Evaluating pattern matching queries for spatial databases
In this paper, we study the spatial pattern matching (SPM) query. Given a set D of spatial objects (e.g., houses and shops), each with a textual description, we aim at finding all combinations of objects from D that match a user-defined spatial pattern P . A pattern P is a graph whose vertices repre...
Saved in:
Published in | The VLDB journal Vol. 28; no. 5; pp. 649 - 673 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1066-8888 0949-877X |
DOI | 10.1007/s00778-019-00550-3 |
Cover
Abstract | In this paper, we study the
spatial pattern matching
(SPM) query. Given a set
D
of spatial objects (e.g., houses and shops), each with a textual description, we aim at finding all combinations of objects from
D
that match a user-defined
spatial pattern
P
. A pattern
P
is a graph whose vertices represent spatial objects, and edges denote distance relationships between them. The SPM query returns the instances that satisfy
P
. An example of
P
can be “a
house
within 10-min walk from a
school
, which is at least 2 km away from a
hospital
.” The SPM query can benefit users such as house buyers, urban planners, and archeologists. We prove that answering such queries is computationally intractable and propose two efficient algorithms for their evaluation. Moreover, we study efficient solutions to address two related problems of the SPM: (1) find top-
k
matches that are close to a query location and (2) return partial matches for a query pattern. Experiments and case studies on real datasets show that our proposed solutions are highly effective and efficient. |
---|---|
AbstractList | In this paper, we study the spatial pattern matching (SPM) query. Given a set D of spatial objects (e.g., houses and shops), each with a textual description, we aim at finding all combinations of objects from D that match a user-defined spatial patternP. A pattern P is a graph whose vertices represent spatial objects, and edges denote distance relationships between them. The SPM query returns the instances that satisfy P. An example of P can be “a house within 10-min walk from a school, which is at least 2 km away from a hospital.” The SPM query can benefit users such as house buyers, urban planners, and archeologists. We prove that answering such queries is computationally intractable and propose two efficient algorithms for their evaluation. Moreover, we study efficient solutions to address two related problems of the SPM: (1) find top-k matches that are close to a query location and (2) return partial matches for a query pattern. Experiments and case studies on real datasets show that our proposed solutions are highly effective and efficient. In this paper, we study the spatial pattern matching (SPM) query. Given a set D of spatial objects (e.g., houses and shops), each with a textual description, we aim at finding all combinations of objects from D that match a user-defined spatial pattern P . A pattern P is a graph whose vertices represent spatial objects, and edges denote distance relationships between them. The SPM query returns the instances that satisfy P . An example of P can be “a house within 10-min walk from a school , which is at least 2 km away from a hospital .” The SPM query can benefit users such as house buyers, urban planners, and archeologists. We prove that answering such queries is computationally intractable and propose two efficient algorithms for their evaluation. Moreover, we study efficient solutions to address two related problems of the SPM: (1) find top- k matches that are close to a query location and (2) return partial matches for a query pattern. Experiments and case studies on real datasets show that our proposed solutions are highly effective and efficient. |
Author | Fang, Yixiang Cheng, Reynold Li, Yun Cong, Gao Mamoulis, Nikos |
Author_xml | – sequence: 1 givenname: Yixiang orcidid: 0000-0002-5047-8593 surname: Fang fullname: Fang, Yixiang email: yxfang@cs.hku.hk organization: Department of Computer Science, The University of Hong Kong – sequence: 2 givenname: Yun surname: Li fullname: Li, Yun organization: Department of Computer Science and Technology, Nanjing University – sequence: 3 givenname: Reynold surname: Cheng fullname: Cheng, Reynold organization: Department of Computer Science, The University of Hong Kong – sequence: 4 givenname: Nikos surname: Mamoulis fullname: Mamoulis, Nikos organization: Department of Computer Science and Engineering, University of Ioannina – sequence: 5 givenname: Gao surname: Cong fullname: Cong, Gao organization: School of Computer Science and Engineering, Nanyang Technological University |
BookMark | eNp9kE9LAzEQxYNUsK1-AU8LnqP5t5vkKKVaoeBFwVuYzSZ1y3a3Jqngtzd1BcFDc5hA5v1mXt4MTfqhdwhdU3JLCZF3MRepMKEaE1KWBPMzNCVaaKykfJugKSVVhVU-F2gW45YQwhgrp0gvP6E7QGr7TbGHlFzoix0k-358-Di40LpY-CEUMXdb6IoGEtQQXbxE5x666K5-7zl6fVi-LFZ4_fz4tLhfY8tVmbATtaDSa6udKqvGgRcEgDrRlMpJYMwKK6WmvvZKVJJrsF7ZWkhQNW-k5HN0M87dhyEbislsh0Po80rDeP4ro1rxrFKjyoYhxuC8sW3Kjoc-BWg7Q4k5BmXGoEwOyvwEZY4o-4fuQ7uD8HUa4iMUs7jfuPDn6gT1DZXlfY4 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3177620 crossref_primary_10_1109_TKDE_2019_2947505 |
Cites_doi | 10.1109/TKDE.2011.172 10.1145/304181.304183 10.1145/2996913.2996987 10.1109/ICDE.2008.4497505 10.1023/A:1008817325994 10.1109/ICDE.2009.77 10.1109/ICDE.2016.7498281 10.1109/ICDE.2018.00035 10.1145/2723372.2723723 10.1109/ICDE.2018.00180 10.1145/2396761.2396879 10.1145/503099.503101 10.1109/TPAMI.2017.2696940 10.1145/2213836.2213896 10.1145/170036.170075 10.14778/2535569.2448955 10.1007/s00267-002-2450-z 10.1145/1839490.1839491 10.1145/1281192.1281271 10.1145/1989323.1989363 10.1145/3355491.3355493 10.1145/303976.303981 10.1016/0378-8733(83)90028-X 10.1142/S021972001000477X |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Copyright Springer Nature B.V. 2019 |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1007/s00778-019-00550-3 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 0949-877X |
EndPage | 673 |
ExternalDocumentID | 10_1007_s00778_019_00550_3 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 123 1N0 1SB 2.D 203 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 3-Y 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AAKMM AALFJ AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTV AAYFX AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACM ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADL ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEBYY AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AENSD AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWIH AFWTZ AFWXC AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG CCLIF COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GUFHI GXS H13 HF~ HG5 HG6 HGAVV HMJXF HQYDN HRMNR HVGLF HZ~ I07 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LHSKQ LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P0- P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 W7O WK8 YLTOR YZZ Z45 Z7R Z7X Z83 Z88 Z8M Z8R Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEFXT AEJOY AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AKRVB ATHPR AYFIA CITATION ABRTQ JQ2 |
ID | FETCH-LOGICAL-c385t-e4b417f9c9e856deaf40aa1e4d58e7a22c4c7791fbf846739acf8cb47a8b3d773 |
IEDL.DBID | U2A |
ISSN | 1066-8888 |
IngestDate | Tue Sep 16 16:20:40 EDT 2025 Tue Jul 01 01:59:45 EDT 2025 Thu Apr 24 23:04:54 EDT 2025 Fri Feb 21 02:37:42 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Keywords | Spatial keywords Spatial pattern Spatial query Pattern matching Pattern query Spatial database |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-e4b417f9c9e856deaf40aa1e4d58e7a22c4c7791fbf846739acf8cb47a8b3d773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5047-8593 |
PQID | 2305521983 |
PQPubID | 2043708 |
PageCount | 25 |
ParticipantIDs | proquest_journals_2305521983 crossref_citationtrail_10_1007_s00778_019_00550_3 crossref_primary_10_1007_s00778_019_00550_3 springer_journals_10_1007_s00778_019_00550_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: New York |
PublicationSubtitle | The International Journal on Very Large Data Bases |
PublicationTitle | The VLDB journal |
PublicationTitleAbbrev | The VLDB Journal |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | ChenFeiWuXiaoweiPerfect Pipelining for Streaming Large File in Peer-to-Peer NetworksLecture Notes in Computer Science2014Berlin, HeidelbergSpringer Berlin Heidelberg2738 FangYWangZChengRLiXLuoSHuJChenXOn spatial-aware community search. TKDE2019314783798 Chen, L., Cong, G., Jensen, C.S., Wu, D.: Spatial keyword query processing: an experimental evaluation. In: PVLDB, pp. 217–228 (2013) Zhang, C., Zhang, Y., Zhang, W., Lin, X., Cheema, M.A., Wang, X.: Diversified spatial keyword search on road networks. In: EDBT, pp. 367–378 (2014) LiuJDengKSunHGeYZhouXJensenCSClue-based spatio-textual queryPVLDB2017105529540 Settlement patterns (2017). http://geography.parkfieldprimary.com/the-united-kingdom/settlement-patterns Ministry of Education of Singapore (2017). https://www.moe.gov.sg/admissions/primary-one-registration/allocation Zhu, G., et al.: Treespan: efficiently computing similarity all-matching. In: SIGMOD, pp. 529–540. ACM (2012) Tian, Y., et al.: Tale: a tool for approximate large graph matching. In: ICDE, pp. 963–972. IEEE (2008) MamoulisNPapadiasDIntegration of spatial join algorithms for processing multiple inputsSIGMOD199928211210.1145/304181.304183 Tong, H., Faloutsos, C., Gallagher, B., Eliassi-Rad, T.: Fast best-effort pattern matching in large attributed graphs. In: KDD, pp. 737–746 (2007) CongGJensenCSWuDEfficient retrieval of the top-k most relevant spatial web objectsVLDB200921337348 Fang, Y., Cheng, R., Wang, J., Budiman, Cong, G., Mamoulis, N.: SpaceKey: exploring patterns in spatial databases. In: ICDE, pp. 1577–1580. IEEE (2018) FangYChengRTangWManiuSYangXScalable algorithms for nearest-neighbor joins on big trajectory dataTKDE2016283785800 Zhang, D., et al.: Keyword search in spatial databases: towards searching by document. In: ICDE, pp. 688–699. IEEE (2009) DengKLiXLuJZhouXBest keyword cover searchTKDE20152716173 https://en.wikipedia.org/wiki/Floyd-Warshall_algorithm SchnaibergJRieraJTurnerMGVossPRExplaining human settlement patterns in a recreational lake district: Vilas county, Wisconsin, USAEnviron. Manag.2002301243410.1007/s00267-002-2450-z ZhangSYangJJinWSapper: subgraph indexing and approximate matching in large graphsPVLDB201031–211851194 Fang, Y., Li, Y., Cheng, R., Mamoulis, N., Cong, G.: On spatial pattern matching. http://www.cse.unsw.edu.au/~z3525370/spm2019.pdf ZouLChenLÖzsuMTDistance-join: pattern match query in a large graph databasePVLDB200921886897 FangYChengRLiXLuoSHuJEffective community search over large spatial graphsPVLDB2017106709720 Wu, Y., Patel, J.M., Jagadish, H.: Structural join order selection for XML query optimization. In: ICDE, pp. 443–454. IEEE (2003) Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying. In: SIGMOD, pp. 373–384. ACM (2011) Papadias, D., Mamoulis, N., Theodoridis, Y.: Processing and optimization of multiway spatial joins using r-trees. In: PODS (1999) GallagherBMatching structure and semantics: a survey on graph-based pattern matchingAAAI FS200664553 Guo, T., Cao, X., Cong, G.: Efficient algorithms for answering the m-closest keywords query. In: SIGMOD, pp. 405–418. ACM (2015) Jin, J., An, N., Sivasubramaniam, A.: Analyzing range queries on spatial data. In: ICDE, pp. 525–534 (2000) ThomasLTValluriSRKarlapalemKMargin: maximal frequent subgraph miningTKDD2010431010.1145/1839490.1839491 MamoulisNPapadiasDMultiway spatial joinsTODS200126442447510.1145/503099.503101 Mahmood, A.R., Aref, W.G., Aly, A.M., Tang, M.: Atlas: on the expression of spatial-keyword group queries using extended relational constructs. In: SIGSPATIAL, p. 45. ACM (2016) Choi, D., Pei, J., Lin, X.: Finding the minimum spatial keyword cover. In: ICDE, pp. 685–696. IEEE (2016) Huang, W., Li, G., Tan, K.-L., Feng, J.: Efficient safe-region construction for moving top-k spatial keyword queries. In: CIKM, pp. 932–941. ACM (2012) Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of networks (2003). arXiv preprint arXiv:cs/0310049 Brinkhoff, T., Kriegel, H.-P., Seeger, B.: Efficient processing of spatial joins using r-trees. In: SIGMOD, pp 237–246 (1993) TangMSimilarity group-by operators for multi-dimensional relational dataTKDE2016282510523 WuDingmingYiuMan LungCongGaoJensenChristian S.Joint Top-K Spatial Keyword Query ProcessingIEEE Transactions on Knowledge and Data Engineering201224101889190310.1109/TKDE.2011.172 https://en.wikipedia.org/wiki/Geometric_distribution Papadias, D., et al.: Algorithms for querying by spatial structure. In: VLDB, pp. 546–557 (1998) LiYunFangYixiangChengReynoldZhangWenjieSpatial pattern matchingSIGSPATIAL Special201911131210.1145/3355491.3355493 NiemeläJEcology and urban planningBiodivers. Conserv.19998111913110.1023/A:1008817325994 Carletti, V., et al.: Challenging the time complexity of exact subgraph isomorphism for huge and dense graphs with VF3. In: TPAMI (2017) SeidmanSBNetwork structure and minimum degreeSoc Netw19835326928772129510.1016/0378-8733(83)90028-X Fang, Y., Cheng, R., Cong, G., Mamoulis, N., Li, Y.: On spatial pattern matching. In: ICDE, pp. 293–304. IEEE (2018) ZhangCZhangYZhangWLinXInverted linear quadtree: efficient top-k spatial keyword searchTKDE201628717061721 MongioviMSigma: a set-cover-based inexact graph matching algorithmJ. Bioinform. Comput. Biol.201080219921810.1142/S021972001000477X J Liu (550_CR39) 2017; 10 L Zou (550_CR11) 2009; 2 Y Fang (550_CR31) 2016; 28 N Mamoulis (550_CR10) 2001; 26 550_CR27 550_CR25 550_CR24 S Zhang (550_CR26) 2010; 3 550_CR46 550_CR9 550_CR8 550_CR7 LT Thomas (550_CR28) 2010; 4 J Schnaiberg (550_CR6) 2002; 30 550_CR12 C Zhang (550_CR34) 2016; 28 550_CR1 Yun Li (550_CR16) 2019; 11 Fei Chen (550_CR22) 2014 550_CR4 550_CR2 K Deng (550_CR3) 2015; 27 G Cong (550_CR33) 2009; 2 550_CR38 550_CR15 550_CR37 550_CR14 550_CR36 550_CR13 550_CR35 SB Seidman (550_CR29) 1983; 5 550_CR18 550_CR17 M Tang (550_CR44) 2016; 28 550_CR40 Y Fang (550_CR30) 2017; 10 B Gallagher (550_CR42) 2006; 6 M Mongiovi (550_CR45) 2010; 8 550_CR23 Y Fang (550_CR32) 2019; 31 550_CR21 550_CR43 550_CR20 J Niemelä (550_CR5) 1999; 8 Dingming Wu (550_CR19) 2012; 24 N Mamoulis (550_CR41) 1999; 28 |
References_xml | – reference: Choi, D., Pei, J., Lin, X.: Finding the minimum spatial keyword cover. In: ICDE, pp. 685–696. IEEE (2016) – reference: Papadias, D., Mamoulis, N., Theodoridis, Y.: Processing and optimization of multiway spatial joins using r-trees. In: PODS (1999) – reference: Zhu, G., et al.: Treespan: efficiently computing similarity all-matching. In: SIGMOD, pp. 529–540. ACM (2012) – reference: DengKLiXLuJZhouXBest keyword cover searchTKDE20152716173 – reference: Fang, Y., Li, Y., Cheng, R., Mamoulis, N., Cong, G.: On spatial pattern matching. http://www.cse.unsw.edu.au/~z3525370/spm2019.pdf – reference: SeidmanSBNetwork structure and minimum degreeSoc Netw19835326928772129510.1016/0378-8733(83)90028-X – reference: NiemeläJEcology and urban planningBiodivers. Conserv.19998111913110.1023/A:1008817325994 – reference: MamoulisNPapadiasDMultiway spatial joinsTODS200126442447510.1145/503099.503101 – reference: SchnaibergJRieraJTurnerMGVossPRExplaining human settlement patterns in a recreational lake district: Vilas county, Wisconsin, USAEnviron. Manag.2002301243410.1007/s00267-002-2450-z – reference: Tian, Y., et al.: Tale: a tool for approximate large graph matching. In: ICDE, pp. 963–972. IEEE (2008) – reference: https://en.wikipedia.org/wiki/Floyd-Warshall_algorithm – reference: ZhangCZhangYZhangWLinXInverted linear quadtree: efficient top-k spatial keyword searchTKDE201628717061721 – reference: Zhang, C., Zhang, Y., Zhang, W., Lin, X., Cheema, M.A., Wang, X.: Diversified spatial keyword search on road networks. In: EDBT, pp. 367–378 (2014) – reference: Mahmood, A.R., Aref, W.G., Aly, A.M., Tang, M.: Atlas: on the expression of spatial-keyword group queries using extended relational constructs. In: SIGSPATIAL, p. 45. ACM (2016) – reference: Zhang, D., et al.: Keyword search in spatial databases: towards searching by document. In: ICDE, pp. 688–699. IEEE (2009) – reference: CongGJensenCSWuDEfficient retrieval of the top-k most relevant spatial web objectsVLDB200921337348 – reference: FangYChengRTangWManiuSYangXScalable algorithms for nearest-neighbor joins on big trajectory dataTKDE2016283785800 – reference: Settlement patterns (2017). http://geography.parkfieldprimary.com/the-united-kingdom/settlement-patterns – reference: Huang, W., Li, G., Tan, K.-L., Feng, J.: Efficient safe-region construction for moving top-k spatial keyword queries. In: CIKM, pp. 932–941. ACM (2012) – reference: Jin, J., An, N., Sivasubramaniam, A.: Analyzing range queries on spatial data. In: ICDE, pp. 525–534 (2000) – reference: Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying. In: SIGMOD, pp. 373–384. ACM (2011) – reference: Tong, H., Faloutsos, C., Gallagher, B., Eliassi-Rad, T.: Fast best-effort pattern matching in large attributed graphs. In: KDD, pp. 737–746 (2007) – reference: ZouLChenLÖzsuMTDistance-join: pattern match query in a large graph databasePVLDB200921886897 – reference: FangYChengRLiXLuoSHuJEffective community search over large spatial graphsPVLDB2017106709720 – reference: ChenFeiWuXiaoweiPerfect Pipelining for Streaming Large File in Peer-to-Peer NetworksLecture Notes in Computer Science2014Berlin, HeidelbergSpringer Berlin Heidelberg2738 – reference: MongioviMSigma: a set-cover-based inexact graph matching algorithmJ. Bioinform. Comput. Biol.201080219921810.1142/S021972001000477X – reference: Fang, Y., Cheng, R., Cong, G., Mamoulis, N., Li, Y.: On spatial pattern matching. In: ICDE, pp. 293–304. IEEE (2018) – reference: Wu, Y., Patel, J.M., Jagadish, H.: Structural join order selection for XML query optimization. In: ICDE, pp. 443–454. IEEE (2003) – reference: LiuJDengKSunHGeYZhouXJensenCSClue-based spatio-textual queryPVLDB2017105529540 – reference: Ministry of Education of Singapore (2017). https://www.moe.gov.sg/admissions/primary-one-registration/allocation – reference: MamoulisNPapadiasDIntegration of spatial join algorithms for processing multiple inputsSIGMOD199928211210.1145/304181.304183 – reference: Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of networks (2003). arXiv preprint arXiv:cs/0310049 – reference: Papadias, D., et al.: Algorithms for querying by spatial structure. In: VLDB, pp. 546–557 (1998) – reference: ZhangSYangJJinWSapper: subgraph indexing and approximate matching in large graphsPVLDB201031–211851194 – reference: Carletti, V., et al.: Challenging the time complexity of exact subgraph isomorphism for huge and dense graphs with VF3. In: TPAMI (2017) – reference: GallagherBMatching structure and semantics: a survey on graph-based pattern matchingAAAI FS200664553 – reference: TangMSimilarity group-by operators for multi-dimensional relational dataTKDE2016282510523 – reference: LiYunFangYixiangChengReynoldZhangWenjieSpatial pattern matchingSIGSPATIAL Special201911131210.1145/3355491.3355493 – reference: https://en.wikipedia.org/wiki/Geometric_distribution – reference: FangYWangZChengRLiXLuoSHuJChenXOn spatial-aware community search. TKDE2019314783798 – reference: Guo, T., Cao, X., Cong, G.: Efficient algorithms for answering the m-closest keywords query. In: SIGMOD, pp. 405–418. ACM (2015) – reference: ThomasLTValluriSRKarlapalemKMargin: maximal frequent subgraph miningTKDD2010431010.1145/1839490.1839491 – reference: Chen, L., Cong, G., Jensen, C.S., Wu, D.: Spatial keyword query processing: an experimental evaluation. In: PVLDB, pp. 217–228 (2013) – reference: Brinkhoff, T., Kriegel, H.-P., Seeger, B.: Efficient processing of spatial joins using r-trees. In: SIGMOD, pp 237–246 (1993) – reference: WuDingmingYiuMan LungCongGaoJensenChristian S.Joint Top-K Spatial Keyword Query ProcessingIEEE Transactions on Knowledge and Data Engineering201224101889190310.1109/TKDE.2011.172 – reference: Fang, Y., Cheng, R., Wang, J., Budiman, Cong, G., Mamoulis, N.: SpaceKey: exploring patterns in spatial databases. In: ICDE, pp. 1577–1580. IEEE (2018) – volume: 24 start-page: 1889 issue: 10 year: 2012 ident: 550_CR19 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2011.172 – ident: 550_CR7 – start-page: 27 volume-title: Lecture Notes in Computer Science year: 2014 ident: 550_CR22 – volume: 3 start-page: 1185 issue: 1–2 year: 2010 ident: 550_CR26 publication-title: PVLDB – ident: 550_CR9 – volume: 28 start-page: 1 issue: 2 year: 1999 ident: 550_CR41 publication-title: SIGMOD doi: 10.1145/304181.304183 – ident: 550_CR25 – ident: 550_CR37 doi: 10.1145/2996913.2996987 – ident: 550_CR46 doi: 10.1109/ICDE.2008.4497505 – volume: 8 start-page: 119 issue: 1 year: 1999 ident: 550_CR5 publication-title: Biodivers. Conserv. doi: 10.1023/A:1008817325994 – ident: 550_CR23 – volume: 6 start-page: 45 year: 2006 ident: 550_CR42 publication-title: AAAI FS – volume: 28 start-page: 1706 issue: 7 year: 2016 ident: 550_CR34 publication-title: TKDE – volume: 28 start-page: 510 issue: 2 year: 2016 ident: 550_CR44 publication-title: TKDE – ident: 550_CR1 doi: 10.1109/ICDE.2009.77 – ident: 550_CR21 – ident: 550_CR4 doi: 10.1109/ICDE.2016.7498281 – ident: 550_CR15 doi: 10.1109/ICDE.2018.00035 – ident: 550_CR17 doi: 10.1109/ICDE.2018.00035 – volume: 10 start-page: 709 issue: 6 year: 2017 ident: 550_CR30 publication-title: PVLDB – ident: 550_CR2 doi: 10.1145/2723372.2723723 – volume: 2 start-page: 337 issue: 1 year: 2009 ident: 550_CR33 publication-title: VLDB – ident: 550_CR14 doi: 10.1109/ICDE.2018.00180 – ident: 550_CR35 doi: 10.1145/2396761.2396879 – ident: 550_CR8 – volume: 26 start-page: 424 issue: 4 year: 2001 ident: 550_CR10 publication-title: TODS doi: 10.1145/503099.503101 – ident: 550_CR12 doi: 10.1109/TPAMI.2017.2696940 – ident: 550_CR27 doi: 10.1145/2213836.2213896 – volume: 10 start-page: 529 issue: 5 year: 2017 ident: 550_CR39 publication-title: PVLDB – ident: 550_CR40 doi: 10.1145/170036.170075 – volume: 31 start-page: 783 issue: 4 year: 2019 ident: 550_CR32 publication-title: On spatial-aware community search. TKDE – ident: 550_CR18 doi: 10.14778/2535569.2448955 – ident: 550_CR24 – volume: 30 start-page: 24 issue: 1 year: 2002 ident: 550_CR6 publication-title: Environ. Manag. doi: 10.1007/s00267-002-2450-z – volume: 4 start-page: 10 issue: 3 year: 2010 ident: 550_CR28 publication-title: TKDD doi: 10.1145/1839490.1839491 – ident: 550_CR43 doi: 10.1145/1281192.1281271 – volume: 27 start-page: 61 issue: 1 year: 2015 ident: 550_CR3 publication-title: TKDE – ident: 550_CR38 doi: 10.1145/1989323.1989363 – volume: 28 start-page: 785 issue: 3 year: 2016 ident: 550_CR31 publication-title: TKDE – volume: 2 start-page: 886 issue: 1 year: 2009 ident: 550_CR11 publication-title: PVLDB – ident: 550_CR13 – volume: 11 start-page: 3 issue: 1 year: 2019 ident: 550_CR16 publication-title: SIGSPATIAL Special doi: 10.1145/3355491.3355493 – ident: 550_CR20 doi: 10.1145/303976.303981 – volume: 5 start-page: 269 issue: 3 year: 1983 ident: 550_CR29 publication-title: Soc Netw doi: 10.1016/0378-8733(83)90028-X – ident: 550_CR36 – volume: 8 start-page: 199 issue: 02 year: 2010 ident: 550_CR45 publication-title: J. Bioinform. Comput. Biol. doi: 10.1142/S021972001000477X |
SSID | ssj0002225 |
Score | 2.2801776 |
Snippet | In this paper, we study the
spatial pattern matching
(SPM) query. Given a set
D
of spatial objects (e.g., houses and shops), each with a textual description,... In this paper, we study the spatial pattern matching (SPM) query. Given a set D of spatial objects (e.g., houses and shops), each with a textual description,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 649 |
SubjectTerms | Algorithms Apexes Computer Science Database Management Graph theory Pattern matching Queries Regular Paper |
Title | Evaluating pattern matching queries for spatial databases |
URI | https://link.springer.com/article/10.1007/s00778-019-00550-3 https://www.proquest.com/docview/2305521983 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwMhECXaXrz4bazWhoM33WQ_WGCPrWltNPZkk3raAAtezGrc-v-doWwbjZp42gMwmwzM8CY8HoRcWs5ii5qtRkOJwpiLkQTAI2er2GrDtfGSQg8zPp2zu0W-CJfCmpbt3h5J-ky9vuyGyjNIvCoiFI6C7LFNujnU7hiO83S4zr9YwfgzTs4jqO9kuCrzs42v29EGY347FvW7zWSf7AaYSIereT0gW7Y-JHvtEww0ROQRKcZBrbt-pm9eKrOmgEE9QZLCT7AQpoBLaYPMabCIjFDcuZpjMp-MH2-mUXgNITKZzJeRZZolwhWmsDLnlVWOxUolllW5tEKlqWFGiCJx2iGmyAplnDSaCSV1VgmRnZBO_VrbU0K5k85ZJythYVDMtQKPqDzJABsZnYoeSVqnlCZIheOLFS_lWuTYO7KEYaV3ZJn1yNV6zNtKKOPP3v3W12UImqZMUX0MMqiE5uvW_5vm362d_a_7OdlJcQl4Sl6fdJbvH_YCoMVSD0h3OBmNZvi9fbofD_zK-gQSxMdS |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BO8BCeYpCgQxskCoPx3bGCrUU-phaqUxR7NgMoFDRdOHXY7tOKipA6myf5ef5O93nzwC3AiNPaM1WzlSIgpD0NAkAu1JknmAcM24khUZj3J-i51k0s4_CFiXbvUxJGk9dPXbTyjOaeBW7WjhKeY9dqCMVg3s1qHceXwbdygPrGMZkOTF2VYRH7WOZ31v5eSGtUeZGYtTcN70GTMuermgmb-1lwdr8a0PEcduhHMKBBaBOZ7VjjmBH5MfQKD93cOxZP4G4a3XA81dnbkQ4c0ehW0O9dFTndYjtKMTrLDQnW7Wouab6TlycwrTXnTz0XfvPgstDGhWuQAz5RMY8FjTCmUgl8tLUFyiLqCBpEHDECYl9yaRGK2Gcckk5QySlLMwICc-gln_k4hwcLKmUQtKMCGXkYZaqQaaRHyrUxVlAmuCXk51wK0Ku_8J4Tyr5ZDM3iTJLzNwkYRPuKpv5SoLj39qtcg0TexwXSaB1zZRvpqr4vlySdfHfrV1sV_0G9vqT0TAZPo0Hl7Af6BU2xL8W1IrPpbhSAKZg13a_fgOYl-Qq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSIgLO6JQwAduEDWLYzvHClqVreJApd4s27G5oBDR8P943CQFBEicvUSa2DNv5DdvEDo3lIQGNFu1cikKITYEEgANrMlDozRV2ksKPUzoeEpuZ-nsUxW_Z7s3T5KLmgZQaSqqfpnbflv4Bio0QMLKAhCRcp5kFa05dxzBSZ_Gg9YXQzbj3zspDVyux-uymZ_3-Bqalnjz2xOpjzyjbbRZQ0Y8WPzjHbRiil201bRjwPXt3EPZsFbuLp5x6WUzC-zwqCdLYvcRSIqxw6h4DixqtyOwQyGKzffRdDR8uhoHdWeEQCc8rQJDFImYzXRmeEpzIy0JpYwMyVNumIxjTTRjWWSVBXyRZFJbrhVhkqskZyw5QJ3itTCHCFPLrTWW58y4RSFV0llEplHicJJWMeuiqDGK0LVsOHSveBGt4LE3pHDLhDekSLrool1TLkQz_pzda2wt6gs0FzEokTlvyt3wZWP_5fDvux39b_oZWn-8Hon7m8ndMdqI4TR4pl4Pdaq3d3PiEEelTv2h-gDx48tx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+pattern+matching+queries+for+spatial+databases&rft.jtitle=The+VLDB+journal&rft.au=Fang%2C+Yixiang&rft.au=Li%2C+Yun&rft.au=Cheng%2C+Reynold&rft.au=Mamoulis%2C+Nikos&rft.date=2019-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1066-8888&rft.eissn=0949-877X&rft.volume=28&rft.issue=5&rft.spage=649&rft.epage=673&rft_id=info:doi/10.1007%2Fs00778-019-00550-3&rft.externalDocID=10_1007_s00778_019_00550_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-8888&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-8888&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-8888&client=summon |