What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis?
Cross-validation using randomized subsets of data—known as k-fold cross-validation—is a powerful means of testing the success rate of models used for classification. However, few if any studies have explored how values of k (number of subsets) affect validation results in models tested with data of...
Saved in:
Published in | Computational statistics Vol. 36; no. 3; pp. 2009 - 2031 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cross-validation using randomized subsets of data—known as k-fold cross-validation—is a powerful means of testing the success rate of models used for classification. However, few if any studies have explored how values of k (number of subsets) affect validation results in models tested with data of known statistical properties. Here, we explore conditions of sample size, model structure, and variable dependence affecting validation outcomes in discrete Bayesian networks (BNs). We created 6 variants of a BN model with known properties of variance and collinearity, along with data sets of n = 50, 500, and 5000 samples, and then tested classification success and evaluated CPU computation time with seven levels of folds (k = 2, 5, 10, 20, n − 5, n − 2, and n − 1). Classification error declined with increasing n, particularly in BN models with high multivariate dependence, and declined with increasing k, generally levelling out at k = 10, although k = 5 sufficed with large samples (n = 5000). Our work supports the common use of k = 10 in the literature, although in some cases k = 5 would suffice with BN models having independent variable structures. |
---|---|
AbstractList | Cross-validation using randomized subsets of data—known as k-fold cross-validation—is a powerful means of testing the success rate of models used for classification. However, few if any studies have explored how values of k (number of subsets) affect validation results in models tested with data of known statistical properties. Here, we explore conditions of sample size, model structure, and variable dependence affecting validation outcomes in discrete Bayesian networks (BNs). We created 6 variants of a BN model with known properties of variance and collinearity, along with data sets of n = 50, 500, and 5000 samples, and then tested classification success and evaluated CPU computation time with seven levels of folds (k = 2, 5, 10, 20, n − 5, n − 2, and n − 1). Classification error declined with increasing n, particularly in BN models with high multivariate dependence, and declined with increasing k, generally levelling out at k = 10, although k = 5 sufficed with large samples (n = 5000). Our work supports the common use of k = 10 in the literature, although in some cases k = 5 would suffice with BN models having independent variable structures. |
Author | Marcot, Bruce G. Hanea, Anca M. |
Author_xml | – sequence: 1 givenname: Bruce G. orcidid: 0000-0002-3667-7481 surname: Marcot fullname: Marcot, Bruce G. email: bruce.marcot@usda.gov organization: U.S. Forest Service, Pacific Northwest Research Station – sequence: 2 givenname: Anca M. orcidid: 0000-0003-3870-5949 surname: Hanea fullname: Hanea, Anca M. organization: Centre of Excellence for Biosecurity Risk Analysis (CEBRA), University of Melbourne |
BookMark | eNp9kE9LAzEQxYMoWKtfwFPAc3SSNNvkJCr-A8GL4jGk2VmNXTc1SZV-e2MrCB48DHOY9x7zfntke4gDEnLI4ZgDTE8yANfAQNQBYwwzW2TEGy6ZaZTeJiMwE8km0IhdspfzK4AQU8FHxD69uEJDpm6gcVHCm-vph-uXSGNH5zQMdM662LfUp5gzq6fQuhLi8H1qQ_YJC9Jzt8IcasSA5TOmeU1z_SqHfLpPdjrXZzz42WPyeHX5cHHD7u6vby_O7piXWhWGMHNgfAtC4VQJ16BWrVDaeOykB_ToBaqmMaKTWguNwKURs9Zx56emcXJMjja5ixTfl5iLfY3LVL_IVihV2zdK6qrSG9W6TcLO-lDWdUpyobcc7DdOu8FpK067xmlNtYo_1kWqtNLqf5PcmHIVD8-Yfr_6x_UFoSuKBg |
CitedBy_id | crossref_primary_10_1007_s42947_024_00450_y crossref_primary_10_1016_j_ress_2025_111053 crossref_primary_10_3390_machines12060399 crossref_primary_10_3758_s13428_022_01801_y crossref_primary_10_3390_diagnostics11101863 crossref_primary_10_3390_rs13152950 crossref_primary_10_1016_j_techfore_2023_122856 crossref_primary_10_1080_13549839_2024_2353058 crossref_primary_10_3847_1538_4365_ace447 crossref_primary_10_3390_ijerph18137155 crossref_primary_10_1051_e3sconf_202131705027 crossref_primary_10_3390_rs14071704 crossref_primary_10_1109_TNSRE_2024_3522121 crossref_primary_10_3233_IDT_230382 crossref_primary_10_1016_j_jhazmat_2024_134309 crossref_primary_10_1115_1_4065777 crossref_primary_10_1016_j_rsase_2022_100849 crossref_primary_10_1016_j_engappai_2023_107465 crossref_primary_10_1016_j_techfore_2023_122746 crossref_primary_10_1111_exsy_13300 crossref_primary_10_1016_j_bpsc_2023_07_003 crossref_primary_10_1016_j_eiar_2022_106760 crossref_primary_10_1186_s12874_022_01695_6 crossref_primary_10_1371_journal_pone_0318612 crossref_primary_10_12688_f1000research_72976_2 crossref_primary_10_1016_j_buildenv_2022_109533 crossref_primary_10_1161_CIRCGEN_123_004512 crossref_primary_10_1007_s00521_022_07906_x crossref_primary_10_1016_j_ssci_2025_106814 crossref_primary_10_1177_1748006X221139906 crossref_primary_10_1109_ACCESS_2022_3186092 crossref_primary_10_1007_s00291_024_00751_5 crossref_primary_10_1177_14727978251318809 crossref_primary_10_1155_2022_7053228 crossref_primary_10_1016_j_ijepes_2023_109352 crossref_primary_10_1016_j_oceaneng_2022_112571 crossref_primary_10_1039_D2SD00087C crossref_primary_10_1080_24705314_2025_2475591 crossref_primary_10_1177_23998083231175680 crossref_primary_10_1007_s12530_021_09393_2 crossref_primary_10_1016_j_jnlssr_2024_10_003 crossref_primary_10_1177_00222437221141052 crossref_primary_10_1108_BIJ_10_2023_0764 crossref_primary_10_3390_axioms12040345 crossref_primary_10_1038_s41598_024_51381_4 crossref_primary_10_3389_fevo_2023_1111551 crossref_primary_10_3390_systems12050167 crossref_primary_10_3390_e26100829 crossref_primary_10_1016_j_heliyon_2024_e35512 crossref_primary_10_1108_BIJ_03_2024_0195 crossref_primary_10_1111_risa_13589 crossref_primary_10_1142_S0219649224500758 crossref_primary_10_1016_j_engappai_2023_106355 crossref_primary_10_1038_s41598_023_50164_7 crossref_primary_10_1016_j_oregeorev_2023_105790 crossref_primary_10_3390_biomedicines11020284 crossref_primary_10_1088_1361_6560_ad7222 crossref_primary_10_3390_app14072950 crossref_primary_10_1016_j_algal_2022_102842 crossref_primary_10_1007_s44196_022_00090_9 crossref_primary_10_1016_j_eswa_2023_120179 crossref_primary_10_2196_35114 crossref_primary_10_1016_j_jclepro_2023_138161 crossref_primary_10_1016_j_aei_2023_101982 crossref_primary_10_1016_j_soildyn_2024_108755 crossref_primary_10_35970_jinita_v5i2_1879 crossref_primary_10_1109_ACCESS_2021_3061370 crossref_primary_10_1007_s10980_023_01762_3 crossref_primary_10_1177_14727978251322050 crossref_primary_10_1016_j_jclepro_2024_142931 crossref_primary_10_3390_s25010228 crossref_primary_10_1007_s41748_024_00518_6 crossref_primary_10_1109_ACCESS_2024_3396999 crossref_primary_10_1007_s12145_023_01151_z crossref_primary_10_3390_diagnostics14232696 crossref_primary_10_1371_journal_pone_0270405 crossref_primary_10_1016_j_ssci_2022_105942 crossref_primary_10_1111_1755_6724_15277 crossref_primary_10_3390_s21248377 crossref_primary_10_1016_j_asoc_2021_108176 crossref_primary_10_1016_j_eswa_2024_124175 crossref_primary_10_1016_j_psep_2022_02_010 crossref_primary_10_1016_j_seps_2022_101276 crossref_primary_10_3390_app14156397 crossref_primary_10_1109_TPS_2024_3359761 crossref_primary_10_1016_j_jclepro_2024_140986 crossref_primary_10_3390_infrastructures9090145 crossref_primary_10_1016_j_uclim_2022_101203 crossref_primary_10_1108_CR_09_2024_0176 crossref_primary_10_2340_jrm_v54_2432 crossref_primary_10_5194_bg_19_3739_2022 crossref_primary_10_1016_j_joitmc_2025_100522 crossref_primary_10_1007_s12517_022_10406_w crossref_primary_10_1016_j_psep_2024_05_014 crossref_primary_10_1108_IJIS_04_2024_0091 crossref_primary_10_1016_j_geoderma_2023_116647 crossref_primary_10_1016_j_jenvman_2023_118606 crossref_primary_10_34133_remotesensing_0302 crossref_primary_10_1186_s40537_023_00727_2 crossref_primary_10_3390_s22051925 crossref_primary_10_1063_5_0246842 crossref_primary_10_3390_buildings14030570 crossref_primary_10_1063_5_0143724 crossref_primary_10_3390_electronics10030285 crossref_primary_10_1007_s40747_020_00218_4 crossref_primary_10_1108_IJQRM_04_2024_0129 crossref_primary_10_1080_01431161_2023_2282405 crossref_primary_10_32604_csse_2024_052510 crossref_primary_10_3390_jimaging9090169 crossref_primary_10_1080_10934529_2024_2317670 crossref_primary_10_1038_s41598_023_38065_1 crossref_primary_10_1016_j_jclepro_2023_135881 crossref_primary_10_1371_journal_pone_0317355 crossref_primary_10_3389_fnano_2022_972421 crossref_primary_10_3390_ijgi13120436 crossref_primary_10_1371_journal_pone_0307775 crossref_primary_10_1007_s13246_023_01284_x crossref_primary_10_1007_s11192_022_04381_y crossref_primary_10_1109_ACCESS_2022_3199353 crossref_primary_10_5194_bg_20_2727_2023 crossref_primary_10_3390_photonics8100426 crossref_primary_10_1038_s41598_024_83389_1 crossref_primary_10_1016_j_engappai_2022_105709 crossref_primary_10_1007_s11042_022_13081_x crossref_primary_10_1108_BFJ_06_2024_0637 crossref_primary_10_1016_j_scs_2024_105893 crossref_primary_10_1038_s41598_022_11936_9 crossref_primary_10_1111_risa_13610 crossref_primary_10_1016_j_engappai_2022_104842 crossref_primary_10_3390_jmse13030611 crossref_primary_10_1016_j_enbuild_2023_112922 crossref_primary_10_1371_journal_pone_0289130 crossref_primary_10_1007_s10479_023_05723_6 crossref_primary_10_1016_j_eiar_2022_106912 crossref_primary_10_1016_j_health_2024_100380 crossref_primary_10_1080_13416979_2022_2138096 crossref_primary_10_1002_ecs2_4573 crossref_primary_10_1016_j_cmpb_2022_106827 crossref_primary_10_1016_j_euromechsol_2024_105250 crossref_primary_10_3390_realestate1030014 crossref_primary_10_1109_ACCESS_2023_3348755 crossref_primary_10_1109_TNSRE_2021_3139966 crossref_primary_10_1007_s10845_024_02410_6 crossref_primary_10_1007_s13753_024_00570_w crossref_primary_10_1109_TCSS_2022_3223516 crossref_primary_10_1007_s00405_023_08424_9 crossref_primary_10_1016_j_ejrs_2024_07_003 crossref_primary_10_3390_diagnostics14121263 crossref_primary_10_1016_j_fuel_2024_133096 crossref_primary_10_1016_j_ress_2023_109170 crossref_primary_10_61186_ijpb_16_2_185 crossref_primary_10_1002_ana_26528 crossref_primary_10_1016_j_foodcont_2022_109589 crossref_primary_10_1016_j_scitotenv_2024_177863 crossref_primary_10_3390_rs15082188 crossref_primary_10_1007_s42247_022_00409_4 crossref_primary_10_34186_klujes_1248062 crossref_primary_10_1016_j_knosys_2024_112127 crossref_primary_10_17671_gazibtd_1424960 crossref_primary_10_1371_journal_pone_0299485 crossref_primary_10_1111_risa_13841 crossref_primary_10_3390_su17030843 crossref_primary_10_1007_s11709_022_0837_x crossref_primary_10_1016_j_asoc_2024_112497 crossref_primary_10_1016_j_eiar_2022_107014 crossref_primary_10_3390_en15239125 crossref_primary_10_1016_j_ijdrr_2020_101938 crossref_primary_10_1044_2023_JSLHR_23_00273 crossref_primary_10_1109_JSEN_2024_3521482 crossref_primary_10_3390_math10162925 crossref_primary_10_1007_s41062_024_01466_w crossref_primary_10_1016_j_engappai_2023_107118 crossref_primary_10_1016_j_eiar_2023_107404 crossref_primary_10_1140_epjp_s13360_023_03675_1 crossref_primary_10_1016_j_geodrs_2024_e00901 crossref_primary_10_1016_j_jth_2021_101293 crossref_primary_10_1186_s40537_022_00644_w crossref_primary_10_1080_10803548_2024_2322888 crossref_primary_10_1016_j_ocecoaman_2024_107311 crossref_primary_10_1016_j_phycom_2022_101927 crossref_primary_10_1021_acsami_4c03675 crossref_primary_10_3389_ijph_2022_1605047 crossref_primary_10_1051_matecconf_202337701005 crossref_primary_10_1057_s41599_022_01407_x crossref_primary_10_1117_1_JRS_17_014517 crossref_primary_10_1007_s12187_022_09939_z crossref_primary_10_1080_10298436_2025_2450081 crossref_primary_10_1016_j_matdes_2025_113705 crossref_primary_10_1016_j_jmapro_2023_05_032 crossref_primary_10_1108_K_08_2021_0773 crossref_primary_10_5812_jcrps_148703 crossref_primary_10_1016_j_glt_2025_03_001 crossref_primary_10_1016_j_eja_2024_127316 crossref_primary_10_1016_j_pdisas_2024_100344 crossref_primary_10_1016_j_tra_2022_11_003 crossref_primary_10_1007_s11042_024_18426_2 crossref_primary_10_32604_cmes_2022_021893 crossref_primary_10_1016_j_net_2024_07_024 crossref_primary_10_1007_s00167_022_07082_4 crossref_primary_10_1002_eqe_4110 crossref_primary_10_1016_j_apgeochem_2023_105731 |
Cites_doi | 10.1201/b18401 10.18637/jss.v035.i03 10.1016/j.ecoinf.2018.03.002 10.1016/j.ecolmodel.2012.01.013 10.1016/j.ecolmodel.2013.08.011 10.1111/stan.12113 10.1214/09-SS054 10.1038/nbt1406 10.1016/j.envsoft.2018.09.016 10.1016/j.artmed.2016.01.002 10.1016/S1470-160X(02)00005-5 10.1111/j.0030-1299.2005.13816.x 10.1371/journal.pone.0183464 10.1007/s00300-009-0711-5 10.1080/01621459.1975.10479865 10.1007/978-0-387-68282-2 10.1023/A:1007465528199 10.1007/s10021-016-0075-y 10.1016/j.ecolind.2009.11.004 10.1016/j.ecolmodel.2015.05.025 10.1016/j.envsoft.2010.04.016 10.1002/bimj.201000030 10.1515/9781400866557 10.1016/B978-012088777-4/50005-3 10.1111/j.2517-6161.1977.tb01600.x 10.2307/1403680 10.1109/GRC.2006.1635796 |
ContentType | Journal Article |
Copyright | This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020. |
Copyright_xml | – notice: This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020 – notice: This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88I 8AL 8C1 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KR7 L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
DOI | 10.1007/s00180-020-00999-9 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ProQuest Computing ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1613-9658 |
EndPage | 2031 |
ExternalDocumentID | 10_1007_s00180_020_00999_9 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 203 29F 2J2 2JN 2JY 2KG 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 78A 7WY 88I 8C1 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ H~9 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV L6V LAS LLZTM M0C M0N M2O M2P M4Y M7S MA- MK~ N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Y Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7TB 7XB 8AL 8FD 8FK ABRTQ FR3 JQ2 KR7 L.- L7M L~C L~D MBDVC PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c385t-e0ba09cd025e752a6e85d2589cef3c0ecec2e56692f38828e01392bda1ac796a3 |
IEDL.DBID | BENPR |
ISSN | 0943-4062 |
IngestDate | Fri Jul 25 18:58:17 EDT 2025 Tue Jul 01 04:23:17 EDT 2025 Thu Apr 24 22:53:42 EDT 2025 Fri Feb 21 02:48:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Classification error randomized subsets sample size Model validation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-e0ba09cd025e752a6e85d2589cef3c0ecec2e56692f38828e01392bda1ac796a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3667-7481 0000-0003-3870-5949 |
PQID | 2550946538 |
PQPubID | 54096 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2550946538 crossref_citationtrail_10_1007_s00180_020_00999_9 crossref_primary_10_1007_s00180_020_00999_9 springer_journals_10_1007_s00180_020_00999_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Computational statistics |
PublicationTitleAbbrev | Comput Stat |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Jensen, Nielsen (CR18) 2007 Scutari (CR156) 2010; 35 Aguilera, Fernández, Reche, Rumi (CR1) 2010; 25 LaDeau, Han, Rosi-Marshall, Weathers (CR20) 2017; 20 Arlot, Celisse (CR3) 2010; 4 Adelin, Zhang (CR152) 2010; 52 Hobbs, Hooten (CR17) 2015 Constantinuo, Fenton, Marsh, Radlinski (CR8) 2016; 67 Hammond, Ellis (CR14) 2002; 1 Marcot, Naim, Wuillemin, Leray, Pourret, Becker (CR23) 2007 Geisser (CR140) 1975; 70 CR155 Pawson, Marcot, Woodberry (CR27) 2017; 12 Marcot (CR24) 2012; 230 Pourret, Naïm, Marcot (CR28) 2008 Zhao, Hasan (CR31) 2013; 3 CR2 Hanea, Nane (CR15) 2018; 72 Stow, Webster, Wagner, Lottig, Soranno, Cha (CR150) 2018; 45 CR6 Murphy (CR26) 2012 CR9 Cawley, Talbot (CR7) 2007; 8 Koski, Noble (CR19) 2011 Booms, Huettmann, Schempf (CR4) 2010; 33 Guyon, Saffari, Dror, Cawley (CR151) 2010; 11 CR21 Lillegard, Engen, Saether (CR22) 2005; 109 Van Valen, Hallgrímsson, Hall (CR30) 2005 Dempster, Laird, Rubin (CR10) 1977; 39 Do, Batzoglou (CR11) 2008; 26 Marcot, Penman (CR25) 2019; 111 Friedman, Geiger, Goldszmidt (CR13) 1997; 29 Shcheglovitova, Anderson (CR29) 2013; 269 Hastie, Tibshirani, Wainwright (CR16) 2015 Brady, Monleon, Gray (CR5) 2010; 10 Forio, Landuyt, Bennetsen, Lock, Nguyen, Ambarita, Musonge, Boets, Everaert, Dominguez-Granda, Goethals (CR12) 2015; 312 FV Jensen (999_CR18) 2007 BG Marcot (999_CR23) 2007 GC Cawley (999_CR7) 2007; 8 T Koski (999_CR19) 2011 NT Hobbs (999_CR17) 2015 999_CR155 M Lillegard (999_CR22) 2005; 109 S Geisser (999_CR140) 1975; 70 CB Do (999_CR11) 2008; 26 999_CR21 BG Marcot (999_CR24) 2012; 230 S Arlot (999_CR3) 2010; 4 999_CR9 TL Booms (999_CR4) 2010; 33 999_CR6 N Friedman (999_CR13) 1997; 29 Y Zhao (999_CR31) 2013; 3 AA Adelin (999_CR152) 2010; 52 SM Pawson (999_CR27) 2017; 12 MAE Forio (999_CR12) 2015; 312 I Guyon (999_CR151) 2010; 11 KP Murphy (999_CR26) 2012 M Scutari (999_CR156) 2010; 35 999_CR2 PA Aguilera (999_CR1) 2010; 25 M Shcheglovitova (999_CR29) 2013; 269 BG Marcot (999_CR25) 2019; 111 (999_CR28) 2008 TJ Brady (999_CR5) 2010; 10 AC Constantinuo (999_CR8) 2016; 67 T Hastie (999_CR16) 2015 CA Stow (999_CR150) 2018; 45 A Dempster (999_CR10) 1977; 39 TR Hammond (999_CR14) 2002; 1 L Van Valen (999_CR30) 2005 AM Hanea (999_CR15) 2018; 72 SL LaDeau (999_CR20) 2017; 20 |
References_xml | – year: 2015 ident: CR16 publication-title: Statistical learning with sparsity: the Lasso and generalizations. Monographs on statistics and applied probability 143 doi: 10.1201/b18401 – volume: 35 start-page: 1 issue: 3 year: 2010 end-page: 22 ident: CR156 article-title: Learning Bayesian networks with the bnlearn R package publication-title: J Stat Softw doi: 10.18637/jss.v035.i03 – start-page: 293 year: 2007 end-page: 315 ident: CR23 article-title: Étude de cas n°5: gestion de ressources naturelles et analyses de risques (Natural resource assessment and risk management) publication-title: Réseaux Bayésiens (Bayesian networks; in French) – year: 2008 ident: CR28 publication-title: Bayesian belief networks: a practical guide to applications – ident: CR2 – year: 2011 ident: CR19 publication-title: Bayesian networks: an introduction – ident: CR6 – volume: 45 start-page: 26 year: 2018 end-page: 30 ident: CR150 article-title: Small values in big data: the continuing need for appropriate metadata publication-title: Eco Inform doi: 10.1016/j.ecoinf.2018.03.002 – volume: 39 start-page: 1 issue: Series B year: 1977 end-page: 38 ident: CR10 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Stat Soc – volume: 230 start-page: 50 year: 2012 end-page: 62 ident: CR24 article-title: Metrics for evaluating performance and uncertainty of Bayesian network models publication-title: Ecol Mod doi: 10.1016/j.ecolmodel.2012.01.013 – volume: 269 start-page: 9 year: 2013 end-page: 17 ident: CR29 article-title: Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes publication-title: Ecol Mod doi: 10.1016/j.ecolmodel.2013.08.011 – volume: 72 start-page: 14 year: 2018 end-page: 33 ident: CR15 article-title: The asymptotic distribution of the determinant of a random correlation matrix publication-title: Stat Neerl doi: 10.1111/stan.12113 – volume: 3 start-page: 61 year: 2013 end-page: 73 ident: CR31 article-title: Machine learning algorithms for predicting roadside fine particulate matter concentration level in Hong Kong Central publication-title: Comput Ecol Softw – volume: 4 start-page: 40 year: 2010 end-page: 79 ident: CR3 article-title: A survey of cross-validation procedures for model selection publication-title: Stat Surv doi: 10.1214/09-SS054 – volume: 26 start-page: 897 year: 2008 end-page: 899 ident: CR11 article-title: What is the expectation maximization algorithm? publication-title: Nat Biotechnol doi: 10.1038/nbt1406 – volume: 111 start-page: 386 year: 2019 end-page: 393 ident: CR25 article-title: Advances in Bayesian network modelling: integration of modelling technologies publication-title: Environ Model softw doi: 10.1016/j.envsoft.2018.09.016 – volume: 67 start-page: 75 year: 2016 end-page: 93 ident: CR8 article-title: From complex questionnaire and interviewing data to intelligent Bayesian network models for medical decision support publication-title: Artif Intell Med doi: 10.1016/j.artmed.2016.01.002 – volume: 1 start-page: 197 year: 2002 end-page: 211 ident: CR14 article-title: A meta-assessment for elasmobranchs based on dietary data and Bayesian networks publication-title: Ecol Ind doi: 10.1016/S1470-160X(02)00005-5 – ident: CR21 – volume: 109 start-page: 342 year: 2005 end-page: 350 ident: CR22 article-title: Bootstrap methods for estimating spatial synchrony of fluctuating populations publication-title: Oikos doi: 10.1111/j.0030-1299.2005.13816.x – volume: 12 start-page: e0183464 year: 2017 ident: CR27 article-title: Predicting forest insect flight activity: a Bayesian network approach publication-title: PLoS ONE doi: 10.1371/journal.pone.0183464 – volume: 8 start-page: 841 year: 2007 end-page: 861 ident: CR7 article-title: Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters publication-title: J Mach Learn Res – year: 2012 ident: CR26 publication-title: Machine learning: a probabilistic perspective – volume: 33 start-page: 347 year: 2010 end-page: 358 ident: CR4 article-title: Gyrfalcon nest distribution in Alaska based on a predictive GIS model publication-title: Polar Biol doi: 10.1007/s00300-009-0711-5 – ident: CR155 – volume: 11 start-page: 61 year: 2010 end-page: 87 ident: CR151 article-title: Model selection: beyond the Bayesian-Frequentist divide publication-title: J Mach Learn Res – volume: 70 start-page: 320 year: 1975 end-page: 328 ident: CR140 article-title: The predictive sample reuse method with applications publication-title: J Amer Stat Assoc doi: 10.1080/01621459.1975.10479865 – ident: CR9 – year: 2007 ident: CR18 publication-title: Bayesian networks and decision graphs doi: 10.1007/978-0-387-68282-2 – volume: 29 start-page: 131 year: 1997 end-page: 163 ident: CR13 article-title: Bayesian network classifiers publication-title: Mach Learn doi: 10.1023/A:1007465528199 – volume: 20 start-page: 274 year: 2017 end-page: 283 ident: CR20 article-title: The next decade of big data in ecosystem science publication-title: Ecosystems doi: 10.1007/s10021-016-0075-y – volume: 10 start-page: 657 year: 2010 end-page: 667 ident: CR5 article-title: Calibrating vascular plant abundance for detecting future climate changes in Oregon and Washington, USA publication-title: Ecol Ind doi: 10.1016/j.ecolind.2009.11.004 – volume: 312 start-page: 222 year: 2015 end-page: 238 ident: CR12 article-title: Bayesian belief network models to analyse and predict ecological water quality in rivers publication-title: Ecol Model doi: 10.1016/j.ecolmodel.2015.05.025 – volume: 25 start-page: 1630 year: 2010 end-page: 1639 ident: CR1 article-title: Hybrid Bayesian network classifiers: application to species distribution models publication-title: Environ Mod Softw doi: 10.1016/j.envsoft.2010.04.016 – volume: 52 start-page: 667 issue: 5 year: 2010 end-page: 675 ident: CR152 article-title: A novel definition of the multivariate coefficient of variation publication-title: Biomet J doi: 10.1002/bimj.201000030 – year: 2015 ident: CR17 publication-title: Bayesian models: a statistical primer for ecologists doi: 10.1515/9781400866557 – start-page: 29 year: 2005 end-page: 47 ident: CR30 article-title: The statistics of variation publication-title: Variation doi: 10.1016/B978-012088777-4/50005-3 – volume: 70 start-page: 320 year: 1975 ident: 999_CR140 publication-title: J Amer Stat Assoc doi: 10.1080/01621459.1975.10479865 – volume: 11 start-page: 61 year: 2010 ident: 999_CR151 publication-title: J Mach Learn Res – volume: 4 start-page: 40 year: 2010 ident: 999_CR3 publication-title: Stat Surv doi: 10.1214/09-SS054 – volume: 35 start-page: 1 issue: 3 year: 2010 ident: 999_CR156 publication-title: J Stat Softw doi: 10.18637/jss.v035.i03 – volume: 72 start-page: 14 year: 2018 ident: 999_CR15 publication-title: Stat Neerl doi: 10.1111/stan.12113 – volume-title: Bayesian networks: an introduction year: 2011 ident: 999_CR19 – start-page: 29 volume-title: Variation year: 2005 ident: 999_CR30 doi: 10.1016/B978-012088777-4/50005-3 – volume: 39 start-page: 1 issue: Series B year: 1977 ident: 999_CR10 publication-title: J R Stat Soc doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 312 start-page: 222 year: 2015 ident: 999_CR12 publication-title: Ecol Model doi: 10.1016/j.ecolmodel.2015.05.025 – volume: 111 start-page: 386 year: 2019 ident: 999_CR25 publication-title: Environ Model softw doi: 10.1016/j.envsoft.2018.09.016 – volume: 29 start-page: 131 year: 1997 ident: 999_CR13 publication-title: Mach Learn doi: 10.1023/A:1007465528199 – volume: 52 start-page: 667 issue: 5 year: 2010 ident: 999_CR152 publication-title: Biomet J doi: 10.1002/bimj.201000030 – volume-title: Bayesian belief networks: a practical guide to applications year: 2008 ident: 999_CR28 – ident: 999_CR155 – volume-title: Statistical learning with sparsity: the Lasso and generalizations. Monographs on statistics and applied probability 143 year: 2015 ident: 999_CR16 doi: 10.1201/b18401 – volume: 45 start-page: 26 year: 2018 ident: 999_CR150 publication-title: Eco Inform doi: 10.1016/j.ecoinf.2018.03.002 – volume-title: Machine learning: a probabilistic perspective year: 2012 ident: 999_CR26 – volume-title: Bayesian models: a statistical primer for ecologists year: 2015 ident: 999_CR17 doi: 10.1515/9781400866557 – volume: 269 start-page: 9 year: 2013 ident: 999_CR29 publication-title: Ecol Mod doi: 10.1016/j.ecolmodel.2013.08.011 – volume: 10 start-page: 657 year: 2010 ident: 999_CR5 publication-title: Ecol Ind doi: 10.1016/j.ecolind.2009.11.004 – volume: 12 start-page: e0183464 year: 2017 ident: 999_CR27 publication-title: PLoS ONE doi: 10.1371/journal.pone.0183464 – volume: 33 start-page: 347 year: 2010 ident: 999_CR4 publication-title: Polar Biol doi: 10.1007/s00300-009-0711-5 – volume: 20 start-page: 274 year: 2017 ident: 999_CR20 publication-title: Ecosystems doi: 10.1007/s10021-016-0075-y – volume: 230 start-page: 50 year: 2012 ident: 999_CR24 publication-title: Ecol Mod doi: 10.1016/j.ecolmodel.2012.01.013 – ident: 999_CR2 – volume: 1 start-page: 197 year: 2002 ident: 999_CR14 publication-title: Ecol Ind doi: 10.1016/S1470-160X(02)00005-5 – volume: 109 start-page: 342 year: 2005 ident: 999_CR22 publication-title: Oikos doi: 10.1111/j.0030-1299.2005.13816.x – ident: 999_CR6 doi: 10.2307/1403680 – volume-title: Bayesian networks and decision graphs year: 2007 ident: 999_CR18 doi: 10.1007/978-0-387-68282-2 – ident: 999_CR21 doi: 10.1109/GRC.2006.1635796 – volume: 3 start-page: 61 year: 2013 ident: 999_CR31 publication-title: Comput Ecol Softw – volume: 25 start-page: 1630 year: 2010 ident: 999_CR1 publication-title: Environ Mod Softw doi: 10.1016/j.envsoft.2010.04.016 – ident: 999_CR9 – volume: 67 start-page: 75 year: 2016 ident: 999_CR8 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2016.01.002 – start-page: 293 volume-title: Réseaux Bayésiens (Bayesian networks; in French) year: 2007 ident: 999_CR23 – volume: 8 start-page: 841 year: 2007 ident: 999_CR7 publication-title: J Mach Learn Res – volume: 26 start-page: 897 year: 2008 ident: 999_CR11 publication-title: Nat Biotechnol doi: 10.1038/nbt1406 |
SSID | ssj0022721 |
Score | 2.6313312 |
Snippet | Cross-validation using randomized subsets of data—known as k-fold cross-validation—is a powerful means of testing the success rate of models used for... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2009 |
SubjectTerms | Bayesian analysis Bias Calibration Classification Collinearity Datasets Economic Theory/Quantitative Economics/Mathematical Methods Independent variables Mathematics and Statistics Network analysis Original Paper Probability and Statistics in Computer Science Probability Theory and Stochastic Processes Statistical methods Statistics Variables |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL_UgWhWrVXLwpoHd7Ca7OUkVSxHqyUJvSzYPKK1b6daD_95J9lEUFTznQZjJ4xsy3zcIXXOjQ5NLSyyH4xbrQBEhVESEUjrUSvPYOoLz5JmPp_HTjM1qUljZZLs3X5L-pm7Jbq5-XEBcuONhDRG7aI-52B128ZQO2zCLJp5t5VLmIDritKbK_DzH1-doizG_fYv612Z0iA5qmIiHlV-P0I4pemh_0mqslj3UdTixklk-RpmT4MbzEssCr-AWeIXBTsfb4JXFCzwv8ILY1VJjvwwCTfOqmJJrcszcNYBnfC8_jCNV4qJKDofZKsmSuxM0HT2-PIxJXTuBqChlG2KCXAZCaYA0JmFUcpMyTVkqlLGRCowyihqAcoLaCEB2ahwUpLmWoVSJ4DI6RZ1iVZgzhCMXlSWCJkkiYxVIOLIxs7lhgufa2riPwsaEmaqFxV19i2XWSiJ7s2dg9sybPRN9dNOOeatkNf7sPWg8k9VHrMwgFgIXc7iw--i28da2-ffZzv_X_QJ1qctj8XllA9TZrN_NJQCRTX7l990n_k3TvA priority: 102 providerName: Springer Nature |
Title | What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis? |
URI | https://link.springer.com/article/10.1007/s00180-020-00999-9 https://www.proquest.com/docview/2550946538 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB0Be2kPqJRWXUpXPvQGVhMnceITWtAuqBUIoa5ET5HjD2kFJMBuD_33nXG8u2oluOQQO4409ozf2DNvAL5KZ1PXaM-9RHXLbWK4UibjyhibWmNl7inB-fJKXszy77fFbTxwW8SwypVNDIbadobOyL8h9EVPRKJ-njw-caoaRbersYTGNgzQBFfofA1OJ1fXN2uXS5Qh84rC59BTkiKmzYTkOapHl3BynwJM4urfrWmDN_-7Ig07z_Qd7EbIyMb9HO_Blmvfw9vLNd_qYh9qYuBm8wXTLevQCDxgf6Lxdqzz7I7NW3bHfXdvWfgzx6Z5X0uJmigx9xmxMzvVfxzlVLK2jw3H0XrGkpMPMJtOfp5d8Fg6gZusKpbcJY1OlLGIaFxZCC1dVVhRVMo4n5nEGWeEQySnhM8QY1eOkKBorE61KZXU2UfYabvWfQKWkVNWKlGWpc5NolFj88I3rlCysd7nQ0hXUqtN5BWn8hb39ZoROUi6RknXQdK1GsLR-pvHnlXj1d6Hq8moo4Yt6s16GMLxaoI2zS-PdvD6aJ_hjaCwlRBGdgg7y-ff7gvijmUzgu3qLKXn9HwEg_H5rx-TUVxw-HYmxn8BBZfYJQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQ9VKW0YiktPrQnajXrJE58qFAfLEthOYHEzXX8kFbQBNitKv5Uf2NnnGRXrQQ3znYm0nhm_E0y8w3AO-nd0Fcm8CDR3TKXWK6UTbmy1g2ddTIL1OA8OZHjs-z7eX6-An_6Xhgqq-xjYgzUrrH0jfwjQl_MRCT6597VNaepUfR3tR-h0ZrFkb_9jSnb7NPhNzzf90KM9k-_jnk3VYDbtMzn3CeVSZR1eNn7IhdG-jJ3Ii-V9SG1ibfeCo8gR4mQIvwsPYEkUTkzNLZQ0qQo9xGsZWmqyKPK0cEiwRNF7POiYj3My6TomnRiqx5Nv0s4JWsRlHH170W4RLf__ZCN99zoOTzrACr73FrUOqz4-gU8nSzYXWcboInvm01nzNSswZDzE_cTabhnTWAXbFqzCx6aS8fimzkuTdvJTbREbcA3iNTZF3PrqYOT1W0lOkpr-VH2XsLZg6j0FazWTe03gaWUAhZKFEVhMpsYjA9ZHiqfK1m5ELIBDHutaduxmNMwjUu94F-OmtaoaR01rdUAdhfPXLUcHvfu3u4PQ3f-PNNL6xvAh_6Alst3S9u6X9oOPB6fTo718eHJ0Wt4IqhgJhawbcPq_OaXf4OIZ169jWbG4MdD2_Vfzx0QGA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIiE4ID7FlgI-wAmsZp3EWR9QBS2rltKKA5V6M449llYtSeluhfrX-HXMOMmuQKK3nu1MpPF45k0ybwbgtcYwxtpFGTVdtyJkXhrjc2m8D-Pggy4iE5wPj_TecfH5pDxZg98DF4bLKgefmBx1aD1_I98i6EuZiKb7uRX7soivu9Pt85-SJ0jxn9ZhnEZnIgd49YvSt_n7_V066zdKTT9929mT_YQB6fNJuZCY1S4zPlDgx6pUTuOkDKqcGI8x9xl69AoJ8BgVc4KiE2TApOrgxs5XRruc5N6C21VOcZZZ6jvL8hKlqsT54sI9ytG06gk7ibbHk_AyyYlbAmjS_B0UV0j3n5-zKeZNH8D9HqyKD511PYQ1bB7BvcNlp9f5Y7Dc-1vM5sI1oiX384P2cwNxFG0Up2LWiFMZ27Mg0pslLc26KU68xJTgC0Lt4qO7QmZziqarSidpXa-U7SdwfCMqfQrrTdvgMxA5p4OVUVVVucJnjnxFUcYaS6PrEGMxgvGgNev7juY8WOPMLnsxJ01b0rRNmrZmBG-Xz5x3_Tyu3b05HIbt7_bcrixxBO-GA1ot_1_axvXSXsEdsmj7Zf_o4DncVVw7k2rZNmF9cXGJLwj8LOqXycoEfL9ps_4DI7QUGQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+is+an+optimal+value+of+k+in+k-fold+cross-validation+in+discrete+Bayesian+network+analysis%3F&rft.jtitle=Computational+statistics&rft.au=Marcot%2C+Bruce+G.&rft.au=Hanea%2C+Anca+M.&rft.date=2021-09-01&rft.issn=0943-4062&rft.eissn=1613-9658&rft.volume=36&rft.issue=3&rft.spage=2009&rft.epage=2031&rft_id=info:doi/10.1007%2Fs00180-020-00999-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00180_020_00999_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0943-4062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0943-4062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0943-4062&client=summon |