Digital correlation of computer-generated holograms for 3D face recognition
Three-dimensional (3D) face recognition has been a crucial task in human biometric verification and identification. A digital correlation method of a computer-generated hologram (CGH) for 3D face recognition is proposed, which encodes 3D data into a 2D hologram for recognition. The 3D face models ar...
Saved in:
Published in | Applied optics. Optical technology and biomedical optics Vol. 58; no. 34; p. G177 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.12.2019
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | Three-dimensional (3D) face recognition has been a crucial task in human biometric verification and identification. A digital correlation method of a computer-generated hologram (CGH) for 3D face recognition is proposed, which encodes 3D data into a 2D hologram for recognition. The 3D face models are preprocessed and compressed to into groups of feature points. The CGH templates corresponding to the 3D feature points are generated by point- and layer-oriented algorithms based on three different numerical algorithms to encode depth values into 2D holograms. A 2D digital correlation is performed between the CGH templates. It is demonstrated that the generated CGHs templates could be effectively classified based on the correlation performance metrics of discrimination ratio, peak-to-correlation plane energy, and peak-to-noise ratio. With the essence of the CGH algorithm being the conversion of 3D data to a 2D hologram, the proposed encoding and decoding method has great advantages in reducing computational efforts and potential applications in 3D face recognition, storage, and display. |
---|---|
ISSN: | 2155-3165 |
DOI: | 10.1364/AO.58.00G177 |