What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis?

Cross-validation using randomized subsets of data—known as k-fold cross-validation—is a powerful means of testing the success rate of models used for classification. However, few if any studies have explored how values of k (number of subsets) affect validation results in models tested with data of...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics Vol. 36; no. 3; pp. 2009 - 2031
Main Authors Marcot, Bruce G., Hanea, Anca M.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cross-validation using randomized subsets of data—known as k-fold cross-validation—is a powerful means of testing the success rate of models used for classification. However, few if any studies have explored how values of k (number of subsets) affect validation results in models tested with data of known statistical properties. Here, we explore conditions of sample size, model structure, and variable dependence affecting validation outcomes in discrete Bayesian networks (BNs). We created 6 variants of a BN model with known properties of variance and collinearity, along with data sets of n = 50, 500, and 5000 samples, and then tested classification success and evaluated CPU computation time with seven levels of folds (k = 2, 5, 10, 20, n − 5, n − 2, and n − 1). Classification error declined with increasing n, particularly in BN models with high multivariate dependence, and declined with increasing k, generally levelling out at k = 10, although k = 5 sufficed with large samples (n = 5000). Our work supports the common use of k = 10 in the literature, although in some cases k = 5 would suffice with BN models having independent variable structures.
AbstractList Cross-validation using randomized subsets of data—known as k-fold cross-validation—is a powerful means of testing the success rate of models used for classification. However, few if any studies have explored how values of k (number of subsets) affect validation results in models tested with data of known statistical properties. Here, we explore conditions of sample size, model structure, and variable dependence affecting validation outcomes in discrete Bayesian networks (BNs). We created 6 variants of a BN model with known properties of variance and collinearity, along with data sets of n = 50, 500, and 5000 samples, and then tested classification success and evaluated CPU computation time with seven levels of folds (k = 2, 5, 10, 20, n − 5, n − 2, and n − 1). Classification error declined with increasing n, particularly in BN models with high multivariate dependence, and declined with increasing k, generally levelling out at k = 10, although k = 5 sufficed with large samples (n = 5000). Our work supports the common use of k = 10 in the literature, although in some cases k = 5 would suffice with BN models having independent variable structures.
Author Marcot, Bruce G.
Hanea, Anca M.
Author_xml – sequence: 1
  givenname: Bruce G.
  orcidid: 0000-0002-3667-7481
  surname: Marcot
  fullname: Marcot, Bruce G.
  email: bruce.marcot@usda.gov
  organization: U.S. Forest Service, Pacific Northwest Research Station
– sequence: 2
  givenname: Anca M.
  orcidid: 0000-0003-3870-5949
  surname: Hanea
  fullname: Hanea, Anca M.
  organization: Centre of Excellence for Biosecurity Risk Analysis (CEBRA), University of Melbourne
BookMark eNp9kE9LAzEQxYMoWKtfwFPAc3SSNNvkJCr-A8GL4jGk2VmNXTc1SZV-e2MrCB48DHOY9x7zfntke4gDEnLI4ZgDTE8yANfAQNQBYwwzW2TEGy6ZaZTeJiMwE8km0IhdspfzK4AQU8FHxD69uEJDpm6gcVHCm-vph-uXSGNH5zQMdM662LfUp5gzq6fQuhLi8H1qQ_YJC9Jzt8IcasSA5TOmeU1z_SqHfLpPdjrXZzz42WPyeHX5cHHD7u6vby_O7piXWhWGMHNgfAtC4VQJ16BWrVDaeOykB_ToBaqmMaKTWguNwKURs9Zx56emcXJMjja5ixTfl5iLfY3LVL_IVihV2zdK6qrSG9W6TcLO-lDWdUpyobcc7DdOu8FpK067xmlNtYo_1kWqtNLqf5PcmHIVD8-Yfr_6x_UFoSuKBg
CitedBy_id crossref_primary_10_1007_s42947_024_00450_y
crossref_primary_10_1016_j_ress_2025_111053
crossref_primary_10_3390_machines12060399
crossref_primary_10_3758_s13428_022_01801_y
crossref_primary_10_3390_diagnostics11101863
crossref_primary_10_3390_rs13152950
crossref_primary_10_1016_j_techfore_2023_122856
crossref_primary_10_1080_13549839_2024_2353058
crossref_primary_10_3847_1538_4365_ace447
crossref_primary_10_3390_ijerph18137155
crossref_primary_10_1051_e3sconf_202131705027
crossref_primary_10_3390_rs14071704
crossref_primary_10_1109_TNSRE_2024_3522121
crossref_primary_10_3233_IDT_230382
crossref_primary_10_1016_j_jhazmat_2024_134309
crossref_primary_10_1115_1_4065777
crossref_primary_10_1016_j_rsase_2022_100849
crossref_primary_10_1016_j_engappai_2023_107465
crossref_primary_10_1016_j_techfore_2023_122746
crossref_primary_10_1111_exsy_13300
crossref_primary_10_1016_j_bpsc_2023_07_003
crossref_primary_10_1016_j_eiar_2022_106760
crossref_primary_10_1186_s12874_022_01695_6
crossref_primary_10_1371_journal_pone_0318612
crossref_primary_10_12688_f1000research_72976_2
crossref_primary_10_1016_j_buildenv_2022_109533
crossref_primary_10_1161_CIRCGEN_123_004512
crossref_primary_10_1007_s00521_022_07906_x
crossref_primary_10_1016_j_ssci_2025_106814
crossref_primary_10_1177_1748006X221139906
crossref_primary_10_1109_ACCESS_2022_3186092
crossref_primary_10_1007_s00291_024_00751_5
crossref_primary_10_1177_14727978251318809
crossref_primary_10_1155_2022_7053228
crossref_primary_10_1016_j_ijepes_2023_109352
crossref_primary_10_1016_j_oceaneng_2022_112571
crossref_primary_10_1039_D2SD00087C
crossref_primary_10_1080_24705314_2025_2475591
crossref_primary_10_1177_23998083231175680
crossref_primary_10_1007_s12530_021_09393_2
crossref_primary_10_1016_j_jnlssr_2024_10_003
crossref_primary_10_1177_00222437221141052
crossref_primary_10_1108_BIJ_10_2023_0764
crossref_primary_10_3390_axioms12040345
crossref_primary_10_1038_s41598_024_51381_4
crossref_primary_10_3389_fevo_2023_1111551
crossref_primary_10_3390_systems12050167
crossref_primary_10_3390_e26100829
crossref_primary_10_1016_j_heliyon_2024_e35512
crossref_primary_10_1108_BIJ_03_2024_0195
crossref_primary_10_1111_risa_13589
crossref_primary_10_1142_S0219649224500758
crossref_primary_10_1016_j_engappai_2023_106355
crossref_primary_10_1038_s41598_023_50164_7
crossref_primary_10_1016_j_oregeorev_2023_105790
crossref_primary_10_3390_biomedicines11020284
crossref_primary_10_1088_1361_6560_ad7222
crossref_primary_10_3390_app14072950
crossref_primary_10_1016_j_algal_2022_102842
crossref_primary_10_1007_s44196_022_00090_9
crossref_primary_10_1016_j_eswa_2023_120179
crossref_primary_10_2196_35114
crossref_primary_10_1016_j_jclepro_2023_138161
crossref_primary_10_1016_j_aei_2023_101982
crossref_primary_10_1016_j_soildyn_2024_108755
crossref_primary_10_35970_jinita_v5i2_1879
crossref_primary_10_1109_ACCESS_2021_3061370
crossref_primary_10_1007_s10980_023_01762_3
crossref_primary_10_1177_14727978251322050
crossref_primary_10_1016_j_jclepro_2024_142931
crossref_primary_10_3390_s25010228
crossref_primary_10_1007_s41748_024_00518_6
crossref_primary_10_1109_ACCESS_2024_3396999
crossref_primary_10_1007_s12145_023_01151_z
crossref_primary_10_3390_diagnostics14232696
crossref_primary_10_1371_journal_pone_0270405
crossref_primary_10_1016_j_ssci_2022_105942
crossref_primary_10_1111_1755_6724_15277
crossref_primary_10_3390_s21248377
crossref_primary_10_1016_j_asoc_2021_108176
crossref_primary_10_1016_j_eswa_2024_124175
crossref_primary_10_1016_j_psep_2022_02_010
crossref_primary_10_1016_j_seps_2022_101276
crossref_primary_10_3390_app14156397
crossref_primary_10_1109_TPS_2024_3359761
crossref_primary_10_1016_j_jclepro_2024_140986
crossref_primary_10_3390_infrastructures9090145
crossref_primary_10_1016_j_uclim_2022_101203
crossref_primary_10_1108_CR_09_2024_0176
crossref_primary_10_2340_jrm_v54_2432
crossref_primary_10_5194_bg_19_3739_2022
crossref_primary_10_1016_j_joitmc_2025_100522
crossref_primary_10_1007_s12517_022_10406_w
crossref_primary_10_1016_j_psep_2024_05_014
crossref_primary_10_1108_IJIS_04_2024_0091
crossref_primary_10_1016_j_geoderma_2023_116647
crossref_primary_10_1016_j_jenvman_2023_118606
crossref_primary_10_34133_remotesensing_0302
crossref_primary_10_1186_s40537_023_00727_2
crossref_primary_10_3390_s22051925
crossref_primary_10_1063_5_0246842
crossref_primary_10_3390_buildings14030570
crossref_primary_10_1063_5_0143724
crossref_primary_10_3390_electronics10030285
crossref_primary_10_1007_s40747_020_00218_4
crossref_primary_10_1108_IJQRM_04_2024_0129
crossref_primary_10_1080_01431161_2023_2282405
crossref_primary_10_32604_csse_2024_052510
crossref_primary_10_3390_jimaging9090169
crossref_primary_10_1080_10934529_2024_2317670
crossref_primary_10_1038_s41598_023_38065_1
crossref_primary_10_1016_j_jclepro_2023_135881
crossref_primary_10_1371_journal_pone_0317355
crossref_primary_10_3389_fnano_2022_972421
crossref_primary_10_3390_ijgi13120436
crossref_primary_10_1371_journal_pone_0307775
crossref_primary_10_1007_s13246_023_01284_x
crossref_primary_10_1007_s11192_022_04381_y
crossref_primary_10_1109_ACCESS_2022_3199353
crossref_primary_10_5194_bg_20_2727_2023
crossref_primary_10_3390_photonics8100426
crossref_primary_10_1038_s41598_024_83389_1
crossref_primary_10_1016_j_engappai_2022_105709
crossref_primary_10_1007_s11042_022_13081_x
crossref_primary_10_1108_BFJ_06_2024_0637
crossref_primary_10_1016_j_scs_2024_105893
crossref_primary_10_1038_s41598_022_11936_9
crossref_primary_10_1111_risa_13610
crossref_primary_10_1016_j_engappai_2022_104842
crossref_primary_10_3390_jmse13030611
crossref_primary_10_1016_j_enbuild_2023_112922
crossref_primary_10_1371_journal_pone_0289130
crossref_primary_10_1007_s10479_023_05723_6
crossref_primary_10_1016_j_eiar_2022_106912
crossref_primary_10_1016_j_health_2024_100380
crossref_primary_10_1080_13416979_2022_2138096
crossref_primary_10_1002_ecs2_4573
crossref_primary_10_1016_j_cmpb_2022_106827
crossref_primary_10_1016_j_euromechsol_2024_105250
crossref_primary_10_3390_realestate1030014
crossref_primary_10_1109_ACCESS_2023_3348755
crossref_primary_10_1109_TNSRE_2021_3139966
crossref_primary_10_1007_s10845_024_02410_6
crossref_primary_10_1007_s13753_024_00570_w
crossref_primary_10_1109_TCSS_2022_3223516
crossref_primary_10_1007_s00405_023_08424_9
crossref_primary_10_1016_j_ejrs_2024_07_003
crossref_primary_10_3390_diagnostics14121263
crossref_primary_10_1016_j_fuel_2024_133096
crossref_primary_10_1016_j_ress_2023_109170
crossref_primary_10_61186_ijpb_16_2_185
crossref_primary_10_1002_ana_26528
crossref_primary_10_1016_j_foodcont_2022_109589
crossref_primary_10_1016_j_scitotenv_2024_177863
crossref_primary_10_3390_rs15082188
crossref_primary_10_1007_s42247_022_00409_4
crossref_primary_10_34186_klujes_1248062
crossref_primary_10_1016_j_knosys_2024_112127
crossref_primary_10_17671_gazibtd_1424960
crossref_primary_10_1371_journal_pone_0299485
crossref_primary_10_1111_risa_13841
crossref_primary_10_3390_su17030843
crossref_primary_10_1007_s11709_022_0837_x
crossref_primary_10_1016_j_asoc_2024_112497
crossref_primary_10_1016_j_eiar_2022_107014
crossref_primary_10_3390_en15239125
crossref_primary_10_1016_j_ijdrr_2020_101938
crossref_primary_10_1044_2023_JSLHR_23_00273
crossref_primary_10_1109_JSEN_2024_3521482
crossref_primary_10_3390_math10162925
crossref_primary_10_1007_s41062_024_01466_w
crossref_primary_10_1016_j_engappai_2023_107118
crossref_primary_10_1016_j_eiar_2023_107404
crossref_primary_10_1140_epjp_s13360_023_03675_1
crossref_primary_10_1016_j_geodrs_2024_e00901
crossref_primary_10_1016_j_jth_2021_101293
crossref_primary_10_1186_s40537_022_00644_w
crossref_primary_10_1080_10803548_2024_2322888
crossref_primary_10_1016_j_ocecoaman_2024_107311
crossref_primary_10_1016_j_phycom_2022_101927
crossref_primary_10_1021_acsami_4c03675
crossref_primary_10_3389_ijph_2022_1605047
crossref_primary_10_1051_matecconf_202337701005
crossref_primary_10_1057_s41599_022_01407_x
crossref_primary_10_1117_1_JRS_17_014517
crossref_primary_10_1007_s12187_022_09939_z
crossref_primary_10_1080_10298436_2025_2450081
crossref_primary_10_1016_j_matdes_2025_113705
crossref_primary_10_1016_j_jmapro_2023_05_032
crossref_primary_10_1108_K_08_2021_0773
crossref_primary_10_5812_jcrps_148703
crossref_primary_10_1016_j_glt_2025_03_001
crossref_primary_10_1016_j_eja_2024_127316
crossref_primary_10_1016_j_pdisas_2024_100344
crossref_primary_10_1016_j_tra_2022_11_003
crossref_primary_10_1007_s11042_024_18426_2
crossref_primary_10_32604_cmes_2022_021893
crossref_primary_10_1016_j_net_2024_07_024
crossref_primary_10_1007_s00167_022_07082_4
crossref_primary_10_1002_eqe_4110
crossref_primary_10_1016_j_apgeochem_2023_105731
Cites_doi 10.1201/b18401
10.18637/jss.v035.i03
10.1016/j.ecoinf.2018.03.002
10.1016/j.ecolmodel.2012.01.013
10.1016/j.ecolmodel.2013.08.011
10.1111/stan.12113
10.1214/09-SS054
10.1038/nbt1406
10.1016/j.envsoft.2018.09.016
10.1016/j.artmed.2016.01.002
10.1016/S1470-160X(02)00005-5
10.1111/j.0030-1299.2005.13816.x
10.1371/journal.pone.0183464
10.1007/s00300-009-0711-5
10.1080/01621459.1975.10479865
10.1007/978-0-387-68282-2
10.1023/A:1007465528199
10.1007/s10021-016-0075-y
10.1016/j.ecolind.2009.11.004
10.1016/j.ecolmodel.2015.05.025
10.1016/j.envsoft.2010.04.016
10.1002/bimj.201000030
10.1515/9781400866557
10.1016/B978-012088777-4/50005-3
10.1111/j.2517-6161.1977.tb01600.x
10.2307/1403680
10.1109/GRC.2006.1635796
ContentType Journal Article
Copyright This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020
This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020.
Copyright_xml – notice: This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020
– notice: This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020.
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88I
8AL
8C1
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s00180-020-00999-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ProQuest Computing
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1613-9658
EndPage 2031
ExternalDocumentID 10_1007_s00180_020_00999_9
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
203
29F
2J2
2JN
2JY
2KG
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
78A
7WY
88I
8C1
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAS
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Y
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7TB
7XB
8AL
8FD
8FK
ABRTQ
FR3
JQ2
KR7
L.-
L7M
L~C
L~D
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c385t-e0ba09cd025e752a6e85d2589cef3c0ecec2e56692f38828e01392bda1ac796a3
IEDL.DBID BENPR
ISSN 0943-4062
IngestDate Fri Jul 25 18:58:17 EDT 2025
Tue Jul 01 04:23:17 EDT 2025
Thu Apr 24 22:53:42 EDT 2025
Fri Feb 21 02:48:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Classification error
randomized subsets
sample size
Model validation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-e0ba09cd025e752a6e85d2589cef3c0ecec2e56692f38828e01392bda1ac796a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3667-7481
0000-0003-3870-5949
PQID 2550946538
PQPubID 54096
PageCount 23
ParticipantIDs proquest_journals_2550946538
crossref_citationtrail_10_1007_s00180_020_00999_9
crossref_primary_10_1007_s00180_020_00999_9
springer_journals_10_1007_s00180_020_00999_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Computational statistics
PublicationTitleAbbrev Comput Stat
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Jensen, Nielsen (CR18) 2007
Scutari (CR156) 2010; 35
Aguilera, Fernández, Reche, Rumi (CR1) 2010; 25
LaDeau, Han, Rosi-Marshall, Weathers (CR20) 2017; 20
Arlot, Celisse (CR3) 2010; 4
Adelin, Zhang (CR152) 2010; 52
Hobbs, Hooten (CR17) 2015
Constantinuo, Fenton, Marsh, Radlinski (CR8) 2016; 67
Hammond, Ellis (CR14) 2002; 1
Marcot, Naim, Wuillemin, Leray, Pourret, Becker (CR23) 2007
Geisser (CR140) 1975; 70
CR155
Pawson, Marcot, Woodberry (CR27) 2017; 12
Marcot (CR24) 2012; 230
Pourret, Naïm, Marcot (CR28) 2008
Zhao, Hasan (CR31) 2013; 3
CR2
Hanea, Nane (CR15) 2018; 72
Stow, Webster, Wagner, Lottig, Soranno, Cha (CR150) 2018; 45
CR6
Murphy (CR26) 2012
CR9
Cawley, Talbot (CR7) 2007; 8
Koski, Noble (CR19) 2011
Booms, Huettmann, Schempf (CR4) 2010; 33
Guyon, Saffari, Dror, Cawley (CR151) 2010; 11
CR21
Lillegard, Engen, Saether (CR22) 2005; 109
Van Valen, Hallgrímsson, Hall (CR30) 2005
Dempster, Laird, Rubin (CR10) 1977; 39
Do, Batzoglou (CR11) 2008; 26
Marcot, Penman (CR25) 2019; 111
Friedman, Geiger, Goldszmidt (CR13) 1997; 29
Shcheglovitova, Anderson (CR29) 2013; 269
Hastie, Tibshirani, Wainwright (CR16) 2015
Brady, Monleon, Gray (CR5) 2010; 10
Forio, Landuyt, Bennetsen, Lock, Nguyen, Ambarita, Musonge, Boets, Everaert, Dominguez-Granda, Goethals (CR12) 2015; 312
FV Jensen (999_CR18) 2007
BG Marcot (999_CR23) 2007
GC Cawley (999_CR7) 2007; 8
T Koski (999_CR19) 2011
NT Hobbs (999_CR17) 2015
999_CR155
M Lillegard (999_CR22) 2005; 109
S Geisser (999_CR140) 1975; 70
CB Do (999_CR11) 2008; 26
999_CR21
BG Marcot (999_CR24) 2012; 230
S Arlot (999_CR3) 2010; 4
999_CR9
TL Booms (999_CR4) 2010; 33
999_CR6
N Friedman (999_CR13) 1997; 29
Y Zhao (999_CR31) 2013; 3
AA Adelin (999_CR152) 2010; 52
SM Pawson (999_CR27) 2017; 12
MAE Forio (999_CR12) 2015; 312
I Guyon (999_CR151) 2010; 11
KP Murphy (999_CR26) 2012
M Scutari (999_CR156) 2010; 35
999_CR2
PA Aguilera (999_CR1) 2010; 25
M Shcheglovitova (999_CR29) 2013; 269
BG Marcot (999_CR25) 2019; 111
(999_CR28) 2008
TJ Brady (999_CR5) 2010; 10
AC Constantinuo (999_CR8) 2016; 67
T Hastie (999_CR16) 2015
CA Stow (999_CR150) 2018; 45
A Dempster (999_CR10) 1977; 39
TR Hammond (999_CR14) 2002; 1
L Van Valen (999_CR30) 2005
AM Hanea (999_CR15) 2018; 72
SL LaDeau (999_CR20) 2017; 20
References_xml – year: 2015
  ident: CR16
  publication-title: Statistical learning with sparsity: the Lasso and generalizations. Monographs on statistics and applied probability 143
  doi: 10.1201/b18401
– volume: 35
  start-page: 1
  issue: 3
  year: 2010
  end-page: 22
  ident: CR156
  article-title: Learning Bayesian networks with the bnlearn R package
  publication-title: J Stat Softw
  doi: 10.18637/jss.v035.i03
– start-page: 293
  year: 2007
  end-page: 315
  ident: CR23
  article-title: Étude de cas n°5: gestion de ressources naturelles et analyses de risques (Natural resource assessment and risk management)
  publication-title: Réseaux Bayésiens (Bayesian networks; in French)
– year: 2008
  ident: CR28
  publication-title: Bayesian belief networks: a practical guide to applications
– ident: CR2
– year: 2011
  ident: CR19
  publication-title: Bayesian networks: an introduction
– ident: CR6
– volume: 45
  start-page: 26
  year: 2018
  end-page: 30
  ident: CR150
  article-title: Small values in big data: the continuing need for appropriate metadata
  publication-title: Eco Inform
  doi: 10.1016/j.ecoinf.2018.03.002
– volume: 39
  start-page: 1
  issue: Series B
  year: 1977
  end-page: 38
  ident: CR10
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc
– volume: 230
  start-page: 50
  year: 2012
  end-page: 62
  ident: CR24
  article-title: Metrics for evaluating performance and uncertainty of Bayesian network models
  publication-title: Ecol Mod
  doi: 10.1016/j.ecolmodel.2012.01.013
– volume: 269
  start-page: 9
  year: 2013
  end-page: 17
  ident: CR29
  article-title: Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes
  publication-title: Ecol Mod
  doi: 10.1016/j.ecolmodel.2013.08.011
– volume: 72
  start-page: 14
  year: 2018
  end-page: 33
  ident: CR15
  article-title: The asymptotic distribution of the determinant of a random correlation matrix
  publication-title: Stat Neerl
  doi: 10.1111/stan.12113
– volume: 3
  start-page: 61
  year: 2013
  end-page: 73
  ident: CR31
  article-title: Machine learning algorithms for predicting roadside fine particulate matter concentration level in Hong Kong Central
  publication-title: Comput Ecol Softw
– volume: 4
  start-page: 40
  year: 2010
  end-page: 79
  ident: CR3
  article-title: A survey of cross-validation procedures for model selection
  publication-title: Stat Surv
  doi: 10.1214/09-SS054
– volume: 26
  start-page: 897
  year: 2008
  end-page: 899
  ident: CR11
  article-title: What is the expectation maximization algorithm?
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1406
– volume: 111
  start-page: 386
  year: 2019
  end-page: 393
  ident: CR25
  article-title: Advances in Bayesian network modelling: integration of modelling technologies
  publication-title: Environ Model softw
  doi: 10.1016/j.envsoft.2018.09.016
– volume: 67
  start-page: 75
  year: 2016
  end-page: 93
  ident: CR8
  article-title: From complex questionnaire and interviewing data to intelligent Bayesian network models for medical decision support
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2016.01.002
– volume: 1
  start-page: 197
  year: 2002
  end-page: 211
  ident: CR14
  article-title: A meta-assessment for elasmobranchs based on dietary data and Bayesian networks
  publication-title: Ecol Ind
  doi: 10.1016/S1470-160X(02)00005-5
– ident: CR21
– volume: 109
  start-page: 342
  year: 2005
  end-page: 350
  ident: CR22
  article-title: Bootstrap methods for estimating spatial synchrony of fluctuating populations
  publication-title: Oikos
  doi: 10.1111/j.0030-1299.2005.13816.x
– volume: 12
  start-page: e0183464
  year: 2017
  ident: CR27
  article-title: Predicting forest insect flight activity: a Bayesian network approach
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0183464
– volume: 8
  start-page: 841
  year: 2007
  end-page: 861
  ident: CR7
  article-title: Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters
  publication-title: J Mach Learn Res
– year: 2012
  ident: CR26
  publication-title: Machine learning: a probabilistic perspective
– volume: 33
  start-page: 347
  year: 2010
  end-page: 358
  ident: CR4
  article-title: Gyrfalcon nest distribution in Alaska based on a predictive GIS model
  publication-title: Polar Biol
  doi: 10.1007/s00300-009-0711-5
– ident: CR155
– volume: 11
  start-page: 61
  year: 2010
  end-page: 87
  ident: CR151
  article-title: Model selection: beyond the Bayesian-Frequentist divide
  publication-title: J Mach Learn Res
– volume: 70
  start-page: 320
  year: 1975
  end-page: 328
  ident: CR140
  article-title: The predictive sample reuse method with applications
  publication-title: J Amer Stat Assoc
  doi: 10.1080/01621459.1975.10479865
– ident: CR9
– year: 2007
  ident: CR18
  publication-title: Bayesian networks and decision graphs
  doi: 10.1007/978-0-387-68282-2
– volume: 29
  start-page: 131
  year: 1997
  end-page: 163
  ident: CR13
  article-title: Bayesian network classifiers
  publication-title: Mach Learn
  doi: 10.1023/A:1007465528199
– volume: 20
  start-page: 274
  year: 2017
  end-page: 283
  ident: CR20
  article-title: The next decade of big data in ecosystem science
  publication-title: Ecosystems
  doi: 10.1007/s10021-016-0075-y
– volume: 10
  start-page: 657
  year: 2010
  end-page: 667
  ident: CR5
  article-title: Calibrating vascular plant abundance for detecting future climate changes in Oregon and Washington, USA
  publication-title: Ecol Ind
  doi: 10.1016/j.ecolind.2009.11.004
– volume: 312
  start-page: 222
  year: 2015
  end-page: 238
  ident: CR12
  article-title: Bayesian belief network models to analyse and predict ecological water quality in rivers
  publication-title: Ecol Model
  doi: 10.1016/j.ecolmodel.2015.05.025
– volume: 25
  start-page: 1630
  year: 2010
  end-page: 1639
  ident: CR1
  article-title: Hybrid Bayesian network classifiers: application to species distribution models
  publication-title: Environ Mod Softw
  doi: 10.1016/j.envsoft.2010.04.016
– volume: 52
  start-page: 667
  issue: 5
  year: 2010
  end-page: 675
  ident: CR152
  article-title: A novel definition of the multivariate coefficient of variation
  publication-title: Biomet J
  doi: 10.1002/bimj.201000030
– year: 2015
  ident: CR17
  publication-title: Bayesian models: a statistical primer for ecologists
  doi: 10.1515/9781400866557
– start-page: 29
  year: 2005
  end-page: 47
  ident: CR30
  article-title: The statistics of variation
  publication-title: Variation
  doi: 10.1016/B978-012088777-4/50005-3
– volume: 70
  start-page: 320
  year: 1975
  ident: 999_CR140
  publication-title: J Amer Stat Assoc
  doi: 10.1080/01621459.1975.10479865
– volume: 11
  start-page: 61
  year: 2010
  ident: 999_CR151
  publication-title: J Mach Learn Res
– volume: 4
  start-page: 40
  year: 2010
  ident: 999_CR3
  publication-title: Stat Surv
  doi: 10.1214/09-SS054
– volume: 35
  start-page: 1
  issue: 3
  year: 2010
  ident: 999_CR156
  publication-title: J Stat Softw
  doi: 10.18637/jss.v035.i03
– volume: 72
  start-page: 14
  year: 2018
  ident: 999_CR15
  publication-title: Stat Neerl
  doi: 10.1111/stan.12113
– volume-title: Bayesian networks: an introduction
  year: 2011
  ident: 999_CR19
– start-page: 29
  volume-title: Variation
  year: 2005
  ident: 999_CR30
  doi: 10.1016/B978-012088777-4/50005-3
– volume: 39
  start-page: 1
  issue: Series B
  year: 1977
  ident: 999_CR10
  publication-title: J R Stat Soc
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 312
  start-page: 222
  year: 2015
  ident: 999_CR12
  publication-title: Ecol Model
  doi: 10.1016/j.ecolmodel.2015.05.025
– volume: 111
  start-page: 386
  year: 2019
  ident: 999_CR25
  publication-title: Environ Model softw
  doi: 10.1016/j.envsoft.2018.09.016
– volume: 29
  start-page: 131
  year: 1997
  ident: 999_CR13
  publication-title: Mach Learn
  doi: 10.1023/A:1007465528199
– volume: 52
  start-page: 667
  issue: 5
  year: 2010
  ident: 999_CR152
  publication-title: Biomet J
  doi: 10.1002/bimj.201000030
– volume-title: Bayesian belief networks: a practical guide to applications
  year: 2008
  ident: 999_CR28
– ident: 999_CR155
– volume-title: Statistical learning with sparsity: the Lasso and generalizations. Monographs on statistics and applied probability 143
  year: 2015
  ident: 999_CR16
  doi: 10.1201/b18401
– volume: 45
  start-page: 26
  year: 2018
  ident: 999_CR150
  publication-title: Eco Inform
  doi: 10.1016/j.ecoinf.2018.03.002
– volume-title: Machine learning: a probabilistic perspective
  year: 2012
  ident: 999_CR26
– volume-title: Bayesian models: a statistical primer for ecologists
  year: 2015
  ident: 999_CR17
  doi: 10.1515/9781400866557
– volume: 269
  start-page: 9
  year: 2013
  ident: 999_CR29
  publication-title: Ecol Mod
  doi: 10.1016/j.ecolmodel.2013.08.011
– volume: 10
  start-page: 657
  year: 2010
  ident: 999_CR5
  publication-title: Ecol Ind
  doi: 10.1016/j.ecolind.2009.11.004
– volume: 12
  start-page: e0183464
  year: 2017
  ident: 999_CR27
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0183464
– volume: 33
  start-page: 347
  year: 2010
  ident: 999_CR4
  publication-title: Polar Biol
  doi: 10.1007/s00300-009-0711-5
– volume: 20
  start-page: 274
  year: 2017
  ident: 999_CR20
  publication-title: Ecosystems
  doi: 10.1007/s10021-016-0075-y
– volume: 230
  start-page: 50
  year: 2012
  ident: 999_CR24
  publication-title: Ecol Mod
  doi: 10.1016/j.ecolmodel.2012.01.013
– ident: 999_CR2
– volume: 1
  start-page: 197
  year: 2002
  ident: 999_CR14
  publication-title: Ecol Ind
  doi: 10.1016/S1470-160X(02)00005-5
– volume: 109
  start-page: 342
  year: 2005
  ident: 999_CR22
  publication-title: Oikos
  doi: 10.1111/j.0030-1299.2005.13816.x
– ident: 999_CR6
  doi: 10.2307/1403680
– volume-title: Bayesian networks and decision graphs
  year: 2007
  ident: 999_CR18
  doi: 10.1007/978-0-387-68282-2
– ident: 999_CR21
  doi: 10.1109/GRC.2006.1635796
– volume: 3
  start-page: 61
  year: 2013
  ident: 999_CR31
  publication-title: Comput Ecol Softw
– volume: 25
  start-page: 1630
  year: 2010
  ident: 999_CR1
  publication-title: Environ Mod Softw
  doi: 10.1016/j.envsoft.2010.04.016
– ident: 999_CR9
– volume: 67
  start-page: 75
  year: 2016
  ident: 999_CR8
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2016.01.002
– start-page: 293
  volume-title: Réseaux Bayésiens (Bayesian networks; in French)
  year: 2007
  ident: 999_CR23
– volume: 8
  start-page: 841
  year: 2007
  ident: 999_CR7
  publication-title: J Mach Learn Res
– volume: 26
  start-page: 897
  year: 2008
  ident: 999_CR11
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1406
SSID ssj0022721
Score 2.6313312
Snippet Cross-validation using randomized subsets of data—known as k-fold cross-validation—is a powerful means of testing the success rate of models used for...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2009
SubjectTerms Bayesian analysis
Bias
Calibration
Classification
Collinearity
Datasets
Economic Theory/Quantitative Economics/Mathematical Methods
Independent variables
Mathematics and Statistics
Network analysis
Original Paper
Probability and Statistics in Computer Science
Probability Theory and Stochastic Processes
Statistical methods
Statistics
Variables
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL_UgWhWrVXLwpoHd7Ca7OUkVSxHqyUJvSzYPKK1b6daD_95J9lEUFTznQZjJ4xsy3zcIXXOjQ5NLSyyH4xbrQBEhVESEUjrUSvPYOoLz5JmPp_HTjM1qUljZZLs3X5L-pm7Jbq5-XEBcuONhDRG7aI-52B128ZQO2zCLJp5t5VLmIDritKbK_DzH1-doizG_fYv612Z0iA5qmIiHlV-P0I4pemh_0mqslj3UdTixklk-RpmT4MbzEssCr-AWeIXBTsfb4JXFCzwv8ILY1VJjvwwCTfOqmJJrcszcNYBnfC8_jCNV4qJKDofZKsmSuxM0HT2-PIxJXTuBqChlG2KCXAZCaYA0JmFUcpMyTVkqlLGRCowyihqAcoLaCEB2ahwUpLmWoVSJ4DI6RZ1iVZgzhCMXlSWCJkkiYxVIOLIxs7lhgufa2riPwsaEmaqFxV19i2XWSiJ7s2dg9sybPRN9dNOOeatkNf7sPWg8k9VHrMwgFgIXc7iw--i28da2-ffZzv_X_QJ1qctj8XllA9TZrN_NJQCRTX7l990n_k3TvA
  priority: 102
  providerName: Springer Nature
Title What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis?
URI https://link.springer.com/article/10.1007/s00180-020-00999-9
https://www.proquest.com/docview/2550946538
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB0Be2kPqJRWXUpXPvQGVhMnceITWtAuqBUIoa5ET5HjD2kFJMBuD_33nXG8u2oluOQQO4409ozf2DNvAL5KZ1PXaM-9RHXLbWK4UibjyhibWmNl7inB-fJKXszy77fFbTxwW8SwypVNDIbadobOyL8h9EVPRKJ-njw-caoaRbersYTGNgzQBFfofA1OJ1fXN2uXS5Qh84rC59BTkiKmzYTkOapHl3BynwJM4urfrWmDN_-7Ig07z_Qd7EbIyMb9HO_Blmvfw9vLNd_qYh9qYuBm8wXTLevQCDxgf6Lxdqzz7I7NW3bHfXdvWfgzx6Z5X0uJmigx9xmxMzvVfxzlVLK2jw3H0XrGkpMPMJtOfp5d8Fg6gZusKpbcJY1OlLGIaFxZCC1dVVhRVMo4n5nEGWeEQySnhM8QY1eOkKBorE61KZXU2UfYabvWfQKWkVNWKlGWpc5NolFj88I3rlCysd7nQ0hXUqtN5BWn8hb39ZoROUi6RknXQdK1GsLR-pvHnlXj1d6Hq8moo4Yt6s16GMLxaoI2zS-PdvD6aJ_hjaCwlRBGdgg7y-ff7gvijmUzgu3qLKXn9HwEg_H5rx-TUVxw-HYmxn8BBZfYJQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQ9VKW0YiktPrQnajXrJE58qFAfLEthOYHEzXX8kFbQBNitKv5Uf2NnnGRXrQQ3znYm0nhm_E0y8w3AO-nd0Fcm8CDR3TKXWK6UTbmy1g2ddTIL1OA8OZHjs-z7eX6-An_6Xhgqq-xjYgzUrrH0jfwjQl_MRCT6597VNaepUfR3tR-h0ZrFkb_9jSnb7NPhNzzf90KM9k-_jnk3VYDbtMzn3CeVSZR1eNn7IhdG-jJ3Ii-V9SG1ibfeCo8gR4mQIvwsPYEkUTkzNLZQ0qQo9xGsZWmqyKPK0cEiwRNF7POiYj3My6TomnRiqx5Nv0s4JWsRlHH170W4RLf__ZCN99zoOTzrACr73FrUOqz4-gU8nSzYXWcboInvm01nzNSswZDzE_cTabhnTWAXbFqzCx6aS8fimzkuTdvJTbREbcA3iNTZF3PrqYOT1W0lOkpr-VH2XsLZg6j0FazWTe03gaWUAhZKFEVhMpsYjA9ZHiqfK1m5ELIBDHutaduxmNMwjUu94F-OmtaoaR01rdUAdhfPXLUcHvfu3u4PQ3f-PNNL6xvAh_6Alst3S9u6X9oOPB6fTo718eHJ0Wt4IqhgJhawbcPq_OaXf4OIZ169jWbG4MdD2_Vfzx0QGA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIiE4ID7FlgI-wAmsZp3EWR9QBS2rltKKA5V6M449llYtSeluhfrX-HXMOMmuQKK3nu1MpPF45k0ybwbgtcYwxtpFGTVdtyJkXhrjc2m8D-Pggy4iE5wPj_TecfH5pDxZg98DF4bLKgefmBx1aD1_I98i6EuZiKb7uRX7soivu9Pt85-SJ0jxn9ZhnEZnIgd49YvSt_n7_V066zdKTT9929mT_YQB6fNJuZCY1S4zPlDgx6pUTuOkDKqcGI8x9xl69AoJ8BgVc4KiE2TApOrgxs5XRruc5N6C21VOcZZZ6jvL8hKlqsT54sI9ytG06gk7ibbHk_AyyYlbAmjS_B0UV0j3n5-zKeZNH8D9HqyKD511PYQ1bB7BvcNlp9f5Y7Dc-1vM5sI1oiX384P2cwNxFG0Up2LWiFMZ27Mg0pslLc26KU68xJTgC0Lt4qO7QmZziqarSidpXa-U7SdwfCMqfQrrTdvgMxA5p4OVUVVVucJnjnxFUcYaS6PrEGMxgvGgNev7juY8WOPMLnsxJ01b0rRNmrZmBG-Xz5x3_Tyu3b05HIbt7_bcrixxBO-GA1ot_1_axvXSXsEdsmj7Zf_o4DncVVw7k2rZNmF9cXGJLwj8LOqXycoEfL9ps_4DI7QUGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+is+an+optimal+value+of+k+in+k-fold+cross-validation+in+discrete+Bayesian+network+analysis%3F&rft.jtitle=Computational+statistics&rft.au=Marcot%2C+Bruce+G.&rft.au=Hanea%2C+Anca+M.&rft.date=2021-09-01&rft.issn=0943-4062&rft.eissn=1613-9658&rft.volume=36&rft.issue=3&rft.spage=2009&rft.epage=2031&rft_id=info:doi/10.1007%2Fs00180-020-00999-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00180_020_00999_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0943-4062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0943-4062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0943-4062&client=summon