Evaluation of the Short-term Effect of Pemafibrate on Liver Fibrosis Biomarkers Stratified by FIB-4 Index in Patients with Type 2 Diabetes Mellitus and Hypertriglyceridemia

Aims This study aimed to investigate the short-term effects of pemafibrate (PEMA) on the Fibrosis-4 index (FIB-4) and Aspartate Aminotransferase to Platelet Ratio Index (APRI) across three subgroups stratified according to FIB-4 for assessing the risk of liver fibrosis in patients with type 2 diabet...

Full description

Saved in:
Bibliographic Details
Published inInternal Medicine p. 5611-25
Main Authors Kitao, Takashi, Tanaka, Takumi, Kubori, Motohiro, Komoda, Yoshio, Mori, Yukiko, Ibata, Takeshi
Format Journal Article
LanguageEnglish
Published Japan The Japanese Society of Internal Medicine 03.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aims This study aimed to investigate the short-term effects of pemafibrate (PEMA) on the Fibrosis-4 index (FIB-4) and Aspartate Aminotransferase to Platelet Ratio Index (APRI) across three subgroups stratified according to FIB-4 for assessing the risk of liver fibrosis in patients with type 2 diabetes (T2D) and hypertriglyceridemia. Methods A total of 114 patients were stratified into three subgroups based on their FIB-4 score at the initiation of PEMA, following the FIB-4 classification: Group 1 (G1) (FIB-4<1.30, n =46), Group 2 (G2) (FIB-4 1.30 to <2.67, n =56), and Group 3 (G3) (FIB-4 ≥2.67, n =12). We evaluated the changes in FIB-4 and APRI three months after the initiation of PEMA in each subgroup. Subsequently, we compared the changes (Δ) in FIB-4 and APRI scores across the three subgroups. Additionally, we investigated the baseline parameters and changes in these parameters correlated with ΔFIB-4. Results The FIB-4 index exhibited a significant increase in G1 (p =0.003) but decrease in G3 (p =0.041). The APRI showed a significant reduction in both G2 (p <0.001) and G3 (p =0.034). ΔFIB-4 in G3 was significantly greater than that observed in G1 (p <0.001) and G2 (p =0.026), whereas ΔAPRI in G3 was significantly higher than that in G1 (p =0.002). ΔFIB-4 was inversely correlated with baseline FIB-4 and positively correlated with Δγ-glutamyl transpeptidase. Conclusions The short-term effect of PEMA on liver fibrosis markers was more pronounced in patients with T2DM and hypertriglyceridemia who exhibited elevated baseline FIB-4 values.
AbstractList Aims This study aimed to investigate the short-term effects of pemafibrate (PEMA) on the Fibrosis-4 index (FIB-4) and Aspartate Aminotransferase to Platelet Ratio Index (APRI) across three subgroups stratified according to FIB-4 for assessing the risk of liver fibrosis in patients with type 2 diabetes (T2D) and hypertriglyceridemia. Methods A total of 114 patients were stratified into three subgroups based on their FIB-4 score at the initiation of PEMA, following the FIB-4 classification: Group 1 (G1) (FIB-4<1.30, n =46), Group 2 (G2) (FIB-4 1.30 to <2.67, n =56), and Group 3 (G3) (FIB-4 ≥2.67, n =12). We evaluated the changes in FIB-4 and APRI three months after the initiation of PEMA in each subgroup. Subsequently, we compared the changes (Δ) in FIB-4 and APRI scores across the three subgroups. Additionally, we investigated the baseline parameters and changes in these parameters correlated with ΔFIB-4. Results The FIB-4 index exhibited a significant increase in G1 (p =0.003) but decrease in G3 (p =0.041). The APRI showed a significant reduction in both G2 (p <0.001) and G3 (p =0.034). ΔFIB-4 in G3 was significantly greater than that observed in G1 (p <0.001) and G2 (p =0.026), whereas ΔAPRI in G3 was significantly higher than that in G1 (p =0.002). ΔFIB-4 was inversely correlated with baseline FIB-4 and positively correlated with Δγ-glutamyl transpeptidase. Conclusions The short-term effect of PEMA on liver fibrosis markers was more pronounced in patients with T2DM and hypertriglyceridemia who exhibited elevated baseline FIB-4 values.
Aims This study aimed to investigate the short-term effects of pemafibrate (PEMA) on the Fibrosis-4 index (FIB-4) and Aspartate Aminotransferase to Platelet Ratio Index (APRI) across three subgroups stratified according to FIB-4 for assessing the risk of liver fibrosis in patients with type 2 diabetes (T2D) and hypertriglyceridemia. Methods A total of 114 patients were stratified into three subgroups based on their FIB-4 score at the initiation of PEMA, following the FIB-4 classification: Group 1 (G1) (FIB-4<1.30, n =46), Group 2 (G2) (FIB-4 1.30 to <2.67, n =56), and Group 3 (G3) (FIB-4 ≥2.67, n =12). We evaluated the changes in FIB-4 and APRI three months after the initiation of PEMA in each subgroup. Subsequently, we compared the changes (Δ) in FIB-4 and APRI scores across the three subgroups. Additionally, we investigated the baseline parameters and changes in these parameters correlated with ΔFIB-4. Results The FIB-4 index exhibited a significant increase in G1 (p =0.003) but decrease in G3 (p =0.041). The APRI showed a significant reduction in both G2 (p <0.001) and G3 (p =0.034). ΔFIB-4 in G3 was significantly greater than that observed in G1 (p <0.001) and G2 (p =0.026), whereas ΔAPRI in G3 was significantly higher than that in G1 (p =0.002). ΔFIB-4 was inversely correlated with baseline FIB-4 and positively correlated with Δγ-glutamyl transpeptidase. Conclusions The short-term effect of PEMA on liver fibrosis markers was more pronounced in patients with T2DM and hypertriglyceridemia who exhibited elevated baseline FIB-4 values.Aims This study aimed to investigate the short-term effects of pemafibrate (PEMA) on the Fibrosis-4 index (FIB-4) and Aspartate Aminotransferase to Platelet Ratio Index (APRI) across three subgroups stratified according to FIB-4 for assessing the risk of liver fibrosis in patients with type 2 diabetes (T2D) and hypertriglyceridemia. Methods A total of 114 patients were stratified into three subgroups based on their FIB-4 score at the initiation of PEMA, following the FIB-4 classification: Group 1 (G1) (FIB-4<1.30, n =46), Group 2 (G2) (FIB-4 1.30 to <2.67, n =56), and Group 3 (G3) (FIB-4 ≥2.67, n =12). We evaluated the changes in FIB-4 and APRI three months after the initiation of PEMA in each subgroup. Subsequently, we compared the changes (Δ) in FIB-4 and APRI scores across the three subgroups. Additionally, we investigated the baseline parameters and changes in these parameters correlated with ΔFIB-4. Results The FIB-4 index exhibited a significant increase in G1 (p =0.003) but decrease in G3 (p =0.041). The APRI showed a significant reduction in both G2 (p <0.001) and G3 (p =0.034). ΔFIB-4 in G3 was significantly greater than that observed in G1 (p <0.001) and G2 (p =0.026), whereas ΔAPRI in G3 was significantly higher than that in G1 (p =0.002). ΔFIB-4 was inversely correlated with baseline FIB-4 and positively correlated with Δγ-glutamyl transpeptidase. Conclusions The short-term effect of PEMA on liver fibrosis markers was more pronounced in patients with T2DM and hypertriglyceridemia who exhibited elevated baseline FIB-4 values.
ArticleNumber 5611-25
Author Mori, Yukiko
Tanaka, Takumi
Komoda, Yoshio
Kubori, Motohiro
Kitao, Takashi
Ibata, Takeshi
Author_xml – sequence: 1
  fullname: Kitao, Takashi
  organization: Department of Cardiology, Minoh City Hospital, Japan
– sequence: 2
  fullname: Tanaka, Takumi
  organization: Department of Diabetes/Endocrinology and Metabolism, Minoh City Hospital, Japan
– sequence: 3
  fullname: Kubori, Motohiro
  organization: Department of Diabetes/Endocrinology and Metabolism, Minoh City Hospital, Japan
– sequence: 4
  fullname: Komoda, Yoshio
  organization: Department of Diabetes/Endocrinology and Metabolism, Minoh City Hospital, Japan
– sequence: 5
  fullname: Mori, Yukiko
  organization: Department of Diabetes/Endocrinology and Metabolism, Minoh City Hospital, Japan
– sequence: 6
  fullname: Ibata, Takeshi
  organization: Department of Diabetes/Endocrinology and Metabolism, Minoh City Hospital, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40603095$$D View this record in MEDLINE/PubMed
BookMark eNplkU1vEzEQhi1URNPCX0Bz5LLFH_t5pCWhkYKo1MJ1NeudbVx2vcH2puQ_8SNxlDQHuNijmeedGc17wc7saIkxEPxKirz6aGwgZ7EfqDXaWLrKciESmb1iM6HSKimkys7YjFeiTGR8ztmF90-cq7Ko5Bt2nvKcK15lM_ZnvsV-wmBGC2MHYU1wvx5dSOKAAeZdRzrsC3c0YGcah4EgoiuzJQeLmBi98XBtxgHdT3Ie7kNkTGeohWYHi-V1ksLStvQbjIW7WCIbPDybsIaH3YZAwmeDDQXy8JX63oTJA9oWbmPRBWce-50mZ1oaDL5lrzvsPb07_pfs-2L-cHObrL59Wd58WiValVlIiFdlw1uFRYdZDHNVkM5aFLlORVnJPEsbxKopmrQTmWwK1GUpVFV2MZ1Rqi7Zh0PfjRt_TeRDPRiv43ZoaZx8raTMC5FWPI_o-yM6NdGNeuNMvMSufrlwBMoDoOOpvKPuhAhe782s_zWz3ptZy730x0H65AM-0kmILhjd0_9CbLdxjZq_BMdGJ4Feo6vJqr9Hprs2
Cites_doi 10.1097/MEG.0000000000001075
10.1016/j.cgh.2009.05.033
10.1053/j.gastro.2019.11.312
10.1002/jgh3.13012
10.1111/hepr.13688
10.1002/hep.24268
10.1161/JAHA.123.035371
10.2169/internalmedicine.6574-20
10.1016/j.jhep.2020.07.045
10.1056/NEJMoa2028395
10.1111/j.1478-3231.2008.01718.x
10.2169/internalmedicine.4337-24
10.1007/s00535-013-0911-1
10.1002/hep.21178
10.1002/jgh3.13057
10.3390/diagnostics11122316
10.1186/s13098-023-01187-7
10.2337/dc21-2049
10.1093/ehjopen/oeac030
10.1056/NEJMoa060326
10.5551/jat.44412
10.1016/j.lanepe.2023.100780
10.1016/j.jhep.2020.06.007
10.1002/hep.27368
10.14740/gr1656
10.3390/ijms21010171
10.2337/dc17-1902
10.1371/journal.pone.0241770
10.1007/s12072-022-10453-1
10.3390/jcm9020584
10.3748/wjg.15.942
10.1002/hep.21496
10.1053/jhep.2003.50346
10.1111/liv.13974
10.1097/HEP.0000000000000696
10.1002/jgh3.12650
ContentType Journal Article
Copyright 2025 by The Japanese Society of Internal Medicine
Copyright_xml – notice: 2025 by The Japanese Society of Internal Medicine
DBID AAYXX
CITATION
NPM
7X8
DOI 10.2169/internalmedicine.5611-25
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1349-7235
ExternalDocumentID 40603095
10_2169_internalmedicine_5611_25
article_internalmedicine_advpub_0_advpub_5611_25_article_char_en
Genre Journal Article
GroupedDBID ---
.55
29J
2WC
3O-
53G
5GY
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
DIK
DU5
EBS
EJD
EMOBN
F5P
HYE
JSF
JSH
M48
OK1
OVT
P2P
PGMZT
RJT
RNS
RPM
RZJ
TKC
TR2
X7M
XSB
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c385t-e098b0d3a7fa598b637ec5da16c41892654baa9b7b4f152b7ac881398fbaa5e43
ISSN 0918-2918
1349-7235
IngestDate Thu Jul 03 19:17:26 EDT 2025
Fri Jul 04 01:47:09 EDT 2025
Thu Jul 10 08:13:21 EDT 2025
Thu Aug 07 14:08:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords hypertriglyceridemia
pemafibrate
liver fibrosis marker
Type 2 Diabetes
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c385t-e098b0d3a7fa598b637ec5da16c41892654baa9b7b4f152b7ac881398fbaa5e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/internalmedicine/advpub/0/advpub_5611-25/_article/-char/en
PMID 40603095
PQID 3226714906
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3226714906
pubmed_primary_40603095
crossref_primary_10_2169_internalmedicine_5611_25
jstage_primary_article_internalmedicine_advpub_0_advpub_5611_25_article_char_en
PublicationCentury 2000
PublicationDate 2025-07-03
PublicationDateYYYYMMDD 2025-07-03
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-03
  day: 03
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Internal Medicine
PublicationTitleAlternate Intern. Med.
PublicationYear 2025
Publisher The Japanese Society of Internal Medicine
Publisher_xml – name: The Japanese Society of Internal Medicine
References 24. Ono H, Atsukawa M, Tsubota A, et al. Impact of pemafibrate in patients with metabolic dysfunction-associated steatotic liver disease complicated by dyslipidemia: A single-arm prospective study. JGH Open 8: e13057, 2024.
11. Younossi ZM, Stepanova M, Rafiq N, et al. Pathologic criteria for nonalcoholic steatohepatitis: interprotocol agreement and ability to predict liver-related mortality. Hepatology 53: 1874-1882, 2011.
32. Newsome PN, Buchholtz K, Cusi K, et al. A Placebo-Controlled Trial of Subcutaneous Semaglutide in Nonalcoholic Steatohepatitis. N Engl J Med 384: 1113-1124, 2021.
14. Shah AG, Lydecker A, Murray K, et al. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 7: 1104-1112, 2009.
5. Hirose S, Matsumoto K, Tatemichi M, et al. Nineteen-year prognosis in Japanese patients with biopsy-proven nonalcoholic fatty liver disease: Lean versus overweight patients. PLoS One 13: 15, 2020.
10. Ekstedt M, Hagström H, Nasr P, et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 61: 1547-1554, 2015.
17. Saito Y, Okumura Y, Nagashima K, et al. Impact of the Fibrosis-4 Index on Risk Stratification of Cardiovascular Events and Mortality in Patients with Atrial Fibrillation: Findings from a Japanese Multicenter Registry. J Clin Med 21: 584, 2020.
18. Liu X, Zhang HJ, Fang CC, et al. Association Between Noninvasive Liver Fibrosis Scores and Heart Failure in a General Population. J Am Heart Assoc 19: 13, 2024.
7. Eslam M, Sanyal AJ, George J; International Consensus Panel. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 158: 1999-2014, 2020.
28. Katsuyama H, Yanai H, Adachi H, Hakoshima M. A Significant Effect of Pemafibrate on Hepatic Steatosis and Fibrosis Indexes in Patients With Hypertriglyceridemia. Gastroenterology Res 16: 240-243, 2023.
31. Takeshita Y, Honda M, Harada K, et al. Comparison of Tofogliflozin and Glimepiride Effects on Nonalcoholic Fatty Liver Disease in Participants With Type 2 Diabetes: A Randomized, 48-Week, Open-Label, Active-Controlled Trial. Diabetes Care 45: 2064-2075, 2022.
6. Zhou YY, Zhou XD, Wu SJ, et al. Synergistic increase in cardiovascular risk in diabetes mellitus with nonalcoholic fatty liver disease: a meta-analysis. Eur J Gastroenterol Hepatol 30: 631-636, 2018.
34. Chalasani N, Abdelmalek MF, Loomba R, et al. Relationship Between Three Commonly Used Non-invasive Fibrosis Biomarkers and Improvement in Fibrosis Stage in Patients With NASH. Liver Int 39: 924-932, 2019.
21. Hatanaka T, Kosone T, Saito N, et al. Effect of 48-week pemafibrate on non-alcoholic fatty liver disease with hypertriglyceridemia, as evaluated by the FibroScan-aspartate aminotransferase score. JGH Open 5: 1183-1189, 2021.
15. Wai CT, Greenson JK, Fontana RJ, et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 38: 518-526, 2003.
26. Tokushige K, Ikejima K, Ono M, et al. Evidence-based clinical practice guidelines for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis 2020. Hepatol Res 51: 1013-1025, 2021.
9. Rinella ME, Lazarus JV, Ratziu V, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol 79: 1542-1556, 2023.
19. Arai H, Yamashita S, Yokote K, et al. Efficacy and Safety of Pemafibrate Versus Fenofibrate in Patients with High Triglyceride and Low HDL Cholesterol Levels: A Multicenter, Placebo-Controlled, Double-Blind, Randomized Trial. J Atheroscler Thromb 25: 521-538, 2018.
25. Nomoto H, Kito K, Iesaka H, et al. Preferable effects of pemafibrate on liver function and fibrosis in subjects with type 2 diabetes complicated with liver damage. Diabetol Metab Syndr 15: 214, 2023.
1. Leite NC, Salles GF, Araujo AL, Villela-Nogueira CA, Cardoso CR. Prevalence and associated factors of non-alcoholic fatty liver disease in patients with type-2 diabetes mellitus. Liver Int 29: 113-119, 2009.
30. Georgescu EF, Ionescu R, Niculescu M, et al. Angiotensin-receptor blockers as therapy for mild-to-moderate hypertension-associated non-alcoholic steatohepatitis. World J Gastroenterol 15: 942-954, 2009.
3. Nakahara T, Hyogo H, Yoneda M, et al. Type 2 diabetes mellitus is associated with the fibrosis severity in patients with nonalcoholic fatty liver disease in a large retrospective cohort of Japanese patients. J Gastroenterol 49: 1477-1484, 2014.
35. Anstee QM, Berentzen TL, Nitze LM, et al. Prognostic utility of Fibrosis-4 Index for risk of subsequent liver and cardiovascular events, and all-cause mortality in individuals with obesity and/or type 2 diabetes: a longitudinal cohort study. Lancet Reg Health Eur 36: 100780, 2023.
12. Angulo P, Hui JM, Marchesini G, et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 45: 846-854, 2007.
16. Higashiura Y, Tanaka M, Mori K, et al. High fibrosis-4 index predicts the new onset of ischaemic heart disease during a 10-year period in a general population. Eur Heart J Open 16: 2022.
2. Mantovani A, Byrne CD, Bonora E, Targher G. Nonalcoholic Fatty Liver Disease and Risk of Incident Type 2 Diabetes: A Meta-analysis. Diabetes Care 41: 372-382, 2018.
13. Sterling RK, Lissen E, Clumeck N, et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 43: 1317-1325, 2006.
22. Morishita A, Oura K, Takuma K, et al. Pemafibrate improves liver dysfunction and non-invasive surrogates for liver fibrosis in patients with non-alcoholic fatty liver disease with hypertriglyceridemia: a multicenter study. Hepatol Int 17: 606-614, 2023.
36. Belfort R, Harrison SA, Brown K, et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med 355: 2297-2307, 2006.
33. Hagström H, Talbäck M, Andreasson A, et al. Repeated FIB-4 measurements can help identify individuals at risk of severe liver disease. J Hepatol 73: 1023-1029, 2020.
23. Ichikawa T, Oba H, Owada M, et al. Evaluation of the effects of pemafibrate on metabolic dysfunction-associated steatotic liver disease with hypertriglyceridemia using magnetic resonance elastography combined with fibrosis-4 index and the magnetic resonance imaging-aspartate aminotransferase score. JGH Open 7: 959-965, 2023.
20. Ikeda S, Sugihara T, Kihara T, et al. Pemafibrate Ameliorates Liver Dysfunction and Fatty Liver in Patients with Non-Alcoholic Fatty Liver Disease with Hypertriglyceridemia: A Retrospective Study with the Outcome after a Mid-Term Follow-Up. Diagnostics (Basel) 11: 2316, 2021.
8. Eslam M, Newsome PN, Sarin SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol 73: 202-209, 2020.
27. Hatanaka T, Kakizaki S, Saito N, et al. Impact of Pemafibrate in Patients with Hypertriglyceridemia and Metabolic Dysfunction-associated Fatty Liver Disease Pathologically Diagnosed with Non-alcoholic Steatohepatitis: A Retrospective, Single-arm Study. Intern Med 60: 2167-2174, 2021.
4. Seko Y, Yano K, Takahashi A, et al. FIB-4 Index and Diabetes Mellitus Are Associated with Chronic Kidney Disease in Japanese Patients with Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 25: 171, 2019.
29. Ichikawa T, Yamashima M, Yamamichi S, et al. Pemafibrate Reduced Liver Stiffness in Patients with Metabolic Dysfunction-associated Steatotic Liver Disease Complicated with Hyperlipidemia and Liver Fibrosis with a Fibrosis-4 Index Above 1.3. Intern Med 2024.
22
23
25
26
27
28
29
H Ono (24) 2024; 8
30
31
10
32
11
33
12
34
13
35
14
36
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 8. Eslam M, Newsome PN, Sarin SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol 73: 202-209, 2020.
– reference: 7. Eslam M, Sanyal AJ, George J; International Consensus Panel. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 158: 1999-2014, 2020.
– reference: 4. Seko Y, Yano K, Takahashi A, et al. FIB-4 Index and Diabetes Mellitus Are Associated with Chronic Kidney Disease in Japanese Patients with Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 25: 171, 2019.
– reference: 30. Georgescu EF, Ionescu R, Niculescu M, et al. Angiotensin-receptor blockers as therapy for mild-to-moderate hypertension-associated non-alcoholic steatohepatitis. World J Gastroenterol 15: 942-954, 2009.
– reference: 32. Newsome PN, Buchholtz K, Cusi K, et al. A Placebo-Controlled Trial of Subcutaneous Semaglutide in Nonalcoholic Steatohepatitis. N Engl J Med 384: 1113-1124, 2021.
– reference: 25. Nomoto H, Kito K, Iesaka H, et al. Preferable effects of pemafibrate on liver function and fibrosis in subjects with type 2 diabetes complicated with liver damage. Diabetol Metab Syndr 15: 214, 2023.
– reference: 3. Nakahara T, Hyogo H, Yoneda M, et al. Type 2 diabetes mellitus is associated with the fibrosis severity in patients with nonalcoholic fatty liver disease in a large retrospective cohort of Japanese patients. J Gastroenterol 49: 1477-1484, 2014.
– reference: 17. Saito Y, Okumura Y, Nagashima K, et al. Impact of the Fibrosis-4 Index on Risk Stratification of Cardiovascular Events and Mortality in Patients with Atrial Fibrillation: Findings from a Japanese Multicenter Registry. J Clin Med 21: 584, 2020.
– reference: 20. Ikeda S, Sugihara T, Kihara T, et al. Pemafibrate Ameliorates Liver Dysfunction and Fatty Liver in Patients with Non-Alcoholic Fatty Liver Disease with Hypertriglyceridemia: A Retrospective Study with the Outcome after a Mid-Term Follow-Up. Diagnostics (Basel) 11: 2316, 2021.
– reference: 23. Ichikawa T, Oba H, Owada M, et al. Evaluation of the effects of pemafibrate on metabolic dysfunction-associated steatotic liver disease with hypertriglyceridemia using magnetic resonance elastography combined with fibrosis-4 index and the magnetic resonance imaging-aspartate aminotransferase score. JGH Open 7: 959-965, 2023.
– reference: 9. Rinella ME, Lazarus JV, Ratziu V, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol 79: 1542-1556, 2023.
– reference: 1. Leite NC, Salles GF, Araujo AL, Villela-Nogueira CA, Cardoso CR. Prevalence and associated factors of non-alcoholic fatty liver disease in patients with type-2 diabetes mellitus. Liver Int 29: 113-119, 2009.
– reference: 33. Hagström H, Talbäck M, Andreasson A, et al. Repeated FIB-4 measurements can help identify individuals at risk of severe liver disease. J Hepatol 73: 1023-1029, 2020.
– reference: 14. Shah AG, Lydecker A, Murray K, et al. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 7: 1104-1112, 2009.
– reference: 15. Wai CT, Greenson JK, Fontana RJ, et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 38: 518-526, 2003.
– reference: 6. Zhou YY, Zhou XD, Wu SJ, et al. Synergistic increase in cardiovascular risk in diabetes mellitus with nonalcoholic fatty liver disease: a meta-analysis. Eur J Gastroenterol Hepatol 30: 631-636, 2018.
– reference: 16. Higashiura Y, Tanaka M, Mori K, et al. High fibrosis-4 index predicts the new onset of ischaemic heart disease during a 10-year period in a general population. Eur Heart J Open 16: 2022.
– reference: 21. Hatanaka T, Kosone T, Saito N, et al. Effect of 48-week pemafibrate on non-alcoholic fatty liver disease with hypertriglyceridemia, as evaluated by the FibroScan-aspartate aminotransferase score. JGH Open 5: 1183-1189, 2021.
– reference: 12. Angulo P, Hui JM, Marchesini G, et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 45: 846-854, 2007.
– reference: 27. Hatanaka T, Kakizaki S, Saito N, et al. Impact of Pemafibrate in Patients with Hypertriglyceridemia and Metabolic Dysfunction-associated Fatty Liver Disease Pathologically Diagnosed with Non-alcoholic Steatohepatitis: A Retrospective, Single-arm Study. Intern Med 60: 2167-2174, 2021.
– reference: 2. Mantovani A, Byrne CD, Bonora E, Targher G. Nonalcoholic Fatty Liver Disease and Risk of Incident Type 2 Diabetes: A Meta-analysis. Diabetes Care 41: 372-382, 2018.
– reference: 24. Ono H, Atsukawa M, Tsubota A, et al. Impact of pemafibrate in patients with metabolic dysfunction-associated steatotic liver disease complicated by dyslipidemia: A single-arm prospective study. JGH Open 8: e13057, 2024.
– reference: 5. Hirose S, Matsumoto K, Tatemichi M, et al. Nineteen-year prognosis in Japanese patients with biopsy-proven nonalcoholic fatty liver disease: Lean versus overweight patients. PLoS One 13: 15, 2020.
– reference: 26. Tokushige K, Ikejima K, Ono M, et al. Evidence-based clinical practice guidelines for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis 2020. Hepatol Res 51: 1013-1025, 2021.
– reference: 11. Younossi ZM, Stepanova M, Rafiq N, et al. Pathologic criteria for nonalcoholic steatohepatitis: interprotocol agreement and ability to predict liver-related mortality. Hepatology 53: 1874-1882, 2011.
– reference: 28. Katsuyama H, Yanai H, Adachi H, Hakoshima M. A Significant Effect of Pemafibrate on Hepatic Steatosis and Fibrosis Indexes in Patients With Hypertriglyceridemia. Gastroenterology Res 16: 240-243, 2023.
– reference: 10. Ekstedt M, Hagström H, Nasr P, et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 61: 1547-1554, 2015.
– reference: 35. Anstee QM, Berentzen TL, Nitze LM, et al. Prognostic utility of Fibrosis-4 Index for risk of subsequent liver and cardiovascular events, and all-cause mortality in individuals with obesity and/or type 2 diabetes: a longitudinal cohort study. Lancet Reg Health Eur 36: 100780, 2023.
– reference: 19. Arai H, Yamashita S, Yokote K, et al. Efficacy and Safety of Pemafibrate Versus Fenofibrate in Patients with High Triglyceride and Low HDL Cholesterol Levels: A Multicenter, Placebo-Controlled, Double-Blind, Randomized Trial. J Atheroscler Thromb 25: 521-538, 2018.
– reference: 36. Belfort R, Harrison SA, Brown K, et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med 355: 2297-2307, 2006.
– reference: 18. Liu X, Zhang HJ, Fang CC, et al. Association Between Noninvasive Liver Fibrosis Scores and Heart Failure in a General Population. J Am Heart Assoc 19: 13, 2024.
– reference: 31. Takeshita Y, Honda M, Harada K, et al. Comparison of Tofogliflozin and Glimepiride Effects on Nonalcoholic Fatty Liver Disease in Participants With Type 2 Diabetes: A Randomized, 48-Week, Open-Label, Active-Controlled Trial. Diabetes Care 45: 2064-2075, 2022.
– reference: 13. Sterling RK, Lissen E, Clumeck N, et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 43: 1317-1325, 2006.
– reference: 22. Morishita A, Oura K, Takuma K, et al. Pemafibrate improves liver dysfunction and non-invasive surrogates for liver fibrosis in patients with non-alcoholic fatty liver disease with hypertriglyceridemia: a multicenter study. Hepatol Int 17: 606-614, 2023.
– reference: 29. Ichikawa T, Yamashima M, Yamamichi S, et al. Pemafibrate Reduced Liver Stiffness in Patients with Metabolic Dysfunction-associated Steatotic Liver Disease Complicated with Hyperlipidemia and Liver Fibrosis with a Fibrosis-4 Index Above 1.3. Intern Med 2024.
– reference: 34. Chalasani N, Abdelmalek MF, Loomba R, et al. Relationship Between Three Commonly Used Non-invasive Fibrosis Biomarkers and Improvement in Fibrosis Stage in Patients With NASH. Liver Int 39: 924-932, 2019.
– ident: 6
  doi: 10.1097/MEG.0000000000001075
– ident: 14
  doi: 10.1016/j.cgh.2009.05.033
– ident: 7
  doi: 10.1053/j.gastro.2019.11.312
– ident: 23
  doi: 10.1002/jgh3.13012
– ident: 26
  doi: 10.1111/hepr.13688
– ident: 11
  doi: 10.1002/hep.24268
– ident: 18
  doi: 10.1161/JAHA.123.035371
– ident: 27
  doi: 10.2169/internalmedicine.6574-20
– ident: 8
  doi: 10.1016/j.jhep.2020.07.045
– ident: 32
  doi: 10.1056/NEJMoa2028395
– ident: 1
  doi: 10.1111/j.1478-3231.2008.01718.x
– ident: 29
  doi: 10.2169/internalmedicine.4337-24
– ident: 3
  doi: 10.1007/s00535-013-0911-1
– ident: 13
  doi: 10.1002/hep.21178
– volume: 8
  start-page: e13057
  issn: 2397-9070
  year: 2024
  ident: 24
  publication-title: JGH Open
  doi: 10.1002/jgh3.13057
– ident: 20
  doi: 10.3390/diagnostics11122316
– ident: 25
  doi: 10.1186/s13098-023-01187-7
– ident: 31
  doi: 10.2337/dc21-2049
– ident: 16
  doi: 10.1093/ehjopen/oeac030
– ident: 36
  doi: 10.1056/NEJMoa060326
– ident: 19
  doi: 10.5551/jat.44412
– ident: 35
  doi: 10.1016/j.lanepe.2023.100780
– ident: 33
  doi: 10.1016/j.jhep.2020.06.007
– ident: 10
  doi: 10.1002/hep.27368
– ident: 28
  doi: 10.14740/gr1656
– ident: 4
  doi: 10.3390/ijms21010171
– ident: 2
  doi: 10.2337/dc17-1902
– ident: 5
  doi: 10.1371/journal.pone.0241770
– ident: 22
  doi: 10.1007/s12072-022-10453-1
– ident: 17
  doi: 10.3390/jcm9020584
– ident: 30
  doi: 10.3748/wjg.15.942
– ident: 12
  doi: 10.1002/hep.21496
– ident: 15
  doi: 10.1053/jhep.2003.50346
– ident: 34
  doi: 10.1111/liv.13974
– ident: 9
  doi: 10.1097/HEP.0000000000000696
– ident: 21
  doi: 10.1002/jgh3.12650
SSID ssj0038792
Score 2.4078083
Snippet Aims This study aimed to investigate the short-term effects of pemafibrate (PEMA) on the Fibrosis-4 index (FIB-4) and Aspartate Aminotransferase to Platelet...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 5611-25
SubjectTerms hypertriglyceridemia
liver fibrosis marker
pemafibrate
Type 2 Diabetes
Title Evaluation of the Short-term Effect of Pemafibrate on Liver Fibrosis Biomarkers Stratified by FIB-4 Index in Patients with Type 2 Diabetes Mellitus and Hypertriglyceridemia
URI https://www.jstage.jst.go.jp/article/internalmedicine/advpub/0/advpub_5611-25/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/40603095
https://www.proquest.com/docview/3226714906
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Internal Medicine, 2025, pp.5611-25
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWgqpeEG-Wl4zEbZWSh53HkUJXW1YLSGylcorsxGlDu3G1TRDLz-HMj2Ts2Mm2dCXgEkXj2JbzfbFnxuMJQq9Y7ObcFdTxQRtxCBGZwzgLHBFGiShiL3O1a2D2IZwckvdH9Ggw-LkWtdTUfDf7ce25kv9BFWSAqzol-w_Ido2CAO4BX7gCwnD9K4z3u1Tddqv_8wmo046abkcmL7GKcRMLViizWIUEVGCGw0BHYxBIlY1kr5QLFaOzvBjpVLVlYbTS8cGeQ2ACycV35RX51GZgNcfh5q3r9p113c5UYs-6aTM-T6BwWYPdf7bK4D2oAHy2rgUbN-RZt7Ov9Ny5PF1pv60KVV1zUEzLmmn5nJ2qPz_1voYKBKagWXTyaaP-9qUdvbKWJ-VSdiVyIXNd44uEhuS6x8OnOjq2nQVFO0sHJHEiv81zcnUN8L1QpVAtzUjsQHZBUfQc_1IVQPN8obkBao3aa6L9qtjFKtqiG-imD6aINtsPpna1D-IoMRFiquPXm7rdQdu2oUsa0K2vYAQci832jdZz5nfQbWOg4Dct2-6igajuoe2Z6eg--tWTDssCA-lwTzrckk4VrJEOw6OadNiSDvekwz3pMF9hTTqsSYfLClvSYUU6rEiHfWxJhy3pMJAOX0e6B-hwvD9_O3HMLz-cLIhp7Qg3ibmbBywqGIXbMIhERnPmhRnx4sQPKeGMJTzipADNk0csi2MwYuICxFSQ4CHaqmQlHiMcwIvP3YBmAQsJFZQXBehrJI8DITxOyRB5Fob0vM3skoJFrFBMr6KYKhRTnw7Rxxavrob59v-swfJvAGPq2hvTQldBHaqEOWyIXlrgU5jY1W4dq4RsLlJYacPII4kbDtGjlhFdr5ZKTzaWPEU7_afzDG3Vy0Y8B_W55i80f38DG83Qlw
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+the+Short-term+Effect+of+Pemafibrate+on+Liver+Fibrosis+Biomarkers+Stratified+by+FIB-4+Index+in+Patients+with+Type+2+Diabetes+Mellitus+and+Hypertriglyceridemia&rft.jtitle=Internal+medicine+%28Tokyo%2C+1992%29&rft.au=Kitao%2C+Takashi&rft.au=Tanaka%2C+Takumi&rft.au=Kubori%2C+Motohiro&rft.au=Komoda%2C+Yoshio&rft.date=2025-07-03&rft.eissn=1349-7235&rft_id=info:doi/10.2169%2Finternalmedicine.5611-25&rft_id=info%3Apmid%2F40603095&rft.externalDocID=40603095
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-2918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-2918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-2918&client=summon