Structural Stability and Optoelectronic Properties of Lead-Free Halide Perovskite CsSnBr3 by Introducing Transition-Metal Dopants

In order to promote the actual optoelectronic application of lead-free perovskite CsSnBr 3 , the stability and optoelectronic properties of metal dopants in the lead-free perovskite CsSnBr 3 have been studied systematically by using first-principles calculations based on density functional theory. C...

Full description

Saved in:
Bibliographic Details
Published inJournal of electronic materials Vol. 51; no. 7; pp. 3438 - 3444
Main Authors Tang, Fengjie, Yao, Yizhou, Cao, Dan, Yan, Jie, Wang, Jianfeng, Jiang, Zhouting, Zhou, Yun, Jiao, Zhiwei, Shu, Haibo
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to promote the actual optoelectronic application of lead-free perovskite CsSnBr 3 , the stability and optoelectronic properties of metal dopants in the lead-free perovskite CsSnBr 3 have been studied systematically by using first-principles calculations based on density functional theory. Cd and Mn doping is more efficient in CsSnBr 3 than other considered metal dopants by calculating the doped formation energies. The stability of a doping system is related to the atomic radius of the dopant. Cr, Mn and Cu dopants can enlarge effectively the band gap of CsSnBr 3 and show a higher optical absorption coefficient in short wavelength region of visible light compared to undoped ones. Our work may provide a feasible pathway to manipulate and improve the stability and optoelectronic performance of CsSnBr 3 .
AbstractList In order to promote the actual optoelectronic application of lead-free perovskite CsSnBr3, the stability and optoelectronic properties of metal dopants in the lead-free perovskite CsSnBr3 have been studied systematically by using first-principles calculations based on density functional theory. Cd and Mn doping is more efficient in CsSnBr3 than other considered metal dopants by calculating the doped formation energies. The stability of a doping system is related to the atomic radius of the dopant. Cr, Mn and Cu dopants can enlarge effectively the band gap of CsSnBr3 and show a higher optical absorption coefficient in short wavelength region of visible light compared to undoped ones. Our work may provide a feasible pathway to manipulate and improve the stability and optoelectronic performance of CsSnBr3.
In order to promote the actual optoelectronic application of lead-free perovskite CsSnBr 3 , the stability and optoelectronic properties of metal dopants in the lead-free perovskite CsSnBr 3 have been studied systematically by using first-principles calculations based on density functional theory. Cd and Mn doping is more efficient in CsSnBr 3 than other considered metal dopants by calculating the doped formation energies. The stability of a doping system is related to the atomic radius of the dopant. Cr, Mn and Cu dopants can enlarge effectively the band gap of CsSnBr 3 and show a higher optical absorption coefficient in short wavelength region of visible light compared to undoped ones. Our work may provide a feasible pathway to manipulate and improve the stability and optoelectronic performance of CsSnBr 3 .
Author Jiao, Zhiwei
Yao, Yizhou
Jiang, Zhouting
Zhou, Yun
Tang, Fengjie
Yan, Jie
Cao, Dan
Shu, Haibo
Wang, Jianfeng
Author_xml – sequence: 1
  givenname: Fengjie
  surname: Tang
  fullname: Tang, Fengjie
  organization: College of Sciences, China Jiliang University
– sequence: 2
  givenname: Yizhou
  surname: Yao
  fullname: Yao, Yizhou
  organization: College of Sciences, China Jiliang University
– sequence: 3
  givenname: Dan
  surname: Cao
  fullname: Cao, Dan
  email: caodan@cjlu.edu.cn
  organization: College of Sciences, China Jiliang University
– sequence: 4
  givenname: Jie
  surname: Yan
  fullname: Yan, Jie
  organization: College of Sciences, China Jiliang University
– sequence: 5
  givenname: Jianfeng
  surname: Wang
  fullname: Wang, Jianfeng
  organization: College of Sciences, China Jiliang University
– sequence: 6
  givenname: Zhouting
  surname: Jiang
  fullname: Jiang, Zhouting
  organization: College of Sciences, China Jiliang University
– sequence: 7
  givenname: Yun
  surname: Zhou
  fullname: Zhou, Yun
  organization: College of Sciences, China Jiliang University
– sequence: 8
  givenname: Zhiwei
  surname: Jiao
  fullname: Jiao, Zhiwei
  organization: College of Sciences, China Jiliang University
– sequence: 9
  givenname: Haibo
  surname: Shu
  fullname: Shu, Haibo
  organization: College of Optical and Electronic Technology, China Jiliang University
BookMark eNp9kMFq3DAURUVJoZO0P9CVoGu1kmXL8rKddJrAlAQmhe6ELD0Hpa7kPMmBWfbP48kECllk9Tb3vHs5p-QkpgiEfBT8s-C8_ZKFUKpmvKoY7xTvWP2GrERTSya0-n1CVlwqwZpKNu_Iac53nItGaLEi_3YFZ1dmtCPdFduHMZQ9tdHTq6kkGMEVTDE4eo1pAiwBMk0D3YL1bIMA9MKOwQO9BkwP-U8oQNd5F7-hpP2eXsaF9rML8ZbeoI05lJAi-wllqTtPk40lvydvBztm-PB8z8ivzfeb9QXbXv24XH_dMid1U5hz0NdCuUp4bn3fKeilqwdQVtpOtX5QQvet5pUXXuvOD_Xguh68ko1uW1nLM_Lp-HfCdD9DLuYuzRiXSlOpthJtzbVaUvqYcphyRhiMC8UeVhe0YTSCm4NwcxRuFuHmSbg5FFQv0AnDX4v71yF5hPISjreA_1e9Qj0CEzeX2g
CitedBy_id crossref_primary_10_1016_j_physleta_2024_130036
crossref_primary_10_1088_1402_4896_ad51b2
crossref_primary_10_1007_s10854_022_09560_4
crossref_primary_10_35848_1347_4065_acfdb3
Cites_doi 10.1103/PhysRevB.50.16861
10.1021/acs.nanolett.7b04575
10.1103/PhysRevB.45.13244
10.1016/j.ssc.2014.12.006
10.1039/C9CP01211G
10.1039/D1RA03621A
10.1103/PhysRevB.54.11169
10.1021/acs.jpcc.8b10261
10.1016/j.jallcom.2020.155390
10.1002/(SICI)1096-9918(199908)28:1<81::AID-SIA623>3.0.CO;2-D
10.1021/acsenergylett.7b01197
10.1103/PhysRevB.24.5642
10.1021/acs.chemmater.8b02989
10.1021/jp5126624
10.1021/acs.jpclett.5b00968
10.1016/0022-3697(81)90072-X
10.1016/0927-0256(96)00008-0
10.1021/acsnano.6b08747
10.1038/s41598-017-13172-y
10.1103/PhysRev.140.A1133
10.1016/j.nanoen.2016.09.009
10.1103/PhysRevLett.77.3865
10.1016/j.cplett.2012.02.055
10.1016/j.cplett.2019.136719
10.1021/acs.jpclett.5b02597
10.1039/dt9750001500
10.1038/nenergy.2016.48
10.1088/1361-648X/ab6e90
10.1063/1.5008437
10.1103/PhysRevB.77.195408
10.1039/D0TA10098F
10.1002/anie.201807674
ContentType Journal Article
Copyright The Minerals, Metals & Materials Society 2022
The Minerals, Metals & Materials Society 2022.
Copyright_xml – notice: The Minerals, Metals & Materials Society 2022
– notice: The Minerals, Metals & Materials Society 2022.
DBID AAYXX
CITATION
3V.
7XB
88I
8AF
8AO
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
GNUQQ
GUQSH
HCIFZ
KB.
L6V
M2O
M2P
M7S
MBDVC
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0X
DOI 10.1007/s11664-022-09609-4
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
ProQuest Research Library
ProQuest SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Proquest Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
SIRS Editorial
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SIRS Editorial
Materials Science Collection
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Research Library
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1543-186X
EndPage 3444
ExternalDocumentID 10_1007_s11664_022_09609_4
GrantInformation_xml – fundername: Graduate Research and Innovation Projects of Zhejiang Province
  grantid: 2021R409023
– fundername: National College Students Innovation and Entrepreneurship Training Program
  grantid: 202010356042
  funderid: http://dx.doi.org/10.13039/501100013254
– fundername: Natural Science Foundation of Zhejiang Province
  grantid: LY22A040002; LY21F010010
  funderid: http://dx.doi.org/10.13039/501100004731
– fundername: National Natural Science Foundation of China
  grantid: 61775201; 21873087
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
78A
88I
8AF
8AO
8FE
8FG
8FW
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDPE
ABDZT
ABECU
ABEFU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBEA
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
C1A
CAG
CCPQU
COF
CS3
CSCUP
CZ9
D-I
D1I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
E3Z
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GUQSH
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KB.
KC.
KDC
KOV
L6V
LLZTM
M2O
M2P
M2Q
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9N
PDBOC
PF0
PKN
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RWL
RXW
RZK
S0X
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8T
Z8W
Z8Z
Z92
ZE2
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7XB
8FK
ABRTQ
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c385t-cceb416c21d0adb96eb3c4fe6a3a967df618b7802d1d889df4fc9bed635877343
IEDL.DBID U2A
ISSN 0361-5235
IngestDate Sat Aug 16 21:33:12 EDT 2025
Thu Apr 24 22:53:42 EDT 2025
Tue Jul 01 04:28:18 EDT 2025
Fri Feb 21 02:45:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Lead-free halide perovskite
optoelectronic properties
structural stability
density functional theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-cceb416c21d0adb96eb3c4fe6a3a967df618b7802d1d889df4fc9bed635877343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2672174086
PQPubID 48394
PageCount 7
ParticipantIDs proquest_journals_2672174086
crossref_citationtrail_10_1007_s11664_022_09609_4
crossref_primary_10_1007_s11664_022_09609_4
springer_journals_10_1007_s11664_022_09609_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Warrendale
PublicationTitle Journal of electronic materials
PublicationTitleAbbrev J. Electron. Mater
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References LiCYLiPLiLYWangDJGaoXFGaoXJRSC Adv.202111218511:CAS:528:DC%2BB3MXhtlKju77I10.1039/D1RA03621A
HeidrichKSchaferWSchreiberMSochtigJTrendelGTreuschJGrandkeTStolzHJPhys. Rev. B198124564256491:CAS:528:DyaL38XmtValsA%3D%3D10.1103/PhysRevB.24.5642
KulbakMGuptaSKedemNLevineIBendikovTHodesGCahenDJ. Phys. Chem. Lett.201671671:CAS:528:DC%2BC2MXitVygt7rJ10.1021/acs.jpclett.5b02597
SabbaDMulmudiHKPrabhakarRRKrishnamoorthyTBaikieTBoixPPMhaisalkarSMathewsNJ. Phys. Chem. C201511917631:CAS:528:DC%2BC2MXks1Gktg%3D%3D10.1021/jp5126624
ZhengJCHuanCHAWeeATSKuokMHSurf. Interface Anal.199928811:CAS:528:DyaK1MXlvV2qs78%3D10.1002/(SICI)1096-9918(199908)28:1<81::AID-SIA623>3.0.CO;2-D
DonaldsonJDSilverJHadjiminolisSRossSDJ. Chem. Soc., Dalton Trans.197515150010.1039/dt9750001500
ZhuYSPanGCShaoLYangGXuXMZhaoJMaoYLJ. Alloys Compd.20208351553901:CAS:528:DC%2BB3cXpt12isbc%3D10.1016/j.jallcom.2020.155390
KressGFurthmüllerJPhys. Rev. B1996541116910.1103/PhysRevB.54.11169
AoBYZhangZJTangTZhaoYPSolid State Commun.2015204231:CAS:528:DC%2BC2MXhtFKrug%3D%3D10.1016/j.ssc.2014.12.006
LiBHLongRYXiaYMiQXAngew. Chem. Int. Ed.201857131541:CAS:528:DC%2BC1cXhslWjtbnN10.1002/anie.201807674
LiuHWWuZNShaoJRYaoDGaoHLiuYYuWLZhangHYangBACS Nano20171122391:CAS:528:DC%2BC2sXhvVChsL4%3D10.1021/acsnano.6b08747
KressGFurthmüllerJComput. Mater. Sci.199661510.1016/0927-0256(96)00008-0
SwarnkarAMirWJNagAACS Energy Lett.201832861:CAS:528:DC%2BC1cXjsVGnsA%3D%3D10.1021/acsenergylett.7b01197
ClarkSJFlintCDDonaldsonJDJ. Phys. Chem. Solid1981421331:CAS:528:DyaL3MXksFWqsLY%3D10.1016/0022-3697(81)90072-X
KanounMBGoumri-SaidSSchwingenshchlöglUManchonAChem. Phys. Lett.2012532961:CAS:528:DC%2BC38XkvVCkt7o%3D10.1016/j.cplett.2012.02.055
PerdewJPBurkeKErnzerhofMPhys. Rev. Lett.19967738651:CAS:528:DyaK28XmsVCgsbs%3D10.1103/PhysRevLett.77.3865
KohnWShamLJPhys. Rev.1965140A113310.1103/PhysRev.140.A1133
LongLXCaoDFeiJPWangJFZhouYJiangZTJiaoZWShuHBChem. Phys. Lett.20197341367191:CAS:528:DC%2BC1MXhslajt7jK10.1016/j.cplett.2019.136719
LiQQCaoDLiuXYZhouXYChenXSShuHBJ. Mater. Chem. A2021964761:CAS:528:DC%2BB3MXjtVGisLY%3D10.1039/D0TA10098F
PanGBaiXYangDChenXJingPQuSZhangLZhouDZhuJXuWDongBSongHNano Lett.201717800580111:CAS:528:DC%2BC2sXhvVOku7rE10.1021/acs.nanolett.7b04575
HeTCLiJZRenCXiaoSYLiYWChenRLinXDAppl. Phys. Lett.201711121110510.1063/1.5008437
YuZLZhaoYQWanQLiuBYangJLCaiMQJ. Phys. Condens. Matter.2020322055041:CAS:528:DC%2BB3cXhsVGisbnN10.1088/1361-648X/ab6e90
KressGJoubertDPhys. Rev. B20087719540810.1103/PhysRevB.77.195408
MogheDWangLTraverseCJReduouteASponsellerMBrownPRBulovicVLuntRRNano Energy2016284691:CAS:528:DC%2BC28XhsFWqurzN10.1016/j.nanoen.2016.09.009
ZhangWEperonGESnaithHJNat. Energy20161160481:CAS:528:DC%2BC2sXhtVeku7g%3D10.1038/nenergy.2016.48
RoknuzzamanMOstrikovKWangHXDuATesfamichaelTSci. Rep.201771402510.1038/s41598-017-13172-y
BalaAKumarVJ. Phys. Chem. C201912369651:CAS:528:DC%2BC1MXjvFCktbk%3D10.1021/acs.jpcc.8b10261
ZhouYChenJBakrOMSunHTChem. Mater.20183065891:CAS:528:DC%2BC1cXhs1Siur3N10.1021/acs.chemmater.8b02989
SolovyevIVDeederichsPHAnisimovVIPhys. Rev. B199450168611:CAS:528:DyaK2MXivVymsLk%3D10.1103/PhysRevB.50.16861
MonkhorstHJPackJDPhys. Rev. B1992451324410.1103/PhysRevB.45.13244
KulbakMCahenDHodesGJ. Phys. Chem. Lett.2015624521:CAS:528:DC%2BC2MXhtVaksb3I10.1021/acs.jpclett.5b00968
ZhangJJYangLZhongYHaoHQYangMLiuRYPhys. Chem. Chem. Phys.201921111751:CAS:528:DC%2BC1MXoslOjurk%3D10.1039/C9CP01211G
A Swarnkar (9609_CR18) 2018; 3
QQ Li (9609_CR8) 2021; 9
M Roknuzzaman (9609_CR5) 2017; 7
CY Li (9609_CR27) 2021; 11
SJ Clark (9609_CR10) 1981; 42
G Kress (9609_CR23) 2008; 77
A Bala (9609_CR12) 2019; 123
JP Perdew (9609_CR24) 1996; 77
HJ Monkhorst (9609_CR30) 1992; 45
JD Donaldson (9609_CR31) 1975; 15
D Moghe (9609_CR7) 2016; 28
TC He (9609_CR19) 2017; 111
BH Li (9609_CR6) 2018; 57
G Kress (9609_CR21) 1996; 54
LX Long (9609_CR32) 2019; 734
G Pan (9609_CR14) 2017; 17
M Kulbak (9609_CR4) 2016; 7
ZL Yu (9609_CR20) 2020; 32
JJ Zhang (9609_CR17) 2019; 21
W Kohn (9609_CR25) 1965; 140
JC Zheng (9609_CR11) 1999; 28
HW Liu (9609_CR16) 2017; 11
IV Solovyev (9609_CR26) 1994; 50
K Heidrich (9609_CR3) 1981; 24
YS Zhu (9609_CR13) 2020; 835
Y Zhou (9609_CR15) 2018; 30
MB Kanoun (9609_CR28) 2012; 532
BY Ao (9609_CR29) 2015; 204
M Kulbak (9609_CR2) 2015; 6
D Sabba (9609_CR9) 2015; 119
W Zhang (9609_CR1) 2016; 1
G Kress (9609_CR22) 1996; 6
References_xml – reference: LiBHLongRYXiaYMiQXAngew. Chem. Int. Ed.201857131541:CAS:528:DC%2BC1cXhslWjtbnN10.1002/anie.201807674
– reference: ZhuYSPanGCShaoLYangGXuXMZhaoJMaoYLJ. Alloys Compd.20208351553901:CAS:528:DC%2BB3cXpt12isbc%3D10.1016/j.jallcom.2020.155390
– reference: ZhengJCHuanCHAWeeATSKuokMHSurf. Interface Anal.199928811:CAS:528:DyaK1MXlvV2qs78%3D10.1002/(SICI)1096-9918(199908)28:1<81::AID-SIA623>3.0.CO;2-D
– reference: PerdewJPBurkeKErnzerhofMPhys. Rev. Lett.19967738651:CAS:528:DyaK28XmsVCgsbs%3D10.1103/PhysRevLett.77.3865
– reference: HeTCLiJZRenCXiaoSYLiYWChenRLinXDAppl. Phys. Lett.201711121110510.1063/1.5008437
– reference: AoBYZhangZJTangTZhaoYPSolid State Commun.2015204231:CAS:528:DC%2BC2MXhtFKrug%3D%3D10.1016/j.ssc.2014.12.006
– reference: KanounMBGoumri-SaidSSchwingenshchlöglUManchonAChem. Phys. Lett.2012532961:CAS:528:DC%2BC38XkvVCkt7o%3D10.1016/j.cplett.2012.02.055
– reference: KressGFurthmüllerJPhys. Rev. B1996541116910.1103/PhysRevB.54.11169
– reference: KressGJoubertDPhys. Rev. B20087719540810.1103/PhysRevB.77.195408
– reference: ZhangJJYangLZhongYHaoHQYangMLiuRYPhys. Chem. Chem. Phys.201921111751:CAS:528:DC%2BC1MXoslOjurk%3D10.1039/C9CP01211G
– reference: LiCYLiPLiLYWangDJGaoXFGaoXJRSC Adv.202111218511:CAS:528:DC%2BB3MXhtlKju77I10.1039/D1RA03621A
– reference: BalaAKumarVJ. Phys. Chem. C201912369651:CAS:528:DC%2BC1MXjvFCktbk%3D10.1021/acs.jpcc.8b10261
– reference: ZhouYChenJBakrOMSunHTChem. Mater.20183065891:CAS:528:DC%2BC1cXhs1Siur3N10.1021/acs.chemmater.8b02989
– reference: SabbaDMulmudiHKPrabhakarRRKrishnamoorthyTBaikieTBoixPPMhaisalkarSMathewsNJ. Phys. Chem. C201511917631:CAS:528:DC%2BC2MXks1Gktg%3D%3D10.1021/jp5126624
– reference: LongLXCaoDFeiJPWangJFZhouYJiangZTJiaoZWShuHBChem. Phys. Lett.20197341367191:CAS:528:DC%2BC1MXhslajt7jK10.1016/j.cplett.2019.136719
– reference: LiQQCaoDLiuXYZhouXYChenXSShuHBJ. Mater. Chem. A2021964761:CAS:528:DC%2BB3MXjtVGisLY%3D10.1039/D0TA10098F
– reference: MogheDWangLTraverseCJReduouteASponsellerMBrownPRBulovicVLuntRRNano Energy2016284691:CAS:528:DC%2BC28XhsFWqurzN10.1016/j.nanoen.2016.09.009
– reference: PanGBaiXYangDChenXJingPQuSZhangLZhouDZhuJXuWDongBSongHNano Lett.201717800580111:CAS:528:DC%2BC2sXhvVOku7rE10.1021/acs.nanolett.7b04575
– reference: LiuHWWuZNShaoJRYaoDGaoHLiuYYuWLZhangHYangBACS Nano20171122391:CAS:528:DC%2BC2sXhvVChsL4%3D10.1021/acsnano.6b08747
– reference: KressGFurthmüllerJComput. Mater. Sci.199661510.1016/0927-0256(96)00008-0
– reference: KohnWShamLJPhys. Rev.1965140A113310.1103/PhysRev.140.A1133
– reference: KulbakMGuptaSKedemNLevineIBendikovTHodesGCahenDJ. Phys. Chem. Lett.201671671:CAS:528:DC%2BC2MXitVygt7rJ10.1021/acs.jpclett.5b02597
– reference: KulbakMCahenDHodesGJ. Phys. Chem. Lett.2015624521:CAS:528:DC%2BC2MXhtVaksb3I10.1021/acs.jpclett.5b00968
– reference: RoknuzzamanMOstrikovKWangHXDuATesfamichaelTSci. Rep.201771402510.1038/s41598-017-13172-y
– reference: ZhangWEperonGESnaithHJNat. Energy20161160481:CAS:528:DC%2BC2sXhtVeku7g%3D10.1038/nenergy.2016.48
– reference: HeidrichKSchaferWSchreiberMSochtigJTrendelGTreuschJGrandkeTStolzHJPhys. Rev. B198124564256491:CAS:528:DyaL38XmtValsA%3D%3D10.1103/PhysRevB.24.5642
– reference: YuZLZhaoYQWanQLiuBYangJLCaiMQJ. Phys. Condens. Matter.2020322055041:CAS:528:DC%2BB3cXhsVGisbnN10.1088/1361-648X/ab6e90
– reference: SolovyevIVDeederichsPHAnisimovVIPhys. Rev. B199450168611:CAS:528:DyaK2MXivVymsLk%3D10.1103/PhysRevB.50.16861
– reference: SwarnkarAMirWJNagAACS Energy Lett.201832861:CAS:528:DC%2BC1cXjsVGnsA%3D%3D10.1021/acsenergylett.7b01197
– reference: MonkhorstHJPackJDPhys. Rev. B1992451324410.1103/PhysRevB.45.13244
– reference: ClarkSJFlintCDDonaldsonJDJ. Phys. Chem. Solid1981421331:CAS:528:DyaL3MXksFWqsLY%3D10.1016/0022-3697(81)90072-X
– reference: DonaldsonJDSilverJHadjiminolisSRossSDJ. Chem. Soc., Dalton Trans.197515150010.1039/dt9750001500
– volume: 50
  start-page: 16861
  year: 1994
  ident: 9609_CR26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.16861
– volume: 17
  start-page: 8005
  year: 2017
  ident: 9609_CR14
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b04575
– volume: 45
  start-page: 13244
  year: 1992
  ident: 9609_CR30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.45.13244
– volume: 204
  start-page: 23
  year: 2015
  ident: 9609_CR29
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2014.12.006
– volume: 21
  start-page: 11175
  year: 2019
  ident: 9609_CR17
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP01211G
– volume: 11
  start-page: 21851
  year: 2021
  ident: 9609_CR27
  publication-title: RSC Adv.
  doi: 10.1039/D1RA03621A
– volume: 54
  start-page: 11169
  year: 1996
  ident: 9609_CR21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 123
  start-page: 6965
  year: 2019
  ident: 9609_CR12
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b10261
– volume: 835
  start-page: 155390
  year: 2020
  ident: 9609_CR13
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.155390
– volume: 28
  start-page: 81
  year: 1999
  ident: 9609_CR11
  publication-title: Surf. Interface Anal.
  doi: 10.1002/(SICI)1096-9918(199908)28:1<81::AID-SIA623>3.0.CO;2-D
– volume: 3
  start-page: 286
  year: 2018
  ident: 9609_CR18
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b01197
– volume: 24
  start-page: 5642
  year: 1981
  ident: 9609_CR3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.24.5642
– volume: 30
  start-page: 6589
  year: 2018
  ident: 9609_CR15
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b02989
– volume: 119
  start-page: 1763
  year: 2015
  ident: 9609_CR9
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5126624
– volume: 6
  start-page: 2452
  year: 2015
  ident: 9609_CR2
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00968
– volume: 42
  start-page: 133
  year: 1981
  ident: 9609_CR10
  publication-title: J. Phys. Chem. Solid
  doi: 10.1016/0022-3697(81)90072-X
– volume: 6
  start-page: 15
  year: 1996
  ident: 9609_CR22
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 11
  start-page: 2239
  year: 2017
  ident: 9609_CR16
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b08747
– volume: 7
  start-page: 14025
  year: 2017
  ident: 9609_CR5
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13172-y
– volume: 140
  start-page: A1133
  year: 1965
  ident: 9609_CR25
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 28
  start-page: 469
  year: 2016
  ident: 9609_CR7
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.09.009
– volume: 77
  start-page: 3865
  year: 1996
  ident: 9609_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 532
  start-page: 96
  year: 2012
  ident: 9609_CR28
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2012.02.055
– volume: 734
  start-page: 136719
  year: 2019
  ident: 9609_CR32
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2019.136719
– volume: 7
  start-page: 167
  year: 2016
  ident: 9609_CR4
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02597
– volume: 15
  start-page: 1500
  year: 1975
  ident: 9609_CR31
  publication-title: J. Chem. Soc., Dalton Trans.
  doi: 10.1039/dt9750001500
– volume: 1
  start-page: 16048
  year: 2016
  ident: 9609_CR1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.48
– volume: 32
  start-page: 205504
  year: 2020
  ident: 9609_CR20
  publication-title: J. Phys. Condens. Matter.
  doi: 10.1088/1361-648X/ab6e90
– volume: 111
  start-page: 211105
  year: 2017
  ident: 9609_CR19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5008437
– volume: 77
  start-page: 195408
  year: 2008
  ident: 9609_CR23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.195408
– volume: 9
  start-page: 6476
  year: 2021
  ident: 9609_CR8
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA10098F
– volume: 57
  start-page: 13154
  year: 2018
  ident: 9609_CR6
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201807674
SSID ssj0015181
Score 2.3701708
Snippet In order to promote the actual optoelectronic application of lead-free perovskite CsSnBr 3 , the stability and optoelectronic properties of metal dopants in...
In order to promote the actual optoelectronic application of lead-free perovskite CsSnBr3, the stability and optoelectronic properties of metal dopants in the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3438
SubjectTerms Absorptivity
Atomic radius
Characterization and Evaluation of Materials
Chemistry and Materials Science
Chromium
Copper
Density functional theory
Dopants
Doping
Electronics and Microelectronics
Energy
First principles
Free energy
Heat of formation
Instrumentation
Lead free
Manganese
Materials Science
Mathematical analysis
Metals
Optical and Electronic Materials
Optical properties
Optoelectronics
Original Research Article
Perovskites
Phase transitions
Solid State Physics
Structural stability
Transition metals
Values
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELWAXuCAWEXZ5AM3sKgTx4lPiKVVQSpUQCVuUbydUFKagsSRP2fsugSQ4JzEkfKc8Zvx-D2EjgTjUggJuYmNFWEc0p0iTiWRQkoutUmNl2MY3PL-iN08JU-h4FaHtsp5TPSBWlfK1chPI5469gwM_Gz8QpxrlNtdDRYai6gFITiD5Kt10b0d3n_tIyTU25RCmKYu5UrCsZnZ4TnKOSOum93LrhH2c2lq-OavLVK_8vTW0GqgjPh8hvE6WjDlBlr5JiS4iT4evAysk9DAQB99w-s7LkqN78bTqrG6wUNXe584EVVcWez8NUlvYgzuAx3XBg_NpHqrXUEXX9YP5cUkxvIdX7tudv2q4FXYr22-zYsMDBB3fAVZdzmtt9Co13287JNgrkBUnCVTopSRQMZURHWn0FJwyKoVs4YXcSF4qi2nmUyzTqSpzjKhLbNKSKOBoGRpGrN4Gy2VVWl2ELaiUzAZaUsBIGCERRzpgidJZDiV1mZtROffNVdBedwZYDznjWaywyIHLHKPRc7a6PjrmfFMd-Pfu_fncOXhH6zzZsa00ckcwuby36Pt_j_aHlqO_KxxPbv7aAkANgfATKbyMEy_TzX54Pw
  priority: 102
  providerName: ProQuest
Title Structural Stability and Optoelectronic Properties of Lead-Free Halide Perovskite CsSnBr3 by Introducing Transition-Metal Dopants
URI https://link.springer.com/article/10.1007/s11664-022-09609-4
https://www.proquest.com/docview/2672174086
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swGP3Ejwsc0MaYViiVD9w2S3XiOPGxQEuBlVUrldgpin-dUIqabhJH_vN9NglhiCFx8iG2I-U59nv25_cBHEkulJQKtYmLNeUC5U4Rp4oqqZRQxqY22DFMrsR4zi9ukpv6UljVRLs3R5Jhpm4vuzEhOPXR58EmjfJ12Ey8dsdRPI8GT2cHCQupSXFqZl5mJfVVmdf7-Hc5ajnmi2PRsNqMPsBOTRPJ4BHXj7Bmy13YfmYe-AkeZsH61dtmEKSMIcj1nhSlIT_uVos2vQ2Z-v32pTdOJQtHfE5NOlpaS8ZIwY0lU7tc_Kn8Ji45qWbl8TIm6p6c-wh281vjq0hYz0JoF51YJOvkFJV2uar2YD4aXp-MaZ1Qgeo4S1ZUa6uQgOmImX5hlBSopDV3VhRxIUVqnGCZSrN-ZJjJMmkcd1oqa5CUZGka8_gzbJSL0n4B4mS_4CoyjqGkQRZYxJEpRJJEVjDlXNYB1nzXXNdu4z7pxW3e-iR7LHLEIg9Y5LwDX5_a3D16bbxZu9vAldf_XZVHIvUaC3VaB741ELaP_9_b_vuqH8BWFEaRj9vtwgYCbg-RnaxUD9az0VkPNgenk-8zX579uhxieTy8mv7shaH6F3M94jE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdYKOADnMBi_YgTHxCClmWXdkultlJvIX6dULJsFtAe-UP8RsbepAEkeus5iSP5G3u-sWe-AXimpTJaG4xNgrBUKgx3KpEbarQxyjif-yTHMD9U01P58Sw724JffS1MTKvs98S0UbvGxjPyV1zlkT0jA3-z-Epj16h4u9q30NiYxb5f_8CQrX0920N8n3M-eX-yO6VdVwFqRZGtqLXeIAuxnLlx5YxWGE5aGbyqRKVV7oJihcmLMXfMFYV2QQarjXfomYs8F1LguFfgqhRCxxVVTD6c31pkLDVFRafAYoCXdUU6m1I9ppSkMXc-ibxR-bcjHNjtPxeyyc9NbsHNjqCStxuLug1bvr4DN_6QLbwLP4-T6GwU7CBIVlN67ZpUtSOfFqtmaKxDjuJJ_zJKtpImkNjNk06W3pMpkn_nyZFfNt_beHxMdtvj-t1SELMms5g7775Z_BVJnjQlldG5xzCB7GGMX6_ae3B6KZN-H7brpvYPgAQ9rqThLjA0B-SfleCuUlnGvWImhGIErJ_X0nY657HdxpdyUGiOWJSIRZmwKOUIXpx_s9iofFz49k4PV9mt-LYc7HMEL3sIh8f_H-3hxaM9hWvTk_lBeTA73H8E13myoJgtvAPbCLZ_jJxoZZ4kQyTw-bIt_zef6B4B
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrYTggPgUCwV8gBNYrB3HiQ8I0W5Xu5QuK0ql3tL464SSZbOA9sjf4tcx9iYNINFbz0mcKPOSmWeP3wN4roTUSmnkJj4xVEikO2WSaaqV1lJbl7kox3A8l9NT8f4sPduBX91emNBW2f0T44_a1ibMkb_mMgvVc_AF8m1bxGI8ebv8SoODVFhp7ew0thA5cpsfSN-aN7MxxvoF55PDzwdT2joMUJPk6Zoa4zRWJIYzOyqtVhKppRHeyTIplcyslyzXWT7iltk8V9YLb5R2FrN0nmWJSHDca7CLj5WNBrC7fzhffLpYw0hZtEjFFMEC3UvbLTvbjXtMSkFDJ32UfKPi77TY17r_LM_GrDe5DbfacpW82-LrDuy46i7c_EPE8B78PIkStEG-g2DpGpttN6SsLPm4XNe9zQ5ZhHn_VRBwJbUnwduTTlbOkSlSAevIwq3q702YTCYHzUm1v0qI3pBZ6KS33wzeisS8GlvM6LFD0kDGyPirdXMfTq_ktT-AQVVX7iEQr0al0Nx6huDAarRMuC1lmnInmfY-HwLr3mthWtXzYL7xpej1mkMsCoxFEWNRiCG8vLhmudX8uPTsvS5cRfv9N0WP1iG86kLYH_7_aI8uH-0ZXEfUFx9m86PHcINHAIXW4T0YYKzdEyyQ1vppi0QC51cN_t-moyOT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Stability+and+Optoelectronic+Properties+of+Lead-Free+Halide+Perovskite+CsSnBr3+by+Introducing+Transition-Metal+Dopants&rft.jtitle=Journal+of+electronic+materials&rft.au=Tang%2C+Fengjie&rft.au=Yao%2C+Yizhou&rft.au=Cao%2C+Dan&rft.au=Yan%2C+Jie&rft.date=2022-07-01&rft.issn=0361-5235&rft.eissn=1543-186X&rft.volume=51&rft.issue=7&rft.spage=3438&rft.epage=3444&rft_id=info:doi/10.1007%2Fs11664-022-09609-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11664_022_09609_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-5235&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-5235&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-5235&client=summon