Evaluating pattern matching queries for spatial databases

In this paper, we study the spatial pattern matching (SPM) query. Given a set D of spatial objects (e.g., houses and shops), each with a textual description, we aim at finding all combinations of objects from D that match a user-defined spatial pattern P . A pattern P is a graph whose vertices repre...

Full description

Saved in:
Bibliographic Details
Published inThe VLDB journal Vol. 28; no. 5; pp. 649 - 673
Main Authors Fang, Yixiang, Li, Yun, Cheng, Reynold, Mamoulis, Nikos, Cong, Gao
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1066-8888
0949-877X
DOI10.1007/s00778-019-00550-3

Cover

Abstract In this paper, we study the spatial pattern matching (SPM) query. Given a set D of spatial objects (e.g., houses and shops), each with a textual description, we aim at finding all combinations of objects from D that match a user-defined spatial pattern P . A pattern P is a graph whose vertices represent spatial objects, and edges denote distance relationships between them. The SPM query returns the instances that satisfy P . An example of P can be “a house within 10-min walk from a school , which is at least 2 km away from a hospital .” The SPM query can benefit users such as house buyers, urban planners, and archeologists. We prove that answering such queries is computationally intractable and propose two efficient algorithms for their evaluation. Moreover, we study efficient solutions to address two related problems of the SPM: (1) find top- k matches that are close to a query location and (2) return partial matches for a query pattern. Experiments and case studies on real datasets show that our proposed solutions are highly effective and efficient.
AbstractList In this paper, we study the spatial pattern matching (SPM) query. Given a set D of spatial objects (e.g., houses and shops), each with a textual description, we aim at finding all combinations of objects from D that match a user-defined spatial patternP. A pattern P is a graph whose vertices represent spatial objects, and edges denote distance relationships between them. The SPM query returns the instances that satisfy P. An example of P can be “a house within 10-min walk from a school, which is at least 2 km away from a hospital.” The SPM query can benefit users such as house buyers, urban planners, and archeologists. We prove that answering such queries is computationally intractable and propose two efficient algorithms for their evaluation. Moreover, we study efficient solutions to address two related problems of the SPM: (1) find top-k matches that are close to a query location and (2) return partial matches for a query pattern. Experiments and case studies on real datasets show that our proposed solutions are highly effective and efficient.
In this paper, we study the spatial pattern matching (SPM) query. Given a set D of spatial objects (e.g., houses and shops), each with a textual description, we aim at finding all combinations of objects from D that match a user-defined spatial pattern P . A pattern P is a graph whose vertices represent spatial objects, and edges denote distance relationships between them. The SPM query returns the instances that satisfy P . An example of P can be “a house within 10-min walk from a school , which is at least 2 km away from a hospital .” The SPM query can benefit users such as house buyers, urban planners, and archeologists. We prove that answering such queries is computationally intractable and propose two efficient algorithms for their evaluation. Moreover, we study efficient solutions to address two related problems of the SPM: (1) find top- k matches that are close to a query location and (2) return partial matches for a query pattern. Experiments and case studies on real datasets show that our proposed solutions are highly effective and efficient.
Author Fang, Yixiang
Cheng, Reynold
Li, Yun
Cong, Gao
Mamoulis, Nikos
Author_xml – sequence: 1
  givenname: Yixiang
  orcidid: 0000-0002-5047-8593
  surname: Fang
  fullname: Fang, Yixiang
  email: yxfang@cs.hku.hk
  organization: Department of Computer Science, The University of Hong Kong
– sequence: 2
  givenname: Yun
  surname: Li
  fullname: Li, Yun
  organization: Department of Computer Science and Technology, Nanjing University
– sequence: 3
  givenname: Reynold
  surname: Cheng
  fullname: Cheng, Reynold
  organization: Department of Computer Science, The University of Hong Kong
– sequence: 4
  givenname: Nikos
  surname: Mamoulis
  fullname: Mamoulis, Nikos
  organization: Department of Computer Science and Engineering, University of Ioannina
– sequence: 5
  givenname: Gao
  surname: Cong
  fullname: Cong, Gao
  organization: School of Computer Science and Engineering, Nanyang Technological University
BookMark eNp9kE9LAzEQxYNUsK1-AU8LnqP5t5vkKKVaoeBFwVuYzSZ1y3a3Jqngtzd1BcFDc5hA5v1mXt4MTfqhdwhdU3JLCZF3MRepMKEaE1KWBPMzNCVaaKykfJugKSVVhVU-F2gW45YQwhgrp0gvP6E7QGr7TbGHlFzoix0k-358-Di40LpY-CEUMXdb6IoGEtQQXbxE5x666K5-7zl6fVi-LFZ4_fz4tLhfY8tVmbATtaDSa6udKqvGgRcEgDrRlMpJYMwKK6WmvvZKVJJrsF7ZWkhQNW-k5HN0M87dhyEbislsh0Po80rDeP4ro1rxrFKjyoYhxuC8sW3Kjoc-BWg7Q4k5BmXGoEwOyvwEZY4o-4fuQ7uD8HUa4iMUs7jfuPDn6gT1DZXlfY4
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3177620
crossref_primary_10_1109_TKDE_2019_2947505
Cites_doi 10.1109/TKDE.2011.172
10.1145/304181.304183
10.1145/2996913.2996987
10.1109/ICDE.2008.4497505
10.1023/A:1008817325994
10.1109/ICDE.2009.77
10.1109/ICDE.2016.7498281
10.1109/ICDE.2018.00035
10.1145/2723372.2723723
10.1109/ICDE.2018.00180
10.1145/2396761.2396879
10.1145/503099.503101
10.1109/TPAMI.2017.2696940
10.1145/2213836.2213896
10.1145/170036.170075
10.14778/2535569.2448955
10.1007/s00267-002-2450-z
10.1145/1839490.1839491
10.1145/1281192.1281271
10.1145/1989323.1989363
10.1145/3355491.3355493
10.1145/303976.303981
10.1016/0378-8733(83)90028-X
10.1142/S021972001000477X
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00778-019-00550-3
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 0949-877X
EndPage 673
ExternalDocumentID 10_1007_s00778_019_00550_3
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
123
1N0
1SB
2.D
203
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKMM
AALFJ
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTV
AAYFX
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACM
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADL
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEBYY
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AENSD
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWIH
AFWTZ
AFWXC
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
CCLIF
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GUFHI
GXS
H13
HF~
HG5
HG6
HGAVV
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I07
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LHSKQ
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P0-
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
W7O
WK8
YLTOR
YZZ
Z45
Z7R
Z7X
Z83
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEFXT
AEJOY
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AKRVB
ATHPR
AYFIA
CITATION
ABRTQ
JQ2
ID FETCH-LOGICAL-c385t-e4b417f9c9e856deaf40aa1e4d58e7a22c4c7791fbf846739acf8cb47a8b3d773
IEDL.DBID U2A
ISSN 1066-8888
IngestDate Tue Sep 16 16:20:40 EDT 2025
Tue Jul 01 01:59:45 EDT 2025
Thu Apr 24 23:04:54 EDT 2025
Fri Feb 21 02:37:42 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords Spatial keywords
Spatial pattern
Spatial query
Pattern matching
Pattern query
Spatial database
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-e4b417f9c9e856deaf40aa1e4d58e7a22c4c7791fbf846739acf8cb47a8b3d773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5047-8593
PQID 2305521983
PQPubID 2043708
PageCount 25
ParticipantIDs proquest_journals_2305521983
crossref_citationtrail_10_1007_s00778_019_00550_3
crossref_primary_10_1007_s00778_019_00550_3
springer_journals_10_1007_s00778_019_00550_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: New York
PublicationSubtitle The International Journal on Very Large Data Bases
PublicationTitle The VLDB journal
PublicationTitleAbbrev The VLDB Journal
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References ChenFeiWuXiaoweiPerfect Pipelining for Streaming Large File in Peer-to-Peer NetworksLecture Notes in Computer Science2014Berlin, HeidelbergSpringer Berlin Heidelberg2738
FangYWangZChengRLiXLuoSHuJChenXOn spatial-aware community search. TKDE2019314783798
Chen, L., Cong, G., Jensen, C.S., Wu, D.: Spatial keyword query processing: an experimental evaluation. In: PVLDB, pp. 217–228 (2013)
Zhang, C., Zhang, Y., Zhang, W., Lin, X., Cheema, M.A., Wang, X.: Diversified spatial keyword search on road networks. In: EDBT, pp. 367–378 (2014)
LiuJDengKSunHGeYZhouXJensenCSClue-based spatio-textual queryPVLDB2017105529540
Settlement patterns (2017). http://geography.parkfieldprimary.com/the-united-kingdom/settlement-patterns
Ministry of Education of Singapore (2017). https://www.moe.gov.sg/admissions/primary-one-registration/allocation
Zhu, G., et al.: Treespan: efficiently computing similarity all-matching. In: SIGMOD, pp. 529–540. ACM (2012)
Tian, Y., et al.: Tale: a tool for approximate large graph matching. In: ICDE, pp. 963–972. IEEE (2008)
MamoulisNPapadiasDIntegration of spatial join algorithms for processing multiple inputsSIGMOD199928211210.1145/304181.304183
Tong, H., Faloutsos, C., Gallagher, B., Eliassi-Rad, T.: Fast best-effort pattern matching in large attributed graphs. In: KDD, pp. 737–746 (2007)
CongGJensenCSWuDEfficient retrieval of the top-k most relevant spatial web objectsVLDB200921337348
Fang, Y., Cheng, R., Wang, J., Budiman, Cong, G., Mamoulis, N.: SpaceKey: exploring patterns in spatial databases. In: ICDE, pp. 1577–1580. IEEE (2018)
FangYChengRTangWManiuSYangXScalable algorithms for nearest-neighbor joins on big trajectory dataTKDE2016283785800
Zhang, D., et al.: Keyword search in spatial databases: towards searching by document. In: ICDE, pp. 688–699. IEEE (2009)
DengKLiXLuJZhouXBest keyword cover searchTKDE20152716173
https://en.wikipedia.org/wiki/Floyd-Warshall_algorithm
SchnaibergJRieraJTurnerMGVossPRExplaining human settlement patterns in a recreational lake district: Vilas county, Wisconsin, USAEnviron. Manag.2002301243410.1007/s00267-002-2450-z
ZhangSYangJJinWSapper: subgraph indexing and approximate matching in large graphsPVLDB201031–211851194
Fang, Y., Li, Y., Cheng, R., Mamoulis, N., Cong, G.: On spatial pattern matching. http://www.cse.unsw.edu.au/~z3525370/spm2019.pdf
ZouLChenLÖzsuMTDistance-join: pattern match query in a large graph databasePVLDB200921886897
FangYChengRLiXLuoSHuJEffective community search over large spatial graphsPVLDB2017106709720
Wu, Y., Patel, J.M., Jagadish, H.: Structural join order selection for XML query optimization. In: ICDE, pp. 443–454. IEEE (2003)
Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying. In: SIGMOD, pp. 373–384. ACM (2011)
Papadias, D., Mamoulis, N., Theodoridis, Y.: Processing and optimization of multiway spatial joins using r-trees. In: PODS (1999)
GallagherBMatching structure and semantics: a survey on graph-based pattern matchingAAAI FS200664553
Guo, T., Cao, X., Cong, G.: Efficient algorithms for answering the m-closest keywords query. In: SIGMOD, pp. 405–418. ACM (2015)
Jin, J., An, N., Sivasubramaniam, A.: Analyzing range queries on spatial data. In: ICDE, pp. 525–534 (2000)
ThomasLTValluriSRKarlapalemKMargin: maximal frequent subgraph miningTKDD2010431010.1145/1839490.1839491
MamoulisNPapadiasDMultiway spatial joinsTODS200126442447510.1145/503099.503101
Mahmood, A.R., Aref, W.G., Aly, A.M., Tang, M.: Atlas: on the expression of spatial-keyword group queries using extended relational constructs. In: SIGSPATIAL, p. 45. ACM (2016)
Choi, D., Pei, J., Lin, X.: Finding the minimum spatial keyword cover. In: ICDE, pp. 685–696. IEEE (2016)
Huang, W., Li, G., Tan, K.-L., Feng, J.: Efficient safe-region construction for moving top-k spatial keyword queries. In: CIKM, pp. 932–941. ACM (2012)
Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of networks (2003). arXiv preprint arXiv:cs/0310049
Brinkhoff, T., Kriegel, H.-P., Seeger, B.: Efficient processing of spatial joins using r-trees. In: SIGMOD, pp 237–246 (1993)
TangMSimilarity group-by operators for multi-dimensional relational dataTKDE2016282510523
WuDingmingYiuMan LungCongGaoJensenChristian S.Joint Top-K Spatial Keyword Query ProcessingIEEE Transactions on Knowledge and Data Engineering201224101889190310.1109/TKDE.2011.172
https://en.wikipedia.org/wiki/Geometric_distribution
Papadias, D., et al.: Algorithms for querying by spatial structure. In: VLDB, pp. 546–557 (1998)
LiYunFangYixiangChengReynoldZhangWenjieSpatial pattern matchingSIGSPATIAL Special201911131210.1145/3355491.3355493
NiemeläJEcology and urban planningBiodivers. Conserv.19998111913110.1023/A:1008817325994
Carletti, V., et al.: Challenging the time complexity of exact subgraph isomorphism for huge and dense graphs with VF3. In: TPAMI (2017)
SeidmanSBNetwork structure and minimum degreeSoc Netw19835326928772129510.1016/0378-8733(83)90028-X
Fang, Y., Cheng, R., Cong, G., Mamoulis, N., Li, Y.: On spatial pattern matching. In: ICDE, pp. 293–304. IEEE (2018)
ZhangCZhangYZhangWLinXInverted linear quadtree: efficient top-k spatial keyword searchTKDE201628717061721
MongioviMSigma: a set-cover-based inexact graph matching algorithmJ. Bioinform. Comput. Biol.201080219921810.1142/S021972001000477X
J Liu (550_CR39) 2017; 10
L Zou (550_CR11) 2009; 2
Y Fang (550_CR31) 2016; 28
N Mamoulis (550_CR10) 2001; 26
550_CR27
550_CR25
550_CR24
S Zhang (550_CR26) 2010; 3
550_CR46
550_CR9
550_CR8
550_CR7
LT Thomas (550_CR28) 2010; 4
J Schnaiberg (550_CR6) 2002; 30
550_CR12
C Zhang (550_CR34) 2016; 28
550_CR1
Yun Li (550_CR16) 2019; 11
Fei Chen (550_CR22) 2014
550_CR4
550_CR2
K Deng (550_CR3) 2015; 27
G Cong (550_CR33) 2009; 2
550_CR38
550_CR15
550_CR37
550_CR14
550_CR36
550_CR13
550_CR35
SB Seidman (550_CR29) 1983; 5
550_CR18
550_CR17
M Tang (550_CR44) 2016; 28
550_CR40
Y Fang (550_CR30) 2017; 10
B Gallagher (550_CR42) 2006; 6
M Mongiovi (550_CR45) 2010; 8
550_CR23
Y Fang (550_CR32) 2019; 31
550_CR21
550_CR43
550_CR20
J Niemelä (550_CR5) 1999; 8
Dingming Wu (550_CR19) 2012; 24
N Mamoulis (550_CR41) 1999; 28
References_xml – reference: Choi, D., Pei, J., Lin, X.: Finding the minimum spatial keyword cover. In: ICDE, pp. 685–696. IEEE (2016)
– reference: Papadias, D., Mamoulis, N., Theodoridis, Y.: Processing and optimization of multiway spatial joins using r-trees. In: PODS (1999)
– reference: Zhu, G., et al.: Treespan: efficiently computing similarity all-matching. In: SIGMOD, pp. 529–540. ACM (2012)
– reference: DengKLiXLuJZhouXBest keyword cover searchTKDE20152716173
– reference: Fang, Y., Li, Y., Cheng, R., Mamoulis, N., Cong, G.: On spatial pattern matching. http://www.cse.unsw.edu.au/~z3525370/spm2019.pdf
– reference: SeidmanSBNetwork structure and minimum degreeSoc Netw19835326928772129510.1016/0378-8733(83)90028-X
– reference: NiemeläJEcology and urban planningBiodivers. Conserv.19998111913110.1023/A:1008817325994
– reference: MamoulisNPapadiasDMultiway spatial joinsTODS200126442447510.1145/503099.503101
– reference: SchnaibergJRieraJTurnerMGVossPRExplaining human settlement patterns in a recreational lake district: Vilas county, Wisconsin, USAEnviron. Manag.2002301243410.1007/s00267-002-2450-z
– reference: Tian, Y., et al.: Tale: a tool for approximate large graph matching. In: ICDE, pp. 963–972. IEEE (2008)
– reference: https://en.wikipedia.org/wiki/Floyd-Warshall_algorithm
– reference: ZhangCZhangYZhangWLinXInverted linear quadtree: efficient top-k spatial keyword searchTKDE201628717061721
– reference: Zhang, C., Zhang, Y., Zhang, W., Lin, X., Cheema, M.A., Wang, X.: Diversified spatial keyword search on road networks. In: EDBT, pp. 367–378 (2014)
– reference: Mahmood, A.R., Aref, W.G., Aly, A.M., Tang, M.: Atlas: on the expression of spatial-keyword group queries using extended relational constructs. In: SIGSPATIAL, p. 45. ACM (2016)
– reference: Zhang, D., et al.: Keyword search in spatial databases: towards searching by document. In: ICDE, pp. 688–699. IEEE (2009)
– reference: CongGJensenCSWuDEfficient retrieval of the top-k most relevant spatial web objectsVLDB200921337348
– reference: FangYChengRTangWManiuSYangXScalable algorithms for nearest-neighbor joins on big trajectory dataTKDE2016283785800
– reference: Settlement patterns (2017). http://geography.parkfieldprimary.com/the-united-kingdom/settlement-patterns
– reference: Huang, W., Li, G., Tan, K.-L., Feng, J.: Efficient safe-region construction for moving top-k spatial keyword queries. In: CIKM, pp. 932–941. ACM (2012)
– reference: Jin, J., An, N., Sivasubramaniam, A.: Analyzing range queries on spatial data. In: ICDE, pp. 525–534 (2000)
– reference: Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying. In: SIGMOD, pp. 373–384. ACM (2011)
– reference: Tong, H., Faloutsos, C., Gallagher, B., Eliassi-Rad, T.: Fast best-effort pattern matching in large attributed graphs. In: KDD, pp. 737–746 (2007)
– reference: ZouLChenLÖzsuMTDistance-join: pattern match query in a large graph databasePVLDB200921886897
– reference: FangYChengRLiXLuoSHuJEffective community search over large spatial graphsPVLDB2017106709720
– reference: ChenFeiWuXiaoweiPerfect Pipelining for Streaming Large File in Peer-to-Peer NetworksLecture Notes in Computer Science2014Berlin, HeidelbergSpringer Berlin Heidelberg2738
– reference: MongioviMSigma: a set-cover-based inexact graph matching algorithmJ. Bioinform. Comput. Biol.201080219921810.1142/S021972001000477X
– reference: Fang, Y., Cheng, R., Cong, G., Mamoulis, N., Li, Y.: On spatial pattern matching. In: ICDE, pp. 293–304. IEEE (2018)
– reference: Wu, Y., Patel, J.M., Jagadish, H.: Structural join order selection for XML query optimization. In: ICDE, pp. 443–454. IEEE (2003)
– reference: LiuJDengKSunHGeYZhouXJensenCSClue-based spatio-textual queryPVLDB2017105529540
– reference: Ministry of Education of Singapore (2017). https://www.moe.gov.sg/admissions/primary-one-registration/allocation
– reference: MamoulisNPapadiasDIntegration of spatial join algorithms for processing multiple inputsSIGMOD199928211210.1145/304181.304183
– reference: Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of networks (2003). arXiv preprint arXiv:cs/0310049
– reference: Papadias, D., et al.: Algorithms for querying by spatial structure. In: VLDB, pp. 546–557 (1998)
– reference: ZhangSYangJJinWSapper: subgraph indexing and approximate matching in large graphsPVLDB201031–211851194
– reference: Carletti, V., et al.: Challenging the time complexity of exact subgraph isomorphism for huge and dense graphs with VF3. In: TPAMI (2017)
– reference: GallagherBMatching structure and semantics: a survey on graph-based pattern matchingAAAI FS200664553
– reference: TangMSimilarity group-by operators for multi-dimensional relational dataTKDE2016282510523
– reference: LiYunFangYixiangChengReynoldZhangWenjieSpatial pattern matchingSIGSPATIAL Special201911131210.1145/3355491.3355493
– reference: https://en.wikipedia.org/wiki/Geometric_distribution
– reference: FangYWangZChengRLiXLuoSHuJChenXOn spatial-aware community search. TKDE2019314783798
– reference: Guo, T., Cao, X., Cong, G.: Efficient algorithms for answering the m-closest keywords query. In: SIGMOD, pp. 405–418. ACM (2015)
– reference: ThomasLTValluriSRKarlapalemKMargin: maximal frequent subgraph miningTKDD2010431010.1145/1839490.1839491
– reference: Chen, L., Cong, G., Jensen, C.S., Wu, D.: Spatial keyword query processing: an experimental evaluation. In: PVLDB, pp. 217–228 (2013)
– reference: Brinkhoff, T., Kriegel, H.-P., Seeger, B.: Efficient processing of spatial joins using r-trees. In: SIGMOD, pp 237–246 (1993)
– reference: WuDingmingYiuMan LungCongGaoJensenChristian S.Joint Top-K Spatial Keyword Query ProcessingIEEE Transactions on Knowledge and Data Engineering201224101889190310.1109/TKDE.2011.172
– reference: Fang, Y., Cheng, R., Wang, J., Budiman, Cong, G., Mamoulis, N.: SpaceKey: exploring patterns in spatial databases. In: ICDE, pp. 1577–1580. IEEE (2018)
– volume: 24
  start-page: 1889
  issue: 10
  year: 2012
  ident: 550_CR19
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2011.172
– ident: 550_CR7
– start-page: 27
  volume-title: Lecture Notes in Computer Science
  year: 2014
  ident: 550_CR22
– volume: 3
  start-page: 1185
  issue: 1–2
  year: 2010
  ident: 550_CR26
  publication-title: PVLDB
– ident: 550_CR9
– volume: 28
  start-page: 1
  issue: 2
  year: 1999
  ident: 550_CR41
  publication-title: SIGMOD
  doi: 10.1145/304181.304183
– ident: 550_CR25
– ident: 550_CR37
  doi: 10.1145/2996913.2996987
– ident: 550_CR46
  doi: 10.1109/ICDE.2008.4497505
– volume: 8
  start-page: 119
  issue: 1
  year: 1999
  ident: 550_CR5
  publication-title: Biodivers. Conserv.
  doi: 10.1023/A:1008817325994
– ident: 550_CR23
– volume: 6
  start-page: 45
  year: 2006
  ident: 550_CR42
  publication-title: AAAI FS
– volume: 28
  start-page: 1706
  issue: 7
  year: 2016
  ident: 550_CR34
  publication-title: TKDE
– volume: 28
  start-page: 510
  issue: 2
  year: 2016
  ident: 550_CR44
  publication-title: TKDE
– ident: 550_CR1
  doi: 10.1109/ICDE.2009.77
– ident: 550_CR21
– ident: 550_CR4
  doi: 10.1109/ICDE.2016.7498281
– ident: 550_CR15
  doi: 10.1109/ICDE.2018.00035
– ident: 550_CR17
  doi: 10.1109/ICDE.2018.00035
– volume: 10
  start-page: 709
  issue: 6
  year: 2017
  ident: 550_CR30
  publication-title: PVLDB
– ident: 550_CR2
  doi: 10.1145/2723372.2723723
– volume: 2
  start-page: 337
  issue: 1
  year: 2009
  ident: 550_CR33
  publication-title: VLDB
– ident: 550_CR14
  doi: 10.1109/ICDE.2018.00180
– ident: 550_CR35
  doi: 10.1145/2396761.2396879
– ident: 550_CR8
– volume: 26
  start-page: 424
  issue: 4
  year: 2001
  ident: 550_CR10
  publication-title: TODS
  doi: 10.1145/503099.503101
– ident: 550_CR12
  doi: 10.1109/TPAMI.2017.2696940
– ident: 550_CR27
  doi: 10.1145/2213836.2213896
– volume: 10
  start-page: 529
  issue: 5
  year: 2017
  ident: 550_CR39
  publication-title: PVLDB
– ident: 550_CR40
  doi: 10.1145/170036.170075
– volume: 31
  start-page: 783
  issue: 4
  year: 2019
  ident: 550_CR32
  publication-title: On spatial-aware community search. TKDE
– ident: 550_CR18
  doi: 10.14778/2535569.2448955
– ident: 550_CR24
– volume: 30
  start-page: 24
  issue: 1
  year: 2002
  ident: 550_CR6
  publication-title: Environ. Manag.
  doi: 10.1007/s00267-002-2450-z
– volume: 4
  start-page: 10
  issue: 3
  year: 2010
  ident: 550_CR28
  publication-title: TKDD
  doi: 10.1145/1839490.1839491
– ident: 550_CR43
  doi: 10.1145/1281192.1281271
– volume: 27
  start-page: 61
  issue: 1
  year: 2015
  ident: 550_CR3
  publication-title: TKDE
– ident: 550_CR38
  doi: 10.1145/1989323.1989363
– volume: 28
  start-page: 785
  issue: 3
  year: 2016
  ident: 550_CR31
  publication-title: TKDE
– volume: 2
  start-page: 886
  issue: 1
  year: 2009
  ident: 550_CR11
  publication-title: PVLDB
– ident: 550_CR13
– volume: 11
  start-page: 3
  issue: 1
  year: 2019
  ident: 550_CR16
  publication-title: SIGSPATIAL Special
  doi: 10.1145/3355491.3355493
– ident: 550_CR20
  doi: 10.1145/303976.303981
– volume: 5
  start-page: 269
  issue: 3
  year: 1983
  ident: 550_CR29
  publication-title: Soc Netw
  doi: 10.1016/0378-8733(83)90028-X
– ident: 550_CR36
– volume: 8
  start-page: 199
  issue: 02
  year: 2010
  ident: 550_CR45
  publication-title: J. Bioinform. Comput. Biol.
  doi: 10.1142/S021972001000477X
SSID ssj0002225
Score 2.2801776
Snippet In this paper, we study the spatial pattern matching (SPM) query. Given a set D of spatial objects (e.g., houses and shops), each with a textual description,...
In this paper, we study the spatial pattern matching (SPM) query. Given a set D of spatial objects (e.g., houses and shops), each with a textual description,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 649
SubjectTerms Algorithms
Apexes
Computer Science
Database Management
Graph theory
Pattern matching
Queries
Regular Paper
Title Evaluating pattern matching queries for spatial databases
URI https://link.springer.com/article/10.1007/s00778-019-00550-3
https://www.proquest.com/docview/2305521983
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwMhECXaXrz4bazWhoM33WQ_WGCPrWltNPZkk3raAAtezGrc-v-doWwbjZp42gMwmwzM8CY8HoRcWs5ii5qtRkOJwpiLkQTAI2er2GrDtfGSQg8zPp2zu0W-CJfCmpbt3h5J-ky9vuyGyjNIvCoiFI6C7LFNujnU7hiO83S4zr9YwfgzTs4jqO9kuCrzs42v29EGY347FvW7zWSf7AaYSIereT0gW7Y-JHvtEww0ROQRKcZBrbt-pm9eKrOmgEE9QZLCT7AQpoBLaYPMabCIjFDcuZpjMp-MH2-mUXgNITKZzJeRZZolwhWmsDLnlVWOxUolllW5tEKlqWFGiCJx2iGmyAplnDSaCSV1VgmRnZBO_VrbU0K5k85ZJythYVDMtQKPqDzJABsZnYoeSVqnlCZIheOLFS_lWuTYO7KEYaV3ZJn1yNV6zNtKKOPP3v3W12UImqZMUX0MMqiE5uvW_5vm362d_a_7OdlJcQl4Sl6fdJbvH_YCoMVSD0h3OBmNZvi9fbofD_zK-gQSxMdS
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BO8BCeYpCgQxskCoPx3bGCrUU-phaqUxR7NgMoFDRdOHXY7tOKipA6myf5ef5O93nzwC3AiNPaM1WzlSIgpD0NAkAu1JknmAcM24khUZj3J-i51k0s4_CFiXbvUxJGk9dPXbTyjOaeBW7WjhKeY9dqCMVg3s1qHceXwbdygPrGMZkOTF2VYRH7WOZ31v5eSGtUeZGYtTcN70GTMuermgmb-1lwdr8a0PEcduhHMKBBaBOZ7VjjmBH5MfQKD93cOxZP4G4a3XA81dnbkQ4c0ehW0O9dFTndYjtKMTrLDQnW7Wouab6TlycwrTXnTz0XfvPgstDGhWuQAz5RMY8FjTCmUgl8tLUFyiLqCBpEHDECYl9yaRGK2Gcckk5QySlLMwICc-gln_k4hwcLKmUQtKMCGXkYZaqQaaRHyrUxVlAmuCXk51wK0Ku_8J4Tyr5ZDM3iTJLzNwkYRPuKpv5SoLj39qtcg0TexwXSaB1zZRvpqr4vlySdfHfrV1sV_0G9vqT0TAZPo0Hl7Af6BU2xL8W1IrPpbhSAKZg13a_fgOYl-Qq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSIgLO6JQwAduEDWLYzvHClqVreJApd4s27G5oBDR8P943CQFBEicvUSa2DNv5DdvEDo3lIQGNFu1cikKITYEEgANrMlDozRV2ksKPUzoeEpuZ-nsUxW_Z7s3T5KLmgZQaSqqfpnbflv4Bio0QMLKAhCRcp5kFa05dxzBSZ_Gg9YXQzbj3zspDVyux-uymZ_3-Bqalnjz2xOpjzyjbbRZQ0Y8WPzjHbRiil201bRjwPXt3EPZsFbuLp5x6WUzC-zwqCdLYvcRSIqxw6h4DixqtyOwQyGKzffRdDR8uhoHdWeEQCc8rQJDFImYzXRmeEpzIy0JpYwMyVNumIxjTTRjWWSVBXyRZFJbrhVhkqskZyw5QJ3itTCHCFPLrTWW58y4RSFV0llEplHicJJWMeuiqDGK0LVsOHSveBGt4LE3pHDLhDekSLrool1TLkQz_pzda2wt6gs0FzEokTlvyt3wZWP_5fDvux39b_oZWn-8Hon7m8ndMdqI4TR4pl4Pdaq3d3PiEEelTv2h-gDx48tx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+pattern+matching+queries+for+spatial+databases&rft.jtitle=The+VLDB+journal&rft.au=Fang%2C+Yixiang&rft.au=Li%2C+Yun&rft.au=Cheng%2C+Reynold&rft.au=Mamoulis%2C+Nikos&rft.date=2019-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1066-8888&rft.eissn=0949-877X&rft.volume=28&rft.issue=5&rft.spage=649&rft.epage=673&rft_id=info:doi/10.1007%2Fs00778-019-00550-3&rft.externalDocID=10_1007_s00778_019_00550_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-8888&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-8888&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-8888&client=summon