Structural Stability and Optoelectronic Properties of Lead-Free Halide Perovskite CsSnBr3 by Introducing Transition-Metal Dopants
In order to promote the actual optoelectronic application of lead-free perovskite CsSnBr 3 , the stability and optoelectronic properties of metal dopants in the lead-free perovskite CsSnBr 3 have been studied systematically by using first-principles calculations based on density functional theory. C...
Saved in:
Published in | Journal of electronic materials Vol. 51; no. 7; pp. 3438 - 3444 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In order to promote the actual optoelectronic application of lead-free perovskite CsSnBr
3
, the stability and optoelectronic properties of metal dopants in the lead-free perovskite CsSnBr
3
have been studied systematically by using first-principles calculations based on density functional theory. Cd and Mn doping is more efficient in CsSnBr
3
than other considered metal dopants by calculating the doped formation energies. The stability of a doping system is related to the atomic radius of the dopant. Cr, Mn and Cu dopants can enlarge effectively the band gap of CsSnBr
3
and show a higher optical absorption coefficient in short wavelength region of visible light compared to undoped ones. Our work may provide a feasible pathway to manipulate and improve the stability and optoelectronic performance of CsSnBr
3
. |
---|---|
AbstractList | In order to promote the actual optoelectronic application of lead-free perovskite CsSnBr3, the stability and optoelectronic properties of metal dopants in the lead-free perovskite CsSnBr3 have been studied systematically by using first-principles calculations based on density functional theory. Cd and Mn doping is more efficient in CsSnBr3 than other considered metal dopants by calculating the doped formation energies. The stability of a doping system is related to the atomic radius of the dopant. Cr, Mn and Cu dopants can enlarge effectively the band gap of CsSnBr3 and show a higher optical absorption coefficient in short wavelength region of visible light compared to undoped ones. Our work may provide a feasible pathway to manipulate and improve the stability and optoelectronic performance of CsSnBr3. In order to promote the actual optoelectronic application of lead-free perovskite CsSnBr 3 , the stability and optoelectronic properties of metal dopants in the lead-free perovskite CsSnBr 3 have been studied systematically by using first-principles calculations based on density functional theory. Cd and Mn doping is more efficient in CsSnBr 3 than other considered metal dopants by calculating the doped formation energies. The stability of a doping system is related to the atomic radius of the dopant. Cr, Mn and Cu dopants can enlarge effectively the band gap of CsSnBr 3 and show a higher optical absorption coefficient in short wavelength region of visible light compared to undoped ones. Our work may provide a feasible pathway to manipulate and improve the stability and optoelectronic performance of CsSnBr 3 . |
Author | Jiao, Zhiwei Yao, Yizhou Jiang, Zhouting Zhou, Yun Tang, Fengjie Yan, Jie Cao, Dan Shu, Haibo Wang, Jianfeng |
Author_xml | – sequence: 1 givenname: Fengjie surname: Tang fullname: Tang, Fengjie organization: College of Sciences, China Jiliang University – sequence: 2 givenname: Yizhou surname: Yao fullname: Yao, Yizhou organization: College of Sciences, China Jiliang University – sequence: 3 givenname: Dan surname: Cao fullname: Cao, Dan email: caodan@cjlu.edu.cn organization: College of Sciences, China Jiliang University – sequence: 4 givenname: Jie surname: Yan fullname: Yan, Jie organization: College of Sciences, China Jiliang University – sequence: 5 givenname: Jianfeng surname: Wang fullname: Wang, Jianfeng organization: College of Sciences, China Jiliang University – sequence: 6 givenname: Zhouting surname: Jiang fullname: Jiang, Zhouting organization: College of Sciences, China Jiliang University – sequence: 7 givenname: Yun surname: Zhou fullname: Zhou, Yun organization: College of Sciences, China Jiliang University – sequence: 8 givenname: Zhiwei surname: Jiao fullname: Jiao, Zhiwei organization: College of Sciences, China Jiliang University – sequence: 9 givenname: Haibo surname: Shu fullname: Shu, Haibo organization: College of Optical and Electronic Technology, China Jiliang University |
BookMark | eNp9kMFq3DAURUVJoZO0P9CVoGu1kmXL8rKddJrAlAQmhe6ELD0Hpa7kPMmBWfbP48kECllk9Tb3vHs5p-QkpgiEfBT8s-C8_ZKFUKpmvKoY7xTvWP2GrERTSya0-n1CVlwqwZpKNu_Iac53nItGaLEi_3YFZ1dmtCPdFduHMZQ9tdHTq6kkGMEVTDE4eo1pAiwBMk0D3YL1bIMA9MKOwQO9BkwP-U8oQNd5F7-hpP2eXsaF9rML8ZbeoI05lJAi-wllqTtPk40lvydvBztm-PB8z8ivzfeb9QXbXv24XH_dMid1U5hz0NdCuUp4bn3fKeilqwdQVtpOtX5QQvet5pUXXuvOD_Xguh68ko1uW1nLM_Lp-HfCdD9DLuYuzRiXSlOpthJtzbVaUvqYcphyRhiMC8UeVhe0YTSCm4NwcxRuFuHmSbg5FFQv0AnDX4v71yF5hPISjreA_1e9Qj0CEzeX2g |
CitedBy_id | crossref_primary_10_1016_j_physleta_2024_130036 crossref_primary_10_1088_1402_4896_ad51b2 crossref_primary_10_1007_s10854_022_09560_4 crossref_primary_10_35848_1347_4065_acfdb3 |
Cites_doi | 10.1103/PhysRevB.50.16861 10.1021/acs.nanolett.7b04575 10.1103/PhysRevB.45.13244 10.1016/j.ssc.2014.12.006 10.1039/C9CP01211G 10.1039/D1RA03621A 10.1103/PhysRevB.54.11169 10.1021/acs.jpcc.8b10261 10.1016/j.jallcom.2020.155390 10.1002/(SICI)1096-9918(199908)28:1<81::AID-SIA623>3.0.CO;2-D 10.1021/acsenergylett.7b01197 10.1103/PhysRevB.24.5642 10.1021/acs.chemmater.8b02989 10.1021/jp5126624 10.1021/acs.jpclett.5b00968 10.1016/0022-3697(81)90072-X 10.1016/0927-0256(96)00008-0 10.1021/acsnano.6b08747 10.1038/s41598-017-13172-y 10.1103/PhysRev.140.A1133 10.1016/j.nanoen.2016.09.009 10.1103/PhysRevLett.77.3865 10.1016/j.cplett.2012.02.055 10.1016/j.cplett.2019.136719 10.1021/acs.jpclett.5b02597 10.1039/dt9750001500 10.1038/nenergy.2016.48 10.1088/1361-648X/ab6e90 10.1063/1.5008437 10.1103/PhysRevB.77.195408 10.1039/D0TA10098F 10.1002/anie.201807674 |
ContentType | Journal Article |
Copyright | The Minerals, Metals & Materials Society 2022 The Minerals, Metals & Materials Society 2022. |
Copyright_xml | – notice: The Minerals, Metals & Materials Society 2022 – notice: The Minerals, Metals & Materials Society 2022. |
DBID | AAYXX CITATION 3V. 7XB 88I 8AF 8AO 8FE 8FG 8FK 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO GNUQQ GUQSH HCIFZ KB. L6V M2O M2P M7S MBDVC P5Z P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0X |
DOI | 10.1007/s11664-022-09609-4 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student ProQuest Research Library ProQuest SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Proquest Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic SIRS Editorial |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SIRS Editorial Materials Science Collection ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Research Library ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1543-186X |
EndPage | 3444 |
ExternalDocumentID | 10_1007_s11664_022_09609_4 |
GrantInformation_xml | – fundername: Graduate Research and Innovation Projects of Zhejiang Province grantid: 2021R409023 – fundername: National College Students Innovation and Entrepreneurship Training Program grantid: 202010356042 funderid: http://dx.doi.org/10.13039/501100013254 – fundername: Natural Science Foundation of Zhejiang Province grantid: LY22A040002; LY21F010010 funderid: http://dx.doi.org/10.13039/501100004731 – fundername: National Natural Science Foundation of China grantid: 61775201; 21873087 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 78A 88I 8AF 8AO 8FE 8FG 8FW 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDPE ABDZT ABECU ABEFU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBEA ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ C1A CAG CCPQU COF CS3 CSCUP CZ9 D-I D1I DDRTE DNIVK DPUIP DU5 DWQXO E3Z EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GUQSH H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KB. KC. KDC KOV L6V LLZTM M2O M2P M2Q M4Y M7S MA- MK~ N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9N PDBOC PF0 PKN PQQKQ PROAC PT4 PT5 PTHSS Q2X QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RWL RXW RZK S0X S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TSG TSK TSV TUC TUS TWZ U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 Z8M Z8N Z8P Z8Q Z8R Z8T Z8W Z8Z Z92 ZE2 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7XB 8FK ABRTQ MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c385t-cceb416c21d0adb96eb3c4fe6a3a967df618b7802d1d889df4fc9bed635877343 |
IEDL.DBID | U2A |
ISSN | 0361-5235 |
IngestDate | Sat Aug 16 21:33:12 EDT 2025 Thu Apr 24 22:53:42 EDT 2025 Tue Jul 01 04:28:18 EDT 2025 Fri Feb 21 02:45:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Lead-free halide perovskite optoelectronic properties structural stability density functional theory |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-cceb416c21d0adb96eb3c4fe6a3a967df618b7802d1d889df4fc9bed635877343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2672174086 |
PQPubID | 48394 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2672174086 crossref_citationtrail_10_1007_s11664_022_09609_4 crossref_primary_10_1007_s11664_022_09609_4 springer_journals_10_1007_s11664_022_09609_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Warrendale |
PublicationTitle | Journal of electronic materials |
PublicationTitleAbbrev | J. Electron. Mater |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | LiCYLiPLiLYWangDJGaoXFGaoXJRSC Adv.202111218511:CAS:528:DC%2BB3MXhtlKju77I10.1039/D1RA03621A HeidrichKSchaferWSchreiberMSochtigJTrendelGTreuschJGrandkeTStolzHJPhys. Rev. B198124564256491:CAS:528:DyaL38XmtValsA%3D%3D10.1103/PhysRevB.24.5642 KulbakMGuptaSKedemNLevineIBendikovTHodesGCahenDJ. Phys. Chem. Lett.201671671:CAS:528:DC%2BC2MXitVygt7rJ10.1021/acs.jpclett.5b02597 SabbaDMulmudiHKPrabhakarRRKrishnamoorthyTBaikieTBoixPPMhaisalkarSMathewsNJ. Phys. Chem. C201511917631:CAS:528:DC%2BC2MXks1Gktg%3D%3D10.1021/jp5126624 ZhengJCHuanCHAWeeATSKuokMHSurf. Interface Anal.199928811:CAS:528:DyaK1MXlvV2qs78%3D10.1002/(SICI)1096-9918(199908)28:1<81::AID-SIA623>3.0.CO;2-D DonaldsonJDSilverJHadjiminolisSRossSDJ. Chem. Soc., Dalton Trans.197515150010.1039/dt9750001500 ZhuYSPanGCShaoLYangGXuXMZhaoJMaoYLJ. Alloys Compd.20208351553901:CAS:528:DC%2BB3cXpt12isbc%3D10.1016/j.jallcom.2020.155390 KressGFurthmüllerJPhys. Rev. B1996541116910.1103/PhysRevB.54.11169 AoBYZhangZJTangTZhaoYPSolid State Commun.2015204231:CAS:528:DC%2BC2MXhtFKrug%3D%3D10.1016/j.ssc.2014.12.006 LiBHLongRYXiaYMiQXAngew. Chem. Int. Ed.201857131541:CAS:528:DC%2BC1cXhslWjtbnN10.1002/anie.201807674 LiuHWWuZNShaoJRYaoDGaoHLiuYYuWLZhangHYangBACS Nano20171122391:CAS:528:DC%2BC2sXhvVChsL4%3D10.1021/acsnano.6b08747 KressGFurthmüllerJComput. Mater. Sci.199661510.1016/0927-0256(96)00008-0 SwarnkarAMirWJNagAACS Energy Lett.201832861:CAS:528:DC%2BC1cXjsVGnsA%3D%3D10.1021/acsenergylett.7b01197 ClarkSJFlintCDDonaldsonJDJ. Phys. Chem. Solid1981421331:CAS:528:DyaL3MXksFWqsLY%3D10.1016/0022-3697(81)90072-X KanounMBGoumri-SaidSSchwingenshchlöglUManchonAChem. Phys. Lett.2012532961:CAS:528:DC%2BC38XkvVCkt7o%3D10.1016/j.cplett.2012.02.055 PerdewJPBurkeKErnzerhofMPhys. Rev. Lett.19967738651:CAS:528:DyaK28XmsVCgsbs%3D10.1103/PhysRevLett.77.3865 KohnWShamLJPhys. Rev.1965140A113310.1103/PhysRev.140.A1133 LongLXCaoDFeiJPWangJFZhouYJiangZTJiaoZWShuHBChem. Phys. Lett.20197341367191:CAS:528:DC%2BC1MXhslajt7jK10.1016/j.cplett.2019.136719 LiQQCaoDLiuXYZhouXYChenXSShuHBJ. Mater. Chem. A2021964761:CAS:528:DC%2BB3MXjtVGisLY%3D10.1039/D0TA10098F PanGBaiXYangDChenXJingPQuSZhangLZhouDZhuJXuWDongBSongHNano Lett.201717800580111:CAS:528:DC%2BC2sXhvVOku7rE10.1021/acs.nanolett.7b04575 HeTCLiJZRenCXiaoSYLiYWChenRLinXDAppl. Phys. Lett.201711121110510.1063/1.5008437 YuZLZhaoYQWanQLiuBYangJLCaiMQJ. Phys. Condens. Matter.2020322055041:CAS:528:DC%2BB3cXhsVGisbnN10.1088/1361-648X/ab6e90 KressGJoubertDPhys. Rev. B20087719540810.1103/PhysRevB.77.195408 MogheDWangLTraverseCJReduouteASponsellerMBrownPRBulovicVLuntRRNano Energy2016284691:CAS:528:DC%2BC28XhsFWqurzN10.1016/j.nanoen.2016.09.009 ZhangWEperonGESnaithHJNat. Energy20161160481:CAS:528:DC%2BC2sXhtVeku7g%3D10.1038/nenergy.2016.48 RoknuzzamanMOstrikovKWangHXDuATesfamichaelTSci. Rep.201771402510.1038/s41598-017-13172-y BalaAKumarVJ. Phys. Chem. C201912369651:CAS:528:DC%2BC1MXjvFCktbk%3D10.1021/acs.jpcc.8b10261 ZhouYChenJBakrOMSunHTChem. Mater.20183065891:CAS:528:DC%2BC1cXhs1Siur3N10.1021/acs.chemmater.8b02989 SolovyevIVDeederichsPHAnisimovVIPhys. Rev. B199450168611:CAS:528:DyaK2MXivVymsLk%3D10.1103/PhysRevB.50.16861 MonkhorstHJPackJDPhys. Rev. B1992451324410.1103/PhysRevB.45.13244 KulbakMCahenDHodesGJ. Phys. Chem. Lett.2015624521:CAS:528:DC%2BC2MXhtVaksb3I10.1021/acs.jpclett.5b00968 ZhangJJYangLZhongYHaoHQYangMLiuRYPhys. Chem. Chem. Phys.201921111751:CAS:528:DC%2BC1MXoslOjurk%3D10.1039/C9CP01211G A Swarnkar (9609_CR18) 2018; 3 QQ Li (9609_CR8) 2021; 9 M Roknuzzaman (9609_CR5) 2017; 7 CY Li (9609_CR27) 2021; 11 SJ Clark (9609_CR10) 1981; 42 G Kress (9609_CR23) 2008; 77 A Bala (9609_CR12) 2019; 123 JP Perdew (9609_CR24) 1996; 77 HJ Monkhorst (9609_CR30) 1992; 45 JD Donaldson (9609_CR31) 1975; 15 D Moghe (9609_CR7) 2016; 28 TC He (9609_CR19) 2017; 111 BH Li (9609_CR6) 2018; 57 G Kress (9609_CR21) 1996; 54 LX Long (9609_CR32) 2019; 734 G Pan (9609_CR14) 2017; 17 M Kulbak (9609_CR4) 2016; 7 ZL Yu (9609_CR20) 2020; 32 JJ Zhang (9609_CR17) 2019; 21 W Kohn (9609_CR25) 1965; 140 JC Zheng (9609_CR11) 1999; 28 HW Liu (9609_CR16) 2017; 11 IV Solovyev (9609_CR26) 1994; 50 K Heidrich (9609_CR3) 1981; 24 YS Zhu (9609_CR13) 2020; 835 Y Zhou (9609_CR15) 2018; 30 MB Kanoun (9609_CR28) 2012; 532 BY Ao (9609_CR29) 2015; 204 M Kulbak (9609_CR2) 2015; 6 D Sabba (9609_CR9) 2015; 119 W Zhang (9609_CR1) 2016; 1 G Kress (9609_CR22) 1996; 6 |
References_xml | – reference: LiBHLongRYXiaYMiQXAngew. Chem. Int. Ed.201857131541:CAS:528:DC%2BC1cXhslWjtbnN10.1002/anie.201807674 – reference: ZhuYSPanGCShaoLYangGXuXMZhaoJMaoYLJ. Alloys Compd.20208351553901:CAS:528:DC%2BB3cXpt12isbc%3D10.1016/j.jallcom.2020.155390 – reference: ZhengJCHuanCHAWeeATSKuokMHSurf. Interface Anal.199928811:CAS:528:DyaK1MXlvV2qs78%3D10.1002/(SICI)1096-9918(199908)28:1<81::AID-SIA623>3.0.CO;2-D – reference: PerdewJPBurkeKErnzerhofMPhys. Rev. Lett.19967738651:CAS:528:DyaK28XmsVCgsbs%3D10.1103/PhysRevLett.77.3865 – reference: HeTCLiJZRenCXiaoSYLiYWChenRLinXDAppl. Phys. Lett.201711121110510.1063/1.5008437 – reference: AoBYZhangZJTangTZhaoYPSolid State Commun.2015204231:CAS:528:DC%2BC2MXhtFKrug%3D%3D10.1016/j.ssc.2014.12.006 – reference: KanounMBGoumri-SaidSSchwingenshchlöglUManchonAChem. Phys. Lett.2012532961:CAS:528:DC%2BC38XkvVCkt7o%3D10.1016/j.cplett.2012.02.055 – reference: KressGFurthmüllerJPhys. Rev. B1996541116910.1103/PhysRevB.54.11169 – reference: KressGJoubertDPhys. Rev. B20087719540810.1103/PhysRevB.77.195408 – reference: ZhangJJYangLZhongYHaoHQYangMLiuRYPhys. Chem. Chem. Phys.201921111751:CAS:528:DC%2BC1MXoslOjurk%3D10.1039/C9CP01211G – reference: LiCYLiPLiLYWangDJGaoXFGaoXJRSC Adv.202111218511:CAS:528:DC%2BB3MXhtlKju77I10.1039/D1RA03621A – reference: BalaAKumarVJ. Phys. Chem. C201912369651:CAS:528:DC%2BC1MXjvFCktbk%3D10.1021/acs.jpcc.8b10261 – reference: ZhouYChenJBakrOMSunHTChem. Mater.20183065891:CAS:528:DC%2BC1cXhs1Siur3N10.1021/acs.chemmater.8b02989 – reference: SabbaDMulmudiHKPrabhakarRRKrishnamoorthyTBaikieTBoixPPMhaisalkarSMathewsNJ. Phys. Chem. C201511917631:CAS:528:DC%2BC2MXks1Gktg%3D%3D10.1021/jp5126624 – reference: LongLXCaoDFeiJPWangJFZhouYJiangZTJiaoZWShuHBChem. Phys. Lett.20197341367191:CAS:528:DC%2BC1MXhslajt7jK10.1016/j.cplett.2019.136719 – reference: LiQQCaoDLiuXYZhouXYChenXSShuHBJ. Mater. Chem. A2021964761:CAS:528:DC%2BB3MXjtVGisLY%3D10.1039/D0TA10098F – reference: MogheDWangLTraverseCJReduouteASponsellerMBrownPRBulovicVLuntRRNano Energy2016284691:CAS:528:DC%2BC28XhsFWqurzN10.1016/j.nanoen.2016.09.009 – reference: PanGBaiXYangDChenXJingPQuSZhangLZhouDZhuJXuWDongBSongHNano Lett.201717800580111:CAS:528:DC%2BC2sXhvVOku7rE10.1021/acs.nanolett.7b04575 – reference: LiuHWWuZNShaoJRYaoDGaoHLiuYYuWLZhangHYangBACS Nano20171122391:CAS:528:DC%2BC2sXhvVChsL4%3D10.1021/acsnano.6b08747 – reference: KressGFurthmüllerJComput. Mater. Sci.199661510.1016/0927-0256(96)00008-0 – reference: KohnWShamLJPhys. Rev.1965140A113310.1103/PhysRev.140.A1133 – reference: KulbakMGuptaSKedemNLevineIBendikovTHodesGCahenDJ. Phys. Chem. Lett.201671671:CAS:528:DC%2BC2MXitVygt7rJ10.1021/acs.jpclett.5b02597 – reference: KulbakMCahenDHodesGJ. Phys. Chem. Lett.2015624521:CAS:528:DC%2BC2MXhtVaksb3I10.1021/acs.jpclett.5b00968 – reference: RoknuzzamanMOstrikovKWangHXDuATesfamichaelTSci. Rep.201771402510.1038/s41598-017-13172-y – reference: ZhangWEperonGESnaithHJNat. Energy20161160481:CAS:528:DC%2BC2sXhtVeku7g%3D10.1038/nenergy.2016.48 – reference: HeidrichKSchaferWSchreiberMSochtigJTrendelGTreuschJGrandkeTStolzHJPhys. Rev. B198124564256491:CAS:528:DyaL38XmtValsA%3D%3D10.1103/PhysRevB.24.5642 – reference: YuZLZhaoYQWanQLiuBYangJLCaiMQJ. Phys. Condens. Matter.2020322055041:CAS:528:DC%2BB3cXhsVGisbnN10.1088/1361-648X/ab6e90 – reference: SolovyevIVDeederichsPHAnisimovVIPhys. Rev. B199450168611:CAS:528:DyaK2MXivVymsLk%3D10.1103/PhysRevB.50.16861 – reference: SwarnkarAMirWJNagAACS Energy Lett.201832861:CAS:528:DC%2BC1cXjsVGnsA%3D%3D10.1021/acsenergylett.7b01197 – reference: MonkhorstHJPackJDPhys. Rev. B1992451324410.1103/PhysRevB.45.13244 – reference: ClarkSJFlintCDDonaldsonJDJ. Phys. Chem. Solid1981421331:CAS:528:DyaL3MXksFWqsLY%3D10.1016/0022-3697(81)90072-X – reference: DonaldsonJDSilverJHadjiminolisSRossSDJ. Chem. Soc., Dalton Trans.197515150010.1039/dt9750001500 – volume: 50 start-page: 16861 year: 1994 ident: 9609_CR26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.16861 – volume: 17 start-page: 8005 year: 2017 ident: 9609_CR14 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b04575 – volume: 45 start-page: 13244 year: 1992 ident: 9609_CR30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.45.13244 – volume: 204 start-page: 23 year: 2015 ident: 9609_CR29 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2014.12.006 – volume: 21 start-page: 11175 year: 2019 ident: 9609_CR17 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP01211G – volume: 11 start-page: 21851 year: 2021 ident: 9609_CR27 publication-title: RSC Adv. doi: 10.1039/D1RA03621A – volume: 54 start-page: 11169 year: 1996 ident: 9609_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 123 start-page: 6965 year: 2019 ident: 9609_CR12 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b10261 – volume: 835 start-page: 155390 year: 2020 ident: 9609_CR13 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.155390 – volume: 28 start-page: 81 year: 1999 ident: 9609_CR11 publication-title: Surf. Interface Anal. doi: 10.1002/(SICI)1096-9918(199908)28:1<81::AID-SIA623>3.0.CO;2-D – volume: 3 start-page: 286 year: 2018 ident: 9609_CR18 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b01197 – volume: 24 start-page: 5642 year: 1981 ident: 9609_CR3 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.24.5642 – volume: 30 start-page: 6589 year: 2018 ident: 9609_CR15 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b02989 – volume: 119 start-page: 1763 year: 2015 ident: 9609_CR9 publication-title: J. Phys. Chem. C doi: 10.1021/jp5126624 – volume: 6 start-page: 2452 year: 2015 ident: 9609_CR2 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00968 – volume: 42 start-page: 133 year: 1981 ident: 9609_CR10 publication-title: J. Phys. Chem. Solid doi: 10.1016/0022-3697(81)90072-X – volume: 6 start-page: 15 year: 1996 ident: 9609_CR22 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 11 start-page: 2239 year: 2017 ident: 9609_CR16 publication-title: ACS Nano doi: 10.1021/acsnano.6b08747 – volume: 7 start-page: 14025 year: 2017 ident: 9609_CR5 publication-title: Sci. Rep. doi: 10.1038/s41598-017-13172-y – volume: 140 start-page: A1133 year: 1965 ident: 9609_CR25 publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 28 start-page: 469 year: 2016 ident: 9609_CR7 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.09.009 – volume: 77 start-page: 3865 year: 1996 ident: 9609_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 532 start-page: 96 year: 2012 ident: 9609_CR28 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2012.02.055 – volume: 734 start-page: 136719 year: 2019 ident: 9609_CR32 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2019.136719 – volume: 7 start-page: 167 year: 2016 ident: 9609_CR4 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02597 – volume: 15 start-page: 1500 year: 1975 ident: 9609_CR31 publication-title: J. Chem. Soc., Dalton Trans. doi: 10.1039/dt9750001500 – volume: 1 start-page: 16048 year: 2016 ident: 9609_CR1 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.48 – volume: 32 start-page: 205504 year: 2020 ident: 9609_CR20 publication-title: J. Phys. Condens. Matter. doi: 10.1088/1361-648X/ab6e90 – volume: 111 start-page: 211105 year: 2017 ident: 9609_CR19 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5008437 – volume: 77 start-page: 195408 year: 2008 ident: 9609_CR23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.195408 – volume: 9 start-page: 6476 year: 2021 ident: 9609_CR8 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA10098F – volume: 57 start-page: 13154 year: 2018 ident: 9609_CR6 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201807674 |
SSID | ssj0015181 |
Score | 2.3701708 |
Snippet | In order to promote the actual optoelectronic application of lead-free perovskite CsSnBr
3
, the stability and optoelectronic properties of metal dopants in... In order to promote the actual optoelectronic application of lead-free perovskite CsSnBr3, the stability and optoelectronic properties of metal dopants in the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3438 |
SubjectTerms | Absorptivity Atomic radius Characterization and Evaluation of Materials Chemistry and Materials Science Chromium Copper Density functional theory Dopants Doping Electronics and Microelectronics Energy First principles Free energy Heat of formation Instrumentation Lead free Manganese Materials Science Mathematical analysis Metals Optical and Electronic Materials Optical properties Optoelectronics Original Research Article Perovskites Phase transitions Solid State Physics Structural stability Transition metals Values |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELWAXuCAWEXZ5AM3sKgTx4lPiKVVQSpUQCVuUbydUFKagsSRP2fsugSQ4JzEkfKc8Zvx-D2EjgTjUggJuYmNFWEc0p0iTiWRQkoutUmNl2MY3PL-iN08JU-h4FaHtsp5TPSBWlfK1chPI5469gwM_Gz8QpxrlNtdDRYai6gFITiD5Kt10b0d3n_tIyTU25RCmKYu5UrCsZnZ4TnKOSOum93LrhH2c2lq-OavLVK_8vTW0GqgjPh8hvE6WjDlBlr5JiS4iT4evAysk9DAQB99w-s7LkqN78bTqrG6wUNXe584EVVcWez8NUlvYgzuAx3XBg_NpHqrXUEXX9YP5cUkxvIdX7tudv2q4FXYr22-zYsMDBB3fAVZdzmtt9Co13287JNgrkBUnCVTopSRQMZURHWn0FJwyKoVs4YXcSF4qi2nmUyzTqSpzjKhLbNKSKOBoGRpGrN4Gy2VVWl2ELaiUzAZaUsBIGCERRzpgidJZDiV1mZtROffNVdBedwZYDznjWaywyIHLHKPRc7a6PjrmfFMd-Pfu_fncOXhH6zzZsa00ckcwuby36Pt_j_aHlqO_KxxPbv7aAkANgfATKbyMEy_TzX54Pw priority: 102 providerName: ProQuest |
Title | Structural Stability and Optoelectronic Properties of Lead-Free Halide Perovskite CsSnBr3 by Introducing Transition-Metal Dopants |
URI | https://link.springer.com/article/10.1007/s11664-022-09609-4 https://www.proquest.com/docview/2672174086 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swGP3Ejwsc0MaYViiVD9w2S3XiOPGxQEuBlVUrldgpin-dUIqabhJH_vN9NglhiCFx8iG2I-U59nv25_cBHEkulJQKtYmLNeUC5U4Rp4oqqZRQxqY22DFMrsR4zi9ukpv6UljVRLs3R5Jhpm4vuzEhOPXR58EmjfJ12Ey8dsdRPI8GT2cHCQupSXFqZl5mJfVVmdf7-Hc5ajnmi2PRsNqMPsBOTRPJ4BHXj7Bmy13YfmYe-AkeZsH61dtmEKSMIcj1nhSlIT_uVos2vQ2Z-v32pTdOJQtHfE5NOlpaS8ZIwY0lU7tc_Kn8Ji45qWbl8TIm6p6c-wh281vjq0hYz0JoF51YJOvkFJV2uar2YD4aXp-MaZ1Qgeo4S1ZUa6uQgOmImX5hlBSopDV3VhRxIUVqnGCZSrN-ZJjJMmkcd1oqa5CUZGka8_gzbJSL0n4B4mS_4CoyjqGkQRZYxJEpRJJEVjDlXNYB1nzXXNdu4z7pxW3e-iR7LHLEIg9Y5LwDX5_a3D16bbxZu9vAldf_XZVHIvUaC3VaB741ELaP_9_b_vuqH8BWFEaRj9vtwgYCbg-RnaxUD9az0VkPNgenk-8zX579uhxieTy8mv7shaH6F3M94jE |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdYKOADnMBi_YgTHxCClmWXdkultlJvIX6dULJsFtAe-UP8RsbepAEkeus5iSP5G3u-sWe-AXimpTJaG4xNgrBUKgx3KpEbarQxyjif-yTHMD9U01P58Sw724JffS1MTKvs98S0UbvGxjPyV1zlkT0jA3-z-Epj16h4u9q30NiYxb5f_8CQrX0920N8n3M-eX-yO6VdVwFqRZGtqLXeIAuxnLlx5YxWGE5aGbyqRKVV7oJihcmLMXfMFYV2QQarjXfomYs8F1LguFfgqhRCxxVVTD6c31pkLDVFRafAYoCXdUU6m1I9ppSkMXc-ibxR-bcjHNjtPxeyyc9NbsHNjqCStxuLug1bvr4DN_6QLbwLP4-T6GwU7CBIVlN67ZpUtSOfFqtmaKxDjuJJ_zJKtpImkNjNk06W3pMpkn_nyZFfNt_beHxMdtvj-t1SELMms5g7775Z_BVJnjQlldG5xzCB7GGMX6_ae3B6KZN-H7brpvYPgAQ9rqThLjA0B-SfleCuUlnGvWImhGIErJ_X0nY657HdxpdyUGiOWJSIRZmwKOUIXpx_s9iofFz49k4PV9mt-LYc7HMEL3sIh8f_H-3hxaM9hWvTk_lBeTA73H8E13myoJgtvAPbCLZ_jJxoZZ4kQyTw-bIt_zef6B4B |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrYTggPgUCwV8gBNYrB3HiQ8I0W5Xu5QuK0ql3tL464SSZbOA9sjf4tcx9iYNINFbz0mcKPOSmWeP3wN4roTUSmnkJj4xVEikO2WSaaqV1lJbl7kox3A8l9NT8f4sPduBX91emNBW2f0T44_a1ibMkb_mMgvVc_AF8m1bxGI8ebv8SoODVFhp7ew0thA5cpsfSN-aN7MxxvoF55PDzwdT2joMUJPk6Zoa4zRWJIYzOyqtVhKppRHeyTIplcyslyzXWT7iltk8V9YLb5R2FrN0nmWJSHDca7CLj5WNBrC7fzhffLpYw0hZtEjFFMEC3UvbLTvbjXtMSkFDJ32UfKPi77TY17r_LM_GrDe5DbfacpW82-LrDuy46i7c_EPE8B78PIkStEG-g2DpGpttN6SsLPm4XNe9zQ5ZhHn_VRBwJbUnwduTTlbOkSlSAevIwq3q702YTCYHzUm1v0qI3pBZ6KS33wzeisS8GlvM6LFD0kDGyPirdXMfTq_ktT-AQVVX7iEQr0al0Nx6huDAarRMuC1lmnInmfY-HwLr3mthWtXzYL7xpej1mkMsCoxFEWNRiCG8vLhmudX8uPTsvS5cRfv9N0WP1iG86kLYH_7_aI8uH-0ZXEfUFx9m86PHcINHAIXW4T0YYKzdEyyQ1vppi0QC51cN_t-moyOT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Stability+and+Optoelectronic+Properties+of+Lead-Free+Halide+Perovskite+CsSnBr3+by+Introducing+Transition-Metal+Dopants&rft.jtitle=Journal+of+electronic+materials&rft.au=Tang%2C+Fengjie&rft.au=Yao%2C+Yizhou&rft.au=Cao%2C+Dan&rft.au=Yan%2C+Jie&rft.date=2022-07-01&rft.issn=0361-5235&rft.eissn=1543-186X&rft.volume=51&rft.issue=7&rft.spage=3438&rft.epage=3444&rft_id=info:doi/10.1007%2Fs11664-022-09609-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11664_022_09609_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-5235&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-5235&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-5235&client=summon |