A gentle introduction to deep learning for graphs

The adaptive processing of graph data is a long-standing research topic that has been lately consolidated as a theme of major interest in the deep learning community. The snap increase in the amount and breadth of related research has come at the price of little systematization of knowledge and atte...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 129; pp. 203 - 221
Main Authors Bacciu, Davide, Errica, Federico, Micheli, Alessio, Podda, Marco
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2020
Subjects
Online AccessGet full text
ISSN0893-6080
1879-2782
1879-2782
DOI10.1016/j.neunet.2020.06.006

Cover

Loading…
Abstract The adaptive processing of graph data is a long-standing research topic that has been lately consolidated as a theme of major interest in the deep learning community. The snap increase in the amount and breadth of related research has come at the price of little systematization of knowledge and attention to earlier literature. This work is a tutorial introduction to the field of deep learning for graphs. It favors a consistent and progressive presentation of the main concepts and architectural aspects over an exposition of the most recent literature, for which the reader is referred to available surveys. The paper takes a top-down view of the problem, introducing a generalized formulation of graph representation learning based on a local and iterative approach to structured information processing. Moreover, it introduces the basic building blocks that can be combined to design novel and effective neural models for graphs. We complement the methodological exposition with a discussion of interesting research challenges and applications in the field.
AbstractList The adaptive processing of graph data is a long-standing research topic that has been lately consolidated as a theme of major interest in the deep learning community. The snap increase in the amount and breadth of related research has come at the price of little systematization of knowledge and attention to earlier literature. This work is a tutorial introduction to the field of deep learning for graphs. It favors a consistent and progressive presentation of the main concepts and architectural aspects over an exposition of the most recent literature, for which the reader is referred to available surveys. The paper takes a top-down view of the problem, introducing a generalized formulation of graph representation learning based on a local and iterative approach to structured information processing. Moreover, it introduces the basic building blocks that can be combined to design novel and effective neural models for graphs. We complement the methodological exposition with a discussion of interesting research challenges and applications in the field.The adaptive processing of graph data is a long-standing research topic that has been lately consolidated as a theme of major interest in the deep learning community. The snap increase in the amount and breadth of related research has come at the price of little systematization of knowledge and attention to earlier literature. This work is a tutorial introduction to the field of deep learning for graphs. It favors a consistent and progressive presentation of the main concepts and architectural aspects over an exposition of the most recent literature, for which the reader is referred to available surveys. The paper takes a top-down view of the problem, introducing a generalized formulation of graph representation learning based on a local and iterative approach to structured information processing. Moreover, it introduces the basic building blocks that can be combined to design novel and effective neural models for graphs. We complement the methodological exposition with a discussion of interesting research challenges and applications in the field.
The adaptive processing of graph data is a long-standing research topic that has been lately consolidated as a theme of major interest in the deep learning community. The snap increase in the amount and breadth of related research has come at the price of little systematization of knowledge and attention to earlier literature. This work is a tutorial introduction to the field of deep learning for graphs. It favors a consistent and progressive presentation of the main concepts and architectural aspects over an exposition of the most recent literature, for which the reader is referred to available surveys. The paper takes a top-down view of the problem, introducing a generalized formulation of graph representation learning based on a local and iterative approach to structured information processing. Moreover, it introduces the basic building blocks that can be combined to design novel and effective neural models for graphs. We complement the methodological exposition with a discussion of interesting research challenges and applications in the field.
Author Bacciu, Davide
Errica, Federico
Micheli, Alessio
Podda, Marco
Author_xml – sequence: 1
  givenname: Davide
  surname: Bacciu
  fullname: Bacciu, Davide
  email: bacciu@di.unipi.it
– sequence: 2
  givenname: Federico
  surname: Errica
  fullname: Errica, Federico
  email: federico.errica@phd.unipi.it
– sequence: 3
  givenname: Alessio
  surname: Micheli
  fullname: Micheli, Alessio
  email: micheli@di.unipi.it
– sequence: 4
  givenname: Marco
  surname: Podda
  fullname: Podda, Marco
  email: marco.podda@di.unipi.it
BookMark eNqFkE1LAzEURYMo2Fb_gYtZupnxJZlmEhdCKX5BwY2uQybzpqZMk5qkgv_eKXXlQuHB3dxz4Z0pOfXBIyFXFCoKVNxsKo97j7liwKACUQGIEzKhslElayQ7JROQipcCJJyTaUobGBuy5hNCF8UafR6wcD7H0O1tdsEXORQd4q4Y0ETv_LroQyzW0eze0wU5682Q8PInZ-Tt4f51-VSuXh6fl4tVabmc57KjoqetZAC2lqpvFefQ9obNW-Qd9ApEo0zPmDBQd0wJSSUgtE0zZy1HaPiMXB93dzF87DFlvXXJ4jAYj2GfNKvpnCnFx5uR22PVxpBSxF5bl83hkRyNGzQFffCkN_roSR88aRB6tDDC9S94F93WxK__sLsjhqODT4dRJ-vQW-xcRJt1F9zfA9_VBYUi
CitedBy_id crossref_primary_10_1007_s10209_024_01123_0
crossref_primary_10_1016_j_bdr_2024_100494
crossref_primary_10_1016_j_aei_2024_103050
crossref_primary_10_1016_j_inffus_2025_102996
crossref_primary_10_1109_JOE_2023_3314090
crossref_primary_10_3233_IA_210121
crossref_primary_10_1016_j_neucom_2022_04_072
crossref_primary_10_1016_j_image_2020_116080
crossref_primary_10_1021_acs_jpca_4c04121
crossref_primary_10_1016_j_neucom_2025_129635
crossref_primary_10_1093_insilicoplants_diad001
crossref_primary_10_1063_5_0177738
crossref_primary_10_1109_TNNLS_2020_3025110
crossref_primary_10_1088_1361_6560_ad8c94
crossref_primary_10_1016_j_inffus_2023_102186
crossref_primary_10_1016_j_knosys_2021_108105
crossref_primary_10_1109_TGRS_2021_3120218
crossref_primary_10_1016_j_neucom_2023_126506
crossref_primary_10_1109_TNNLS_2022_3220548
crossref_primary_10_1016_j_neucom_2023_126900
crossref_primary_10_1016_j_neunet_2021_02_005
crossref_primary_10_1016_j_ymssp_2020_107144
crossref_primary_10_1016_j_ymssp_2021_108653
crossref_primary_10_1016_j_atech_2023_100172
crossref_primary_10_5937_fme2203393B
crossref_primary_10_1016_j_segan_2024_101304
crossref_primary_10_1016_j_ymssp_2021_107692
crossref_primary_10_1016_j_neucom_2024_127861
crossref_primary_10_1016_j_tws_2024_112157
crossref_primary_10_3390_app12157548
crossref_primary_10_1007_s10462_024_10918_9
crossref_primary_10_1109_TAI_2021_3133818
crossref_primary_10_1007_s12206_024_0702_z
crossref_primary_10_1016_j_ymssp_2024_111761
crossref_primary_10_3389_frai_2022_824655
crossref_primary_10_1109_TCBB_2022_3170365
crossref_primary_10_1109_MGRS_2024_3393010
crossref_primary_10_1109_ACCESS_2023_3323220
crossref_primary_10_1016_j_neunet_2021_05_031
crossref_primary_10_1093_bib_bbae027
crossref_primary_10_2174_1574893617666220513114917
crossref_primary_10_1093_bib_bbaf074
crossref_primary_10_3389_fmolb_2021_637396
crossref_primary_10_1016_j_sigpro_2024_109570
crossref_primary_10_3390_bioengineering8020021
crossref_primary_10_1145_3495161
crossref_primary_10_1371_journal_pcbi_1010718
crossref_primary_10_1039_D1CP01656C
crossref_primary_10_1016_j_neunet_2023_10_050
crossref_primary_10_1016_j_cviu_2023_103744
crossref_primary_10_1016_j_jrmge_2024_09_034
crossref_primary_10_1007_s13042_024_02124_4
crossref_primary_10_3390_s22176482
crossref_primary_10_1109_TSMC_2023_3287655
crossref_primary_10_1080_13658816_2023_2168006
crossref_primary_10_3390_s24124022
crossref_primary_10_1016_j_health_2024_100310
crossref_primary_10_1016_j_neucom_2022_06_050
crossref_primary_10_1016_j_nicl_2024_103568
crossref_primary_10_3389_frobt_2022_840058
crossref_primary_10_1016_j_engappai_2024_109895
crossref_primary_10_1016_j_autcon_2021_103847
crossref_primary_10_26599_BDMA_2023_9020014
crossref_primary_10_1016_j_neunet_2024_106484
crossref_primary_10_1016_j_neunet_2024_106125
crossref_primary_10_1007_s11063_021_10576_w
crossref_primary_10_1016_j_compmedimag_2024_102396
crossref_primary_10_1007_s00521_020_05529_8
crossref_primary_10_1016_j_neucom_2021_05_110
crossref_primary_10_1109_TNNLS_2024_3374464
crossref_primary_10_1109_TNNLS_2023_3267902
crossref_primary_10_1016_j_inffus_2024_102708
crossref_primary_10_1088_1742_6596_2363_1_012003
crossref_primary_10_1097_CM9_0000000000003387
crossref_primary_10_1109_ACCESS_2021_3124477
crossref_primary_10_1109_TNNLS_2023_3274565
crossref_primary_10_1016_j_neunet_2022_03_008
crossref_primary_10_1109_TNNLS_2022_3184967
crossref_primary_10_3390_electronics13245060
crossref_primary_10_1016_j_jvcir_2024_104167
crossref_primary_10_1007_s11235_024_01148_z
crossref_primary_10_1016_j_neucom_2022_05_001
crossref_primary_10_1016_j_isci_2024_110041
crossref_primary_10_1007_s10618_021_00779_z
crossref_primary_10_1016_j_neucom_2023_126948
crossref_primary_10_1093_bioinformatics_btad678
crossref_primary_10_1016_j_engappai_2023_106180
crossref_primary_10_1038_s41597_022_01870_w
crossref_primary_10_1016_j_neunet_2022_07_035
crossref_primary_10_1109_TNNLS_2022_3171398
crossref_primary_10_1109_LRA_2022_3144520
crossref_primary_10_1021_acs_jpca_2c02614
crossref_primary_10_1109_TSIPN_2020_3046237
crossref_primary_10_1093_bib_bbae307
crossref_primary_10_1109_TNSE_2023_3330450
crossref_primary_10_1109_ACCESS_2020_3037118
crossref_primary_10_1016_j_neunet_2023_08_002
crossref_primary_10_1109_TPWRS_2022_3195301
crossref_primary_10_1371_journal_pone_0303889
crossref_primary_10_1109_TNNLS_2024_3379735
crossref_primary_10_1109_TAI_2024_3443783
crossref_primary_10_3390_su14137965
crossref_primary_10_1038_s42256_023_00609_5
crossref_primary_10_1016_j_neucom_2022_08_022
crossref_primary_10_1016_j_neunet_2023_04_029
crossref_primary_10_1145_3580516
crossref_primary_10_1515_sagmb_2021_0087
crossref_primary_10_1093_bioinformatics_btac478
crossref_primary_10_1016_j_neucom_2021_04_131
crossref_primary_10_1109_ACCESS_2022_3233036
crossref_primary_10_1021_jacs_4c04670
crossref_primary_10_1109_TPAMI_2021_3073504
crossref_primary_10_1371_journal_pcbi_1009531
crossref_primary_10_1007_s40747_024_01344_z
crossref_primary_10_1007_s00521_024_09655_5
crossref_primary_10_21105_joss_05713
crossref_primary_10_1016_j_inffus_2021_09_004
crossref_primary_10_1016_j_epsr_2024_111163
crossref_primary_10_1038_s41598_022_25800_3
crossref_primary_10_1016_j_neucom_2024_127965
crossref_primary_10_1016_j_neunet_2024_106207
crossref_primary_10_1088_2632_2153_aca23e
crossref_primary_10_1016_j_softx_2022_101061
crossref_primary_10_1007_s11063_022_10917_3
crossref_primary_10_1109_LCSYS_2023_3344286
crossref_primary_10_1038_s42256_020_0204_3
crossref_primary_10_1109_TETC_2023_3238963
crossref_primary_10_1080_00949655_2021_1921777
crossref_primary_10_1007_s10462_024_10931_y
crossref_primary_10_1109_ACCESS_2021_3098417
crossref_primary_10_1109_TNNLS_2022_3165618
crossref_primary_10_1016_j_neunet_2023_05_048
Cites_doi 10.1007/s13748-018-0160-x
10.1016/j.neucom.2004.01.008
10.1093/bioinformatics/17.1.107
10.24963/ijcai.2018/505
10.1016/j.acha.2010.04.005
10.1109/72.712151
10.1007/s10115-007-0103-5
10.3115/v1/D14-1179
10.1214/aoms/1177706098
10.24963/ijcai.2019/563
10.1609/aaai.v32i1.11604
10.1162/neco.1997.9.8.1735
10.1109/TNN.2003.810735
10.1609/aaai.v32i1.11782
10.1186/s13321-019-0396-x
10.1016/j.neunet.2004.06.009
10.1109/TNN.2008.2005605
10.1109/TNNLS.2018.2804443
10.1016/j.artint.2014.08.003
10.1609/aaai.v32i1.11872
10.1162/0899766053491878
10.1109/TSMCB.2005.846635
10.1609/aaai.v33i01.33013558
10.1609/aaai.v33i01.33011110
10.1109/TNNLS.2012.2222044
10.1016/j.neucom.2008.12.021
10.24963/ijcai.2019/366
10.18653/v1/W18-5101
10.1016/j.knosys.2019.105020
10.1109/CVPR.2017.11
10.1007/BF00994018
10.1007/978-3-030-01418-6_41
10.1109/72.279181
10.1186/s40649-019-0069-y
10.1109/TNN.2009.2015974
10.1016/j.patcog.2018.07.023
10.18653/v1/P18-1026
10.1109/TNN.2004.837783
10.1093/bioinformatics/bty294
10.1023/A:1008368105614
10.1093/bioinformatics/bti1007
10.1609/aaai.v34i04.5803
10.1093/bioinformatics/btz307
10.3115/v1/P15-1150
10.1145/3326362
10.18653/v1/D17-1159
10.1109/TNNLS.2018.2803523
10.1109/5.58325
10.1007/BF02551274
10.1016/S0022-2836(03)00628-4
10.1609/aimag.v29i3.2157
10.1016/j.neunet.2005.07.009
10.1007/978-3-030-01228-1_25
10.7551/mitpress/7503.003.0205
10.1016/j.neucom.2018.05.095
10.1109/MSP.2017.2693418
10.2174/138161207780765981
10.1007/s11222-007-9033-z
10.1109/72.572108
10.1109/TNN.2008.2010350
10.1016/j.knosys.2013.03.012
10.24963/ijcai.2018/439
10.1023/A:1007649326333
10.18653/v1/N18-2078
10.1109/TPAMI.2007.1115
10.1021/jm00106a046
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.neunet.2020.06.006
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 221
ExternalDocumentID 10_1016_j_neunet_2020_06_006
S0893608020302197
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
EFKBS
ID FETCH-LOGICAL-c385t-d16f1b8200c489fb9330bfa25be3d0f90679af226a04d2968180e0b7752b3e073
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Thu Sep 04 17:51:42 EDT 2025
Tue Jul 01 01:24:36 EDT 2025
Thu Apr 24 22:51:43 EDT 2025
Fri Feb 23 02:46:21 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Learning for structured data
Graph neural networks
Deep learning for graphs
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-d16f1b8200c489fb9330bfa25be3d0f90679af226a04d2968180e0b7752b3e073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/11568/1045719
PQID 2415299399
PQPubID 23479
PageCount 19
ParticipantIDs proquest_miscellaneous_2415299399
crossref_citationtrail_10_1016_j_neunet_2020_06_006
crossref_primary_10_1016_j_neunet_2020_06_006
elsevier_sciencedirect_doi_10_1016_j_neunet_2020_06_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationTitle Neural networks
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References (pp. 609–618).
De Cao, Kipf (b27) 2018
(pp. 412–422).
Cho, Kyunghyun, van Merrienboer, Bart, Gülçehre, Çaglar, Bahdanau, Dzmitry, Bougares, Fethi, & Schwenk, Holger, et al. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. In
Macskassy, Provost (b83) 2007; 8
Perozzi, Al-Rfou, Skiena (b95) 2014
You, Jiaxuan, Ying, Rex, Ren, Xiang, Hamilton, William L., & Leskovec, Jure (2018). GraphRNN: Generating realistic graphs with deep auto-regressive models. In
Ribeiro, Saverese, Figueiredo (b98) 2017
(pp. 1601–1608).
(pp. 1556–1566).
Simonovsky, Martin, & Komodakis, Nikos GraphVAE: Towards generation of small graphs using variational autoencoders. In
Zaheer, Manzil, Kottur, Satwik, Ravanbakhsh, Siamak, Poczos, Barnabas, Salakhutdinov, Ruslan R., & Smola, Alexander J. (2017). Deep sets. In
Debnath, Lopez de Compadre, Debnath, Shusterman, Hansch (b28) 1991; 34
Mishra, Pushkar, Yannakoudakis, Helen, & Shutova, Ekaterina (2018). Neural character-based composition models for abuse detection. In
Namata, Galileo Mark, London, Ben, Getoor, Lise, & Huang, Bert (2012). Query-driven active surveying for collective classification. In
Tolstikhin, Ilya, Bousquet, Olivier, Gelly, Sylvain, & Schoelkopf, Bernhard (2018). Wasserstein auto-encoders. In
Hammer, Micheli, Sperduti, Strickert (b58) 2004; 17
Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones, Llion, & Gomez, Aidan N., et al. (2017). Attention is all you need. In
Zhang, Cui, Zhu (b142) 2018
Gallicchio, Micheli (b44) 2010
(pp. 1110–1117).
Gallicchio, Claudio, & Micheli, Alessio (2020). Fast and deep graph neural networks. In
Sperduti, Starita (b113) 1997; 8
Errica, Federico, Podda, Marco, Bacciu, Davide, & Micheli, Alessio (2020). A fair comparison of graph neural networks for graph classification. In
LeCun, Bengio (b75) 1995; 3361
(pp. 7795–7804).
Grover, Leskovec (b50) 2016
Liu, Qi, Allamanis, Miltiadis, Brockschmidt, Marc, & Gaunt, Alexander (2018). Constrained graph variational autoencoders for molecule design. In
(pp. 3700–3710).
(pp. 2635–2641).
Bruna, Joan, Zaremba, Wojciech, Szlam, Arthur, & LeCun, Yann (2014). Spectral networks and locally connected networks on graphs. In
Hagenbuchner, Sperduti, Tsoi (b53) 2009; 72
(pp. 488–495).
Zambon, Alippi, Livi (b140) 2018; 29
Dobson, Doig (b31) 2003; 330
Feng, Yifan, You, Haoxuan, Zhang, Zizhao, Ji, Rongrong, & Gao, Yue (2019). Hypergraph neural networks. In
Yin, Li, Zhang, Lu (b134) 2019; 185
Bacciu, Errica, Micheli (b3) 2018
.
Cortes, Vapnik (b25) 1995; 20
Socher, Richard, Lin, Cliff C., Manning, Chris, & Ng, Andrew Y. (2011). Parsing natural scenes and natural language with recursive neural networks. In
Hammer, Micheli, Sperduti (b56) 2005; 17
Xu, Keyulu, Hu, Weihua, Leskovec, Jure, & Jegelka, Stefanie (2019). How powerful are graph neural networks? In
Yang, Liang, Kang, Zesheng, Cao, Xiaochun, Jin, Di, Yang, Bo, & Guo, Yuanfang Topology optimization based graph convolutional network. In
Chapelle, Schölkopf, Zien (b22) 2006; 20
Erdős, Rényi (b33) 1960; 5
(pp. 273–283).
Ivanov, Sergey, & Burnaev, Evgeny (2018). Anonymous walk embeddings. In
(pp. 3693–3702).
(pp. 486–492).
Bobadilla, Ortega, Hernando, Gutiérrez (b13) 2013; 46
Jiang, Jianwen, Wei, Yuxuan, Feng, Yifan, Cao, Jingxuan, & Gao, Yue (2019). Dynamic hypergraph neural networks. In
(pp. 1506–1515).
Fey, Lenssen (b39) 2019
(pp. 1724–1734).
Duvenaud, David K., Maclaurin, Dougal, Iparraguirre, Jorge, Bombarelli, Rafael, Hirzel, Timothy, & Aspuru-Guzik, Alan, et al. (2015). Convolutional networks on graphs for learning molecular fingerprints. In
Jin, Wengong, Barzilay, Regina, & Jaakkola, Tommi S. (2018). Junction tree variational autoencoder for molecular graph generation. In
Wang, Sun, Liu, Sarma, Bronstein, Solomon (b126) 2019; 38
Calandriello, Daniele, Koutis, Ioannis, Lazaric, Alessandro, & Valko, Michal (2018). Improved large-scale graph learning through ridge spectral sparsification. In
(pp. 3558–3565).
(pp. 2434–2444).
Bondy, Murty (b15) 1976
(pp. 3844–3852).
Lee, Junhyun, Lee, Inyeop, & Kang, Jaewoo (2019). Self-attention graph pooling. In
Yanardag, Vishwanathan (b132) 2015
Lovász (b81) 1993; 2
Zhang, Tong, Xu, Maciejewski (b144) 2019; 6
(pp. 2672–2680).
Frederik Diehl, Brunner, Knoll (b42) 2019
(pp. 1–10).
Shervashidze, Nino, Vishwanathan, SVN, Petri, Tobias, Mehlhorn, Kurt, & Borgwardt, Karsten (2009). Efficient graphlet kernels for large graph comparison. In
(pp. 5453–5462).
Zhang, Muhan, Cui, Zhicheng, Neumann, Marion, & Chen, Yixin (2018). An end-to-end deep learning architecture for graph classification. In
Bojchevski, Aleksandar, Shchur, Oleksandr, Zügner, Daniel, & Günnemann, Stephan (2018). NetGAN: Generating graphs via random walks. In
Bradshaw, John, Paige, Brooks, Kusner, Matt J., Segler, Marwin, & Hernández-Lobato, José Miguel (2019). A model to search for synthesizable molecules. In
Qu, Meng, Bengio, Yoshua, & Tang, Jian (2019). GMNN: Graph Markov neural networks. In
(pp. 5998–6008).
Wang, Yu, Zheng, Gan, Gai, Ye (b128) 2019
Sen, Namata, Bilgic, Getoor, Galligher, Eliassi-Rad (b106) 2008; 29
Bacciu, Davide, Micheli, Alessio, & Podda, Marco (2019b). Graph generation by sequential edge prediction. In
Gilbert (b47) 1959; 30
Kingma, Diederik P., & Welling, Max (2014). Auto-encoding variational Bayes. In
Li, Yujia, Tarlow, Daniel, Brockschmidt, Marc, & Zemel, Richard S. (2016). Gated graph sequence neural networks. In
Zhang, Zizhao, Lin, Haojie, Gao, Yue, & BNRist, KLISS (2018). Dynamic hypergraph structure learning. In
Bianucci, Micheli, Sperduti, Starita (b10) 2000; 12
Cybenko (b26) 1989; 2
Neuhaus, Bunke (b94) 2005; 35
Kohonen (b73) 1990; 78
Bengio, Simard, Frasconi (b9) 1994; 5
Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, Xu, Bing, Warde-Farley, David, & Ozair, Sherjil, et al. (2014). Generative adversarial nets. In
(pp. 3734–3743).
(pp. 4054–4061).
Dhillon, Guan, Kulis (b30) 2007; 29
Velickovic, Petar, Cucurull, Guillem, Casanova, Arantxa, Romero, Adriana, Lio, Pietro, & Bengio, Yoshua (2018). Graph attention networks. In
Blackledge (b12) 2005
Nechaev, Corcoglioniti, Giuliano (b93) 2018; 7
(pp. 2083–2092).
Frasconi, Gori, Sperduti (b41) 1998; 9
(pp. 129–136).
Jeon, Kim (b66) 2019; 35
Schlichtkrull, Kipf, Bloem, van den Berg, Titov, Welling (b104) 2018
Jang, Eric, Gu, Shixiang, & Poole, Ben (2017). Categorical reparametrization with gumbel-softmax. In
(pp. 2508–2515).
Yu, Bing, Yin, Haoteng, & Zhu, Zhanxing (2018). Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. In
Ying, Zhitao, You, Jiaxuan, Morris, Christopher, Ren, Xiang, Hamilton, Will, & Leskovec, Jure (2018). Hierarchical graph representation learning with differentiable pooling. In
Tai, Kai Sheng, Socher, Richard, & Manning, Christopher D. (2015). Improved semantic representations from tree-structured Long Short-Term Memory networks. In
(pp. 3162–3169).
Shchur, Mumme, Bojchevski, Günnemann (b107) 2018
Micheli (b87) 2009; 20
Samanta, Bidisha, De, Abir, Jana, Gourhari, Chattaraj, Pratim Kumar, Ganguly, Niloy, & Rodriguez, Manuel Gomez (2019). NeVAE: A deep generative model for molecular graphs. In
Wu, Pan, Chen, Long, Zhang, Yu (b129) 2019
Wang, Xiaolong, & Gupta, Abhinav (2018). Videos as space-time region graphs. In
Kipf, Thomas N., & Welling, Max (2017). Semi-supervised classification with graph convolutional networks. In
Von Luxburg (b122) 2007; 17
Hammond, Vandergheynst, Gribonval (b59) 2011; 30
(pp. 3391–3401).
Schomburg, Chang, Ebeling, Gremse, Heldt, Huhn (b105) 2004; 32
Grover, Aditya, Zweig, Aaron, & Ermon, Stefano (2019). Graphite: Iterative generative modeling of graphs. In
Hagenbuchner, Sperduti, Tsoi (b52) 2003; 14
Jin, Zhang (b69) 2019
Defferrard, Michaël, Bresson, Xavier, & Vandergheynst, Pierre (2016). Convolutional neural networks on graphs with fast localized spectral filtering. In
Simonovsky, Martin, & Komodakis, Nikos (2017). Dynamic edge-conditioned filters in convolutional neural networks on graphs. In
(pp. 2224–2232).
Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, Malinowski (b7) 2018
Feng, He, Tang, Chua (b37) 2019
Bacciu, Micheli, Podda (b4) 2019
Hochreiter, Schmidhuber (b62) 1997; 9
Micheli, Sona, Sperduti (b88) 2004; 15
Trentin, Rigutini (b117) 2009
Bacciu, Bruno (b1) 2020
Saul, Jordan (b102) 1999; 37
Iadarola (b63) 2018
Kipf, Welling (b71) 2016
Kwon, Yoo, Choi, Son, Lee, Kang (b74) 2019; 11
Fan, Huang (b36) 2019
Vishwanathan, Schraudolph, Kondor, Borgwardt (b121) 2010; 11
Maas, Hannun, Ng (b82) 2013
(pp. 6487–6494).
Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini (b103) 2009; 20
Wang, Hongwei, Wang, Jia, Wang, Jialin, Zhao, Miao, Zhang, Weinan, & Zhang, Fuzheng, et al. GraphGAN: Graph representation learning with generative adversarial nets. In
Hammer, Micheli, Sperduti, Strickert (b57) 2004; 57
(pp. 5241–5250).
Hochreiter (b61) 1991; 91
Bacciu, Micheli, Sperduti (b6) 2012; 23
Marcheggiani, Diego, & Titov, Ivan (2017). Encoding sentences with graph convolutional networks for semantic role labeling. In
Zhou, Dengyong, Huang, Jiayuan, & Schölkopf, Bernhard (2007). Learning with hypergraphs: Clustering, classification, and embedding. In
Velickovic, Petar, Fedus, William, Hamilton, William L., Liò, Pietro, Bengio, Yoshua, & Hjelm, R.  Devon (2019). Deep graph infomax. In
(pp. 524–532).
Micheli, Sperduti, Starita (b89) 2007; 13
Borgwardt, Ong, Schönauer, Vishwanathan, Smola, Kriegel (b17) 2005; 21
Shervashidze, Schweitzer, Leeuwen, Mehlhorn, Borgwardt (b108) 2011; 12
Li, Vinyals, Dyer, Pascanu, Battaglia (b79) 2018
(pp. 1263–1272).
Biggio, Roli (b11) 2018; 84
Friedman, Hastie, Tibshirani (b43) 2001
Gilmer, Justin, Schoenholz, Samuel S., Riley, Patrick F., Vinyals, Oriol, & Dahl, George E. (2017). Neural message passing for quantum chemistry. In
Hamilton, Will, Ying, Zhitao, & Leskovec, Jure (2017a). Inductive representation learning on large graphs. In
Beck, Daniel, Haffari, Gholamreza, & Cohn, Trevor (2018). Graph-to-sequence learning using gated graph neural networks. In
(pp. 1024–1034).
Sadhanala, Wang, Tibshirani (b99) 2016
Xu, Keyulu, Li, Chengtao, Tian, Yonglong, Sonobe, Tomohiro, Kawarabayash
10.1016/j.neunet.2020.06.006_b109
Yanardag (10.1016/j.neunet.2020.06.006_b132) 2015
10.1016/j.neunet.2020.06.006_b51
Wang (10.1016/j.neunet.2020.06.006_b126) 2019; 38
Bianucci (10.1016/j.neunet.2020.06.006_b10) 2000; 12
Bacciu (10.1016/j.neunet.2020.06.006_b3) 2018
10.1016/j.neunet.2020.06.006_b54
Bondy (10.1016/j.neunet.2020.06.006_b15) 1976
Hagenbuchner (10.1016/j.neunet.2020.06.006_b52) 2003; 14
Gilbert (10.1016/j.neunet.2020.06.006_b47) 1959; 30
Trentin (10.1016/j.neunet.2020.06.006_b116) 2018; 313
10.1016/j.neunet.2020.06.006_b112
Zhang (10.1016/j.neunet.2020.06.006_b144) 2019; 6
Saul (10.1016/j.neunet.2020.06.006_b102) 1999; 37
10.1016/j.neunet.2020.06.006_b110
10.1016/j.neunet.2020.06.006_b111
Wang (10.1016/j.neunet.2020.06.006_b128) 2019
10.1016/j.neunet.2020.06.006_b48
10.1016/j.neunet.2020.06.006_b49
San Kim (10.1016/j.neunet.2020.06.006_b101) 2019; 14
Biggio (10.1016/j.neunet.2020.06.006_b11) 2018; 84
Debnath (10.1016/j.neunet.2020.06.006_b28) 1991; 34
Friedman (10.1016/j.neunet.2020.06.006_b43) 2001
10.1016/j.neunet.2020.06.006_b45
Hammer (10.1016/j.neunet.2020.06.006_b57) 2004; 57
10.1016/j.neunet.2020.06.006_b46
Frasconi (10.1016/j.neunet.2020.06.006_b41) 1998; 9
10.1016/j.neunet.2020.06.006_b100
Schomburg (10.1016/j.neunet.2020.06.006_b105) 2004; 32
Hammond (10.1016/j.neunet.2020.06.006_b59) 2011; 30
Frederik Diehl (10.1016/j.neunet.2020.06.006_b42) 2019
Gallicchio (10.1016/j.neunet.2020.06.006_b44) 2010
Hochreiter (10.1016/j.neunet.2020.06.006_b61) 1991; 91
Zitnik (10.1016/j.neunet.2020.06.006_b146) 2018; 34
10.1016/j.neunet.2020.06.006_b76
Sadhanala (10.1016/j.neunet.2020.06.006_b99) 2016
10.1016/j.neunet.2020.06.006_b77
Vishwanathan (10.1016/j.neunet.2020.06.006_b121) 2010; 11
10.1016/j.neunet.2020.06.006_b78
Frasconi (10.1016/j.neunet.2020.06.006_b40) 2014; 217
Hamilton (10.1016/j.neunet.2020.06.006_b55) 2017; 40
10.1016/j.neunet.2020.06.006_b70
Bengio (10.1016/j.neunet.2020.06.006_b9) 1994; 5
Cortes (10.1016/j.neunet.2020.06.006_b25) 1995; 20
10.1016/j.neunet.2020.06.006_b72
Ribeiro (10.1016/j.neunet.2020.06.006_b98) 2017
Hammer (10.1016/j.neunet.2020.06.006_b56) 2005; 17
De Cao (10.1016/j.neunet.2020.06.006_b27) 2018
Lovász (10.1016/j.neunet.2020.06.006_b81) 1993; 2
Micheli (10.1016/j.neunet.2020.06.006_b88) 2004; 15
Cybenko (10.1016/j.neunet.2020.06.006_b26) 1989; 2
Von Luxburg (10.1016/j.neunet.2020.06.006_b122) 2007; 17
Ralaivola (10.1016/j.neunet.2020.06.006_b97) 2005; 18
Bongini (10.1016/j.neunet.2020.06.006_b16) 2018; 29
LeCun (10.1016/j.neunet.2020.06.006_b75) 1995; 3361
Grover (10.1016/j.neunet.2020.06.006_b50) 2016
10.1016/j.neunet.2020.06.006_b64
10.1016/j.neunet.2020.06.006_b65
Borgwardt (10.1016/j.neunet.2020.06.006_b17) 2005; 21
Dhillon (10.1016/j.neunet.2020.06.006_b30) 2007; 29
10.1016/j.neunet.2020.06.006_b67
10.1016/j.neunet.2020.06.006_b68
Sperduti (10.1016/j.neunet.2020.06.006_b113) 1997; 8
Bacciu (10.1016/j.neunet.2020.06.006_b6) 2012; 23
Chapelle (10.1016/j.neunet.2020.06.006_b22) 2006; 20
Erdős (10.1016/j.neunet.2020.06.006_b33) 1960; 5
Sen (10.1016/j.neunet.2020.06.006_b106) 2008; 29
Kohonen (10.1016/j.neunet.2020.06.006_b73) 1990; 78
Hochreiter (10.1016/j.neunet.2020.06.006_b62) 1997; 9
10.1016/j.neunet.2020.06.006_b18
Hammer (10.1016/j.neunet.2020.06.006_b58) 2004; 17
10.1016/j.neunet.2020.06.006_b96
Kipf (10.1016/j.neunet.2020.06.006_b71) 2016
10.1016/j.neunet.2020.06.006_b14
Massarelli (10.1016/j.neunet.2020.06.006_b86) 2019
Nechaev (10.1016/j.neunet.2020.06.006_b93) 2018; 7
10.1016/j.neunet.2020.06.006_b90
Dobson (10.1016/j.neunet.2020.06.006_b31) 2003; 330
10.1016/j.neunet.2020.06.006_b91
Fey (10.1016/j.neunet.2020.06.006_b39) 2019
10.1016/j.neunet.2020.06.006_b92
Perozzi (10.1016/j.neunet.2020.06.006_b95) 2014
Jeon (10.1016/j.neunet.2020.06.006_b66) 2019; 35
Bacciu (10.1016/j.neunet.2020.06.006_b4) 2019
Yin (10.1016/j.neunet.2020.06.006_b134) 2019; 185
10.1016/j.neunet.2020.06.006_b138
Kwon (10.1016/j.neunet.2020.06.006_b74) 2019; 11
10.1016/j.neunet.2020.06.006_b139
10.1016/j.neunet.2020.06.006_b136
10.1016/j.neunet.2020.06.006_b137
Feng (10.1016/j.neunet.2020.06.006_b37) 2019
10.1016/j.neunet.2020.06.006_b84
10.1016/j.neunet.2020.06.006_b85
Trentin (10.1016/j.neunet.2020.06.006_b117) 2009
Bacciu (10.1016/j.neunet.2020.06.006_b1) 2020
Macskassy (10.1016/j.neunet.2020.06.006_b83) 2007; 8
Blackledge (10.1016/j.neunet.2020.06.006_b12) 2005
10.1016/j.neunet.2020.06.006_b80
Shchur (10.1016/j.neunet.2020.06.006_b107) 2018
10.1016/j.neunet.2020.06.006_b145
10.1016/j.neunet.2020.06.006_b143
Bronstein (10.1016/j.neunet.2020.06.006_b19) 2017; 34
10.1016/j.neunet.2020.06.006_b141
Wu (10.1016/j.neunet.2020.06.006_b129) 2019
Li (10.1016/j.neunet.2020.06.006_b79) 2018
Maas (10.1016/j.neunet.2020.06.006_b82) 2013
10.1016/j.neunet.2020.06.006_b38
Zambon (10.1016/j.neunet.2020.06.006_b140) 2018; 29
Jin (10.1016/j.neunet.2020.06.006_b69) 2019
10.1016/j.neunet.2020.06.006_b127
10.1016/j.neunet.2020.06.006_b125
Bobadilla (10.1016/j.neunet.2020.06.006_b13) 2013; 46
Hagenbuchner (10.1016/j.neunet.2020.06.006_b53) 2009; 72
10.1016/j.neunet.2020.06.006_b32
Ying (10.1016/j.neunet.2020.06.006_b135) 2018
10.1016/j.neunet.2020.06.006_b34
10.1016/j.neunet.2020.06.006_b35
Schlichtkrull (10.1016/j.neunet.2020.06.006_b104) 2018
Bacciu (10.1016/j.neunet.2020.06.006_b2) 2019
Micheli (10.1016/j.neunet.2020.06.006_b87) 2009; 20
10.1016/j.neunet.2020.06.006_b133
10.1016/j.neunet.2020.06.006_b130
10.1016/j.neunet.2020.06.006_b131
Scarselli (10.1016/j.neunet.2020.06.006_b103) 2009; 20
Wale (10.1016/j.neunet.2020.06.006_b124) 2008; 14
10.1016/j.neunet.2020.06.006_b118
10.1016/j.neunet.2020.06.006_b29
10.1016/j.neunet.2020.06.006_b119
Zhang (10.1016/j.neunet.2020.06.006_b142) 2018
Iadarola (10.1016/j.neunet.2020.06.006_b63) 2018
10.1016/j.neunet.2020.06.006_b114
10.1016/j.neunet.2020.06.006_b115
Battaglia (10.1016/j.neunet.2020.06.006_b7) 2018
10.1016/j.neunet.2020.06.006_b20
10.1016/j.neunet.2020.06.006_b21
Fan (10.1016/j.neunet.2020.06.006_b36) 2019
10.1016/j.neunet.2020.06.006_b23
10.1016/j.neunet.2020.06.006_b24
10.1016/j.neunet.2020.06.006_b5
Shervashidze (10.1016/j.neunet.2020.06.006_b108) 2011; 12
Helma (10.1016/j.neunet.2020.06.006_b60) 2001; 17
Micheli (10.1016/j.neunet.2020.06.006_b89) 2007; 13
10.1016/j.neunet.2020.06.006_b8
Neuhaus (10.1016/j.neunet.2020.06.006_b94) 2005; 35
10.1016/j.neunet.2020.06.006_b123
Zügner (10.1016/j.neunet.2020.06.006_b147) 2018
10.1016/j.neunet.2020.06.006_b120
References_xml – volume: 57
  start-page: 3
  year: 2004
  end-page: 35
  ident: b57
  article-title: A general framework for unsupervised processing of structured data
  publication-title: Neurocomputing
– volume: 14
  year: 2019
  ident: b101
  article-title: Graph convolutional network approach applied to predict hourly bike-sharing demands considering spatial, temporal, and global effects
  publication-title: PloS One
– reference: Calandriello, Daniele, Koutis, Ioannis, Lazaric, Alessandro, & Valko, Michal (2018). Improved large-scale graph learning through ridge spectral sparsification. In
– start-page: 701
  year: 2014
  end-page: 710
  ident: b95
  article-title: Deepwalk: Online learning of social representations
  publication-title: Proceedings of the 20th international conference on knowledge discovery and data mining (SIGKDD)
– reference: (pp. 6487–6494).
– reference: Cho, Kyunghyun, van Merrienboer, Bart, Gülçehre, Çaglar, Bahdanau, Dzmitry, Bougares, Fethi, & Schwenk, Holger, et al. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. In
– reference: Marcheggiani, Diego, Bastings, Joost, & Titov, Ivan (2018). Exploiting semantics in neural machine translation with graph convolutional networks. In
– reference: Xu, Keyulu, Hu, Weihua, Leskovec, Jure, & Jegelka, Stefanie (2019). How powerful are graph neural networks? In
– volume: 30
  start-page: 1141
  year: 1959
  end-page: 1144
  ident: b47
  article-title: Random graphs
  publication-title: The Annals of Mathematical Statistics
– volume: 2
  start-page: 1
  year: 1993
  end-page: 46
  ident: b81
  article-title: Random walks on graphs: A survey
  publication-title: Combinatorics, Paul Erdos is Eighty
– reference: (pp. 486–492).
– reference: (pp. 7935–7947).
– year: 2001
  ident: b43
  article-title: The elements of statistical learning, Vol. 1
– reference: Jang, Eric, Gu, Shixiang, & Poole, Ben (2017). Categorical reparametrization with gumbel-softmax. In
– year: 2019
  ident: b129
  article-title: A comprehensive survey on graph neural networks
– reference: Fahlman, Scott E., & Lebiere, Christian (1990). The Cascade-Correlation learning architecture. In
– start-page: 294
  year: 2019
  end-page: 306
  ident: b2
  article-title: A non-negative factorization approach to node pooling in graph convolutional neural networks
  publication-title: AI*IA 2019 – Advances in artificial intelligence
– volume: 20
  start-page: 542
  year: 2006
  ident: b22
  article-title: Semi-supervised learning
  publication-title: IEEE Transactions on Neural Networks
– reference: (pp. 524–532).
– reference: Jiang, Jianwen, Wei, Yuxuan, Feng, Yifan, Cao, Jingxuan, & Gao, Yue (2019). Dynamic hypergraph neural networks. In
– reference: Zaheer, Manzil, Kottur, Satwik, Ravanbakhsh, Siamak, Poczos, Barnabas, Salakhutdinov, Ruslan R., & Smola, Alexander J. (2017). Deep sets. In
– volume: 21
  start-page: i47
  year: 2005
  end-page: i56
  ident: b17
  article-title: Protein function prediction via graph kernels
  publication-title: Bioinformatics
– reference: Marcheggiani, Diego, & Titov, Ivan (2017). Encoding sentences with graph convolutional networks for semantic role labeling. In
– reference: Simonovsky, Martin, & Komodakis, Nikos GraphVAE: Towards generation of small graphs using variational autoencoders. In
– volume: 2
  start-page: 303
  year: 1989
  end-page: 314
  ident: b26
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Mathematics of Control, Signals and Systems
– year: 2018
  ident: b27
  article-title: MolGAN: An implicit generative model for small molecular graphs
  publication-title: Workshop on theoretical foundations and applications of deep generative models, international conference on machine learning (ICML)
– year: 1976
  ident: b15
  article-title: Graph theory with applications, Vol. 290
– reference: Bruna, Joan, Zaremba, Wojciech, Szlam, Arthur, & LeCun, Yann (2014). Spectral networks and locally connected networks on graphs. In
– year: 2019
  ident: b42
  article-title: Towards graph pooling by edge contraction
  publication-title: Workshop on learning and reasoning with graph-structured data, international conference on machine learning (ICML)
– year: 2018
  ident: b79
  article-title: Learning deep generative models of graphs
– reference: Jin, Wengong, Barzilay, Regina, & Jaakkola, Tommi S. (2018). Junction tree variational autoencoder for molecular graph generation. In
– reference: (pp. 1601–1608).
– start-page: 974
  year: 2018
  end-page: 983
  ident: b135
  article-title: Graph convolutional neural networks for web-scale recommender systems
  publication-title: Proceedings of the 24th international conference on knowledge discovery and data mining (SIGKDD)
– reference: Li, Yujia, Tarlow, Daniel, Brockschmidt, Marc, & Zemel, Richard S. (2016). Gated graph sequence neural networks. In
– reference: Shervashidze, Nino, Vishwanathan, SVN, Petri, Tobias, Mehlhorn, Kurt, & Borgwardt, Karsten (2009). Efficient graphlet kernels for large graph comparison. In
– reference: (pp. 609–618).
– reference: (pp. 2224–2232).
– reference: (pp. 399–417).
– reference: (pp. 1724–1734).
– reference: Hamilton, Will, Ying, Zhitao, & Leskovec, Jure (2017a). Inductive representation learning on large graphs. In
– reference: Li, Qimai, Han, Zhichao, & Wu, Xiao-Ming (2018). Deeper insights into graph convolutional networks for semi-supervised learning. In
– volume: 34
  start-page: i457
  year: 2018
  end-page: i466
  ident: b146
  article-title: Modeling polypharmacy side effects with graph convolutional networks
  publication-title: Bioinformatics
– volume: 14
  start-page: 491
  year: 2003
  end-page: 505
  ident: b52
  article-title: A self-organizing map for adaptive processing of structured data
  publication-title: IEEE Transactions on Neural Networks
– volume: 46
  start-page: 109
  year: 2013
  end-page: 132
  ident: b13
  article-title: Recommender systems survey
  publication-title: Knowledge-Based Systems
– reference: (pp. 4054–4061).
– start-page: 40
  year: 2009
  end-page: 49
  ident: b117
  article-title: A maximum-likelihood connectionist model for unsupervised learning over graphical domains
  publication-title: Proceedings of the 12th international conference on artificial neural networks (ICANN)
– volume: 5
  start-page: 17
  year: 1960
  end-page: 60
  ident: b33
  article-title: On the evolution of random graphs
  publication-title: Publications of the Mathematical Institute of the Hungarian Academy of Science
– volume: 8
  start-page: 714
  year: 1997
  end-page: 735
  ident: b113
  article-title: Supervised neural networks for the classification of structures
  publication-title: IEEE Transactions on Neural Networks
– reference: Samanta, Bidisha, De, Abir, Jana, Gourhari, Chattaraj, Pratim Kumar, Ganguly, Niloy, & Rodriguez, Manuel Gomez (2019). NeVAE: A deep generative model for molecular graphs. In
– reference: (pp. 2328–2337).
– reference: Beck, Daniel, Haffari, Gholamreza, & Cohn, Trevor (2018). Graph-to-sequence learning using gated graph neural networks. In
– reference: Ying, Zhitao, You, Jiaxuan, Morris, Christopher, Ren, Xiang, Hamilton, Will, & Leskovec, Jure (2018). Hierarchical graph representation learning with differentiable pooling. In
– volume: 17
  start-page: 107
  year: 2001
  end-page: 108
  ident: b60
  article-title: The predictive toxicology challenge 2000–2001
  publication-title: Bioinformatics
– volume: 18
  start-page: 1093
  year: 2005
  end-page: 1110
  ident: b97
  article-title: Graph kernels for chemical informatics
  publication-title: Neural Networks
– year: 2019
  ident: b39
  article-title: Fast graph representation learning with PyTorch Geometric
  publication-title: Workshop on representation learning on graphs and manifolds, international conference on learning representations (ICLR)
– reference: Namata, Galileo Mark, London, Ben, Getoor, Lise, & Huang, Bert (2012). Query-driven active surveying for collective classification. In
– volume: 91
  year: 1991
  ident: b61
  article-title: Untersuchungen zu dynamischen neuronalen netzen
  publication-title: Diploma, Technische Universität München
– volume: 330
  start-page: 771
  year: 2003
  end-page: 783
  ident: b31
  article-title: Distinguishing enzyme structures from non-enzymes without alignments
  publication-title: Journal of Molecular Biology
– reference: (pp. 3844–3852).
– reference: Tolstikhin, Ilya, Bousquet, Olivier, Gelly, Sylvain, & Schoelkopf, Bernhard (2018). Wasserstein auto-encoders. In
– volume: 72
  start-page: 1419
  year: 2009
  end-page: 1430
  ident: b53
  article-title: Graph self-organizing maps for cyclic and unbounded graphs
  publication-title: Neurocomputing
– reference: Liu, Qi, Allamanis, Miltiadis, Brockschmidt, Marc, & Gaunt, Alexander (2018). Constrained graph variational autoencoders for molecule design. In
– reference: Zhang, Zizhao, Lin, Haojie, Gao, Yue, & BNRist, KLISS (2018). Dynamic hypergraph structure learning. In
– reference: Feng, Yifan, You, Haoxuan, Zhang, Zizhao, Ji, Rongrong, & Gao, Yue (2019). Hypergraph neural networks. In
– volume: 17
  start-page: 1061
  year: 2004
  end-page: 1085
  ident: b58
  article-title: Recursive self-organizing network models
  publication-title: Neural Networks
– volume: 217
  start-page: 117
  year: 2014
  end-page: 143
  ident: b40
  article-title: Klog: A language for logical and relational learning with kernels
  publication-title: Artificial Intelligence
– volume: 35
  start-page: 503
  year: 2005
  end-page: 514
  ident: b94
  article-title: Self-organizing maps for learning the edit costs in graph matching
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
– volume: 34
  start-page: 25
  year: 2017
  ident: b19
  article-title: Geometric deep learning: going beyond Euclidean data
  publication-title: IEEE Signal Processing Magazine
– start-page: 1
  year: 2010
  end-page: 8
  ident: b44
  article-title: Graph echo state networks
  publication-title: Proceedings of the international joint conference on neural networks (IJCNN)
– volume: 9
  start-page: 768
  year: 1998
  end-page: 786
  ident: b41
  article-title: A general framework for adaptive processing of data structures
  publication-title: IEEE Transactions on Neural Networks
– reference: Zhang, Muhan, Cui, Zhicheng, Neumann, Marion, & Chen, Yixin (2018). An end-to-end deep learning architecture for graph classification. In
– volume: 29
  start-page: 1944
  year: 2007
  end-page: 1957
  ident: b30
  article-title: Weighted graph cuts without eigenvectors a multilevel approach
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: Duvenaud, David K., Maclaurin, Dougal, Iparraguirre, Jorge, Bombarelli, Rafael, Hirzel, Timothy, & Aspuru-Guzik, Alan, et al. (2015). Convolutional networks on graphs for learning molecular fingerprints. In
– reference: Velickovic, Petar, Cucurull, Guillem, Casanova, Arantxa, Romero, Adriana, Lio, Pietro, & Bengio, Yoshua (2018). Graph attention networks. In
– reference: (pp. 2191–2200).
– volume: 11
  start-page: 1201
  year: 2010
  end-page: 1242
  ident: b121
  article-title: Graph kernels
  publication-title: Journal of Machine Learning Research (JMLR)
– reference: (pp. 3558–3565).
– start-page: 1365
  year: 2015
  end-page: 1374
  ident: b132
  article-title: Deep graph kernels
  publication-title: Proceedings of the 21th international conference on knowledge discovery and data mining (SIGKDD
– start-page: 1250
  year: 2016
  end-page: 1259
  ident: b99
  article-title: Graph sparsification approaches for laplacian smoothing
  publication-title: Artificial intelligence and statistics
– start-page: 30
  year: 2005
  end-page: 49
  ident: b12
  article-title: Chapter 2 - 2d fourier theory
  publication-title: Digital image processing
– year: 2018
  ident: b107
  article-title: Pitfalls of graph neural network evaluation
  publication-title: Workshop on relational representation learning, neural information processing systems (NeurIPS)
– year: 2019
  ident: b37
  article-title: Graph adversarial training: Dynamically regularizing based on graph structure
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones, Llion, & Gomez, Aidan N., et al. (2017). Attention is all you need. In
– reference: (pp. 273–283).
– reference: Gallicchio, Claudio, & Micheli, Alessio (2020). Fast and deep graph neural networks. In
– reference: Gilmer, Justin, Schoenholz, Samuel S., Riley, Patrick F., Vinyals, Oriol, & Dahl, George E. (2017). Neural message passing for quantum chemistry. In
– reference: (pp. 687–696).
– volume: 11
  start-page: 70
  year: 2019
  ident: b74
  article-title: Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation
  publication-title: Journal of Cheminformatics
– reference: Mishra, Pushkar, Yannakoudakis, Helen, & Shutova, Ekaterina (2018). Neural character-based composition models for abuse detection. In
– reference: (pp. 412–422).
– reference: (pp. 3391–3401).
– reference: (pp. 2508–2515).
– volume: 29
  start-page: 5441
  year: 2018
  end-page: 5458
  ident: b16
  article-title: Recursive neural networks for density estimation over generalized random graphs
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– reference: Tai, Kai Sheng, Socher, Richard, & Manning, Christopher D. (2015). Improved semantic representations from tree-structured Long Short-Term Memory networks. In
– reference: Simonovsky, Martin, & Komodakis, Nikos (2017). Dynamic edge-conditioned filters in convolutional neural networks on graphs. In
– start-page: 309
  year: 2019
  end-page: 329
  ident: b86
  article-title: Safe: Self-attentive function embeddings for binary similarity
  publication-title: Proceedings of the 16th international conference on detection of intrusions and malware, and vulnerability assessment (DIMVA)
– reference: (pp. 1263–1272).
– year: 2013
  ident: b82
  article-title: Rectifier nonlinearities improve neural network acoustic models
  publication-title: Workshop on deep learning for audio, speech and language processing, international conference on machine learning (ICML)
– start-page: 385
  year: 2017
  end-page: 394
  ident: b98
  article-title: Struc2vec: Learning node representations from structural identity
  publication-title: Proceedings of the 23rd international conference on knowledge discovery and data mining (SIGKDD)
– reference: Grover, Aditya, Zweig, Aaron, & Ermon, Stefano (2019). Graphite: Iterative generative modeling of graphs. In
– volume: 78
  start-page: 1464
  year: 1990
  end-page: 1480
  ident: b73
  article-title: The self-organizing map
  publication-title: Proceedings of the IEEE
– reference: (pp. 2434–2444).
– reference: Bacciu, Davide, Micheli, Alessio, & Podda, Marco (2019b). Graph generation by sequential edge prediction. In
– volume: 23
  start-page: 1987
  year: 2012
  end-page: 2002
  ident: b6
  article-title: Compositional generative mapping for tree-structured data - part I: Bottom-up probabilistic modeling of trees
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– year: 2019
  ident: b128
  article-title: Deep graph library: Towards efficient and scalable deep learning on graphs
  publication-title: Workshop on representation learning on graphs and manifolds, international conference on learning representations (ICLR)
– start-page: 294
  year: 2018
  end-page: 303
  ident: b3
  article-title: Contextual graph Markov model: A deep and generative approach to graph processing
  publication-title: Proceedings of the 35th international conference on machine learning (ICML), Vol. 80
– volume: 13
  start-page: 1469
  year: 2007
  end-page: 1496
  ident: b89
  article-title: An introduction to recursive neural networks and kernel methods for cheminformatics
  publication-title: Current Pharmaceutical Design
– volume: 40
  start-page: 52
  year: 2017
  end-page: 74
  ident: b55
  article-title: Representation learning on graphs: Methods and applications
  publication-title: IEEE Data Engineering Bulletin
– volume: 14
  start-page: 347
  year: 2008
  end-page: 375
  ident: b124
  article-title: Comparison of descriptor spaces for chemical compound retrieval and classification
  publication-title: Knowledge and Information Systems
– start-page: 855
  year: 2016
  end-page: 864
  ident: b50
  article-title: Node2vec: Scalable feature learning for networks
  publication-title: Proceedings of the 22nd international conference on knowledge discovery and data mining (SIGKDD)
– volume: 17
  start-page: 1109
  year: 2005
  end-page: 1159
  ident: b56
  article-title: Universal approximation capability of cascade correlation for structures
  publication-title: Neural Computation
– reference: (pp. 3162–3169).
– reference: Wagstaff, Edward, Fuchs, Fabian B., Engelcke, Martin, Posner, Ingmar, & Osborne, Michael (2019). On the limitations of representing functions on sets. In
– start-page: 236
  year: 2020
  end-page: 245
  ident: b1
  article-title: Deep tree transductions - a short survey
  publication-title: Recent advances in big data and deep learning
– start-page: 2847
  year: 2018
  end-page: 2856
  ident: b147
  article-title: Adversarial attacks on neural networks for graph data
  publication-title: Proceedings of the 24th international conference on knowledge discovery and data mining (SIGKDD)
– reference: Errica, Federico, Podda, Marco, Bacciu, Davide, & Micheli, Alessio (2020). A fair comparison of graph neural networks for graph classification. In
– reference: Yu, Bing, Yin, Haoteng, & Zhu, Zhanxing (2018). Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. In
– reference: Wang, Xiaolong, & Gupta, Abhinav (2018). Videos as space-time region graphs. In
– volume: 34
  start-page: 786
  year: 1991
  end-page: 797
  ident: b28
  article-title: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds correlation with molecular orbital energies and hydrophobicity
  publication-title: Journal of Medicinal Chemistry
– reference: (pp. 2083–2092).
– reference: Bradshaw, John, Paige, Brooks, Kusner, Matt J., Segler, Marwin, & Hernández-Lobato, José Miguel (2019). A model to search for synthesizable molecules. In
– volume: 12
  start-page: 117
  year: 2000
  end-page: 147
  ident: b10
  article-title: Application of cascade correlation networks for structures to chemistry
  publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
– reference: Chen, Jie, Ma, Tengfei, & Xiao, Cao (2018). FastGCN: Fast learning with graph convolutional networks via importance sampling. In
– reference: Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, Xu, Bing, Warde-Farley, David, & Ozair, Sherjil, et al. (2014). Generative adversarial nets. In
– reference: (pp. 7795–7804).
– volume: 15
  start-page: 1396
  year: 2004
  end-page: 1410
  ident: b88
  article-title: Contextual processing of structured data by recursive cascade correlation
  publication-title: IEEE Transactions on Neural Networks
– volume: 84
  start-page: 317
  year: 2018
  end-page: 331
  ident: b11
  article-title: Wild patterns: Ten years after the rise of adversarial machine learning
  publication-title: Pattern Recognition
– volume: 30
  start-page: 129
  year: 2011
  end-page: 150
  ident: b59
  article-title: Wavelets on graphs via spectral graph theory
  publication-title: Applied and Computational Harmonic Analysis
– reference: (pp. 1–10).
– volume: 20
  start-page: 61
  year: 2009
  end-page: 80
  ident: b103
  article-title: The graph neural network model
  publication-title: IEEE Transactions on Neural Networks
– reference: You, Jiaxuan, Ying, Rex, Ren, Xiang, Hamilton, William L., & Leskovec, Jure (2018). GraphRNN: Generating realistic graphs with deep auto-regressive models. In
– volume: 6
  start-page: 11
  year: 2019
  ident: b144
  article-title: Graph convolutional networks: a comprehensive review
  publication-title: Computational Social Networks
– reference: Velickovic, Petar, Fedus, William, Hamilton, William L., Liò, Pietro, Bengio, Yoshua, & Hjelm, R.  Devon (2019). Deep graph infomax. In
– reference: (pp. 2672–2680).
– reference: (pp. 1024–1034).
– volume: 8
  start-page: 935
  year: 2007
  end-page: 983
  ident: b83
  article-title: Classification in networked data: A toolkit and a univariate case study
  publication-title: Journal of Machine Learning Research (JMLR)
– reference: Monti, Federico, Bronstein, Michael M., & Bresson, Xavier (2017). Geometric matrix completion with recurrent multi-graph neural networks. In
– reference: (pp. 5453–5462).
– reference: Ivanov, Sergey, & Burnaev, Evgeny (2018). Anonymous walk embeddings. In
– reference: Lee, Junhyun, Lee, Inyeop, & Kang, Jaewoo (2019). Self-attention graph pooling. In
– reference: Yang, Liang, Kang, Zesheng, Cao, Xiaochun, Jin, Di, Yang, Bo, & Guo, Yuanfang Topology optimization based graph convolutional network. In
– volume: 5
  start-page: 157
  year: 1994
  end-page: 166
  ident: b9
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Transactions on Neural Networks
– volume: 185
  start-page: 105020
  year: 2019
  ident: b134
  article-title: A deeper graph neural network for recommender systems
  publication-title: Knowledge-Based Systems
– volume: 32
  year: 2004
  ident: b105
  article-title: BRENDA, the enzyme database: updates and major new developments
  publication-title: Nucleic Acids Research
– reference: (pp. 129–136).
– year: 2019
  ident: b4
  article-title: Edge-based sequential graph generation with recurrent neural networks
  publication-title: Neurocomputing
– reference: Kipf, Thomas N., & Welling, Max (2017). Semi-supervised classification with graph convolutional networks. In
– volume: 29
  start-page: 5592
  year: 2018
  end-page: 5605
  ident: b140
  article-title: Concept drift and anomaly detection in graph streams
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– reference: (pp. 3734–3743).
– volume: 20
  start-page: 498
  year: 2009
  end-page: 511
  ident: b87
  article-title: Neural network for graphs: A contextual constructive approach
  publication-title: IEEE Transactions on Neural Networks
– reference: Xu, Keyulu, Li, Chengtao, Tian, Yonglong, Sonobe, Tomohiro, Kawarabayashi, Ken-ichi, & Jegelka, Stefanie (2018). Representation learning on graphs with jumping knowledge networks. In
– year: 2019
  ident: b36
  article-title: Conditional labeled graph generation with GANs
  publication-title: Workshop on representation learning on graphs and manifolds, international conference on learning representations (ICLR)
– year: 2018
  ident: b63
  article-title: Graph-based classification for detecting instances of bug patterns
– year: 2019
  ident: b69
  article-title: Latent adversarial training of graph convolution networks
  publication-title: Workshop on learning and reasoning with graph-structured representations, international conference on machine learning (ICML)
– reference: (pp. 1110–1117).
– volume: 37
  start-page: 75
  year: 1999
  end-page: 87
  ident: b102
  article-title: Mixed memory Markov models: Decomposing complex stochastic processes as mixtures of simpler ones
  publication-title: Machine Learning
– reference: Zhou, Dengyong, Huang, Jiayuan, & Schölkopf, Bernhard (2007). Learning with hypergraphs: Clustering, classification, and embedding. In
– reference: Gao, Hongyang, & Ji, Shuiwang (2019). Graph U-nets. In
– volume: 35
  start-page: 4979
  year: 2019
  end-page: 4985
  ident: b66
  article-title: FP2VEC: A new molecular featurizer for learning molecular properties
  publication-title: Bioinformatics
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b62
  article-title: Long short-term memory
  publication-title: Neural Computation
– start-page: 593
  year: 2018
  end-page: 607
  ident: b104
  article-title: Modeling relational data with graph convolutional networks
  publication-title: Proceedings of the 15th european semantic web conference (ESWC)
– volume: 29
  start-page: 93
  year: 2008
  ident: b106
  article-title: Collective classification in network data
  publication-title: AI Magazine
– reference: (pp. 2635–2641).
– volume: 7
  start-page: 251
  year: 2018
  end-page: 272
  ident: b93
  article-title: Sociallink: exploiting graph embeddings to link DBpedia entities to Twitter profiles
  publication-title: Progress in Artificial Intelligence
– volume: 12
  start-page: 2539
  year: 2011
  end-page: 2561
  ident: b108
  article-title: Weisfeiler-lehman graph kernels
  publication-title: Journal of Machine Learning Research (JMLR)
– reference: (pp. 3693–3702).
– reference: Defferrard, Michaël, Bresson, Xavier, & Vandergheynst, Pierre (2016). Convolutional neural networks on graphs with fast localized spectral filtering. In
– volume: 38
  start-page: 146
  year: 2019
  ident: b126
  article-title: Dynamic graph cnn for learning on point clouds
  publication-title: ACM Transactions on Graphics
– year: 2018
  ident: b142
  article-title: Deep learning on graphs: A survey
– reference: (pp. 488–495).
– volume: 313
  start-page: 14
  year: 2018
  end-page: 24
  ident: b116
  article-title: Nonparametric small random networks for graph-structured pattern recognition
  publication-title: Neurocomputing
– volume: 3361
  start-page: 1995
  year: 1995
  ident: b75
  article-title: Convolutional networks for images, speech, and time series
  publication-title: The Handbook of Brain Theory and Neural Networks
– reference: Qu, Meng, Bengio, Yoshua, & Tang, Jian (2019). GMNN: Graph Markov neural networks. In
– reference: (pp. 1556–1566).
– reference: .
– year: 2018
  ident: b7
  article-title: Relational inductive biases, deep learning, and graph networks
– reference: Kingma, Diederik P., & Welling, Max (2014). Auto-encoding variational Bayes. In
– reference: (pp. 1506–1515).
– reference: (pp. 3700–3710).
– reference: Wang, Hongwei, Wang, Jia, Wang, Jialin, Zhao, Miao, Zhang, Weinan, & Zhang, Fuzheng, et al. GraphGAN: Graph representation learning with generative adversarial nets. In
– reference: Socher, Richard, Lin, Cliff C., Manning, Chris, & Ng, Andrew Y. (2011). Parsing natural scenes and natural language with recursive neural networks. In
– reference: (pp. 5998–6008).
– year: 2016
  ident: b71
  article-title: Variational graph auto-encoders
  publication-title: Workshop on Bayesian deep learning, neural information processing system (NIPS)
– reference: (pp. 5241–5250).
– reference: Bojchevski, Aleksandar, Shchur, Oleksandr, Zügner, Daniel, & Günnemann, Stephan (2018). NetGAN: Generating graphs via random walks. In
– volume: 17
  start-page: 395
  year: 2007
  end-page: 416
  ident: b122
  article-title: A tutorial on spectral clustering
  publication-title: Statistics and Computing
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b25
  article-title: Support-vector networks
  publication-title: Machine Learning
– volume: 7
  start-page: 251
  issue: 4
  year: 2018
  ident: 10.1016/j.neunet.2020.06.006_b93
  article-title: Sociallink: exploiting graph embeddings to link DBpedia entities to Twitter profiles
  publication-title: Progress in Artificial Intelligence
  doi: 10.1007/s13748-018-0160-x
– volume: 57
  start-page: 3
  year: 2004
  ident: 10.1016/j.neunet.2020.06.006_b57
  article-title: A general framework for unsupervised processing of structured data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2004.01.008
– volume: 17
  start-page: 107
  issue: 1
  year: 2001
  ident: 10.1016/j.neunet.2020.06.006_b60
  article-title: The predictive toxicology challenge 2000–2001
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.1.107
– year: 2018
  ident: 10.1016/j.neunet.2020.06.006_b79
– ident: 10.1016/j.neunet.2020.06.006_b138
  doi: 10.24963/ijcai.2018/505
– volume: 30
  start-page: 129
  issue: 2
  year: 2011
  ident: 10.1016/j.neunet.2020.06.006_b59
  article-title: Wavelets on graphs via spectral graph theory
  publication-title: Applied and Computational Harmonic Analysis
  doi: 10.1016/j.acha.2010.04.005
– ident: 10.1016/j.neunet.2020.06.006_b139
– volume: 9
  start-page: 768
  issue: 5
  year: 1998
  ident: 10.1016/j.neunet.2020.06.006_b41
  article-title: A general framework for adaptive processing of data structures
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.712151
– volume: 14
  start-page: 347
  issue: 3
  year: 2008
  ident: 10.1016/j.neunet.2020.06.006_b124
  article-title: Comparison of descriptor spaces for chemical compound retrieval and classification
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-007-0103-5
– ident: 10.1016/j.neunet.2020.06.006_b131
– ident: 10.1016/j.neunet.2020.06.006_b68
– ident: 10.1016/j.neunet.2020.06.006_b24
  doi: 10.3115/v1/D14-1179
– volume: 30
  start-page: 1141
  issue: 4
  year: 1959
  ident: 10.1016/j.neunet.2020.06.006_b47
  article-title: Random graphs
  publication-title: The Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177706098
– ident: 10.1016/j.neunet.2020.06.006_b54
– ident: 10.1016/j.neunet.2020.06.006_b80
– ident: 10.1016/j.neunet.2020.06.006_b133
  doi: 10.24963/ijcai.2019/563
– start-page: 30
  year: 2005
  ident: 10.1016/j.neunet.2020.06.006_b12
  article-title: Chapter 2 - 2d fourier theory
– ident: 10.1016/j.neunet.2020.06.006_b77
  doi: 10.1609/aaai.v32i1.11604
– start-page: 40
  year: 2009
  ident: 10.1016/j.neunet.2020.06.006_b117
  article-title: A maximum-likelihood connectionist model for unsupervised learning over graphical domains
– year: 2018
  ident: 10.1016/j.neunet.2020.06.006_b142
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.neunet.2020.06.006_b62
  article-title: Long short-term memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– year: 2001
  ident: 10.1016/j.neunet.2020.06.006_b43
– volume: 14
  start-page: 491
  issue: 3
  year: 2003
  ident: 10.1016/j.neunet.2020.06.006_b52
  article-title: A self-organizing map for adaptive processing of structured data
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2003.810735
– ident: 10.1016/j.neunet.2020.06.006_b92
– year: 2018
  ident: 10.1016/j.neunet.2020.06.006_b27
  article-title: MolGAN: An implicit generative model for small molecular graphs
– ident: 10.1016/j.neunet.2020.06.006_b141
  doi: 10.1609/aaai.v32i1.11782
– volume: 40
  start-page: 52
  issue: 3
  year: 2017
  ident: 10.1016/j.neunet.2020.06.006_b55
  article-title: Representation learning on graphs: Methods and applications
  publication-title: IEEE Data Engineering Bulletin
– volume: 8
  start-page: 935
  issue: May
  year: 2007
  ident: 10.1016/j.neunet.2020.06.006_b83
  article-title: Classification in networked data: A toolkit and a univariate case study
  publication-title: Journal of Machine Learning Research (JMLR)
– year: 2013
  ident: 10.1016/j.neunet.2020.06.006_b82
  article-title: Rectifier nonlinearities improve neural network acoustic models
– volume: 14
  issue: 9
  year: 2019
  ident: 10.1016/j.neunet.2020.06.006_b101
  article-title: Graph convolutional network approach applied to predict hourly bike-sharing demands considering spatial, temporal, and global effects
  publication-title: PloS One
– start-page: 236
  year: 2020
  ident: 10.1016/j.neunet.2020.06.006_b1
  article-title: Deep tree transductions - a short survey
– ident: 10.1016/j.neunet.2020.06.006_b120
– volume: 11
  start-page: 70
  issue: 1
  year: 2019
  ident: 10.1016/j.neunet.2020.06.006_b74
  article-title: Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation
  publication-title: Journal of Cheminformatics
  doi: 10.1186/s13321-019-0396-x
– year: 2018
  ident: 10.1016/j.neunet.2020.06.006_b63
– year: 2018
  ident: 10.1016/j.neunet.2020.06.006_b107
  article-title: Pitfalls of graph neural network evaluation
– volume: 17
  start-page: 1061
  issue: 8–9
  year: 2004
  ident: 10.1016/j.neunet.2020.06.006_b58
  article-title: Recursive self-organizing network models
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2004.06.009
– volume: 12
  start-page: 2539
  issue: Sep
  year: 2011
  ident: 10.1016/j.neunet.2020.06.006_b108
  article-title: Weisfeiler-lehman graph kernels
  publication-title: Journal of Machine Learning Research (JMLR)
– year: 2018
  ident: 10.1016/j.neunet.2020.06.006_b7
– volume: 20
  start-page: 61
  issue: 1
  year: 2009
  ident: 10.1016/j.neunet.2020.06.006_b103
  article-title: The graph neural network model
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2008.2005605
– year: 2019
  ident: 10.1016/j.neunet.2020.06.006_b37
  article-title: Graph adversarial training: Dynamically regularizing based on graph structure
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 385
  year: 2017
  ident: 10.1016/j.neunet.2020.06.006_b98
  article-title: Struc2vec: Learning node representations from structural identity
– year: 2019
  ident: 10.1016/j.neunet.2020.06.006_b69
  article-title: Latent adversarial training of graph convolution networks
– ident: 10.1016/j.neunet.2020.06.006_b18
– ident: 10.1016/j.neunet.2020.06.006_b91
– year: 2019
  ident: 10.1016/j.neunet.2020.06.006_b129
– volume: 29
  start-page: 5592
  issue: 11
  year: 2018
  ident: 10.1016/j.neunet.2020.06.006_b140
  article-title: Concept drift and anomaly detection in graph streams
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2018.2804443
– year: 2019
  ident: 10.1016/j.neunet.2020.06.006_b39
  article-title: Fast graph representation learning with PyTorch Geometric
– volume: 217
  start-page: 117
  year: 2014
  ident: 10.1016/j.neunet.2020.06.006_b40
  article-title: Klog: A language for logical and relational learning with kernels
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2014.08.003
– ident: 10.1016/j.neunet.2020.06.006_b127
  doi: 10.1609/aaai.v32i1.11872
– volume: 17
  start-page: 1109
  issue: 5
  year: 2005
  ident: 10.1016/j.neunet.2020.06.006_b56
  article-title: Universal approximation capability of cascade correlation for structures
  publication-title: Neural Computation
  doi: 10.1162/0899766053491878
– volume: 35
  start-page: 503
  issue: 3
  year: 2005
  ident: 10.1016/j.neunet.2020.06.006_b94
  article-title: Self-organizing maps for learning the edit costs in graph matching
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/TSMCB.2005.846635
– start-page: 294
  year: 2018
  ident: 10.1016/j.neunet.2020.06.006_b3
  article-title: Contextual graph Markov model: A deep and generative approach to graph processing
– year: 2016
  ident: 10.1016/j.neunet.2020.06.006_b71
  article-title: Variational graph auto-encoders
– ident: 10.1016/j.neunet.2020.06.006_b38
  doi: 10.1609/aaai.v33i01.33013558
– ident: 10.1016/j.neunet.2020.06.006_b100
  doi: 10.1609/aaai.v33i01.33011110
– start-page: 701
  year: 2014
  ident: 10.1016/j.neunet.2020.06.006_b95
  article-title: Deepwalk: Online learning of social representations
– volume: 23
  start-page: 1987
  issue: 12
  year: 2012
  ident: 10.1016/j.neunet.2020.06.006_b6
  article-title: Compositional generative mapping for tree-structured data - part I: Bottom-up probabilistic modeling of trees
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2012.2222044
– volume: 72
  start-page: 1419
  issue: 7–9
  year: 2009
  ident: 10.1016/j.neunet.2020.06.006_b53
  article-title: Graph self-organizing maps for cyclic and unbounded graphs
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.12.021
– ident: 10.1016/j.neunet.2020.06.006_b67
  doi: 10.24963/ijcai.2019/366
– ident: 10.1016/j.neunet.2020.06.006_b90
  doi: 10.18653/v1/W18-5101
– volume: 185
  start-page: 105020
  year: 2019
  ident: 10.1016/j.neunet.2020.06.006_b134
  article-title: A deeper graph neural network for recommender systems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.105020
– volume: 91
  issue: 1
  year: 1991
  ident: 10.1016/j.neunet.2020.06.006_b61
  article-title: Untersuchungen zu dynamischen neuronalen netzen
  publication-title: Diploma, Technische Universität München
– ident: 10.1016/j.neunet.2020.06.006_b136
– ident: 10.1016/j.neunet.2020.06.006_b110
  doi: 10.1109/CVPR.2017.11
– ident: 10.1016/j.neunet.2020.06.006_b119
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.neunet.2020.06.006_b25
  article-title: Support-vector networks
  publication-title: Machine Learning
  doi: 10.1007/BF00994018
– ident: 10.1016/j.neunet.2020.06.006_b111
  doi: 10.1007/978-3-030-01418-6_41
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  ident: 10.1016/j.neunet.2020.06.006_b9
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.279181
– volume: 6
  start-page: 11
  issue: 1
  year: 2019
  ident: 10.1016/j.neunet.2020.06.006_b144
  article-title: Graph convolutional networks: a comprehensive review
  publication-title: Computational Social Networks
  doi: 10.1186/s40649-019-0069-y
– ident: 10.1016/j.neunet.2020.06.006_b72
– volume: 32
  issue: suppl_1
  year: 2004
  ident: 10.1016/j.neunet.2020.06.006_b105
  article-title: BRENDA, the enzyme database: updates and major new developments
  publication-title: Nucleic Acids Research
– volume: 3361
  start-page: 1995
  issue: 10
  year: 1995
  ident: 10.1016/j.neunet.2020.06.006_b75
  article-title: Convolutional networks for images, speech, and time series
  publication-title: The Handbook of Brain Theory and Neural Networks
– ident: 10.1016/j.neunet.2020.06.006_b70
– volume: 20
  start-page: 542
  issue: 3
  year: 2006
  ident: 10.1016/j.neunet.2020.06.006_b22
  article-title: Semi-supervised learning
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2009.2015974
– volume: 84
  start-page: 317
  year: 2018
  ident: 10.1016/j.neunet.2020.06.006_b11
  article-title: Wild patterns: Ten years after the rise of adversarial machine learning
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2018.07.023
– ident: 10.1016/j.neunet.2020.06.006_b49
– ident: 10.1016/j.neunet.2020.06.006_b64
– ident: 10.1016/j.neunet.2020.06.006_b112
– start-page: 294
  year: 2019
  ident: 10.1016/j.neunet.2020.06.006_b2
  article-title: A non-negative factorization approach to node pooling in graph convolutional neural networks
– ident: 10.1016/j.neunet.2020.06.006_b29
– ident: 10.1016/j.neunet.2020.06.006_b8
  doi: 10.18653/v1/P18-1026
– volume: 15
  start-page: 1396
  issue: 6
  year: 2004
  ident: 10.1016/j.neunet.2020.06.006_b88
  article-title: Contextual processing of structured data by recursive cascade correlation
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2004.837783
– ident: 10.1016/j.neunet.2020.06.006_b35
– volume: 34
  start-page: i457
  issue: 13
  year: 2018
  ident: 10.1016/j.neunet.2020.06.006_b146
  article-title: Modeling polypharmacy side effects with graph convolutional networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty294
– volume: 12
  start-page: 117
  issue: 1–2
  year: 2000
  ident: 10.1016/j.neunet.2020.06.006_b10
  article-title: Application of cascade correlation networks for structures to chemistry
  publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
  doi: 10.1023/A:1008368105614
– ident: 10.1016/j.neunet.2020.06.006_b96
– ident: 10.1016/j.neunet.2020.06.006_b21
– volume: 21
  start-page: i47
  issue: suppl_1
  year: 2005
  ident: 10.1016/j.neunet.2020.06.006_b17
  article-title: Protein function prediction via graph kernels
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti1007
– ident: 10.1016/j.neunet.2020.06.006_b45
  doi: 10.1609/aaai.v34i04.5803
– volume: 35
  start-page: 4979
  issue: 23
  year: 2019
  ident: 10.1016/j.neunet.2020.06.006_b66
  article-title: FP2VEC: A new molecular featurizer for learning molecular properties
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz307
– year: 2019
  ident: 10.1016/j.neunet.2020.06.006_b4
  article-title: Edge-based sequential graph generation with recurrent neural networks
  publication-title: Neurocomputing
– year: 2019
  ident: 10.1016/j.neunet.2020.06.006_b36
  article-title: Conditional labeled graph generation with GANs
– ident: 10.1016/j.neunet.2020.06.006_b46
– ident: 10.1016/j.neunet.2020.06.006_b114
  doi: 10.3115/v1/P15-1150
– volume: 38
  start-page: 146
  issue: 5
  year: 2019
  ident: 10.1016/j.neunet.2020.06.006_b126
  article-title: Dynamic graph cnn for learning on point clouds
  publication-title: ACM Transactions on Graphics
  doi: 10.1145/3326362
– year: 2019
  ident: 10.1016/j.neunet.2020.06.006_b42
  article-title: Towards graph pooling by edge contraction
– volume: 11
  start-page: 1201
  issue: Apr
  year: 2010
  ident: 10.1016/j.neunet.2020.06.006_b121
  article-title: Graph kernels
  publication-title: Journal of Machine Learning Research (JMLR)
– ident: 10.1016/j.neunet.2020.06.006_b130
– ident: 10.1016/j.neunet.2020.06.006_b85
  doi: 10.18653/v1/D17-1159
– volume: 29
  start-page: 5441
  issue: 11
  year: 2018
  ident: 10.1016/j.neunet.2020.06.006_b16
  article-title: Recursive neural networks for density estimation over generalized random graphs
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2018.2803523
– ident: 10.1016/j.neunet.2020.06.006_b5
– ident: 10.1016/j.neunet.2020.06.006_b32
– volume: 78
  start-page: 1464
  issue: 9
  year: 1990
  ident: 10.1016/j.neunet.2020.06.006_b73
  article-title: The self-organizing map
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.58325
– volume: 2
  start-page: 303
  issue: 4
  year: 1989
  ident: 10.1016/j.neunet.2020.06.006_b26
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Mathematics of Control, Signals and Systems
  doi: 10.1007/BF02551274
– volume: 330
  start-page: 771
  issue: 4
  year: 2003
  ident: 10.1016/j.neunet.2020.06.006_b31
  article-title: Distinguishing enzyme structures from non-enzymes without alignments
  publication-title: Journal of Molecular Biology
  doi: 10.1016/S0022-2836(03)00628-4
– ident: 10.1016/j.neunet.2020.06.006_b78
– volume: 29
  start-page: 93
  issue: 3
  year: 2008
  ident: 10.1016/j.neunet.2020.06.006_b106
  article-title: Collective classification in network data
  publication-title: AI Magazine
  doi: 10.1609/aimag.v29i3.2157
– ident: 10.1016/j.neunet.2020.06.006_b20
– volume: 18
  start-page: 1093
  issue: 8
  year: 2005
  ident: 10.1016/j.neunet.2020.06.006_b97
  article-title: Graph kernels for chemical informatics
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2005.07.009
– ident: 10.1016/j.neunet.2020.06.006_b14
– ident: 10.1016/j.neunet.2020.06.006_b125
  doi: 10.1007/978-3-030-01228-1_25
– ident: 10.1016/j.neunet.2020.06.006_b145
  doi: 10.7551/mitpress/7503.003.0205
– volume: 313
  start-page: 14
  year: 2018
  ident: 10.1016/j.neunet.2020.06.006_b116
  article-title: Nonparametric small random networks for graph-structured pattern recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.095
– start-page: 1365
  year: 2015
  ident: 10.1016/j.neunet.2020.06.006_b132
  article-title: Deep graph kernels
– start-page: 974
  year: 2018
  ident: 10.1016/j.neunet.2020.06.006_b135
  article-title: Graph convolutional neural networks for web-scale recommender systems
– ident: 10.1016/j.neunet.2020.06.006_b137
– volume: 34
  start-page: 25
  issue: 4
  year: 2017
  ident: 10.1016/j.neunet.2020.06.006_b19
  article-title: Geometric deep learning: going beyond Euclidean data
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2017.2693418
– ident: 10.1016/j.neunet.2020.06.006_b118
– volume: 13
  start-page: 1469
  issue: 14
  year: 2007
  ident: 10.1016/j.neunet.2020.06.006_b89
  article-title: An introduction to recursive neural networks and kernel methods for cheminformatics
  publication-title: Current Pharmaceutical Design
  doi: 10.2174/138161207780765981
– volume: 17
  start-page: 395
  issue: 4
  year: 2007
  ident: 10.1016/j.neunet.2020.06.006_b122
  article-title: A tutorial on spectral clustering
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-007-9033-z
– ident: 10.1016/j.neunet.2020.06.006_b123
– start-page: 309
  year: 2019
  ident: 10.1016/j.neunet.2020.06.006_b86
  article-title: Safe: Self-attentive function embeddings for binary similarity
– ident: 10.1016/j.neunet.2020.06.006_b65
– volume: 8
  start-page: 714
  issue: 3
  year: 1997
  ident: 10.1016/j.neunet.2020.06.006_b113
  article-title: Supervised neural networks for the classification of structures
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.572108
– start-page: 1
  year: 2010
  ident: 10.1016/j.neunet.2020.06.006_b44
  article-title: Graph echo state networks
– ident: 10.1016/j.neunet.2020.06.006_b23
– ident: 10.1016/j.neunet.2020.06.006_b48
– year: 2019
  ident: 10.1016/j.neunet.2020.06.006_b128
  article-title: Deep graph library: Towards efficient and scalable deep learning on graphs
– start-page: 1250
  year: 2016
  ident: 10.1016/j.neunet.2020.06.006_b99
  article-title: Graph sparsification approaches for laplacian smoothing
– ident: 10.1016/j.neunet.2020.06.006_b115
– volume: 2
  start-page: 1
  issue: 1
  year: 1993
  ident: 10.1016/j.neunet.2020.06.006_b81
  article-title: Random walks on graphs: A survey
  publication-title: Combinatorics, Paul Erdos is Eighty
– start-page: 2847
  year: 2018
  ident: 10.1016/j.neunet.2020.06.006_b147
  article-title: Adversarial attacks on neural networks for graph data
– year: 1976
  ident: 10.1016/j.neunet.2020.06.006_b15
– volume: 20
  start-page: 498
  issue: 3
  year: 2009
  ident: 10.1016/j.neunet.2020.06.006_b87
  article-title: Neural network for graphs: A contextual constructive approach
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2008.2010350
– volume: 46
  start-page: 109
  year: 2013
  ident: 10.1016/j.neunet.2020.06.006_b13
  article-title: Recommender systems survey
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2013.03.012
– ident: 10.1016/j.neunet.2020.06.006_b143
  doi: 10.24963/ijcai.2018/439
– volume: 37
  start-page: 75
  issue: 1
  year: 1999
  ident: 10.1016/j.neunet.2020.06.006_b102
  article-title: Mixed memory Markov models: Decomposing complex stochastic processes as mixtures of simpler ones
  publication-title: Machine Learning
  doi: 10.1023/A:1007649326333
– ident: 10.1016/j.neunet.2020.06.006_b84
  doi: 10.18653/v1/N18-2078
– ident: 10.1016/j.neunet.2020.06.006_b34
– ident: 10.1016/j.neunet.2020.06.006_b51
– volume: 5
  start-page: 17
  issue: 1
  year: 1960
  ident: 10.1016/j.neunet.2020.06.006_b33
  article-title: On the evolution of random graphs
  publication-title: Publications of the Mathematical Institute of the Hungarian Academy of Science
– start-page: 593
  year: 2018
  ident: 10.1016/j.neunet.2020.06.006_b104
  article-title: Modeling relational data with graph convolutional networks
– volume: 29
  start-page: 1944
  issue: 11
  year: 2007
  ident: 10.1016/j.neunet.2020.06.006_b30
  article-title: Weighted graph cuts without eigenvectors a multilevel approach
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2007.1115
– start-page: 855
  year: 2016
  ident: 10.1016/j.neunet.2020.06.006_b50
  article-title: Node2vec: Scalable feature learning for networks
– volume: 34
  start-page: 786
  issue: 2
  year: 1991
  ident: 10.1016/j.neunet.2020.06.006_b28
  article-title: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds correlation with molecular orbital energies and hydrophobicity
  publication-title: Journal of Medicinal Chemistry
  doi: 10.1021/jm00106a046
– ident: 10.1016/j.neunet.2020.06.006_b76
– ident: 10.1016/j.neunet.2020.06.006_b109
SSID ssj0006843
Score 2.6761327
SecondaryResourceType review_article
Snippet The adaptive processing of graph data is a long-standing research topic that has been lately consolidated as a theme of major interest in the deep learning...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 203
SubjectTerms Deep learning for graphs
Graph neural networks
Learning for structured data
Title A gentle introduction to deep learning for graphs
URI https://dx.doi.org/10.1016/j.neunet.2020.06.006
https://www.proquest.com/docview/2415299399
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4LX6OCF7j0jZNk-MYjqm4iw52C81HZTK64bqrf7t5aasoguAxJS-Ul7wPkt_7PYSuE2q1zowghRAGWphRopmMSBzxPM2zyPHwYvo44eMpu5-lsw4atrUwAKtsfH_t04O3br70G232V_N5_4n6UMuhVNSfU293UFHOWAb8-TfvXzAPLmrknJ9MYHZbPhcwXqXblA4QlTENLJ7Q9-j38PTDUYfoM9pDO03aiAf1n-2jjisP0G7bkgE3FnqIogGGWqmFw3OAoNuaGxZXS2ydW-GmR8QL9qkqDlzV6yM0Hd0-D8ek6YpATCLSitiIF5H2gZsaJmSh4UZCF3mcapdYWki4GcoLn1XllNlYcijmdlRnWRrrxHmLPkbdclm6E4QdNzJNgPFLC5bzSBttrRTMpM6PY36KklYZyjSU4dC5YqFabNirqlWoQIUqQOS8FPmUWtWUGX_Mz1o9q29br7xX_0Pyqt0W5a0Cnjry0i03axXyEp96SXn279XP0TaMakDZBepWbxt36TOQSvfCEeuhrcHdw3jyAdK72Xw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61HvTiW3wbweva7CPZ5FiKUrXtxRZ6C5tsViplW2x79bebyWYVRSh43OzMskzmRfLNDEK3McmVSjUPCs41jDAjgUpEGEQhy2iWhoa5G9P-gHVHydOYjhuoU9fCAKzS-_7Kpztv7VdaXpqt-WTSeiE21DIoFbV6au0u3UCbCY1TUO27j2-cB-MVdM5SB0Be1885kFdpVqUBSGVEXBtPGHz0d3z65ald-HnYQzs-b8Tt6tf2UcOUB2i3nsmAvYkeorCNoVhqavAEMOh51RwWL2c4N2aO_ZCIV2xzVeyaVS-O0OjhftjpBn4sQqBjTpdBHrIiVDZyE51wUSg4klBFFlFl4pwUAo6GssKmVRlJ8kgwqOY2RKUpjVRsrEkfo2Y5K80JwoZpQWNo-aV4krFQaZXngieaGvscsVMU18KQ2vcMh9EVU1mDw95kJUIJIpQOI2e5gi-uedUzYw19WstZ_th7ad36Gs6belukNQu468hKM1stpEtMbO4lxNm_v36NtrrDfk_2HgfP52gb3lTosgvUXL6vzKVNR5bqyqnbJwDO2xI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+gentle+introduction+to+deep+learning+for+graphs&rft.jtitle=Neural+networks&rft.au=Bacciu%2C+Davide&rft.au=Errica%2C+Federico&rft.au=Micheli%2C+Alessio&rft.au=Podda%2C+Marco&rft.date=2020-09-01&rft.issn=0893-6080&rft.volume=129&rft.spage=203&rft.epage=221&rft_id=info:doi/10.1016%2Fj.neunet.2020.06.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neunet_2020_06_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon