Applying adversarial auto-encoder for estimating human walking gait abnormality index
This paper proposes an approach that estimates a human walking gait abnormality index using an adversarial auto-encoder (AAE), i.e., a combination of auto-encoder and generative adversarial network (GAN). Since most GAN-based models have been employed as data generators, our work introduces another...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 22; no. 4; pp. 1597 - 1608 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.11.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7541 1433-755X |
DOI | 10.1007/s10044-019-00790-7 |
Cover
Loading…
Abstract | This paper proposes an approach that estimates a human walking gait abnormality index using an adversarial auto-encoder (AAE), i.e., a combination of auto-encoder and generative adversarial network (GAN). Since most GAN-based models have been employed as data generators, our work introduces another perspective of their application. This method directly works on a sequence of 3D point clouds representing the walking postures of a subject. By fitting a cylinder onto each point cloud and feeding cylindrical histograms to an appropriate AAE, our system is able to provide different measures that may be used as gait abnormality indices. The combinations of such quantities are also investigated to obtain improved indicators. The ability of our method is demonstrated by experimenting on a large dataset of nearly 100 thousands point clouds, and the results outperform related approaches that employ different input data types. |
---|---|
AbstractList | This paper proposes an approach that estimates a human walking gait abnormality index using an adversarial auto-encoder (AAE), i.e., a combination of auto-encoder and generative adversarial network (GAN). Since most GAN-based models have been employed as data generators, our work introduces another perspective of their application. This method directly works on a sequence of 3D point clouds representing the walking postures of a subject. By fitting a cylinder onto each point cloud and feeding cylindrical histograms to an appropriate AAE, our system is able to provide different measures that may be used as gait abnormality indices. The combinations of such quantities are also investigated to obtain improved indicators. The ability of our method is demonstrated by experimenting on a large dataset of nearly 100 thousands point clouds, and the results outperform related approaches that employ different input data types. |
Author | Meunier, Jean Nguyen, Trong-Nguyen |
Author_xml | – sequence: 1 givenname: Trong-Nguyen orcidid: 0000-0002-9161-0116 surname: Nguyen fullname: Nguyen, Trong-Nguyen email: nguyetn@iro.umontreal.ca organization: Image Processing Laboratory, DIRO, University of Montreal – sequence: 2 givenname: Jean surname: Meunier fullname: Meunier, Jean organization: Image Processing Laboratory, DIRO, University of Montreal |
BookMark | eNp9kE9PwyAYh4mZidv0C3hq4hnlTwvluCzqTJZ4cYk3wlo6mR1UoOq-vcwaTTzsArzJ7-F932cCRtZZDcAlRtcYIX4T0pnnEGEBUykQ5CdgjHNKIS-K59HvO8dnYBLCFiFKKSnHYDXrunZv7CZT9bv2QXmj2kz10UFtK1drnzXOZzpEs1PxkHvpd8pmH6p9PVQbZWKm1tb5nWpN3GfG1vrzHJw2qg364ueegtXd7dN8AZeP9w_z2RJWtCwirGvccL4WWGMuGEKVJhyXjKxRgxrKeJkzLgqmCS50qWpU5YUggjYMM6zrStApuBr-7bx769OQcut6b1NLSYjIEWJFSVKKDKnKuxC8bmTn0zZ-LzGSB31y0CeTPvmtT_IElf-gysRkwNnolWmPo3RAQ-pjN9r_TXWE-gIjkIZ0 |
CitedBy_id | crossref_primary_10_1038_s41598_024_56656_4 crossref_primary_10_1109_TNSRE_2021_3131466 crossref_primary_10_1109_ACCESS_2020_2967845 crossref_primary_10_1186_s12938_023_01168_x crossref_primary_10_1016_j_medengphy_2022_103788 crossref_primary_10_1016_j_bspc_2021_103321 crossref_primary_10_1016_j_neucom_2021_12_004 crossref_primary_10_1093_jcde_qwab054 crossref_primary_10_1109_ACCESS_2020_3013029 crossref_primary_10_1109_TITS_2022_3193125 |
Cites_doi | 10.1109/BHI.2018.8333364 10.1109/CVPR.2011.5995316 10.1007/978-3-540-30132-5_168 10.3390/s16111792 10.1007/978-3-319-28031-8_23 10.1109/TBME.2016.2536438 10.1145/2689746.2689747 10.1109/TMM.2016.2626959 10.1109/ISSPA.2012.6310598 10.1117/12.2304427 10.3390/s150304605 10.1109/NER.2015.7146727 10.1007/978-3-642-55038-6_80 10.1109/TCYB.2016.2519448 10.1109/EVENT.2001.938864 10.1016/j.patrec.2018.05.006 10.1007/978-3-319-07155-8 10.1109/TPAMI.2006.38 10.5244/C.24.52 10.1109/TPAMI.2012.241 10.1109/JSEN.2018.2839732 10.1016/j.imavis.2006.10.004 10.1098/rspa.1998.0193 10.1016/j.jvcir.2016.03.020 10.1145/2676585.2676612 10.1109/ACCESS.2018.2854262 10.1007/978-3-319-16628-5_4 10.1109/FG.2015.7284881 10.1016/j.sigpro.2015.10.035 |
ContentType | Journal Article |
Copyright | Springer-Verlag London Ltd., part of Springer Nature 2019 Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2019 – notice: Copyright Springer Nature B.V. 2019 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10044-019-00790-7 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
EndPage | 1608 |
ExternalDocumentID | 10_1007_s10044_019_00790_7 |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada (CA) grantid: RGPIN-2015-05671 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c385t-dd1f77b91e179600ce271862b0f0f3678467956e215e8ad0c459293f6161edc93 |
IEDL.DBID | U2A |
ISSN | 1433-7541 |
IngestDate | Fri Jul 25 04:43:43 EDT 2025 Tue Jul 01 01:15:16 EDT 2025 Thu Apr 24 22:55:00 EDT 2025 Fri Feb 21 02:29:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Kinect Adversarial Point cloud Gait Auto-encoder Depth camera Mirror Posture |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-dd1f77b91e179600ce271862b0f0f3678467956e215e8ad0c459293f6161edc93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9161-0116 |
PQID | 2294006582 |
PQPubID | 2043691 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2294006582 crossref_primary_10_1007_s10044_019_00790_7 crossref_citationtrail_10_1007_s10044_019_00790_7 springer_journals_10_1007_s10044_019_00790_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2019 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Nguyen TN, Huynh HH, Meunier J (2018b) Assessment of gait normality using a depth camera and mirrors. In: 2018 IEEE EMBS international conference on biomedical health informatics (BHI), Las Vegas, NV, USA, pp 37–41. https://doi.org/10.1109/BHI.2018.8333364 Davis JW (2001) Hierarchical motion history images for recognizing human motion. In: IEEE workshop on detection and recognition of events in video. Proceedings. IEEE, pp 39–46 ShottonJGirshickRFitzgibbonASharpTCookMFinocchioMMooreRKohliPCriminisiAKipmanABlakeAEfficient human pose estimation from single depth imagesIEEE Trans Pattern Anal Mach Intell201335122821284010.1109/TPAMI.2012.241 Nguyen TN, Meunier J (2018) Walking gait dataset: point clouds, skeletons and silhouettes. Technical Report 1379, DIRO, University of Montreal. http://www.iro.umontreal.ca/~labimage/GaitDataset/dataset.pdf RenPTangSFangFLuoLXuLBringas-VegaMLYaoDKendrickKMValdes-SosaPAGait rhythm fluctuation analysis for neurodegenerative diseases by empirical mode decompositionIEEE Trans Biomed Eng2017641526010.1109/TBME.2016.2536438 Sakurada M, Yairi T (2014) Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd workshop on machine learning for sensory data analysis, ACM, New York, NY, USA, MLSDA’14, pp 4:4–4:11. https://doi.org/10.1145/2689746.2689747 AuvinetEMultonFMeunierJNew lower-limb gait asymmetry indices based on a depth cameraSensors20151534605462310.3390/s150304605 Webber CL Jr, Marwan N (eds) (2015) Recurrence quantification analysis: theory and best practices. Springer, Cham. https://doi.org/10.1007/978-3-319-07155-8 YangYLiuRDengCGaoXMulti-task human action recognition via exploring super-categorySignal Process2016124364410.1016/j.sigpro.2015.10.035 López-FernándezDMadrid-CuevasFCarmona-PoyatoAMunoz-SalinasRMedina-CarnicerRA new approach for multi-view gait recognition on unconstrained pathsJ Vis Commun Image Represent20163839640610.1016/j.jvcir.2016.03.020 MartinelliMTronciEDipoppaGBalducelliCNegoitaMGHowlettRJJainLCElectric power system anomaly detection using neural networksKnowledge-based intelligent information and engineering systems2004BerlinSpringer1242124810.1007/978-3-540-30132-5_168 Bigy AAM, Banitsas K, Badii A, Cosmas J (2015) Recognition of postures and freezing of gait in Parkinson’s disease patients using microsoft Kinect sensor. In: 2015 7th international IEEE/EMBS conference on neural engineering (NER), pp 731–734. https://doi.org/10.1109/NER.2015.7146727 Yu TH, Kim TK, Cipolla R (2010) Real-time action recognition by spatiotemporal semantic and structural forest. In: Proceedings of the British machine vision conference, BMVA Press, pp 52.1–52.12. https://doi.org/10.5244/C.24.52 PrabhuPKarunakarAAnithaHPradhanNClassification of gait signals into different neurodegenerative diseases using statistical analysis and recurrence quantification analysisPattern Recogn Lett2018 YangYDengCTaoDZhangSLiuWGaoXLatent max-margin multitask learning with skelets for 3-d action recognitionIEEE Trans Cybern2017472439448 NguyenTNHuynhHHMeunierJSkeleton-based abnormal gait detectionSensors20161611179210.3390/s16111792 ShottonJFitzgibbonACookMSharpTFinocchioMMooreRKipmanABlakeAReal-time human pose recognition in parts from single depth imagesCVPR2011201112971304 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ (eds) Advances in neural information processing systems 27, Curran Associates, Inc., pp 2672–2680. http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf RodriguezSPérezKQuinteroCLópezJRojasECalderónJSnášelVAbrahamAKrömerPPantMMudaAKIdentification of multimodal human-robot interaction using combined kernelsInnovations in bio-inspired computing and applications2016ChamSpringer International Publishing26327310.1007/978-3-319-28031-8_23 KimHKimYKoDKimJLeeECParkJJJHPanYKimCSYangYPointing gesture interface for large display environments based on the kinect skeleton modelFuture information technology2014BerlinSpringer50951410.1007/978-3-642-55038-6_80 Makhzani A, Shlens J, Jaitly N, Goodfellow I (2016) Adversarial autoencoders. In: International conference on learning representations. arXiv:1511.05644 YangYDengCGaoSLiuWTaoDGaoXDiscriminative multi-instance multitask learning for 3d action recognitionIEEE Trans Multimed201719351952910.1109/TMM.2016.2626959 Auvinet E, Meunier J, Multon F (2012) Multiple depth cameras calibration and body volume reconstruction for gait analysis. In: 2012 11th international conference on information science, signal processing and their applications (ISSPA), pp 478–483. https://doi.org/10.1109/ISSPA.2012.6310598 HanJBhanuBIndividual recognition using gait energy imageIEEE Trans Pattern Anal Mach Intell200628231632210.1109/TPAMI.2006.38 RothKLucchiANowozinSHofmannTGuyonILuxburgUVBengioSWallachHFergusRVishwanathanSGarnettRStabilizing training of generative adversarial networks through regularizationAdvances in neural information processing systems 302017Red HookCurran Associates Inc20182028 BauckhageCTsotsosJKBunnFEAutomatic detection of abnormal gaitImage Vis Comput200927110811510.1016/j.imavis.2006.10.004 Chaaraoui AA, Padilla-López JR, Flórez-Revuelta F (2015) Abnormal gait detection with RGB-D devices using joint motion history features. In: 2015 11th IEEE international conference and workshops on automatic face and gesture recognition (FG). vol 7. IEEE, pp 1–6 Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:14126980 JiangSWangYZhangYSunJReal time gait recognition system based on Kinect skeleton feature2015ChamSpringer International Publishing4657 Nguyen TN, Huynh HH, Meunier J (2014) Extracting silhouette-based characteristics for human gait analysis using one camera. In: Proceedings of the 5th symposium on information and communication technology, ACM, New York, NY, USA, SoICT ’14, pp 171–177. https://doi.org/10.1145/2676585.2676612 WilsonACRoelofsRSternMSrebroNRechtBGuyonILuxburgUVBengioSWallachHFergusRVishwanathanSGarnettRThe marginal value of adaptive gradient methods in machine learningAdvances in neural information processing systems 302017Red HookCurran Associates Inc41484158 BeiSZhenZXingZTaochengLQinLMovement disorder detection via adaptively fused gait analysis based on Kinect sensorsIEEE Sens J201818177305731410.1109/JSEN.2018.2839732 NguyenTNHuynhHHMeunierJ3d reconstruction with time-of-flight depth camera and multiple mirrorsIEEE Access20186381063811410.1109/ACCESS.2018.2854262 Nguyen TN, Huynh HH, Meunier J (2018c) Using ToF camera and two mirrors for 3D reconstruction of dynamic objects. Technical Report 1380, DIRO, University of Montreal. http://www.iro.umontreal.ca/~labimage/GaitDataset/reconstruct3D.pdf HuangNEShenZLongSRWuMCShihHHZhengQYenNCTungCCLiuHHThe empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysisProc R Soc Lond A Math Phys Eng Sci19984541971903995163159110.1098/rspa.1998.01930945.62093 790_CR17 790_CR18 790_CR15 790_CR13 Y Yang (790_CR32) 2016; 124 790_CR35 J Shotton (790_CR28) 2011; 2011 J Han (790_CR9) 2006; 28 S Bei (790_CR4) 2018; 18 TN Nguyen (790_CR19) 2016; 16 790_CR21 J Shotton (790_CR29) 2013; 35 D López-Fernández (790_CR14) 2016; 38 NE Huang (790_CR10) 1998; 454 790_CR27 H Kim (790_CR12) 2014 790_CR22 P Ren (790_CR24) 2017; 64 S Rodriguez (790_CR25) 2016 K Roth (790_CR26) 2017 S Jiang (790_CR11) 2015 C Bauckhage (790_CR3) 2009; 27 790_CR8 AC Wilson (790_CR31) 2017 E Auvinet (790_CR2) 2015; 15 M Martinelli (790_CR16) 2004 TN Nguyen (790_CR20) 2018; 6 790_CR1 790_CR30 790_CR7 790_CR6 790_CR5 P Prabhu (790_CR23) 2018 Y Yang (790_CR33) 2017; 19 Y Yang (790_CR34) 2017; 47 |
References_xml | – reference: Nguyen TN, Meunier J (2018) Walking gait dataset: point clouds, skeletons and silhouettes. Technical Report 1379, DIRO, University of Montreal. http://www.iro.umontreal.ca/~labimage/GaitDataset/dataset.pdf – reference: KimHKimYKoDKimJLeeECParkJJJHPanYKimCSYangYPointing gesture interface for large display environments based on the kinect skeleton modelFuture information technology2014BerlinSpringer50951410.1007/978-3-642-55038-6_80 – reference: JiangSWangYZhangYSunJReal time gait recognition system based on Kinect skeleton feature2015ChamSpringer International Publishing4657 – reference: YangYLiuRDengCGaoXMulti-task human action recognition via exploring super-categorySignal Process2016124364410.1016/j.sigpro.2015.10.035 – reference: BauckhageCTsotsosJKBunnFEAutomatic detection of abnormal gaitImage Vis Comput200927110811510.1016/j.imavis.2006.10.004 – reference: NguyenTNHuynhHHMeunierJ3d reconstruction with time-of-flight depth camera and multiple mirrorsIEEE Access20186381063811410.1109/ACCESS.2018.2854262 – reference: Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:14126980 – reference: ShottonJGirshickRFitzgibbonASharpTCookMFinocchioMMooreRKohliPCriminisiAKipmanABlakeAEfficient human pose estimation from single depth imagesIEEE Trans Pattern Anal Mach Intell201335122821284010.1109/TPAMI.2012.241 – reference: López-FernándezDMadrid-CuevasFCarmona-PoyatoAMunoz-SalinasRMedina-CarnicerRA new approach for multi-view gait recognition on unconstrained pathsJ Vis Commun Image Represent20163839640610.1016/j.jvcir.2016.03.020 – reference: Webber CL Jr, Marwan N (eds) (2015) Recurrence quantification analysis: theory and best practices. Springer, Cham. https://doi.org/10.1007/978-3-319-07155-8 – reference: Sakurada M, Yairi T (2014) Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd workshop on machine learning for sensory data analysis, ACM, New York, NY, USA, MLSDA’14, pp 4:4–4:11. https://doi.org/10.1145/2689746.2689747 – reference: Makhzani A, Shlens J, Jaitly N, Goodfellow I (2016) Adversarial autoencoders. In: International conference on learning representations. arXiv:1511.05644 – reference: Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ (eds) Advances in neural information processing systems 27, Curran Associates, Inc., pp 2672–2680. http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf – reference: RodriguezSPérezKQuinteroCLópezJRojasECalderónJSnášelVAbrahamAKrömerPPantMMudaAKIdentification of multimodal human-robot interaction using combined kernelsInnovations in bio-inspired computing and applications2016ChamSpringer International Publishing26327310.1007/978-3-319-28031-8_23 – reference: MartinelliMTronciEDipoppaGBalducelliCNegoitaMGHowlettRJJainLCElectric power system anomaly detection using neural networksKnowledge-based intelligent information and engineering systems2004BerlinSpringer1242124810.1007/978-3-540-30132-5_168 – reference: Auvinet E, Meunier J, Multon F (2012) Multiple depth cameras calibration and body volume reconstruction for gait analysis. In: 2012 11th international conference on information science, signal processing and their applications (ISSPA), pp 478–483. https://doi.org/10.1109/ISSPA.2012.6310598 – reference: RenPTangSFangFLuoLXuLBringas-VegaMLYaoDKendrickKMValdes-SosaPAGait rhythm fluctuation analysis for neurodegenerative diseases by empirical mode decompositionIEEE Trans Biomed Eng2017641526010.1109/TBME.2016.2536438 – reference: Nguyen TN, Huynh HH, Meunier J (2018b) Assessment of gait normality using a depth camera and mirrors. In: 2018 IEEE EMBS international conference on biomedical health informatics (BHI), Las Vegas, NV, USA, pp 37–41. https://doi.org/10.1109/BHI.2018.8333364 – reference: AuvinetEMultonFMeunierJNew lower-limb gait asymmetry indices based on a depth cameraSensors20151534605462310.3390/s150304605 – reference: Chaaraoui AA, Padilla-López JR, Flórez-Revuelta F (2015) Abnormal gait detection with RGB-D devices using joint motion history features. In: 2015 11th IEEE international conference and workshops on automatic face and gesture recognition (FG). vol 7. IEEE, pp 1–6 – reference: HanJBhanuBIndividual recognition using gait energy imageIEEE Trans Pattern Anal Mach Intell200628231632210.1109/TPAMI.2006.38 – reference: NguyenTNHuynhHHMeunierJSkeleton-based abnormal gait detectionSensors20161611179210.3390/s16111792 – reference: Bigy AAM, Banitsas K, Badii A, Cosmas J (2015) Recognition of postures and freezing of gait in Parkinson’s disease patients using microsoft Kinect sensor. In: 2015 7th international IEEE/EMBS conference on neural engineering (NER), pp 731–734. https://doi.org/10.1109/NER.2015.7146727 – reference: Davis JW (2001) Hierarchical motion history images for recognizing human motion. In: IEEE workshop on detection and recognition of events in video. Proceedings. IEEE, pp 39–46 – reference: HuangNEShenZLongSRWuMCShihHHZhengQYenNCTungCCLiuHHThe empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysisProc R Soc Lond A Math Phys Eng Sci19984541971903995163159110.1098/rspa.1998.01930945.62093 – reference: RothKLucchiANowozinSHofmannTGuyonILuxburgUVBengioSWallachHFergusRVishwanathanSGarnettRStabilizing training of generative adversarial networks through regularizationAdvances in neural information processing systems 302017Red HookCurran Associates Inc20182028 – reference: YangYDengCGaoSLiuWTaoDGaoXDiscriminative multi-instance multitask learning for 3d action recognitionIEEE Trans Multimed201719351952910.1109/TMM.2016.2626959 – reference: BeiSZhenZXingZTaochengLQinLMovement disorder detection via adaptively fused gait analysis based on Kinect sensorsIEEE Sens J201818177305731410.1109/JSEN.2018.2839732 – reference: Yu TH, Kim TK, Cipolla R (2010) Real-time action recognition by spatiotemporal semantic and structural forest. In: Proceedings of the British machine vision conference, BMVA Press, pp 52.1–52.12. https://doi.org/10.5244/C.24.52 – reference: PrabhuPKarunakarAAnithaHPradhanNClassification of gait signals into different neurodegenerative diseases using statistical analysis and recurrence quantification analysisPattern Recogn Lett2018 – reference: YangYDengCTaoDZhangSLiuWGaoXLatent max-margin multitask learning with skelets for 3-d action recognitionIEEE Trans Cybern2017472439448 – reference: WilsonACRoelofsRSternMSrebroNRechtBGuyonILuxburgUVBengioSWallachHFergusRVishwanathanSGarnettRThe marginal value of adaptive gradient methods in machine learningAdvances in neural information processing systems 302017Red HookCurran Associates Inc41484158 – reference: ShottonJFitzgibbonACookMSharpTFinocchioMMooreRKipmanABlakeAReal-time human pose recognition in parts from single depth imagesCVPR2011201112971304 – reference: Nguyen TN, Huynh HH, Meunier J (2018c) Using ToF camera and two mirrors for 3D reconstruction of dynamic objects. Technical Report 1380, DIRO, University of Montreal. http://www.iro.umontreal.ca/~labimage/GaitDataset/reconstruct3D.pdf – reference: Nguyen TN, Huynh HH, Meunier J (2014) Extracting silhouette-based characteristics for human gait analysis using one camera. In: Proceedings of the 5th symposium on information and communication technology, ACM, New York, NY, USA, SoICT ’14, pp 171–177. https://doi.org/10.1145/2676585.2676612 – start-page: 2018 volume-title: Advances in neural information processing systems 30 year: 2017 ident: 790_CR26 – ident: 790_CR21 doi: 10.1109/BHI.2018.8333364 – volume: 2011 start-page: 1297 year: 2011 ident: 790_CR28 publication-title: CVPR doi: 10.1109/CVPR.2011.5995316 – start-page: 1242 volume-title: Knowledge-based intelligent information and engineering systems year: 2004 ident: 790_CR16 doi: 10.1007/978-3-540-30132-5_168 – volume: 16 start-page: 1792 issue: 11 year: 2016 ident: 790_CR19 publication-title: Sensors doi: 10.3390/s16111792 – start-page: 263 volume-title: Innovations in bio-inspired computing and applications year: 2016 ident: 790_CR25 doi: 10.1007/978-3-319-28031-8_23 – volume: 64 start-page: 52 issue: 1 year: 2017 ident: 790_CR24 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2016.2536438 – ident: 790_CR27 doi: 10.1145/2689746.2689747 – volume: 19 start-page: 519 issue: 3 year: 2017 ident: 790_CR33 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2016.2626959 – start-page: 4148 volume-title: Advances in neural information processing systems 30 year: 2017 ident: 790_CR31 – ident: 790_CR1 doi: 10.1109/ISSPA.2012.6310598 – ident: 790_CR22 doi: 10.1117/12.2304427 – volume: 15 start-page: 4605 issue: 3 year: 2015 ident: 790_CR2 publication-title: Sensors doi: 10.3390/s150304605 – ident: 790_CR5 doi: 10.1109/NER.2015.7146727 – start-page: 509 volume-title: Future information technology year: 2014 ident: 790_CR12 doi: 10.1007/978-3-642-55038-6_80 – volume: 47 start-page: 439 issue: 2 year: 2017 ident: 790_CR34 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2016.2519448 – ident: 790_CR17 – ident: 790_CR7 doi: 10.1109/EVENT.2001.938864 – year: 2018 ident: 790_CR23 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2018.05.006 – ident: 790_CR15 – ident: 790_CR30 doi: 10.1007/978-3-319-07155-8 – ident: 790_CR13 – volume: 28 start-page: 316 issue: 2 year: 2006 ident: 790_CR9 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2006.38 – ident: 790_CR35 doi: 10.5244/C.24.52 – volume: 35 start-page: 2821 issue: 12 year: 2013 ident: 790_CR29 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.241 – volume: 18 start-page: 7305 issue: 17 year: 2018 ident: 790_CR4 publication-title: IEEE Sens J doi: 10.1109/JSEN.2018.2839732 – volume: 27 start-page: 108 issue: 1 year: 2009 ident: 790_CR3 publication-title: Image Vis Comput doi: 10.1016/j.imavis.2006.10.004 – volume: 454 start-page: 903 issue: 1971 year: 1998 ident: 790_CR10 publication-title: Proc R Soc Lond A Math Phys Eng Sci doi: 10.1098/rspa.1998.0193 – volume: 38 start-page: 396 year: 2016 ident: 790_CR14 publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2016.03.020 – ident: 790_CR8 – ident: 790_CR18 doi: 10.1145/2676585.2676612 – volume: 6 start-page: 38106 year: 2018 ident: 790_CR20 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2854262 – start-page: 46 volume-title: Real time gait recognition system based on Kinect skeleton feature year: 2015 ident: 790_CR11 doi: 10.1007/978-3-319-16628-5_4 – ident: 790_CR6 doi: 10.1109/FG.2015.7284881 – volume: 124 start-page: 36 year: 2016 ident: 790_CR32 publication-title: Signal Process doi: 10.1016/j.sigpro.2015.10.035 |
SSID | ssj0033328 |
Score | 2.2764864 |
Snippet | This paper proposes an approach that estimates a human walking gait abnormality index using an adversarial auto-encoder (AAE), i.e., a combination of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1597 |
SubjectTerms | Coders Computer Science Cylinders Gait Histograms Industrial and Commercial Application Pattern Recognition Three dimensional models Walking |
Title | Applying adversarial auto-encoder for estimating human walking gait abnormality index |
URI | https://link.springer.com/article/10.1007/s10044-019-00790-7 https://www.proquest.com/docview/2294006582 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu3DhjRiMKQduEKlt0tdxQhsTCE5UGqcqTVKENG2IduLvY2ctAwRIHJs6OTiO_bWO_QGcJ5GmxlKGR5TalVYbnghTcpGouLBFqQtN1ch399EkkzfTcNoUhVXtbfc2Jek89adiN0_SjYmU42Pq8XgTuiF9u6MVZ8Gw9b9CCMeoikBA8DiUflMq8_MaX8PRGmN-S4u6aDPehe0GJrLhal_3YMPO92GngYysOZAVDrWsDO3YAWQkRcVLTBHZcqXIxJha1gtOTSsNyiJQZdRdg9AqyjmePvamZvTbnD2p55qpYk5gljA6cw0VDyEbjx6uJrwhT-BaJGHNjfHLOC5S3-KRQ1SjbYBhKAoKr_RKgSEKPSR-G1kM-TZRxtMyRKQkygghoDU6FUfQmS_m9hhYkOK0SFklPSOppNAW0rOUM1UGXULaA7_VYa6bzuJEcDHL1z2RSe856j13es_jHlx8zHlZ9dX4U7rfbk3enLEqDwIidUcEFfTgst2u9evfVzv5n_gpbAVkMa4AsQ-d-nVpzxCJ1MUAusPrx9vRwBngOz8c1Lo |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHODCGzEYkAM3iNQmfR4nxDRg22mVdqvSJEVIqEO0E38fO2sYIEDi2NTJwU7sr3U-m5DLJFJYWEqzCFO7gVGaJUKXTCQyLkxRqkIhG3k8iYZZcD8LZy0prHa33V1K0nrqT2Q3L8AbEymDx9Rj8TrZADCQ4EWujPed_xVC2I6qAAQEi8PAb6kyP6_xNRytMOa3tKiNNoNdst3CRNpf2nWPrJlqn-y0kJG2B7KGIdeVwY0dkAylkLxEJTZbriVuMSoXzZxh0UoNsgBUKVbXQLQKcrZPH32Tz_jbnD7Kp4bKokIwixid2oKKhyQb3E5vhqxtnsCUSMKGae2XcVykvoEjB6hGGQ5hKOKFV3qlgBAFHhK-jQyEfJNI7akgBKQkygggoNEqFUekU80rc0woT2FaJI0MPB0gpdAUgWcwZyo1uIS0S3ynw1y1lcWxwcVzvqqJjHrPQe-51Xsed8nVx5yXZV2NP6V7zjR5e8bqnHNs6g4IinfJtTPX6vXvq538T_yCbA6n41E-ups8nJItjrvHkhF7pNO8LswZoJKmOLeb8B29HtYZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSIgLb8RgQA7cIFqb9HmcgGm8Jg5M2i3Kqwhp6ibWib-P3bVsIEDi2NTJwXHsr3U-m5DzJDJYWMqyCFO7gTOWJcJmTCQq1k5nRhtkIz_2o94guBuGwyUWf3nbvU5JzjkNWKUpL9oTm7WXiG9egLcnUgaPqcfiVbIG7thHux7wTu2LhRBld1UABYLFYeBXtJmf1_gamhZ481uKtIw83W2yWUFG2pnv8Q5Zcfku2argI60O5xSG6g4N9dgeGaAUEpmowsbLU4XmRtWsGDMsYGlBFkArxUobiFxBruzZR9_VCH-h0xf1WlClcwS2iNdpWVxxnwy6N89XPVY1UmBGJGHBrPWzONap7-D4AcIxjkNIirj2Mi8TEK7AW8J3koPw7xJlPROEgJpEFgEcdNak4oA08nHuDgnlKUyLlFOBZwOkFzodeA7zp8qCe0ibxK91KE1VZRybXYzkoj4y6l2C3mWpdxk3ycXnnMm8xsaf0q16a2R13qaSc2zwDmiKN8llvV2L17-vdvQ_8TOy_nTdlQ-3_ftjssHReEpeYos0ireZOwGAUujT0gY_AF_K2lU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+adversarial+auto-encoder+for+estimating+human+walking+gait+abnormality+index&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Nguyen%2C+Trong-Nguyen&rft.au=Meunier%2C+Jean&rft.date=2019-11-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=22&rft.issue=4&rft.spage=1597&rft.epage=1608&rft_id=info:doi/10.1007%2Fs10044-019-00790-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_019_00790_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |