Interaction-Driven Metal-Insulator Transition with Charge Fractionalization

It has been proposed that an extended version of the Hubbard model which potentially hosts rich correlated physics may be well simulated by the transition metal dichalcogenide (TMD) moiré heterostructures. Motivated by recent reports of continuous metal-insulator transition (MIT) at half filling, as...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. X Vol. 12; no. 2; p. 021067
Main Authors Xu, Yichen, Wu, Xiao-Chuan, Ye, Mengxing, Luo, Zhu-Xi, Jian, Chao-Ming, Xu, Cenke
Format Journal Article
LanguageEnglish
Published College Park American Physical Society 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It has been proposed that an extended version of the Hubbard model which potentially hosts rich correlated physics may be well simulated by the transition metal dichalcogenide (TMD) moiré heterostructures. Motivated by recent reports of continuous metal-insulator transition (MIT) at half filling, as well as correlated insulators at various fractional fillings in TMD moiré heterostructures, we propose a theory for the potentially continuous MIT with fractionalized electric charges. The charge fractionalization at the MIT will lead to various experimental observable effects, such as a large resistivity as well as large universal resistivity jump at the continuous MIT. These predictions are different from previously proposed theory for interaction-driven continuous MIT. Physics in phases near the MIT will also be discussed.
AbstractList It has been proposed that an extended version of the Hubbard model which potentially hosts rich correlated physics may be well simulated by the transition metal dichalcogenide (TMD) moiré heterostructures. Motivated by recent reports of continuous metal-insulator transition (MIT) at half filling, as well as correlated insulators at various fractional fillings in TMD moiré heterostructures, we propose a theory for the potentially continuous MIT with fractionalized electric charges. The charge fractionalization at the MIT will lead to various experimental observable effects, such as a large resistivity as well as large universal resistivity jump at the continuous MIT. These predictions are different from previously proposed theory for interaction-driven continuous MIT. Physics in phases near the MIT will also be discussed.
ArticleNumber 021067
Author Wu, Xiao-Chuan
Luo, Zhu-Xi
Xu, Yichen
Ye, Mengxing
Xu, Cenke
Jian, Chao-Ming
Author_xml – sequence: 1
  givenname: Yichen
  surname: Xu
  fullname: Xu, Yichen
– sequence: 2
  givenname: Xiao-Chuan
  surname: Wu
  fullname: Wu, Xiao-Chuan
– sequence: 3
  givenname: Mengxing
  surname: Ye
  fullname: Ye, Mengxing
– sequence: 4
  givenname: Zhu-Xi
  surname: Luo
  fullname: Luo, Zhu-Xi
– sequence: 5
  givenname: Chao-Ming
  surname: Jian
  fullname: Jian, Chao-Ming
– sequence: 6
  givenname: Cenke
  orcidid: 0000-0002-2304-743X
  surname: Xu
  fullname: Xu, Cenke
BookMark eNpNUctOwzAQtFCRKKU_wCkS5xQ_4jg5ovKKKAKhInGzHGfdugpxsdOi8vWkpCD2sqPV7OyO5hQNGtcAQucETwjB7PJ5uQsvsH2bEDrBlOBUHKEhJSmOGcPZ4B8-QeMQVrirFJNEiCF6KJoWvNKtdU187e0WmugRWlXHRRM2tWqdj-ZeNcHuGdGnbZfRdKn8AqLbw5qq7ZfagzN0bFQdYHzoI_R6ezOf3sezp7tiejWLNct4G2suDAYiSlNWXCeZBoFpJnIOmpc8r0yl00Tx0miuNe1eVVQkkPMMmEk1UWyEil63cmol196-K7-TTln5M3B-IZVvra5BJgmlNOFpSTu_mEEmKNOcVFgRw3WVdVoXvdbau48NhFau3MZ3noKkghHCGKN5x6I9S3sXggfzd5Vguc9A_mYgCZV9BuwbbCR9XA
CitedBy_id crossref_primary_10_1038_s41467_022_32037_1
crossref_primary_10_1103_PhysRevX_12_041015
crossref_primary_10_1103_PhysRevB_106_195128
crossref_primary_10_1103_PhysRevB_106_155145
crossref_primary_10_1103_PhysRevLett_130_066301
crossref_primary_10_1103_PhysRevB_106_155131
crossref_primary_10_1103_PhysRevB_109_195108
crossref_primary_10_1103_PhysRevB_106_235148
crossref_primary_10_1103_PhysRevB_109_085143
Cites_doi 10.1038/s41586-020-2049-7
10.1103/PhysRevB.98.075154
10.1103/PhysRevB.86.155449
10.1103/PhysRevB.77.155105
10.1038/s41586-019-1393-y
10.1103/PhysRevB.89.235116
10.1103/PhysRevB.94.115138
10.1016/0003-4916(61)90115-4
10.1103/PhysRevB.89.104418
10.1103/PhysRevLett.95.180603
10.1103/PhysRevX.8.041041
10.1038/s41563-021-00959-8
10.1103/PhysRevLett.59.2095
10.1080/14786430410001716944
10.1038/nature26154
10.1103/PhysRevX.10.021042
10.1126/sciadv.abf5299
10.1038/nature26160
10.1103/PhysRevB.98.085435
10.1103/PhysRevX.6.031028
10.1103/RevModPhys.82.1743
10.1103/PhysRevB.101.184419
10.1103/PhysRevB.78.035103
10.1103/PhysRevLett.112.030402
10.1103/PhysRevB.44.6883
10.1088/0256-307X/28/9/097102
10.1103/PhysRevX.8.031087
10.1038/s41467-019-12981-1
10.1103/PhysRevLett.121.026402
10.1103/PhysRevLett.124.076801
10.1126/science.1091806
10.1103/PhysRevLett.95.036403
10.1103/PhysRevLett.124.166601
10.1103/PhysRevB.39.8988
10.1103/PhysRevB.46.5621
10.1007/JHEP06(2015)037
10.1103/PhysRevB.101.205426
10.1038/s41586-021-03815-6
10.1038/s41535-019-0153-4
10.1103/PhysRevLett.113.197202
10.1103/PhysRevLett.127.197701
10.1103/PhysRevB.76.224431
10.21468/SciPostPhys.10.2.033
10.1103/PhysRevX.8.031088
10.1103/PhysRevB.82.075127
10.1038/s41567-020-0928-3
10.1038/s41586-020-2260-6
10.1103/PhysRevResearch.2.023344
10.1038/s41567-018-0387-2
10.1088/1751-8113/45/47/473001
10.1103/PhysRevB.84.041102
10.1038/s41586-021-03853-0
10.1103/PhysRevB.82.045121
10.1103/PhysRevB.100.155138
10.1103/PhysRevB.69.104431
10.1103/PhysRevLett.64.587
10.1103/PhysRevB.63.224401
10.1103/PhysRevB.82.075128
10.1126/science.1212207
10.1103/PhysRevLett.117.157001
10.1103/PhysRevB.76.235124
10.1007/JHEP09(2013)127
10.1103/PhysRevB.72.134502
10.1103/PhysRevX.6.041068
10.1038/s41567-021-01347-4
10.1103/PhysRevB.91.115111
10.1103/PhysRevB.86.245102
10.1103/PhysRevLett.122.257002
10.1103/PhysRevResearch.2.043277
10.1103/PhysRevB.39.11879
10.1038/nphys2913
10.1038/s41586-020-2868-6
10.1103/PhysRevX.10.031034
10.1103/PhysRevLett.121.257001
10.1038/s41586-020-2092-4
10.1103/PhysRevB.98.045103
10.1007/JHEP06(2020)142
10.1103/PhysRevB.53.R8883
10.1103/PhysRevB.39.2756
10.1016/0550-3213(94)90449-9
10.1073/pnas.1620651114
10.1103/PhysRevLett.103.196803
10.1103/PhysRevB.79.064405
10.1103/PhysRevB.104.014517
10.1103/PhysRevLett.121.087001
10.1103/PhysRevLett.62.2180
10.1126/science.1148047
10.1103/PhysRevB.103.235132
10.1016/0003-4916(78)90252-X
10.1038/s41467-021-25707-z
10.1103/PhysRevB.80.165102
10.1126/sciadv.aba8834
10.1103/PhysRevResearch.2.033087
10.1126/science.aal5304
10.1007/JHEP05(2019)214
10.1038/s41567-019-0596-3
10.1103/PhysRevLett.114.097001
10.1103/PhysRevLett.74.3253
10.1126/science.aav1910
10.1016/0550-3213(94)90477-4
10.1103/PhysRevLett.47.1556
10.1103/PhysRevB.70.144407
10.1103/PhysRevLett.122.016401
10.1073/pnas.1108174108
10.1038/s41586-020-2458-7
10.1126/science.aay5533
10.1103/PhysRevB.99.075127
10.21468/SciPostPhys.9.3.034
10.1143/PTPS.160.314
10.1103/PhysRevLett.67.2068
10.1103/PhysRevX.8.031089
10.1103/PhysRevB.84.014402
10.1016/0550-3213(94)90158-9
10.1103/PhysRevB.92.125108
10.1103/PhysRevB.98.075109
10.1038/s41567-020-01062-6
10.1038/s41586-020-2459-6
10.1103/PhysRevB.78.045109
10.1103/PhysRevX.7.031058
10.1038/s41567-021-01171-w
10.1103/PhysRevLett.64.3078
10.1103/PhysRevLett.105.160403
ContentType Journal Article
Copyright 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1103/PhysRevX.12.021067
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
ProQuest Science Journals
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
Technology Collection
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2160-3308
ExternalDocumentID oai_doaj_org_article_44222456b201403e8723c51d0a1f5cd8
10_1103_PhysRevX_12_021067
GroupedDBID 3MX
5VS
88I
AAYXX
ABJCF
ABUWG
ADBBV
AENEX
AFGMR
AFKRA
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
KQ8
M2P
M7S
M~E
OK1
PIMPY
PTHSS
ROL
S7W
3V.
7XB
8FE
8FG
8FK
L6V
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c385t-c57f0e17bfbd5c48ce7028795ec5b59dfdc64a5bfc5cc2006a274e958e3f6c1a3
IEDL.DBID BENPR
ISSN 2160-3308
IngestDate Thu Jul 04 21:09:20 EDT 2024
Fri Sep 13 05:13:26 EDT 2024
Fri Aug 23 02:43:02 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-c57f0e17bfbd5c48ce7028795ec5b59dfdc64a5bfc5cc2006a274e958e3f6c1a3
ORCID 0000-0002-2304-743X
OpenAccessLink https://www.proquest.com/docview/2731133329/abstract/?pq-origsite=%requestingapplication%
PQID 2731133329
PQPubID 5161131
ParticipantIDs doaj_primary_oai_doaj_org_article_44222456b201403e8723c51d0a1f5cd8
proquest_journals_2731133329
crossref_primary_10_1103_PhysRevX_12_021067
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace College Park
PublicationPlace_xml – name: College Park
PublicationTitle Physical review. X
PublicationYear 2022
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevX.12.021067Cc55R1
PhysRevX.12.021067Cc32R1
PhysRevX.12.021067Cc74R1
PhysRevX.12.021067Cc51R1
PhysRevX.12.021067Cc93R1
PhysRevX.12.021067Cc70R1
PhysRevX.12.021067Cc17R1
PhysRevX.12.021067Cc104R1
PhysRevX.12.021067Cc127R1
PhysRevX.12.021067Cc13R1
PhysRevX.12.021067Cc59R1
PhysRevX.12.021067Cc97R1
PhysRevX.12.021067Cc100R1
PhysRevX.12.021067Cc78R1
PhysRevX.12.021067Cc123R1
PhysRevX.12.021067Cc6R1
PhysRevX.12.021067Cc2R1
PhysRevX.12.021067Cc108R1
PhysRevX.12.021067Cc20R1
PhysRevX.12.021067Cc66R1
PhysRevX.12.021067Cc85R1
PhysRevX.12.021067Cc130R1
PhysRevX.12.021067Cc62R1
PhysRevX.12.021067Cc81R1
PhysRevX.12.021067Cc28R1
PhysRevX.12.021067Cc115R1
PhysRevX.12.021067Cc24R1
PhysRevX.12.021067Cc111R1
PhysRevX.12.021067Cc47R1
PhysRevX.12.021067Cc89R1
PhysRevX.12.021067Cc119R1
PhysRevX.12.021067Cc31R1
PhysRevX.12.021067Cc54R1
PhysRevX.12.021067Cc77R1
PhysRevX.12.021067Cc50R1
PhysRevX.12.021067Cc73R1
PhysRevX.12.021067Cc92R1
PhysRevX.12.021067Cc16R1
PhysRevX.12.021067Cc39R1
PhysRevX.12.021067Cc107R1
PhysRevX.12.021067Cc126R1
PhysRevX.12.021067Cc12R1
PhysRevX.12.021067Cc35R1
PhysRevX.12.021067Cc58R1
PhysRevX.12.021067Cc96R1
PhysRevX.12.021067Cc9R1
PhysRevX.12.021067Cc122R1
PhysRevX.12.021067Cc103R1
PhysRevX.12.021067Cc5R1
PhysRevX.12.021067Cc1R1
PhysRevX.12.021067Cc80R1
PhysRevX.12.021067Cc42R1
PhysRevX.12.021067Cc65R1
PhysRevX.12.021067Cc88R1
PhysRevX.12.021067Cc110R1
PhysRevX.12.021067Cc61R1
PhysRevX.12.021067Cc27R1
PhysRevX.12.021067Cc118R1
PhysRevX.12.021067Cc23R1
PhysRevX.12.021067Cc46R1
PhysRevX.12.021067Cc69R1
PhysRevX.12.021067Cc114R1
PhysRevX.12.021067Cc91R1
PhysRevX.12.021067Cc30R1
PhysRevX.12.021067Cc76R1
PhysRevX.12.021067Cc121R1
PhysRevX.12.021067Cc11R1
PhysRevX.12.021067Cc53R1
PhysRevX.12.021067Cc72R1
PhysRevX.12.021067Cc38R1
PhysRevX.12.021067Cc129R1
PhysRevX.12.021067Cc19R1
PhysRevX.12.021067Cc95R1
PhysRevX.12.021067Cc106R1
PhysRevX.12.021067Cc34R1
PhysRevX.12.021067Cc125R1
PhysRevX.12.021067Cc15R1
PhysRevX.12.021067Cc57R1
PhysRevX.12.021067Cc99R1
PhysRevX.12.021067Cc102R1
PhysRevX.12.021067Cc8R1
PhysRevX.12.021067Cc4R1
PhysRevX.12.021067Cc41R1
PhysRevX.12.021067Cc22R1
PhysRevX.12.021067Cc64R1
PhysRevX.12.021067Cc83R1
PhysRevX.12.021067Cc60R1
PhysRevX.12.021067Cc49R1
PhysRevX.12.021067Cc117R1
PhysRevX.12.021067Cc45R1
PhysRevX.12.021067Cc26R1
PhysRevX.12.021067Cc68R1
PhysRevX.12.021067Cc113R1
Sean A. Hartnoll (PhysRevX.12.021067Cc120R1) 2018
PhysRevX.12.021067Cc90R1
PhysRevX.12.021067Cc10R1
PhysRevX.12.021067Cc33R1
PhysRevX.12.021067Cc52R1
PhysRevX.12.021067Cc75R1
PhysRevX.12.021067Cc71R1
PhysRevX.12.021067Cc128R1
PhysRevX.12.021067Cc18R1
PhysRevX.12.021067Cc94R1
PhysRevX.12.021067Cc101R1
PhysRevX.12.021067Cc124R1
PhysRevX.12.021067Cc14R1
PhysRevX.12.021067Cc37R1
PhysRevX.12.021067Cc56R1
PhysRevX.12.021067Cc79R1
PhysRevX.12.021067Cc98R1
PhysRevX.12.021067Cc7R1
PhysRevX.12.021067Cc109R1
PhysRevX.12.021067Cc3R1
PhysRevX.12.021067Cc21R1
PhysRevX.12.021067Cc44R1
PhysRevX.12.021067Cc63R1
PhysRevX.12.021067Cc40R1
PhysRevX.12.021067Cc82R1
PhysRevX.12.021067Cc116R1
PhysRevX.12.021067Cc29R1
PhysRevX.12.021067Cc112R1
PhysRevX.12.021067Cc25R1
PhysRevX.12.021067Cc48R1
PhysRevX.12.021067Cc67R1
References_xml – ident: PhysRevX.12.021067Cc35R1
  doi: 10.1038/s41586-020-2049-7
– ident: PhysRevX.12.021067Cc19R1
  doi: 10.1103/PhysRevB.98.075154
– ident: PhysRevX.12.021067Cc13R1
  doi: 10.1103/PhysRevB.86.155449
– ident: PhysRevX.12.021067Cc129R1
  doi: 10.1103/PhysRevB.77.155105
– ident: PhysRevX.12.021067Cc7R1
  doi: 10.1038/s41586-019-1393-y
– ident: PhysRevX.12.021067Cc114R1
  doi: 10.1103/PhysRevB.89.235116
– ident: PhysRevX.12.021067Cc99R1
  doi: 10.1103/PhysRevB.94.115138
– ident: PhysRevX.12.021067Cc52R1
  doi: 10.1016/0003-4916(61)90115-4
– ident: PhysRevX.12.021067Cc80R1
  doi: 10.1103/PhysRevB.89.104418
– ident: PhysRevX.12.021067Cc63R1
  doi: 10.1103/PhysRevLett.95.180603
– ident: PhysRevX.12.021067Cc16R1
  doi: 10.1103/PhysRevX.8.041041
– ident: PhysRevX.12.021067Cc49R1
  doi: 10.1038/s41563-021-00959-8
– ident: PhysRevX.12.021067Cc110R1
  doi: 10.1103/PhysRevLett.59.2095
– ident: PhysRevX.12.021067Cc72R1
  doi: 10.1080/14786430410001716944
– ident: PhysRevX.12.021067Cc1R1
  doi: 10.1038/nature26154
– ident: PhysRevX.12.021067Cc44R1
  doi: 10.1103/PhysRevX.10.021042
– ident: PhysRevX.12.021067Cc29R1
  doi: 10.1126/sciadv.abf5299
– ident: PhysRevX.12.021067Cc2R1
  doi: 10.1038/nature26160
– ident: PhysRevX.12.021067Cc22R1
  doi: 10.1103/PhysRevB.98.085435
– ident: PhysRevX.12.021067Cc125R1
  doi: 10.1103/PhysRevX.6.031028
– ident: PhysRevX.12.021067Cc59R1
  doi: 10.1103/RevModPhys.82.1743
– ident: PhysRevX.12.021067Cc88R1
  doi: 10.1103/PhysRevB.101.184419
– ident: PhysRevX.12.021067Cc55R1
  doi: 10.1103/PhysRevB.78.035103
– ident: PhysRevX.12.021067Cc65R1
  doi: 10.1103/PhysRevLett.112.030402
– ident: PhysRevX.12.021067Cc58R1
  doi: 10.1103/PhysRevB.44.6883
– ident: PhysRevX.12.021067Cc82R1
  doi: 10.1088/0256-307X/28/9/097102
– ident: PhysRevX.12.021067Cc17R1
  doi: 10.1103/PhysRevX.8.031087
– ident: PhysRevX.12.021067Cc28R1
  doi: 10.1038/s41467-019-12981-1
– ident: PhysRevX.12.021067Cc41R1
  doi: 10.1103/PhysRevLett.121.026402
– ident: PhysRevX.12.021067Cc10R1
  doi: 10.1103/PhysRevLett.124.076801
– ident: PhysRevX.12.021067Cc107R1
  doi: 10.1126/science.1091806
– ident: PhysRevX.12.021067Cc54R1
  doi: 10.1103/PhysRevLett.95.036403
– ident: PhysRevX.12.021067Cc25R1
  doi: 10.1103/PhysRevLett.124.166601
– ident: PhysRevX.12.021067Cc60R1
  doi: 10.1103/PhysRevB.39.8988
– ident: PhysRevX.12.021067Cc119R1
  doi: 10.1103/PhysRevB.46.5621
– ident: PhysRevX.12.021067Cc117R1
  doi: 10.1007/JHEP06(2015)037
– ident: PhysRevX.12.021067Cc30R1
  doi: 10.1103/PhysRevB.101.205426
– ident: PhysRevX.12.021067Cc47R1
  doi: 10.1038/s41586-021-03815-6
– ident: PhysRevX.12.021067Cc23R1
  doi: 10.1038/s41535-019-0153-4
– ident: PhysRevX.12.021067Cc122R1
  doi: 10.1103/PhysRevLett.113.197202
– ident: PhysRevX.12.021067Cc37R1
  doi: 10.1103/PhysRevLett.127.197701
– ident: PhysRevX.12.021067Cc106R1
  doi: 10.1103/PhysRevB.76.224431
– ident: PhysRevX.12.021067Cc89R1
  doi: 10.21468/SciPostPhys.10.2.033
– ident: PhysRevX.12.021067Cc21R1
  doi: 10.1103/PhysRevX.8.031088
– ident: PhysRevX.12.021067Cc95R1
  doi: 10.1103/PhysRevB.82.075127
– ident: PhysRevX.12.021067Cc5R1
  doi: 10.1038/s41567-020-0928-3
– ident: PhysRevX.12.021067Cc9R1
  doi: 10.1038/s41586-020-2260-6
– ident: PhysRevX.12.021067Cc103R1
  doi: 10.1103/PhysRevResearch.2.023344
– ident: PhysRevX.12.021067Cc3R1
  doi: 10.1038/s41567-018-0387-2
– ident: PhysRevX.12.021067Cc123R1
  doi: 10.1088/1751-8113/45/47/473001
– ident: PhysRevX.12.021067Cc57R1
  doi: 10.1103/PhysRevB.84.041102
– ident: PhysRevX.12.021067Cc46R1
  doi: 10.1038/s41586-021-03853-0
– volume-title: Holographic Quantum Matter
  year: 2018
  ident: PhysRevX.12.021067Cc120R1
  contributor:
    fullname: Sean A. Hartnoll
– ident: PhysRevX.12.021067Cc94R1
  doi: 10.1103/PhysRevB.82.045121
– ident: PhysRevX.12.021067Cc40R1
  doi: 10.1103/PhysRevB.100.155138
– ident: PhysRevX.12.021067Cc53R1
  doi: 10.1103/PhysRevB.69.104431
– ident: PhysRevX.12.021067Cc61R1
  doi: 10.1103/PhysRevLett.64.587
– ident: PhysRevX.12.021067Cc78R1
  doi: 10.1103/PhysRevB.63.224401
– ident: PhysRevX.12.021067Cc96R1
  doi: 10.1103/PhysRevB.82.075128
– ident: PhysRevX.12.021067Cc115R1
  doi: 10.1126/science.1212207
– ident: PhysRevX.12.021067Cc101R1
  doi: 10.1103/PhysRevLett.117.157001
– ident: PhysRevX.12.021067Cc121R1
  doi: 10.1103/PhysRevB.76.235124
– ident: PhysRevX.12.021067Cc116R1
  doi: 10.1007/JHEP09(2013)127
– ident: PhysRevX.12.021067Cc77R1
  doi: 10.1103/PhysRevB.72.134502
– ident: PhysRevX.12.021067Cc112R1
  doi: 10.1103/PhysRevX.6.041068
– ident: PhysRevX.12.021067Cc39R1
  doi: 10.1038/s41567-021-01347-4
– ident: PhysRevX.12.021067Cc97R1
  doi: 10.1103/PhysRevB.91.115111
– ident: PhysRevX.12.021067Cc70R1
  doi: 10.1103/PhysRevB.86.245102
– ident: PhysRevX.12.021067Cc27R1
  doi: 10.1103/PhysRevLett.122.257002
– ident: PhysRevX.12.021067Cc104R1
  doi: 10.1103/PhysRevResearch.2.043277
– ident: PhysRevX.12.021067Cc111R1
  doi: 10.1103/PhysRevB.39.11879
– ident: PhysRevX.12.021067Cc64R1
  doi: 10.1038/nphys2913
– ident: PhysRevX.12.021067Cc50R1
  doi: 10.1038/s41586-020-2868-6
– ident: PhysRevX.12.021067Cc24R1
  doi: 10.1103/PhysRevX.10.031034
– ident: PhysRevX.12.021067Cc26R1
  doi: 10.1103/PhysRevLett.121.257001
– ident: PhysRevX.12.021067Cc48R1
  doi: 10.1038/s41586-020-2092-4
– ident: PhysRevX.12.021067Cc15R1
  doi: 10.1103/PhysRevB.98.045103
– ident: PhysRevX.12.021067Cc66R1
  doi: 10.1007/JHEP06(2020)142
– ident: PhysRevX.12.021067Cc62R1
  doi: 10.1103/PhysRevB.53.R8883
– ident: PhysRevX.12.021067Cc75R1
  doi: 10.1103/PhysRevB.39.2756
– ident: PhysRevX.12.021067Cc90R1
  doi: 10.1016/0550-3213(94)90449-9
– ident: PhysRevX.12.021067Cc102R1
  doi: 10.1073/pnas.1620651114
– ident: PhysRevX.12.021067Cc113R1
  doi: 10.1103/PhysRevLett.103.196803
– ident: PhysRevX.12.021067Cc79R1
  doi: 10.1103/PhysRevB.79.064405
– ident: PhysRevX.12.021067Cc85R1
  doi: 10.1103/PhysRevB.104.014517
– ident: PhysRevX.12.021067Cc14R1
  doi: 10.1103/PhysRevLett.121.087001
– ident: PhysRevX.12.021067Cc67R1
  doi: 10.1103/PhysRevLett.62.2180
– ident: PhysRevX.12.021067Cc118R1
  doi: 10.1126/science.1148047
– ident: PhysRevX.12.021067Cc45R1
  doi: 10.1103/PhysRevB.103.235132
– ident: PhysRevX.12.021067Cc73R1
  doi: 10.1016/0003-4916(78)90252-X
– ident: PhysRevX.12.021067Cc109R1
  doi: 10.1038/s41467-021-25707-z
– ident: PhysRevX.12.021067Cc93R1
  doi: 10.1103/PhysRevB.80.165102
– ident: PhysRevX.12.021067Cc31R1
  doi: 10.1126/sciadv.aba8834
– ident: PhysRevX.12.021067Cc42R1
  doi: 10.1103/PhysRevResearch.2.033087
– ident: PhysRevX.12.021067Cc127R1
  doi: 10.1126/science.aal5304
– ident: PhysRevX.12.021067Cc130R1
  doi: 10.1007/JHEP05(2019)214
– ident: PhysRevX.12.021067Cc11R1
  doi: 10.1038/s41567-019-0596-3
– ident: PhysRevX.12.021067Cc100R1
  doi: 10.1103/PhysRevLett.114.097001
– ident: PhysRevX.12.021067Cc71R1
  doi: 10.1103/PhysRevLett.74.3253
– ident: PhysRevX.12.021067Cc4R1
  doi: 10.1126/science.aav1910
– ident: PhysRevX.12.021067Cc91R1
  doi: 10.1016/0550-3213(94)90477-4
– ident: PhysRevX.12.021067Cc74R1
  doi: 10.1103/PhysRevLett.47.1556
– ident: PhysRevX.12.021067Cc108R1
  doi: 10.1103/PhysRevB.70.144407
– ident: PhysRevX.12.021067Cc32R1
  doi: 10.1103/PhysRevLett.122.016401
– ident: PhysRevX.12.021067Cc12R1
  doi: 10.1073/pnas.1108174108
– ident: PhysRevX.12.021067Cc8R1
  doi: 10.1038/s41586-020-2458-7
– ident: PhysRevX.12.021067Cc33R1
  doi: 10.1126/science.aay5533
– ident: PhysRevX.12.021067Cc34R1
  doi: 10.1103/PhysRevB.99.075127
– ident: PhysRevX.12.021067Cc124R1
  doi: 10.21468/SciPostPhys.9.3.034
– ident: PhysRevX.12.021067Cc76R1
  doi: 10.1143/PTPS.160.314
– ident: PhysRevX.12.021067Cc68R1
  doi: 10.1103/PhysRevLett.67.2068
– ident: PhysRevX.12.021067Cc20R1
  doi: 10.1103/PhysRevX.8.031089
– ident: PhysRevX.12.021067Cc81R1
  doi: 10.1103/PhysRevB.84.014402
– ident: PhysRevX.12.021067Cc92R1
  doi: 10.1016/0550-3213(94)90158-9
– ident: PhysRevX.12.021067Cc98R1
  doi: 10.1103/PhysRevB.92.125108
– ident: PhysRevX.12.021067Cc18R1
  doi: 10.1103/PhysRevB.98.075109
– ident: PhysRevX.12.021067Cc38R1
  doi: 10.1038/s41567-020-01062-6
– ident: PhysRevX.12.021067Cc6R1
  doi: 10.1038/s41586-020-2459-6
– ident: PhysRevX.12.021067Cc128R1
  doi: 10.1103/PhysRevX.10.021042
– ident: PhysRevX.12.021067Cc56R1
  doi: 10.1103/PhysRevB.78.045109
– ident: PhysRevX.12.021067Cc126R1
  doi: 10.1103/PhysRevX.7.031058
– ident: PhysRevX.12.021067Cc51R1
  doi: 10.1038/s41567-021-01171-w
– ident: PhysRevX.12.021067Cc69R1
  doi: 10.1103/PhysRevLett.64.3078
– ident: PhysRevX.12.021067Cc83R1
  doi: 10.1103/PhysRevLett.105.160403
SSID ssj0000601477
Score 2.43183
Snippet It has been proposed that an extended version of the Hubbard model which potentially hosts rich correlated physics may be well simulated by the transition...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 021067
SubjectTerms Chalcogenides
Correlation
Critical point
Current carriers
Electric charge
Electrical resistivity
Heterostructures
Insulators
Kinetic energy
Metal-insulator transition
Phase transitions
Physics
Transition metal compounds
Transport properties
Unit cell
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJSQWxKcoFOSBDVmN4zhORr6qAioDolI3K76cWVBBbeH343MSVMTAwho5cnSX3L13eXdm7LzOAgZGkAKqxIvMoRRlXvrAeULyiRkjqt0nj_l4mt3P9GztqC_ShDXjgRvDDTOqUYQs71LiAgoLkyrQsk4q6amxPUZfqdfIVBODw2pjui6ZRA1JUPmEn7NY_EtpcNqPTBQH9v-KxzHJjHbYdosO-WXzVLtsA-d7bDOqNGG5zx5i_a5pRRA3CwpUfIIBPos7kpQTf-Yx-UQdFqcaK6f_6S_IR-1t1WvbeHnApqPb5-uxaE9DEKAKvRKgjU9QGuddrSErAE3ABqbUCNrpsvY15FmlnQcNQIWCKhBOLHWByucgK3XIevO3OR4xDir1CUElDIAkz4wDLCqnsZZF4cM2fXbRWca-N0MvbCQLibKdHa1MbWPHPrsi432vpIHV8UJwo23daP9yY58NOtPb9ita2gCtZODQKi2P_2OPE7aVUvNCrKEMWG-1-MDTAClW7iy-PV-t7Mf8
  priority: 102
  providerName: Directory of Open Access Journals
Title Interaction-Driven Metal-Insulator Transition with Charge Fractionalization
URI https://www.proquest.com/docview/2731133329/abstract/
https://doaj.org/article/44222456b201403e8723c51d0a1f5cd8
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB7xEBIX1BYQgTTaQ2_Iynpt7-NUQUuaFoFQBFJu1np2zAUlIUn7--txdoNQpV73oZVm7Znv--ZhgC-NDhiYUAqsUy-0IymqvPKB84TgEyNGrHa_u8_HT_rX1Ex3YNz1wnBZZecTo6Nu5sga-TCEWRn4lMqqYe1YBcD18OviVfD5UZxnbQ_T2IX9TGpO2O5f39w_TLZ6C88d0UXR9c2kasgllhP6M41yYMaj1N7FpjjC_x8PHcPO6AMctXgxudr84I-wQ7NPcBDrNnF1DLdR0ds0J4jvS3ZdyR0FQC1-cpE5M-okhqNYmZWw6ppwhv2ZklH7Wv3StmKewNPo5vHbWLTnIwhUpVkLNIVPSRbOu8agLpGKgBaKyhAaZ6rGN5jr2jiPBpGlgzpQUKpMScrnKGt1Cnuz-YzOIEGV-ZTBEwWIkuvCIZW1M9TIsvThMz247CxjF5sxGDbSh1TZzo5WZnZjxx5cs_G2T_II63hhvny27Y6wmsWnAN9cxiRPUVlkCo1s0lp6nljQg35netvuq5V9WwXn_799AYcZNypEvaQPe-vlb_oc4MPaDWC3HP0YtOtjEEn4X5k1x_s
link.rule.ids 315,786,790,870,2115,12792,21416,27957,27958,33408,33779,43635,43840
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxELZKqgouiNJWDQTYA7fKYr2293FC0BKSQnKogpSbtZ4d54KSNAn8fjyOl6pC4roPrTRez_fN53kwdt4oz4ERBIc6dVxZFLzKK-djHg8-ATFCtvtonA8e1O-pnkbBbR3TKlufGBx1swDSyC88zAofT8msulz-5TQ1ik5X4wiNHfZRSQ-dVCnev33VWKjXiCqKtlYmlReUVvkHn6dBAsyofdp_eBTa9r_xygFq-gdsP3LE5Gq7qJ_ZB5wfsk8hVxPWX9hdUPG2BQn814rcVTJCT6L5kBLLKYpOAgSFbKyElNaETtVnmPTja_VjLL_8yh76N5OfAx5nInCQpd5w0IVLURTW2UaDKgELzxCKSiNoq6vGNZCrWlsHGoDkgtqHnVjpEqXLQdTyG-vMF3P8zhKQmUuJMKGnJbkqLGBZW42NKEvnP9NlP1rLmOW29YUJIUMqTWtHIzKztWOXXZPxXp-kttXhwmI1M3EXGEWCk6dsNqPATmJZZBK0aNJaOOpS0GW91vQm7qW1-bfyR-_fPmO7g8no3twPx3fHbC-jQoWgl_RYZ7N6whNPHzb2NPwjL7-pw-0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interaction-Driven+Metal-Insulator+Transition+with+Charge+Fractionalization&rft.jtitle=Physical+review.+X&rft.au=Xu%2C+Yichen&rft.au=Wu%2C+Xiao-Chuan&rft.au=Ye%2C+Mengxing&rft.au=Luo%2C+Zhu-Xi&rft.date=2022-06-01&rft.issn=2160-3308&rft.eissn=2160-3308&rft.volume=12&rft.issue=2&rft_id=info:doi/10.1103%2FPhysRevX.12.021067&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevX_12_021067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon