of animal growth through traditional weighing scales is stressful for animals, costly and labor-intensive. Thus, the objectives of this study were to: 1) assess the predictive quality of an automated computer vision system used to predict BW and average daily gain (ADG) in beef cattle; and 2) compare different predictive approaches, including Multiple Linear Regression (MLR), Least Absolute Shrinkage and Selection Operator (LASSO), Partial Least Squares (PLS), and Artificial Neutral Networks (ANN). A total of 234 images of Nellore beef cattle were collected during the weaning, stocker and feedlot phases. First, biometric body measurements of each animal, such as body volume, area, length, and others, were performed using three-dimensional images captured with the Kinect® sensor, and their respective BW were acquired using an electronic scale. Next, the biometric measurements were used as explanatory variables in the four predictive approaches (MLR, LASSO, PLS, and ANN). To evaluate prediction quality, a leave-one-out cross-validation was adopted. The ANN was the best prediction approach in terms of Root Mean Square Error of Prediction (RMSEP) and squared predictive correlation (r2). The results for Weaning were RMSEP = 8.6 kg and r2 = 0.91; for Stocker phase, RMSEP = 11.4 kg and r2 = 0.79; and for Beginning of feedlot, RMSEP = 7.7 kg and r2 = 0.92. The ANN was also the best method for prediction of ADG, with RMSEP = 0.02 kg/d and r2 = 0.67 for the period between Weaning and Stocker, RMSEP = 0.02 kg/d and r2 = 0.85 for the Weaning and Beginning of Feedlot phase, RMSEP = 0.03 kg/d and r2 = 0.80 for Weaning and Final of Feedlot phase, RMSEP = 0.10 kg/d and r2 = 0.51 for Stocker and Beginning of feedlot phase, and RMSEP = 0.09 kg/d and r2 = 0.82 for the Beginning and Final of feedlot phase. Overall, the results indicate that the proposed automated computer vision system can be successfully used to predict BW and ADG in real-time in beef cattle. |
---|---|
AbstractList | Frequent measurements of body weight (BW) in livestock systems are very important because they allow assessing growth. However, real-time monitoring of animal growth through traditional weighing scales is stressful for animals, costly and labor-intensive. Thus, the objectives of this study were to: 1) assess the predictive quality of an automated computer vision system used to predict BW and average daily gain (ADG) in beef cattle; and 2) compare different predictive approaches, including Multiple Linear Regression (MLR), Least Absolute Shrinkage and Selection Operator (LASSO), Partial Least Squares (PLS), and Artificial Neutral Networks (ANN). A total of 234 images of Nellore beef cattle were collected during the weaning, stocker and feedlot phases. First, biometric body measurements of each animal, such as body volume, area, length, and others, were performed using three-dimensional images captured with the Kinect® sensor, and their respective BW were acquired using an electronic scale. Next, the biometric measurements were used as explanatory variables in the four predictive approaches (MLR, LASSO, PLS, and ANN). To evaluate prediction quality, a leave-one-out cross-validation was adopted. The ANN was the best prediction approach in terms of Root Mean Square Error of Prediction (RMSEP) and squared predictive correlation (r²). The results for Weaning were RMSEP = 8.6 kg and r² = 0.91; for Stocker phase, RMSEP = 11.4 kg and r² = 0.79; and for Beginning of feedlot, RMSEP = 7.7 kg and r² = 0.92. The ANN was also the best method for prediction of ADG, with RMSEP = 0.02 kg/d and r² = 0.67 for the period between Weaning and Stocker, RMSEP = 0.02 kg/d and r² = 0.85 for the Weaning and Beginning of Feedlot phase, RMSEP = 0.03 kg/d and r² = 0.80 for Weaning and Final of Feedlot phase, RMSEP = 0.10 kg/d and r² = 0.51 for Stocker and Beginning of feedlot phase, and RMSEP = 0.09 kg/d and r² = 0.82 for the Beginning and Final of feedlot phase. Overall, the results indicate that the proposed automated computer vision system can be successfully used to predict BW and ADG in real-time in beef cattle. •Computer vision system can be used to predict body weight with good accuracy and precision in Nellore cattle.•The main difference in this study are the absence of manual feature extraction.•Artificial Neural Networks increase accuracy and precision of body weight prediction. Frequent measurements of body weight (BW) in livestock systems are very important because they allow assessing growth. However, real-time monitoring of animal growth through traditional weighing scales is stressful for animals, costly and labor-intensive. Thus, the objectives of this study were to: 1) assess the predictive quality of an automated computer vision system used to predict BW and average daily gain (ADG) in beef cattle; and 2) compare different predictive approaches, including Multiple Linear Regression (MLR), Least Absolute Shrinkage and Selection Operator (LASSO), Partial Least Squares (PLS), and Artificial Neutral Networks (ANN). A total of 234 images of Nellore beef cattle were collected during the weaning, stocker and feedlot phases. First, biometric body measurements of each animal, such as body volume, area, length, and others, were performed using three-dimensional images captured with the Kinect® sensor, and their respective BW were acquired using an electronic scale. Next, the biometric measurements were used as explanatory variables in the four predictive approaches (MLR, LASSO, PLS, and ANN). To evaluate prediction quality, a leave-one-out cross-validation was adopted. The ANN was the best prediction approach in terms of Root Mean Square Error of Prediction (RMSEP) and squared predictive correlation (r2). The results for Weaning were RMSEP = 8.6 kg and r2 = 0.91; for Stocker phase, RMSEP = 11.4 kg and r2 = 0.79; and for Beginning of feedlot, RMSEP = 7.7 kg and r2 = 0.92. The ANN was also the best method for prediction of ADG, with RMSEP = 0.02 kg/d and r2 = 0.67 for the period between Weaning and Stocker, RMSEP = 0.02 kg/d and r2 = 0.85 for the Weaning and Beginning of Feedlot phase, RMSEP = 0.03 kg/d and r2 = 0.80 for Weaning and Final of Feedlot phase, RMSEP = 0.10 kg/d and r2 = 0.51 for Stocker and Beginning of feedlot phase, and RMSEP = 0.09 kg/d and r2 = 0.82 for the Beginning and Final of feedlot phase. Overall, the results indicate that the proposed automated computer vision system can be successfully used to predict BW and ADG in real-time in beef cattle. |
ArticleNumber | 103904 |
Author | Dorea, J.R.R. Rosa, G.J.M. van Cleef, E.H.C.B. Machado Neto, O.R. Fernandes, A.F.A. Pereira, G.L. Baldassini, W.A. Ladeira, M.M. Cominotte, A. |
Author_xml | – sequence: 1 givenname: A. surname: Cominotte fullname: Cominotte, A. organization: Department of Animal Sciences, University of Wisconsin - Madison, WI 53706, United States – sequence: 2 givenname: A.F.A. surname: Fernandes fullname: Fernandes, A.F.A. organization: Department of Animal Sciences, University of Wisconsin - Madison, WI 53706, United States – sequence: 3 givenname: J.R.R. surname: Dorea fullname: Dorea, J.R.R. organization: Department of Animal Sciences, University of Wisconsin - Madison, WI 53706, United States – sequence: 4 givenname: G.J.M. surname: Rosa fullname: Rosa, G.J.M. organization: Department of Animal Sciences, University of Wisconsin - Madison, WI 53706, United States – sequence: 5 givenname: M.M. surname: Ladeira fullname: Ladeira, M.M. organization: Animal Sciences Department, Federal University of Lavras, MG 37200-00, Brazil – sequence: 6 givenname: E.H.C.B. surname: van Cleef fullname: van Cleef, E.H.C.B. organization: Federal University of Triângulo Mineiro, Iturama, MG 38280-000, Brazil – sequence: 7 givenname: G.L. surname: Pereira fullname: Pereira, G.L. organization: School of Veterinary Medicine and Animal Science, Sao Paulo State University, Botucatu, SP 18618-681, Brazil – sequence: 8 givenname: W.A. surname: Baldassini fullname: Baldassini, W.A. organization: School of Veterinary Medicine and Animal Science, Sao Paulo State University, Botucatu, SP 18618-681, Brazil – sequence: 9 givenname: O.R. surname: Machado Neto fullname: Machado Neto, O.R. email: otavio.machado@unesp.br organization: School of Veterinary Medicine and Animal Science, Sao Paulo State University, Botucatu, SP 18618-681, Brazil |
BookMark | eNqFkE1v1DAQhiNUJNrCP-DgI5cs_spuzAGpqvioVIkLnK2JM856ldjBdrbaY_85DuHEASRL47Gfd6R5bqorHzxW1VtGd4yy_fvTbnTnZNyOU6bKk1BUvqiuWXtoayoVvfp9ZzWTTLyqblI6UdpI2crr6vluyWGCjD0xYZqXjJGcXXLBk3RJGSeSA5kj9s5k0oX-Qp7QDcdMwPcEzhhhQNKDGy9kAOdJOR2iJQZyHsvPEp0fyBDD01rXkHXepePazUdImF5XLy2MCd_8qbfVj8-fvt9_rR-_fXm4v3usjWibXOOBMqM61fKDtd2BW0AAbFhrJSrBWyX2imEBCiiM6AzvrICuBQ5sz4GL2-rdNneO4eeCKevJJYPjCB7DkjRv9qzhjVSyoB821MSQUkSrjcuQi5Qcy6qaUb161ye9ederd715L2H5V3iOboJ4-V_s4xbD4uDsMOpCoDfFfESTdR_cvwf8Aj3NpBk |
CitedBy_id | crossref_primary_10_1007_s11250_020_02402_7 crossref_primary_10_1016_j_compag_2021_106143 crossref_primary_10_3389_fanim_2023_1103826 crossref_primary_10_3389_fvets_2023_1204580 crossref_primary_10_1016_j_compag_2022_107272 crossref_primary_10_1016_j_compag_2022_107190 crossref_primary_10_32634_0869_8155_2024_381_4_114_122 crossref_primary_10_3389_fpls_2023_1181322 crossref_primary_10_1016_j_compag_2022_106706 crossref_primary_10_3168_jds_2024_25049 crossref_primary_10_1016_j_compag_2022_106987 crossref_primary_10_1093_af_vfae028 crossref_primary_10_3390_ani12020174 crossref_primary_10_1093_jas_skab022 crossref_primary_10_1093_tas_txac163 crossref_primary_10_1016_j_animal_2024_101174 crossref_primary_10_3390_app13126944 crossref_primary_10_1016_j_biosystemseng_2022_03_014 crossref_primary_10_48077_scihor6_2024_177 crossref_primary_10_3168_jds_2023_24065 crossref_primary_10_1016_j_compag_2025_110013 crossref_primary_10_1080_09712119_2022_2123812 crossref_primary_10_1016_j_compag_2020_105804 crossref_primary_10_1016_j_compag_2025_109943 crossref_primary_10_3390_ani14081210 crossref_primary_10_1093_tas_txad064 crossref_primary_10_1016_j_compag_2023_108456 crossref_primary_10_3390_ani13101679 crossref_primary_10_3390_agriculture13122266 crossref_primary_10_3390_ani13203250 crossref_primary_10_3390_agriculture12071012 crossref_primary_10_1093_jas_skac242 crossref_primary_10_1016_j_compag_2021_106085 crossref_primary_10_1016_j_atech_2023_100359 crossref_primary_10_3390_drones9020084 crossref_primary_10_4025_actascianimsci_v43i1_52881 crossref_primary_10_1016_j_inpa_2023_10_003 crossref_primary_10_1111_asj_13626 crossref_primary_10_1080_00288233_2021_1876107 crossref_primary_10_1109_JIOT_2024_3357862 crossref_primary_10_1016_j_livsci_2021_104442 crossref_primary_10_3390_ani13121956 crossref_primary_10_3389_fvets_2020_551269 crossref_primary_10_1016_j_atech_2025_100828 crossref_primary_10_1093_tas_txac066 crossref_primary_10_3389_fgene_2025_1491816 crossref_primary_10_3390_ani15060868 crossref_primary_10_3168_jds_2022_22501 crossref_primary_10_1016_j_compag_2025_110033 crossref_primary_10_3389_frai_2024_1299169 crossref_primary_10_1016_j_compag_2025_110232 crossref_primary_10_1016_j_meatsci_2023_109120 crossref_primary_10_51252_rcsi_v4i1_614 crossref_primary_10_3390_mi13081325 crossref_primary_10_1093_tas_txad085 crossref_primary_10_1016_j_biosystemseng_2023_04_014 crossref_primary_10_1016_j_compag_2023_107667 |
Cites_doi | 10.1016/j.biosystemseng.2007.08.008 10.1186/1471-2156-12-87 10.1007/s11222-009-9160-9 10.1016/j.compag.2014.06.003 10.2527/jas.2016-0797 10.1071/AN14943 10.3168/jds.2017-13997 10.1007/s10898-018-0713-3 10.1093/jas/sky418 10.1111/j.1467-9868.2005.00503.x 10.1111/j.1600-0706.2008.16881.x 10.2307/3615245 10.1590/S1519-99402013000100018 10.1016/j.biosystemseng.2017.11.014 10.1111/j.2517-6161.1996.tb02080.x 10.1016/j.compag.2014.08.008 10.1016/j.agsy.2005.11.004 10.18637/jss.v033.i01 10.3382/ps.2010-00639 10.1214/009053604000000067 10.1006/jaer.1998.0365 10.2307/2532051 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.livsci.2019.103904 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1878-0490 |
ExternalDocumentID | 10_1016_j_livsci_2019_103904 S1871141319310856 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABBQC ABFNM ABGRD ABLVK ABMAC ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLXMC BNPGV CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 QYZTP RIG ROL RPZ SDF SDG SEL SES SEW SNL SPCBC SSA SSH SSZ T5K Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACIEU ACMHX ACRPL ACVFH ADCNI ADNMO ADSLC AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AGWPP AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-c385t-e701c9b9827ffb72faeaae518f4e932893691e9b9e703c3bc2bf3ab8a2a162a23 |
IEDL.DBID | .~1 |
ISSN | 1871-1413 |
IngestDate | Fri Jul 11 05:43:56 EDT 2025 Tue Jul 01 03:16:18 EDT 2025 Thu Apr 24 23:09:31 EDT 2025 Fri Feb 23 02:47:13 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Kinect Beef cattle Computer vision Image analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-e701c9b9827ffb72faeaae518f4e932893691e9b9e703c3bc2bf3ab8a2a162a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://hdl.handle.net/11449/195235 |
PQID | 2561525494 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2561525494 crossref_citationtrail_10_1016_j_livsci_2019_103904 crossref_primary_10_1016_j_livsci_2019_103904 elsevier_sciencedirect_doi_10_1016_j_livsci_2019_103904 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 2020-02-00 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationTitle | Livestock science |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hough (bib0012) 1962; 3 Zeiler, Fergus (bib9001) 2014, September Gomes, Monteiro, Assis, Busato, Ladeira, Chizzotti (bib0010) 2016; 94 Tamura, Kobayashi, Takano, Miyashiro, Nakata, Matsui (bib0025) 2019; 73 Conway (bib0004) 1979; 63 Ozkaya, Neja, Krezel-Czopek, Oler (bib0021) 2016; 56 Szelisk (bib0024) 2011 Wold (bib0032) 1966 Gianola, Okut, Weigel, Rosa (bib0009) 2011; 12 Menezes, Pedrosa, Pedroso, Fernandes (bib0019) 2013; 14 Perai, Moghaddam, Asadpour, Bahrampour, Mansoori (bib0022) 2010; 89 Hans (bib9002) 2010; 20 Dórea, Rosa, Weld, Armentano (bib0005) 2018; 101 Lin (bib0018) 1989; 45 Nir, Parmet, Werner, Adin, Halachmi (bib0020) 2018; 173 Kashiha, Bahr, Ott, Moons, Niewold, Ödberg, Berckmans (bib0014) 2014; 107 Tibshirani (bib0028) 1996; 58 Tedeschi (bib0027) 2006; 89 Core Team (bib0026) 2016 Schofield, Marchant, White, Brandl, Wilson (bib0023) 1999; 72 Zou, Hastie (bib0033) 2005; 67 Theil (bib9004) 1961 Carrascal, Galván, Gordo (bib0003) 2009; 5 Carneiro, Silva, Mendes, Ferreira, dos Santos (bib0002) 2012; 40 Cochran, W. G., and Gertrude M. Cox. Notes on the statistical analysis of the results. (1992). Fernandes, Dórea, Fitzgerald, Herring, Rosa (bib0007) 2019; 97 Efron, Hastie, Johnstone, Tibshirani, Ishwaran, Knight, Loubes, Massart, Madigan, Ridgeway, Rosset, Zhu, Stine, Turlach, Weisberg, Johnstone, Tibshirani (bib0006) 2004; 32 Li, Luo, Teng, Liu (bib0017) 2014 Venot, E., Piles, M., Renand, G., & Jaffrézic, F.2004. Genetic Analysis of Growth Curve Parameters for Beef Cattle Using Markov Chain Monte Carlo Estimation Methods. In: van der Honing, Y., Hofer, A., Cenkvári, E., Fourichon, C., Chilliard, Y., Lazzaroni, C., Bodin, L., Wenk, C., Martin-Rosset, W., and Hermansen, J.E. (Eds.), 55th Annual Meeting of the European Association for Animal Production, Bled, Slovenia. Wageningen Academic Publishers, Wageningen, pp. 297. Friedman, Hastie, Tibshirani (bib0008) 2010; 33 Hastie, Tibshirani, Friedman (bib0011) 2009 Kongsro (bib0015) 2014; 109 Kuhn, Johnson (bib0016) 2013 Wang, Yang, Winter, Walker (bib0031) 2008; 100 Schofield (10.1016/j.livsci.2019.103904_bib0023) 1999; 72 10.1016/j.livsci.2019.103904_bib9003 Friedman (10.1016/j.livsci.2019.103904_bib0008) 2010; 33 Gomes (10.1016/j.livsci.2019.103904_bib0010) 2016; 94 Lin (10.1016/j.livsci.2019.103904_bib0018) 1989; 45 Hough (10.1016/j.livsci.2019.103904_bib0012) 1962; 3 10.1016/j.livsci.2019.103904_bib0030 Wang (10.1016/j.livsci.2019.103904_bib0031) 2008; 100 Kuhn (10.1016/j.livsci.2019.103904_bib0016) 2013 Ozkaya (10.1016/j.livsci.2019.103904_bib0021) 2016; 56 Tedeschi (10.1016/j.livsci.2019.103904_bib0027) 2006; 89 Core Team (10.1016/j.livsci.2019.103904_bib0026) 2016 Nir (10.1016/j.livsci.2019.103904_bib0020) 2018; 173 Wold (10.1016/j.livsci.2019.103904_bib0032) 1966 Hastie (10.1016/j.livsci.2019.103904_bib0011) 2009 Menezes (10.1016/j.livsci.2019.103904_bib0019) 2013; 14 Kashiha (10.1016/j.livsci.2019.103904_bib0014) 2014; 107 Carrascal (10.1016/j.livsci.2019.103904_bib0003) 2009; 5 Zou (10.1016/j.livsci.2019.103904_bib0033) 2005; 67 Dórea (10.1016/j.livsci.2019.103904_bib0005) 2018; 101 Theil (10.1016/j.livsci.2019.103904_bib9004) 1961 Zeiler (10.1016/j.livsci.2019.103904_bib9001) 2014 Kongsro (10.1016/j.livsci.2019.103904_bib0015) 2014; 109 Szelisk (10.1016/j.livsci.2019.103904_bib0024) 2011 Perai (10.1016/j.livsci.2019.103904_bib0022) 2010; 89 Conway (10.1016/j.livsci.2019.103904_bib0004) 1979; 63 Fernandes (10.1016/j.livsci.2019.103904_bib0007) 2019; 97 Tibshirani (10.1016/j.livsci.2019.103904_bib0028) 1996; 58 Tamura (10.1016/j.livsci.2019.103904_bib0025) 2019; 73 Li (10.1016/j.livsci.2019.103904_bib0017) 2014 Hans (10.1016/j.livsci.2019.103904_bib9002) 2010; 20 Gianola (10.1016/j.livsci.2019.103904_bib0009) 2011; 12 Efron (10.1016/j.livsci.2019.103904_bib0006) 2004; 32 Carneiro (10.1016/j.livsci.2019.103904_bib0002) 2012; 40 |
References_xml | – volume: 63 start-page: 74 year: 1979 end-page: 75 ident: bib0004 article-title: Prediction and Improved Estimation in Linear Models publication-title: Math. Gaz. – volume: 101 start-page: 5878 year: 2018 end-page: 5889 ident: bib0005 article-title: Mining data from milk infrared spectroscopy to improve feed intake predictions in lactating dairy cows publication-title: J. Dairy Sci. – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bib0028 article-title: Regression selection and Shrinkage via the Lasso publication-title: J. R. Stat. Soc. B – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: bib0033 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. B Stat. – volume: 3 start-page: 069 year: 1962 ident: bib0012 article-title: Method and means for recognizing complex patterns publication-title: US Pat. – volume: 12 start-page: 87 year: 2011 ident: bib0009 article-title: Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat publication-title: BMC Genet. – start-page: 42 year: 2014 end-page: 49 ident: bib0017 article-title: Estimation of Pig Weight by Machine Vision: A Review publication-title: Computer and Computing Technologies in Agriculture VII. CCTA 2013. IFIP Advances in Information and Communication Technology – year: 1961 ident: bib9004 publication-title: Economic forecasts and policy, North Holland, Amsterdam (1961) – volume: 72 start-page: 205 year: 1999 end-page: 210 ident: bib0023 article-title: Monitoring pig growth using a prototype imaging system publication-title: J. Agric. Eng. Res. – year: 2011 ident: bib0024 article-title: Computer Vision: Algorithms and Applications – year: 2016 ident: bib0026 article-title: R: a Language and Environment for Statistical Computing – volume: 56 start-page: 2060 year: 2016 end-page: 2063 ident: bib0021 article-title: Estimation of body weight from body measurements and determination of body measurements on Limousin cattle using digital image analysis publication-title: Anim. Prod. Sci. – volume: 33 start-page: 1 year: 2010 end-page: 22 ident: bib0008 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J. Stat. Softw. – year: 2013 ident: bib0016 article-title: Applied Predictive Modeling – reference: Venot, E., Piles, M., Renand, G., & Jaffrézic, F.2004. Genetic Analysis of Growth Curve Parameters for Beef Cattle Using Markov Chain Monte Carlo Estimation Methods. In: van der Honing, Y., Hofer, A., Cenkvári, E., Fourichon, C., Chilliard, Y., Lazzaroni, C., Bodin, L., Wenk, C., Martin-Rosset, W., and Hermansen, J.E. (Eds.), 55th Annual Meeting of the European Association for Animal Production, Bled, Slovenia. Wageningen Academic Publishers, Wageningen, pp. 297. – volume: 94 start-page: 5414 year: 2016 end-page: 5422 ident: bib0010 article-title: Technical note: estimating body weight and body composition of beef cattle trough digital image analysis publication-title: J. Anim. Sci. – volume: 109 start-page: 32 year: 2014 end-page: 35 ident: bib0015 article-title: Estimation of pig weight using a Microsoft Kinect prototype imaging system publication-title: Comput. Electron. Agric. – volume: 107 start-page: 38 year: 2014 end-page: 44 ident: bib0014 article-title: Automatic weight estimation of individual pigs using image analysis publication-title: Comput. Electron. Agric. – volume: 5 start-page: 681 year: 2009 end-page: 690 ident: bib0003 article-title: Partial least squares regression as an alternative to current regression methods used in ecology publication-title: Oikos – volume: 73 start-page: 431 year: 2019 end-page: 446 ident: bib0025 article-title: Mixed integer quadratic optimization formulations for eliminating multicollinearity based on variance inflation factor publication-title: J. Glob. Optim. – volume: 173 start-page: 4 year: 2018 end-page: 10 ident: bib0020 article-title: 3D computer-vision system for automatically estimating heifer height and body mass publication-title: Biosyst. Eng. – volume: 45 start-page: 255 year: 1989 end-page: 268 ident: bib0018 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics – start-page: 391 year: 1966 ident: bib0032 article-title: Estimation of principal components and related models by iterative least squares publication-title: Multivariate Analysis – reference: Cochran, W. G., and Gertrude M. Cox. Notes on the statistical analysis of the results. (1992). – volume: 20 start-page: 221 year: 2010 end-page: 229 ident: bib9002 article-title: Model uncertainty and variable selection in Bayesian lasso regression publication-title: Statistics and Computing – volume: 89 start-page: 1562 year: 2010 end-page: 1568 ident: bib0022 article-title: A comparison of artificial neural networks with other statistical approaches for the prediction of true metabolizable energy of meat and bone meal publication-title: Poult. Sci. – start-page: 818 year: 2014, September end-page: 833 ident: bib9001 article-title: Visualizing and understanding convolutional networks publication-title: European conference on computer vision – year: 2009 ident: bib0011 article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction – volume: 89 start-page: 225 year: 2006 end-page: 247 ident: bib0027 article-title: Assessment of the adequacy of mathematical models publication-title: Agric. Syst. – volume: 40 start-page: 1 year: 2012 end-page: 5 ident: bib0002 article-title: Efeito do mês de parição na taxa de gestação subsequente e no peso ao desmame dos bezerros de vacas Nelore publication-title: Acta Sci. Vet. – volume: 97 start-page: 496 year: 2019 end-page: 508 ident: bib0007 article-title: A novel automated system to acquire biometric and morphological measurements and predict body weight of pigs via 3D computer vision publication-title: J. Anim. Sci. – volume: 32 start-page: 407 year: 2004 end-page: 499 ident: bib0006 article-title: Least angle regression publication-title: Ann. Stat. – volume: 14 start-page: 177 year: 2013 end-page: 184 ident: bib0019 article-title: Desempenho de bovinos nelore e cruzados blonde d'aquitaine x nelore do nascimento ao desmame publication-title: Rev. Bras. Saúde e Prod. Anim. – volume: 100 start-page: 117 year: 2008 end-page: 125 ident: bib0031 article-title: Walk-through weighing of pigs using machine vision and an artificial neural network publication-title: Biosyst. Eng. – volume: 100 start-page: 117 year: 2008 ident: 10.1016/j.livsci.2019.103904_bib0031 article-title: Walk-through weighing of pigs using machine vision and an artificial neural network publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2007.08.008 – volume: 12 start-page: 87 year: 2011 ident: 10.1016/j.livsci.2019.103904_bib0009 article-title: Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat publication-title: BMC Genet. doi: 10.1186/1471-2156-12-87 – volume: 20 start-page: 221 issue: 2 year: 2010 ident: 10.1016/j.livsci.2019.103904_bib9002 article-title: Model uncertainty and variable selection in Bayesian lasso regression publication-title: Statistics and Computing doi: 10.1007/s11222-009-9160-9 – volume: 107 start-page: 38 year: 2014 ident: 10.1016/j.livsci.2019.103904_bib0014 article-title: Automatic weight estimation of individual pigs using image analysis publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2014.06.003 – volume: 94 start-page: 5414 year: 2016 ident: 10.1016/j.livsci.2019.103904_bib0010 article-title: Technical note: estimating body weight and body composition of beef cattle trough digital image analysis publication-title: J. Anim. Sci. doi: 10.2527/jas.2016-0797 – volume: 56 start-page: 2060 year: 2016 ident: 10.1016/j.livsci.2019.103904_bib0021 article-title: Estimation of body weight from body measurements and determination of body measurements on Limousin cattle using digital image analysis publication-title: Anim. Prod. Sci. doi: 10.1071/AN14943 – start-page: 818 year: 2014 ident: 10.1016/j.livsci.2019.103904_bib9001 article-title: Visualizing and understanding convolutional networks – volume: 101 start-page: 5878 year: 2018 ident: 10.1016/j.livsci.2019.103904_bib0005 article-title: Mining data from milk infrared spectroscopy to improve feed intake predictions in lactating dairy cows publication-title: J. Dairy Sci. doi: 10.3168/jds.2017-13997 – volume: 73 start-page: 431 year: 2019 ident: 10.1016/j.livsci.2019.103904_bib0025 article-title: Mixed integer quadratic optimization formulations for eliminating multicollinearity based on variance inflation factor publication-title: J. Glob. Optim. doi: 10.1007/s10898-018-0713-3 – year: 1961 ident: 10.1016/j.livsci.2019.103904_bib9004 – volume: 97 start-page: 496 year: 2019 ident: 10.1016/j.livsci.2019.103904_bib0007 article-title: A novel automated system to acquire biometric and morphological measurements and predict body weight of pigs via 3D computer vision publication-title: J. Anim. Sci. doi: 10.1093/jas/sky418 – volume: 40 start-page: 1 year: 2012 ident: 10.1016/j.livsci.2019.103904_bib0002 article-title: Efeito do mês de parição na taxa de gestação subsequente e no peso ao desmame dos bezerros de vacas Nelore publication-title: Acta Sci. Vet. – year: 2011 ident: 10.1016/j.livsci.2019.103904_bib0024 – start-page: 42 year: 2014 ident: 10.1016/j.livsci.2019.103904_bib0017 article-title: Estimation of Pig Weight by Machine Vision: A Review – year: 2016 ident: 10.1016/j.livsci.2019.103904_bib0026 – volume: 67 start-page: 301 year: 2005 ident: 10.1016/j.livsci.2019.103904_bib0033 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. B Stat. doi: 10.1111/j.1467-9868.2005.00503.x – ident: 10.1016/j.livsci.2019.103904_bib9003 – volume: 3 start-page: 069 year: 1962 ident: 10.1016/j.livsci.2019.103904_bib0012 article-title: Method and means for recognizing complex patterns publication-title: US Pat. – volume: 5 start-page: 681 year: 2009 ident: 10.1016/j.livsci.2019.103904_bib0003 article-title: Partial least squares regression as an alternative to current regression methods used in ecology publication-title: Oikos doi: 10.1111/j.1600-0706.2008.16881.x – volume: 63 start-page: 74 year: 1979 ident: 10.1016/j.livsci.2019.103904_bib0004 article-title: Prediction and Improved Estimation in Linear Models publication-title: Math. Gaz. doi: 10.2307/3615245 – year: 2009 ident: 10.1016/j.livsci.2019.103904_bib0011 – ident: 10.1016/j.livsci.2019.103904_bib0030 – volume: 14 start-page: 177 year: 2013 ident: 10.1016/j.livsci.2019.103904_bib0019 article-title: Desempenho de bovinos nelore e cruzados blonde d'aquitaine x nelore do nascimento ao desmame publication-title: Rev. Bras. Saúde e Prod. Anim. doi: 10.1590/S1519-99402013000100018 – volume: 173 start-page: 4 year: 2018 ident: 10.1016/j.livsci.2019.103904_bib0020 article-title: 3D computer-vision system for automatically estimating heifer height and body mass publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2017.11.014 – volume: 58 start-page: 267 year: 1996 ident: 10.1016/j.livsci.2019.103904_bib0028 article-title: Regression selection and Shrinkage via the Lasso publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 109 start-page: 32 year: 2014 ident: 10.1016/j.livsci.2019.103904_bib0015 article-title: Estimation of pig weight using a Microsoft Kinect prototype imaging system publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2014.08.008 – volume: 89 start-page: 225 year: 2006 ident: 10.1016/j.livsci.2019.103904_bib0027 article-title: Assessment of the adequacy of mathematical models publication-title: Agric. Syst. doi: 10.1016/j.agsy.2005.11.004 – volume: 33 start-page: 1 year: 2010 ident: 10.1016/j.livsci.2019.103904_bib0008 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J. Stat. Softw. doi: 10.18637/jss.v033.i01 – year: 2013 ident: 10.1016/j.livsci.2019.103904_bib0016 – start-page: 391 year: 1966 ident: 10.1016/j.livsci.2019.103904_bib0032 article-title: Estimation of principal components and related models by iterative least squares – volume: 89 start-page: 1562 year: 2010 ident: 10.1016/j.livsci.2019.103904_bib0022 article-title: A comparison of artificial neural networks with other statistical approaches for the prediction of true metabolizable energy of meat and bone meal publication-title: Poult. Sci. doi: 10.3382/ps.2010-00639 – volume: 32 start-page: 407 year: 2004 ident: 10.1016/j.livsci.2019.103904_bib0006 article-title: Least angle regression publication-title: Ann. Stat. doi: 10.1214/009053604000000067 – volume: 72 start-page: 205 year: 1999 ident: 10.1016/j.livsci.2019.103904_bib0023 article-title: Monitoring pig growth using a prototype imaging system publication-title: J. Agric. Eng. Res. doi: 10.1006/jaer.1998.0365 – volume: 45 start-page: 255 year: 1989 ident: 10.1016/j.livsci.2019.103904_bib0018 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics doi: 10.2307/2532051 |
SSID | ssj0054484 |
Score | 2.5485592 |
Snippet | •Computer vision system can be used to predict body weight with good accuracy and precision in Nellore cattle.•The main difference in this study are the... Frequent measurements of body weight (BW) in livestock systems are very important because they allow assessing growth. However, real-time monitoring of animal... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103904 |
SubjectTerms | animal growth automation average daily gain Beef cattle biometry body weight Computer vision feedlots Image analysis Kinect Nellore prediction |
Title | Automated computer vision system to predict body weight and average daily gain in beef cattle during growing and finishing phases |
URI | https://dx.doi.org/10.1016/j.livsci.2019.103904 https://www.proquest.com/docview/2561525494 |
Volume | 232 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvTSH0idN2oYJ9OpuLPkhH5fQsGkglzaQm5Ds0dZlsZeNNyGXQv95Z2Q50BIIBAwGMzJGM54ZSd98I8Tn6tgjBeIyaTTmSebyPHFc7K60LbzEhnQe0BYXxeIy-3aVX-2Ik6kWhmGV0fePPj146_hkFmdztm7b2feUcv2UfDClIAyhZ9rtLCvZyr_8vod55LT8CCfLJJyw9FQ-FzBeq_aGXs0Ar4qrz6vYru2B8PSfow7R5_SleBHTRpiPX_ZK7GD3WuzNl5tInYFvxJ_5dugp_8QG6tiqAcbKcRjpmmHoYb3hg5kBXN_cwW3YFgXbNWDJosmzQGPb1R0sbdsBXQ7RQx1ojmGsZ4QlLdv5zoM805LwDhasf1IwvH4rLk-__jhZJLHBQlIrnQ8JlsdpXblKy9J7V0pv0VrMU-0zpLxOc7O_FEmABFWtXC2dV9ZpK21aSCvVO7Hb9R2-F8BEckVNuUFTpRTvrK5ckXtUUtnSKt3sCzXNq6kj-zg3wViZCWb2y4zaMKwNM2pjXyT3o9Yj-8Yj8uWkMvOPFRkKEI-MPJo0bOgH41MT22G_vTaUE3KPqKzKDp789g_iueR1ekB7fxS7w2aLnyiZGdxhsNZD8Wx-dr64-AtTtfYa |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpemh7KH3SpK8p9OpuLPkhH5fQsG3TXJpAbkKyR1uHxV423pZcAv3nnZHlQEshUDAYzEgYjTTzSfpmRoj31YFHcsRl0mjMk8zleeI42F1pW3iJDek8sC1OisVZ9vk8P98Rh1MsDNMqo-0fbXqw1vHLLI7mbN22s28pYf2UbDBBEKbQF3fE3YyWL5cx-HB9w_PIaf8RrpZJOmHxKX4ukLxW7Q_qmxleFYefV7Fe2z_801-WOrifo0fiYcSNMB9_7bHYwe6JeDBfbmLuDHwqfs23Q08AFBuoY60GGEPHYczXDEMP6w3fzAzg-uYKfoZzUbBdA5amNJkWaGy7uoKlbTugxyF6qEOeYxgDGmFJ-3Z-cyPPeUn4CAvW38kbXj4TZ0cfTw8XSaywkNRK50OC5UFaV67SsvTeldJbtBbzVPsMCdhprvaXIgmQoKqVq6XzyjptpU0LaaV6Lna7vsMXAjiTXFETOGiqlBye1ZUrco9KKltapZs9oaZxNXVMP85VMFZm4pldmFEbhrVhRm3sieSm1XpMv3GLfDmpzPwxjQx5iFtavps0bGiF8bWJ7bDfXhoChVwkKquy_f_u_a24tzj9emyOP518eSnuS960B-r3K7E7bLb4mpDN4N6Emfsb74_3qA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+computer+vision+system+to+predict+body+weight+and+average+daily+gain+in+beef+cattle+during+growing+and+finishing+phases&rft.jtitle=Livestock+science&rft.au=Cominotte%2C+A.&rft.au=Fernandes%2C+A.F.A.&rft.au=Dorea%2C+J.R.R.&rft.au=Rosa%2C+G.J.M.&rft.date=2020-02-01&rft.pub=Elsevier+B.V&rft.issn=1871-1413&rft.eissn=1878-0490&rft.volume=232&rft_id=info:doi/10.1016%2Fj.livsci.2019.103904&rft.externalDocID=S1871141319310856 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1871-1413&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1871-1413&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1871-1413&client=summon |