Applying adversarial auto-encoder for estimating human walking gait abnormality index

This paper proposes an approach that estimates a human walking gait abnormality index using an adversarial auto-encoder (AAE), i.e., a combination of auto-encoder and generative adversarial network (GAN). Since most GAN-based models have been employed as data generators, our work introduces another...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 22; no. 4; pp. 1597 - 1608
Main Authors Nguyen, Trong-Nguyen, Meunier, Jean
Format Journal Article
LanguageEnglish
Published London Springer London 01.11.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1433-7541
1433-755X
DOI10.1007/s10044-019-00790-7

Cover

Loading…
Abstract This paper proposes an approach that estimates a human walking gait abnormality index using an adversarial auto-encoder (AAE), i.e., a combination of auto-encoder and generative adversarial network (GAN). Since most GAN-based models have been employed as data generators, our work introduces another perspective of their application. This method directly works on a sequence of 3D point clouds representing the walking postures of a subject. By fitting a cylinder onto each point cloud and feeding cylindrical histograms to an appropriate AAE, our system is able to provide different measures that may be used as gait abnormality indices. The combinations of such quantities are also investigated to obtain improved indicators. The ability of our method is demonstrated by experimenting on a large dataset of nearly 100 thousands point clouds, and the results outperform related approaches that employ different input data types.
AbstractList This paper proposes an approach that estimates a human walking gait abnormality index using an adversarial auto-encoder (AAE), i.e., a combination of auto-encoder and generative adversarial network (GAN). Since most GAN-based models have been employed as data generators, our work introduces another perspective of their application. This method directly works on a sequence of 3D point clouds representing the walking postures of a subject. By fitting a cylinder onto each point cloud and feeding cylindrical histograms to an appropriate AAE, our system is able to provide different measures that may be used as gait abnormality indices. The combinations of such quantities are also investigated to obtain improved indicators. The ability of our method is demonstrated by experimenting on a large dataset of nearly 100 thousands point clouds, and the results outperform related approaches that employ different input data types.
Author Meunier, Jean
Nguyen, Trong-Nguyen
Author_xml – sequence: 1
  givenname: Trong-Nguyen
  orcidid: 0000-0002-9161-0116
  surname: Nguyen
  fullname: Nguyen, Trong-Nguyen
  email: nguyetn@iro.umontreal.ca
  organization: Image Processing Laboratory, DIRO, University of Montreal
– sequence: 2
  givenname: Jean
  surname: Meunier
  fullname: Meunier, Jean
  organization: Image Processing Laboratory, DIRO, University of Montreal
BookMark eNp9kE9PwyAYh4mZidv0C3hq4hnlTwvluCzqTJZ4cYk3wlo6mR1UoOq-vcwaTTzsArzJ7-F932cCRtZZDcAlRtcYIX4T0pnnEGEBUykQ5CdgjHNKIS-K59HvO8dnYBLCFiFKKSnHYDXrunZv7CZT9bv2QXmj2kz10UFtK1drnzXOZzpEs1PxkHvpd8pmH6p9PVQbZWKm1tb5nWpN3GfG1vrzHJw2qg364ueegtXd7dN8AZeP9w_z2RJWtCwirGvccL4WWGMuGEKVJhyXjKxRgxrKeJkzLgqmCS50qWpU5YUggjYMM6zrStApuBr-7bx769OQcut6b1NLSYjIEWJFSVKKDKnKuxC8bmTn0zZ-LzGSB31y0CeTPvmtT_IElf-gysRkwNnolWmPo3RAQ-pjN9r_TXWE-gIjkIZ0
CitedBy_id crossref_primary_10_1038_s41598_024_56656_4
crossref_primary_10_1109_TNSRE_2021_3131466
crossref_primary_10_1109_ACCESS_2020_2967845
crossref_primary_10_1186_s12938_023_01168_x
crossref_primary_10_1016_j_medengphy_2022_103788
crossref_primary_10_1016_j_bspc_2021_103321
crossref_primary_10_1016_j_neucom_2021_12_004
crossref_primary_10_1093_jcde_qwab054
crossref_primary_10_1109_ACCESS_2020_3013029
crossref_primary_10_1109_TITS_2022_3193125
Cites_doi 10.1109/BHI.2018.8333364
10.1109/CVPR.2011.5995316
10.1007/978-3-540-30132-5_168
10.3390/s16111792
10.1007/978-3-319-28031-8_23
10.1109/TBME.2016.2536438
10.1145/2689746.2689747
10.1109/TMM.2016.2626959
10.1109/ISSPA.2012.6310598
10.1117/12.2304427
10.3390/s150304605
10.1109/NER.2015.7146727
10.1007/978-3-642-55038-6_80
10.1109/TCYB.2016.2519448
10.1109/EVENT.2001.938864
10.1016/j.patrec.2018.05.006
10.1007/978-3-319-07155-8
10.1109/TPAMI.2006.38
10.5244/C.24.52
10.1109/TPAMI.2012.241
10.1109/JSEN.2018.2839732
10.1016/j.imavis.2006.10.004
10.1098/rspa.1998.0193
10.1016/j.jvcir.2016.03.020
10.1145/2676585.2676612
10.1109/ACCESS.2018.2854262
10.1007/978-3-319-16628-5_4
10.1109/FG.2015.7284881
10.1016/j.sigpro.2015.10.035
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
DOI 10.1007/s10044-019-00790-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
EndPage 1608
ExternalDocumentID 10_1007_s10044_019_00790_7
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada (CA)
  grantid: RGPIN-2015-05671
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c385t-dd1f77b91e179600ce271862b0f0f3678467956e215e8ad0c459293f6161edc93
IEDL.DBID U2A
ISSN 1433-7541
IngestDate Fri Jul 25 04:43:43 EDT 2025
Tue Jul 01 01:15:16 EDT 2025
Thu Apr 24 22:55:00 EDT 2025
Fri Feb 21 02:29:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Kinect
Adversarial
Point cloud
Gait
Auto-encoder
Depth camera
Mirror
Posture
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-dd1f77b91e179600ce271862b0f0f3678467956e215e8ad0c459293f6161edc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9161-0116
PQID 2294006582
PQPubID 2043691
PageCount 12
ParticipantIDs proquest_journals_2294006582
crossref_primary_10_1007_s10044_019_00790_7
crossref_citationtrail_10_1007_s10044_019_00790_7
springer_journals_10_1007_s10044_019_00790_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2019
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Nguyen TN, Huynh HH, Meunier J (2018b) Assessment of gait normality using a depth camera and mirrors. In: 2018 IEEE EMBS international conference on biomedical health informatics (BHI), Las Vegas, NV, USA, pp 37–41. https://doi.org/10.1109/BHI.2018.8333364
Davis JW (2001) Hierarchical motion history images for recognizing human motion. In: IEEE workshop on detection and recognition of events in video. Proceedings. IEEE, pp 39–46
ShottonJGirshickRFitzgibbonASharpTCookMFinocchioMMooreRKohliPCriminisiAKipmanABlakeAEfficient human pose estimation from single depth imagesIEEE Trans Pattern Anal Mach Intell201335122821284010.1109/TPAMI.2012.241
Nguyen TN, Meunier J (2018) Walking gait dataset: point clouds, skeletons and silhouettes. Technical Report 1379, DIRO, University of Montreal. http://www.iro.umontreal.ca/~labimage/GaitDataset/dataset.pdf
RenPTangSFangFLuoLXuLBringas-VegaMLYaoDKendrickKMValdes-SosaPAGait rhythm fluctuation analysis for neurodegenerative diseases by empirical mode decompositionIEEE Trans Biomed Eng2017641526010.1109/TBME.2016.2536438
Sakurada M, Yairi T (2014) Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd workshop on machine learning for sensory data analysis, ACM, New York, NY, USA, MLSDA’14, pp 4:4–4:11. https://doi.org/10.1145/2689746.2689747
AuvinetEMultonFMeunierJNew lower-limb gait asymmetry indices based on a depth cameraSensors20151534605462310.3390/s150304605
Webber CL Jr, Marwan N (eds) (2015) Recurrence quantification analysis: theory and best practices. Springer, Cham. https://doi.org/10.1007/978-3-319-07155-8
YangYLiuRDengCGaoXMulti-task human action recognition via exploring super-categorySignal Process2016124364410.1016/j.sigpro.2015.10.035
López-FernándezDMadrid-CuevasFCarmona-PoyatoAMunoz-SalinasRMedina-CarnicerRA new approach for multi-view gait recognition on unconstrained pathsJ Vis Commun Image Represent20163839640610.1016/j.jvcir.2016.03.020
MartinelliMTronciEDipoppaGBalducelliCNegoitaMGHowlettRJJainLCElectric power system anomaly detection using neural networksKnowledge-based intelligent information and engineering systems2004BerlinSpringer1242124810.1007/978-3-540-30132-5_168
Bigy AAM, Banitsas K, Badii A, Cosmas J (2015) Recognition of postures and freezing of gait in Parkinson’s disease patients using microsoft Kinect sensor. In: 2015 7th international IEEE/EMBS conference on neural engineering (NER), pp 731–734. https://doi.org/10.1109/NER.2015.7146727
Yu TH, Kim TK, Cipolla R (2010) Real-time action recognition by spatiotemporal semantic and structural forest. In: Proceedings of the British machine vision conference, BMVA Press, pp 52.1–52.12. https://doi.org/10.5244/C.24.52
PrabhuPKarunakarAAnithaHPradhanNClassification of gait signals into different neurodegenerative diseases using statistical analysis and recurrence quantification analysisPattern Recogn Lett2018
YangYDengCTaoDZhangSLiuWGaoXLatent max-margin multitask learning with skelets for 3-d action recognitionIEEE Trans Cybern2017472439448
NguyenTNHuynhHHMeunierJSkeleton-based abnormal gait detectionSensors20161611179210.3390/s16111792
ShottonJFitzgibbonACookMSharpTFinocchioMMooreRKipmanABlakeAReal-time human pose recognition in parts from single depth imagesCVPR2011201112971304
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ (eds) Advances in neural information processing systems 27, Curran Associates, Inc., pp 2672–2680. http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
RodriguezSPérezKQuinteroCLópezJRojasECalderónJSnášelVAbrahamAKrömerPPantMMudaAKIdentification of multimodal human-robot interaction using combined kernelsInnovations in bio-inspired computing and applications2016ChamSpringer International Publishing26327310.1007/978-3-319-28031-8_23
KimHKimYKoDKimJLeeECParkJJJHPanYKimCSYangYPointing gesture interface for large display environments based on the kinect skeleton modelFuture information technology2014BerlinSpringer50951410.1007/978-3-642-55038-6_80
Makhzani A, Shlens J, Jaitly N, Goodfellow I (2016) Adversarial autoencoders. In: International conference on learning representations. arXiv:1511.05644
YangYDengCGaoSLiuWTaoDGaoXDiscriminative multi-instance multitask learning for 3d action recognitionIEEE Trans Multimed201719351952910.1109/TMM.2016.2626959
Auvinet E, Meunier J, Multon F (2012) Multiple depth cameras calibration and body volume reconstruction for gait analysis. In: 2012 11th international conference on information science, signal processing and their applications (ISSPA), pp 478–483. https://doi.org/10.1109/ISSPA.2012.6310598
HanJBhanuBIndividual recognition using gait energy imageIEEE Trans Pattern Anal Mach Intell200628231632210.1109/TPAMI.2006.38
RothKLucchiANowozinSHofmannTGuyonILuxburgUVBengioSWallachHFergusRVishwanathanSGarnettRStabilizing training of generative adversarial networks through regularizationAdvances in neural information processing systems 302017Red HookCurran Associates Inc20182028
BauckhageCTsotsosJKBunnFEAutomatic detection of abnormal gaitImage Vis Comput200927110811510.1016/j.imavis.2006.10.004
Chaaraoui AA, Padilla-López JR, Flórez-Revuelta F (2015) Abnormal gait detection with RGB-D devices using joint motion history features. In: 2015 11th IEEE international conference and workshops on automatic face and gesture recognition (FG). vol 7. IEEE, pp 1–6
Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:14126980
JiangSWangYZhangYSunJReal time gait recognition system based on Kinect skeleton feature2015ChamSpringer International Publishing4657
Nguyen TN, Huynh HH, Meunier J (2014) Extracting silhouette-based characteristics for human gait analysis using one camera. In: Proceedings of the 5th symposium on information and communication technology, ACM, New York, NY, USA, SoICT ’14, pp 171–177. https://doi.org/10.1145/2676585.2676612
WilsonACRoelofsRSternMSrebroNRechtBGuyonILuxburgUVBengioSWallachHFergusRVishwanathanSGarnettRThe marginal value of adaptive gradient methods in machine learningAdvances in neural information processing systems 302017Red HookCurran Associates Inc41484158
BeiSZhenZXingZTaochengLQinLMovement disorder detection via adaptively fused gait analysis based on Kinect sensorsIEEE Sens J201818177305731410.1109/JSEN.2018.2839732
NguyenTNHuynhHHMeunierJ3d reconstruction with time-of-flight depth camera and multiple mirrorsIEEE Access20186381063811410.1109/ACCESS.2018.2854262
Nguyen TN, Huynh HH, Meunier J (2018c) Using ToF camera and two mirrors for 3D reconstruction of dynamic objects. Technical Report 1380, DIRO, University of Montreal. http://www.iro.umontreal.ca/~labimage/GaitDataset/reconstruct3D.pdf
HuangNEShenZLongSRWuMCShihHHZhengQYenNCTungCCLiuHHThe empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysisProc R Soc Lond A Math Phys Eng Sci19984541971903995163159110.1098/rspa.1998.01930945.62093
790_CR17
790_CR18
790_CR15
790_CR13
Y Yang (790_CR32) 2016; 124
790_CR35
J Shotton (790_CR28) 2011; 2011
J Han (790_CR9) 2006; 28
S Bei (790_CR4) 2018; 18
TN Nguyen (790_CR19) 2016; 16
790_CR21
J Shotton (790_CR29) 2013; 35
D López-Fernández (790_CR14) 2016; 38
NE Huang (790_CR10) 1998; 454
790_CR27
H Kim (790_CR12) 2014
790_CR22
P Ren (790_CR24) 2017; 64
S Rodriguez (790_CR25) 2016
K Roth (790_CR26) 2017
S Jiang (790_CR11) 2015
C Bauckhage (790_CR3) 2009; 27
790_CR8
AC Wilson (790_CR31) 2017
E Auvinet (790_CR2) 2015; 15
M Martinelli (790_CR16) 2004
TN Nguyen (790_CR20) 2018; 6
790_CR1
790_CR30
790_CR7
790_CR6
790_CR5
P Prabhu (790_CR23) 2018
Y Yang (790_CR33) 2017; 19
Y Yang (790_CR34) 2017; 47
References_xml – reference: Nguyen TN, Meunier J (2018) Walking gait dataset: point clouds, skeletons and silhouettes. Technical Report 1379, DIRO, University of Montreal. http://www.iro.umontreal.ca/~labimage/GaitDataset/dataset.pdf
– reference: KimHKimYKoDKimJLeeECParkJJJHPanYKimCSYangYPointing gesture interface for large display environments based on the kinect skeleton modelFuture information technology2014BerlinSpringer50951410.1007/978-3-642-55038-6_80
– reference: JiangSWangYZhangYSunJReal time gait recognition system based on Kinect skeleton feature2015ChamSpringer International Publishing4657
– reference: YangYLiuRDengCGaoXMulti-task human action recognition via exploring super-categorySignal Process2016124364410.1016/j.sigpro.2015.10.035
– reference: BauckhageCTsotsosJKBunnFEAutomatic detection of abnormal gaitImage Vis Comput200927110811510.1016/j.imavis.2006.10.004
– reference: NguyenTNHuynhHHMeunierJ3d reconstruction with time-of-flight depth camera and multiple mirrorsIEEE Access20186381063811410.1109/ACCESS.2018.2854262
– reference: Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:14126980
– reference: ShottonJGirshickRFitzgibbonASharpTCookMFinocchioMMooreRKohliPCriminisiAKipmanABlakeAEfficient human pose estimation from single depth imagesIEEE Trans Pattern Anal Mach Intell201335122821284010.1109/TPAMI.2012.241
– reference: López-FernándezDMadrid-CuevasFCarmona-PoyatoAMunoz-SalinasRMedina-CarnicerRA new approach for multi-view gait recognition on unconstrained pathsJ Vis Commun Image Represent20163839640610.1016/j.jvcir.2016.03.020
– reference: Webber CL Jr, Marwan N (eds) (2015) Recurrence quantification analysis: theory and best practices. Springer, Cham. https://doi.org/10.1007/978-3-319-07155-8
– reference: Sakurada M, Yairi T (2014) Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd workshop on machine learning for sensory data analysis, ACM, New York, NY, USA, MLSDA’14, pp 4:4–4:11. https://doi.org/10.1145/2689746.2689747
– reference: Makhzani A, Shlens J, Jaitly N, Goodfellow I (2016) Adversarial autoencoders. In: International conference on learning representations. arXiv:1511.05644
– reference: Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ (eds) Advances in neural information processing systems 27, Curran Associates, Inc., pp 2672–2680. http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
– reference: RodriguezSPérezKQuinteroCLópezJRojasECalderónJSnášelVAbrahamAKrömerPPantMMudaAKIdentification of multimodal human-robot interaction using combined kernelsInnovations in bio-inspired computing and applications2016ChamSpringer International Publishing26327310.1007/978-3-319-28031-8_23
– reference: MartinelliMTronciEDipoppaGBalducelliCNegoitaMGHowlettRJJainLCElectric power system anomaly detection using neural networksKnowledge-based intelligent information and engineering systems2004BerlinSpringer1242124810.1007/978-3-540-30132-5_168
– reference: Auvinet E, Meunier J, Multon F (2012) Multiple depth cameras calibration and body volume reconstruction for gait analysis. In: 2012 11th international conference on information science, signal processing and their applications (ISSPA), pp 478–483. https://doi.org/10.1109/ISSPA.2012.6310598
– reference: RenPTangSFangFLuoLXuLBringas-VegaMLYaoDKendrickKMValdes-SosaPAGait rhythm fluctuation analysis for neurodegenerative diseases by empirical mode decompositionIEEE Trans Biomed Eng2017641526010.1109/TBME.2016.2536438
– reference: Nguyen TN, Huynh HH, Meunier J (2018b) Assessment of gait normality using a depth camera and mirrors. In: 2018 IEEE EMBS international conference on biomedical health informatics (BHI), Las Vegas, NV, USA, pp 37–41. https://doi.org/10.1109/BHI.2018.8333364
– reference: AuvinetEMultonFMeunierJNew lower-limb gait asymmetry indices based on a depth cameraSensors20151534605462310.3390/s150304605
– reference: Chaaraoui AA, Padilla-López JR, Flórez-Revuelta F (2015) Abnormal gait detection with RGB-D devices using joint motion history features. In: 2015 11th IEEE international conference and workshops on automatic face and gesture recognition (FG). vol 7. IEEE, pp 1–6
– reference: HanJBhanuBIndividual recognition using gait energy imageIEEE Trans Pattern Anal Mach Intell200628231632210.1109/TPAMI.2006.38
– reference: NguyenTNHuynhHHMeunierJSkeleton-based abnormal gait detectionSensors20161611179210.3390/s16111792
– reference: Bigy AAM, Banitsas K, Badii A, Cosmas J (2015) Recognition of postures and freezing of gait in Parkinson’s disease patients using microsoft Kinect sensor. In: 2015 7th international IEEE/EMBS conference on neural engineering (NER), pp 731–734. https://doi.org/10.1109/NER.2015.7146727
– reference: Davis JW (2001) Hierarchical motion history images for recognizing human motion. In: IEEE workshop on detection and recognition of events in video. Proceedings. IEEE, pp 39–46
– reference: HuangNEShenZLongSRWuMCShihHHZhengQYenNCTungCCLiuHHThe empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysisProc R Soc Lond A Math Phys Eng Sci19984541971903995163159110.1098/rspa.1998.01930945.62093
– reference: RothKLucchiANowozinSHofmannTGuyonILuxburgUVBengioSWallachHFergusRVishwanathanSGarnettRStabilizing training of generative adversarial networks through regularizationAdvances in neural information processing systems 302017Red HookCurran Associates Inc20182028
– reference: YangYDengCGaoSLiuWTaoDGaoXDiscriminative multi-instance multitask learning for 3d action recognitionIEEE Trans Multimed201719351952910.1109/TMM.2016.2626959
– reference: BeiSZhenZXingZTaochengLQinLMovement disorder detection via adaptively fused gait analysis based on Kinect sensorsIEEE Sens J201818177305731410.1109/JSEN.2018.2839732
– reference: Yu TH, Kim TK, Cipolla R (2010) Real-time action recognition by spatiotemporal semantic and structural forest. In: Proceedings of the British machine vision conference, BMVA Press, pp 52.1–52.12. https://doi.org/10.5244/C.24.52
– reference: PrabhuPKarunakarAAnithaHPradhanNClassification of gait signals into different neurodegenerative diseases using statistical analysis and recurrence quantification analysisPattern Recogn Lett2018
– reference: YangYDengCTaoDZhangSLiuWGaoXLatent max-margin multitask learning with skelets for 3-d action recognitionIEEE Trans Cybern2017472439448
– reference: WilsonACRoelofsRSternMSrebroNRechtBGuyonILuxburgUVBengioSWallachHFergusRVishwanathanSGarnettRThe marginal value of adaptive gradient methods in machine learningAdvances in neural information processing systems 302017Red HookCurran Associates Inc41484158
– reference: ShottonJFitzgibbonACookMSharpTFinocchioMMooreRKipmanABlakeAReal-time human pose recognition in parts from single depth imagesCVPR2011201112971304
– reference: Nguyen TN, Huynh HH, Meunier J (2018c) Using ToF camera and two mirrors for 3D reconstruction of dynamic objects. Technical Report 1380, DIRO, University of Montreal. http://www.iro.umontreal.ca/~labimage/GaitDataset/reconstruct3D.pdf
– reference: Nguyen TN, Huynh HH, Meunier J (2014) Extracting silhouette-based characteristics for human gait analysis using one camera. In: Proceedings of the 5th symposium on information and communication technology, ACM, New York, NY, USA, SoICT ’14, pp 171–177. https://doi.org/10.1145/2676585.2676612
– start-page: 2018
  volume-title: Advances in neural information processing systems 30
  year: 2017
  ident: 790_CR26
– ident: 790_CR21
  doi: 10.1109/BHI.2018.8333364
– volume: 2011
  start-page: 1297
  year: 2011
  ident: 790_CR28
  publication-title: CVPR
  doi: 10.1109/CVPR.2011.5995316
– start-page: 1242
  volume-title: Knowledge-based intelligent information and engineering systems
  year: 2004
  ident: 790_CR16
  doi: 10.1007/978-3-540-30132-5_168
– volume: 16
  start-page: 1792
  issue: 11
  year: 2016
  ident: 790_CR19
  publication-title: Sensors
  doi: 10.3390/s16111792
– start-page: 263
  volume-title: Innovations in bio-inspired computing and applications
  year: 2016
  ident: 790_CR25
  doi: 10.1007/978-3-319-28031-8_23
– volume: 64
  start-page: 52
  issue: 1
  year: 2017
  ident: 790_CR24
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2016.2536438
– ident: 790_CR27
  doi: 10.1145/2689746.2689747
– volume: 19
  start-page: 519
  issue: 3
  year: 2017
  ident: 790_CR33
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2016.2626959
– start-page: 4148
  volume-title: Advances in neural information processing systems 30
  year: 2017
  ident: 790_CR31
– ident: 790_CR1
  doi: 10.1109/ISSPA.2012.6310598
– ident: 790_CR22
  doi: 10.1117/12.2304427
– volume: 15
  start-page: 4605
  issue: 3
  year: 2015
  ident: 790_CR2
  publication-title: Sensors
  doi: 10.3390/s150304605
– ident: 790_CR5
  doi: 10.1109/NER.2015.7146727
– start-page: 509
  volume-title: Future information technology
  year: 2014
  ident: 790_CR12
  doi: 10.1007/978-3-642-55038-6_80
– volume: 47
  start-page: 439
  issue: 2
  year: 2017
  ident: 790_CR34
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2016.2519448
– ident: 790_CR17
– ident: 790_CR7
  doi: 10.1109/EVENT.2001.938864
– year: 2018
  ident: 790_CR23
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2018.05.006
– ident: 790_CR15
– ident: 790_CR30
  doi: 10.1007/978-3-319-07155-8
– ident: 790_CR13
– volume: 28
  start-page: 316
  issue: 2
  year: 2006
  ident: 790_CR9
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2006.38
– ident: 790_CR35
  doi: 10.5244/C.24.52
– volume: 35
  start-page: 2821
  issue: 12
  year: 2013
  ident: 790_CR29
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.241
– volume: 18
  start-page: 7305
  issue: 17
  year: 2018
  ident: 790_CR4
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2018.2839732
– volume: 27
  start-page: 108
  issue: 1
  year: 2009
  ident: 790_CR3
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2006.10.004
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: 790_CR10
  publication-title: Proc R Soc Lond A Math Phys Eng Sci
  doi: 10.1098/rspa.1998.0193
– volume: 38
  start-page: 396
  year: 2016
  ident: 790_CR14
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2016.03.020
– ident: 790_CR8
– ident: 790_CR18
  doi: 10.1145/2676585.2676612
– volume: 6
  start-page: 38106
  year: 2018
  ident: 790_CR20
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2854262
– start-page: 46
  volume-title: Real time gait recognition system based on Kinect skeleton feature
  year: 2015
  ident: 790_CR11
  doi: 10.1007/978-3-319-16628-5_4
– ident: 790_CR6
  doi: 10.1109/FG.2015.7284881
– volume: 124
  start-page: 36
  year: 2016
  ident: 790_CR32
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2015.10.035
SSID ssj0033328
Score 2.2764864
Snippet This paper proposes an approach that estimates a human walking gait abnormality index using an adversarial auto-encoder (AAE), i.e., a combination of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1597
SubjectTerms Coders
Computer Science
Cylinders
Gait
Histograms
Industrial and Commercial Application
Pattern Recognition
Three dimensional models
Walking
Title Applying adversarial auto-encoder for estimating human walking gait abnormality index
URI https://link.springer.com/article/10.1007/s10044-019-00790-7
https://www.proquest.com/docview/2294006582
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu3DhjRiMKQduEKlt0tdxQhsTCE5UGqcqTVKENG2IduLvY2ctAwRIHJs6OTiO_bWO_QGcJ5GmxlKGR5TalVYbnghTcpGouLBFqQtN1ch399EkkzfTcNoUhVXtbfc2Jek89adiN0_SjYmU42Pq8XgTuiF9u6MVZ8Gw9b9CCMeoikBA8DiUflMq8_MaX8PRGmN-S4u6aDPehe0GJrLhal_3YMPO92GngYysOZAVDrWsDO3YAWQkRcVLTBHZcqXIxJha1gtOTSsNyiJQZdRdg9AqyjmePvamZvTbnD2p55qpYk5gljA6cw0VDyEbjx6uJrwhT-BaJGHNjfHLOC5S3-KRQ1SjbYBhKAoKr_RKgSEKPSR-G1kM-TZRxtMyRKQkygghoDU6FUfQmS_m9hhYkOK0SFklPSOppNAW0rOUM1UGXULaA7_VYa6bzuJEcDHL1z2RSe856j13es_jHlx8zHlZ9dX4U7rfbk3enLEqDwIidUcEFfTgst2u9evfVzv5n_gpbAVkMa4AsQ-d-nVpzxCJ1MUAusPrx9vRwBngOz8c1Lo
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHODCGzEYkAM3iNQmfR4nxDRg22mVdqvSJEVIqEO0E38fO2sYIEDi2NTJwU7sr3U-m5DLJFJYWEqzCFO7gVGaJUKXTCQyLkxRqkIhG3k8iYZZcD8LZy0prHa33V1K0nrqT2Q3L8AbEymDx9Rj8TrZADCQ4EWujPed_xVC2I6qAAQEi8PAb6kyP6_xNRytMOa3tKiNNoNdst3CRNpf2nWPrJlqn-y0kJG2B7KGIdeVwY0dkAylkLxEJTZbriVuMSoXzZxh0UoNsgBUKVbXQLQKcrZPH32Tz_jbnD7Kp4bKokIwixid2oKKhyQb3E5vhqxtnsCUSMKGae2XcVykvoEjB6hGGQ5hKOKFV3qlgBAFHhK-jQyEfJNI7akgBKQkygggoNEqFUekU80rc0woT2FaJI0MPB0gpdAUgWcwZyo1uIS0S3ynw1y1lcWxwcVzvqqJjHrPQe-51Xsed8nVx5yXZV2NP6V7zjR5e8bqnHNs6g4IinfJtTPX6vXvq538T_yCbA6n41E-ups8nJItjrvHkhF7pNO8LswZoJKmOLeb8B29HtYZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSIgLb8RgQA7cIFqb9HmcgGm8Jg5M2i3Kqwhp6ibWib-P3bVsIEDi2NTJwXHsr3U-m5DzJDJYWMqyCFO7gTOWJcJmTCQq1k5nRhtkIz_2o94guBuGwyUWf3nbvU5JzjkNWKUpL9oTm7WXiG9egLcnUgaPqcfiVbIG7thHux7wTu2LhRBld1UABYLFYeBXtJmf1_gamhZ481uKtIw83W2yWUFG2pnv8Q5Zcfku2argI60O5xSG6g4N9dgeGaAUEpmowsbLU4XmRtWsGDMsYGlBFkArxUobiFxBruzZR9_VCH-h0xf1WlClcwS2iNdpWVxxnwy6N89XPVY1UmBGJGHBrPWzONap7-D4AcIxjkNIirj2Mi8TEK7AW8J3koPw7xJlPROEgJpEFgEcdNak4oA08nHuDgnlKUyLlFOBZwOkFzodeA7zp8qCe0ibxK91KE1VZRybXYzkoj4y6l2C3mWpdxk3ycXnnMm8xsaf0q16a2R13qaSc2zwDmiKN8llvV2L17-vdvQ_8TOy_nTdlQ-3_ftjssHReEpeYos0ireZOwGAUujT0gY_AF_K2lU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+adversarial+auto-encoder+for+estimating+human+walking+gait+abnormality+index&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Nguyen%2C+Trong-Nguyen&rft.au=Meunier%2C+Jean&rft.date=2019-11-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=22&rft.issue=4&rft.spage=1597&rft.epage=1608&rft_id=info:doi/10.1007%2Fs10044-019-00790-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_019_00790_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon